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Université Libre de Bruxelles (ULB), B 1050 Brussels, Belgium

(Dated: December 20, 2012)

Abstract

Exact analytical expressions of the dipole polarizabilities of the non-relativistic hydrogen atom

in spherical coordinates are derived with the help of the Lagrange-mesh numerical method. This

method can provide exact energies and wave functions for well chosen conditions of calculation.

Exact dipole polarizabilities are obtained after an unambiguous rounding up to at least principal

quantum numbers around n = 30. The scalar polarizability of any nl level is given by n4[4n2 +

14 + 7l(l + 1)]/4 and its tensor polarizability by −n4[3n2 − 9 + 11l(l + 1)]l/4(2l + 3), which allow

calculating the polarizability of any hydrogen state nlm.
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I. INTRODUCTION

The non-relativistic hydrogen atom is one of the most studied and best known problems of

quantum mechanics [1]. Since the wave functions are known exactly, many of its properties

can be derived analytically. An interesting exception is given by static dipole polarizabilities

for which a general analytical expression as a function of the quantum numbers nlm related

to spherical coordinates is not available. A polarizability is the response of the electron cloud

to some external field [2, 3] that can be represented as a multipole operator. Polarizabilities

appear into e.g. the Stark effect, interactions between an electron and an atom and van der

Waals forces.

The dipole polarizability of the ground state of the hydrogen atom is known for a long

time [4]. In parabolic coordinates, the general analytical expression for the hydrogen atom

is well known [3] as

α(n1n2m) =
1

8
n4[17n2 − 3(n1 − n2)

2 − 9m2 + 19] (1)

in atomic units, where n1n2m are the parabolic quantum numbers and the principal quantum

number is given by n = n1 + n2 + |m| + 1. Thedy allow calculating the Stark Stark effect

at the second oorder of perturbation theory, I.E when the electric field is not too large

but large enough so that the fine-structure splitting can be neglected. This polarizability

involves states of mixed parity resulting from the famous degeneracy of hydrogen. First-

order perturbation theory mixes the degenerate states which enter into the second-order

polarizabilities.

For spherical quantum numbers nlm, the situation is different. Polarizabilities α(nlm) can

be defined mathematically for each unmixed state nlm. They are useful in different respects.

They provide exact limits of dynamical polarizabilities when the frequency tends to zero [5].

They are a useful testing ground for numerical techniques [6, 7], in particular because of

the similarity of simple models of alkali atoms with hydrogen. However, contrary to the

alkali case, the hydrogen atom polarizabilities are unrealistic in the sense that degenerate

states must be excluded. Rigourous treatments must take into account transitions towards

states with the same quantum number n separated by the small spin-orbit and Lamb-shift

splittings [8]. The non-relativistic polarizabilities are then useful as a good approximation

of the part of the relativistic polarizabilities involving different principal numbers.
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For ns states, a general analytical result has been derived by McDowell [9],

α(ns) =
1

4
n4(2n2 + 7). (2)

For |m| = n− 1, l is also equal to n− 1 and one deduces from Eq. (1) [3]

α(n,l=n−1,|m|=n−1) =
1

4
n4(n+ 1)(4n+ 5). (3)

General expressions have been derived by Krylovetsky, Manakov, and Marmo but are not

easily accessible (see references in Ref. [5]. For m = 0, they obtain

α(nl0 = n4 n
2[19l(l + 1)− 12] + 13l(l + 1)[3l(l + 1) + 2]− 42

4(2l − 1)(2l + 3)
. (4)

Otherwise, explicit values of static polarizabilities of the hydrogen atom are given for a

limited number of states in Refs [6, 7].

The Lagrange-mesh method is an approximate variational method involving a basis of

Lagrange functions and using the associated Gauss quadrature for the calculation of matrix

elements [10–12]. Lagrange functions are continuous functions that vanish at all points

of a mesh but one. The principal simplification appearing in the Lagrange-mesh method

is that the potential matrix is diagonal and only involves values of the potential at mesh

points. The kinetic-energy matrix can be calculated exactly or approximated with the Gauss

quadrature. The remarkable property of the Lagrange-mesh method is that the accuracy of

the variational method is essentially preserved in spite of the use of the Gauss quadrature

[13].

Strikingly, for well chosen conditions of the calculation, the Lagrange-mesh method with

exact expressions for the overlaps and kinetic-energy matrix elements can provide the exact

values of the hydrogen energies and wave functions, and thus, as explained below, of po-

larizabilities. Since computers have a limited number of digits, the numerical results differ

from the exact values by rounding errors.

The aim of this paper is to derive exact analytical dipole polarizabilities by fitting numer-

ical results obtained with a variational calculation using a Lagrange basis, which is exact in

principle. The rounding required because of the limited accuracy of the computer can be

performed unambiguously up to high values of n. In passing, it is observed that a calculation

with the simplest version of the Lagrange-mesh method leads to more accurate numerical

values of the polarizabilities than the variational calculation, in spite of additional Gauss

quadrature approximations.
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In Sec. II, general expressions for the polarizabilities induced by multipole fields are

summarized and analyzed. In Sec. III, the Lagrange-Laguerre basis is introduced and the

corresponding variational calculation is shown to lead to exact results. The difference with

the Lagrange-mesh method is explained. Numerical results for the dipole polarizabilities are

presented in Sec. IV and their exact analytical expressions are deduced. Concluding remarks

are presented in Sec. V.

II. POLARIZABILITIES OF THE HYDROGEN ATOM

The wave functions of the non-relativistic hydrogen atom are separated in spherical co-

ordinates as r−1ψnl(r)Ylm(Ω). The radial functions ψnl with principal quantum number n

are eigenfunctions of the radial Hamiltonian of the hydrogen atom for partial wave l

Hl =
1

2

[

− d2

dr2
+
l(l + 1)

r2

]

− 1

r
(5)

(in atomic units) and correspond to energy −1/2n2.

The polarizabilities are often defined by series involving the continuum. These series can

be summed in a compact form with the method of Dalgarno and Lewis [14]. Let us consider

the polarization by a multipole operator rλC
(λ)
µ where C

(λ)
µ (Ω) =

√

4π/(2λ+ 1)Y
(λ)
µ (Ω). For

partial wave l, the radial functions ψ
(1)
nll′ at the first order of perturbation theory are solutions

of the inhomogeneous radial equations

(Hl′ − E)ψ
(1)
nll′(r) = rλψnl(r) (6)

where ψnl is the radial wave function of the studied state. The polarizability of state lm for

component µ of the multipole operator is given by

α
(nlm)
λµ = (2l + 1)

∑

l′





l λ l′

m µ −m− µ





2

α
(nll′)
λ . (7)

This expression allows a calculation for any µ and m from 3jm coefficients and λ+1 reduced

polarizabilities. These reduced polarizabilities read

α
(nll′)
λ = 2(2l′ + 1)





l′ λ l

0 0 0





2
∫ ∞

0

ψ
(1)
nll′(r)r

λψnl(r)dr. (8)
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The sum in (7) is thus restricted to |l− λ| ≤ l′ ≤ l+ λ with l+ λ+ l′ even and l′ ≥ |m+ µ|.
The average or scalar polarizabilities defined by

α
(nl)
λ =

1

2l + 1

l
∑

m=−l

α
(nlm)
λµ (9)

do not depend on µ and can easily be calculated with

α
(nl)
λ =

1

2λ+ 1

l+λ
∑

l′=|l−λ|

′ α
(nll′)
λ (10)

where the prime means that the sum runs by steps of two and contains in general λ + 1

terms.

The right-hand side of Eq. (6) is a polynomial of degree n+ λ multiplied by exp(−r/n).
It behaves near the origin as rλ+l+1. The solution of such an equation is elementary. It

is a polynomial of degree n + λ + 1 multiplied by the same exponential. It behaves near

the origin as rl
′+1. Hence the integrand in Eq. (8) is a polynomial of degree 2n + 2λ + 1

multiplied by exp(−2r/n) and the integral can be calculated exactly.

An unusual problem arises in the calculation of the static polarizabilities for the hydrogen

atom because of the degeneracies in the level scheme. The differential equation (6) has no

solution when transitions are possible toward a degenerate state. For dipole polarizabilities,

this occurs when l′ = l − 1 and |m + µ| < l′ or when l′ = l + 1 and n > l + 1. Degenerate

energies must be excluded from the calculation of polarizabilities. By projecting out the

degenerate state [7], Eq. (6) is modified into

(Hl′ − E)ψ
(1)
nll′(r) = rλψnl(r)− 〈ψnl′|rλ|ψnl〉ψnl′(r). (11)

The reduced polarizability is obtained with Eq. (8) where ψ
(1)
nll′ is the solution of Eq. (11),

orthogonalized to ψnl′ . For particular cases, analytical calculations are quite feasible but the

structure of a general formula is not obvious.

III. LAGRANGE-MESH AND VARIATIONAL METHODS

The Lagrange-Laguerre mesh points xi are defined for i = 1 to N by [10]

LN(xi) = 0, (12)
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where LN(x) is a Laguerre polynomial of degree N . The corresponding Gauss-Laguerre

quadrature

∫ ∞

0

g(x) dx ≈
N
∑

k=1

λkg(xk) (13)

involves the Gauss-Laguerre weights λk [15]. It is exact if g(x) is a polynomial of degree at

most 2N − 1 times exp(−x) [16]. The regularized Lagrange functions read [12, 17]

fi(x) = (−1)ix
−1/2
i

xLN(x)

x− xi
e−x/2. (14)

These basis functions are polynomials of degree N multiplied by exp(−x/2). They vanish

at the origin. They satisfy the Lagrange property

fi(xj) = λ
−1/2
i δij . (15)

At the Gauss approximation, the matrix elements of a function V (x) are diagonal,

∫ ∞

0

fi(x)V (x)fj(x) dx ≈
N
∑

k=1

λkfi(xk)V (xk)fj(xk)

= V (xi)δij (16)

because of the Lagrange conditions (15). Matrix elements of x−1 and x−2 are exact since

they involve polynomials of respective degrees 2N − 2 and 2N − 1, but not those of 1 since

they involve a polynomial of degree 2N . This basis is thus not orthonormal [13],

Nij = 〈fi|fj〉 = δij +
(−1)i−j

√
xixj

(17)

where the Dirac notation represents an integral from 0 to ∞. The matrix elements Tij =

〈fi|T |fj〉 of T = −d2/dx2 read at the Gauss approximation [17]

TG
i 6=j = (−1)i−j xi + xj√

xixj(xi − xj)2
(18)

and

TG
ii = − 1

12x2i

[

x2i − 2(2N + 1)xi − 4
]

. (19)

The superscript G indicates the use of the Gauss approximation in a case where it is not

exact. Here it is not exact since the integrand is a polynomial of degree 2N times exp(−x).
However, the exact matrix elements of T can be obtained as

Tij = TG
ij − (−1)i−j 1

4
√
xixj

(20)
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with a simple correction to the Gauss approximation [11, 13].

The regularized Lagrange-Laguerre basis plays a special role for the hydrogen atom since,

for some well chosen scaling parameter h, the exact radial wave functions can be expressed

exactly as a finite combinations of these Lagrange functions. The radial function ψl are

expanded as

ψl(r) = h−1/2

N
∑

i=1

clifi(r/h). (21)

This expression is a polynomial of degree N times exp(−r/2h). For h = n/2, the functions

ψ
(1)
nll′(r) and ψnl(r) can be reproduced exactly by expansion (21) if N is large enough.

The exact variational equations for orbital momentum l with basis (21) read

N
∑

j=1

(Hlij − ENij)clj = 0 (22)

for i = 1 to N , where

Hlij =
1

2h2
Tij +

[

l(l + 1)

2h2x2i
− 1

hxi

]

δij (23)

is the matrix element 〈fi|Hl|fj〉 calculated exactly with Eq. (20) for the kinetic energy.

A crucial property is that the Gauss quadrature is exact for the Coulomb and centrifugal

terms. The system (22) is then an exact variational calculation with a basis chosen in a

space supporting the exact solution for n = 2h if 2h is an integer. Each eigenvalue −1/2n2

can be reproduced exactly but for different values of the scaling parameter h. When the

energy is exact, the corresponding expansion (21) is exact. In this case, the notations En,

cnl and ψnl referring to the exact wave function can be used.

Like in Eq. (21), the functions ψ
(1)
nll′ are expanded as

ψ
(1)
nll′(r) = h−1/2

N
∑

j=1

c
(1)
nll′jfj(r/h). (24)

Eq. (6) leads to the algebraic system

N
∑

j=1

(Hl′ij − EnNij)c
(1)
nll′j = (hxi)

λcnli, (25)

where Hl′ij is the matrix element (23) with l replaced by l′. For h = n/2, it can give the

exact solution corresponding to ψnl if N is large enough. With the Gauss quadrature, Eq. (8)
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provides the reduced polarizabilities

α
(nll′)
λ = 2(2l′ + 1)





l′ λ l

0 0 0





2

hλ
N
∑

j=1

c
(1)
nll′jx

λ
j cnlj. (26)

The Gauss quadrature is exact for N ≥ n+λ+1. Since in this case the cnlj and c
(1)
nll′j provide

the exact functions ψnl and ψ
(1)
nll′ , the polarizabilities are exact.

The algebraic system (25) becomes singular when transitions are possible toward a de-

generate state. The degeneracy problem can easily be solved numerically with the Lagrange-

mesh method by removing the degenerate eigenvalue. When solving system (25), the inverse

of the matrix in the left-hand member is replaced according to

(Hl′ − EnN )−1 →
∑

k

′
v
(k)(E(k) − En)

−1
v
(k)T (27)

where E(k) and v
(k) are the eigenvalues and eigenvectors of the generalized eigenvalue prob-

lem (Hl′ −E(k)N )v(k) = 0 and T means transposition. The prime in the sum indicates that

the term with |E(k) − En| < ǫ is dropped, where ǫ is for example chosen as 10−10 in double

precision.

A standard Lagrange-mesh calculation would involve the Gauss approximation every-

where, i.e. the replacements

Nij → δij and Tij → TG
ij (28)

in Eqs. (22), (23), (25), and (27). We shall see that this approximation essentially leads to

the same results in spite of the Gauss approximation. In fact, we shall even observe that

it is more accurate. The propagation of rounding errors is indeed less important in the

standard Lagrange-mesh calculation, probably because the overlap matrix N is diagonal

and the eigenvalue problem is not generalized.

IV. NUMERICAL AND DEDUCED ANALYTICAL DIPOLE POLARIZABILI-

TIES

For dipole polarizabilities, the subscripts λ = 1 and µ = 0 are dropped. Expression (7)

is usually written as

α(nlm) = α
(nl)
0 + α

(nl)
2

3m2 − l(l + 1)

l(2l − 1)
, (29)
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where α
(nl)
0 and α

(nl)
2 are known as the scalar and tensor polarizabilities, respectively [3]. The

average polarizability defined in Eq. (9) is the scalar polarizability α
(nl)
0 . Exact expressions

for α
(nl)
0 and α

(nl)
2 will be deduced from accurate numerical results.

As we have seen, when 2h takes an integer value n, the wave function ψnl given by (21) is

exact. The exact wave functions in the right-hand member of (6) are exponentials exp(−r/n)
multiplied by polynomials. The exact solution of an inhomogeneous equation such as (6)

is also a polynomial times the same exponential (see examples in Ref. [6]). Hence, this

equation can also be solved exactly, i.e. the coefficients c
(1)
nll′j obtained from the system (25)

give the exact functions ψ
(1)
nll′(r) when h = n/2. The reduced polarizabilities (8) are then

obtained with the Gauss quadrature (26) which is exact for N ≥ n+λ+1. With an infinite

number of digits, the polarizability would be exact. Here they will contain rounding errors

related to the double-precision computer accuracy.

The variational energies for n ≤ 4 are presented in Table I. The scalar and tensor dipole

polarizabilities obtained with the variational calculation are also displayed in Table I. The

conditions of the calculation are N = n + 2 and h = n/2. The obtained values are close to

integers or simple fractions, which can easily be guessed. The 1s polarizability is known for a

long time [4]. For l = 0, the results agree with the exact values (2) of Ref. [9]. For l = n−1,

they also agree with the exact values (3). The 2p0 and 3d0 polarizabilities calculated with

Eq. (29) and Table I reproduce those obtained from a numerical calculation with B splines

in Ref. [6]. It is remarkable that the Lagrange-mesh method with four and five mesh points

gives a better accuracy than eighty B-splines in Ref. [6]. Other cases do not seem to be

available in the literature.

With the standard double precision, exact scalar polarizabilities can be obtained up to

n = 30, at least, as exemplified by Table II. Strikingly, the Lagrange-mesh results, obtained

with the Gauss approximation, are more accurate than the variational ones, i.e. they are

closer to integer values. The tensor polarizabilities can be obtained with the same accuracy

and hence the polarizabilities of any state nlm as a function of m. Scalar polarizabilities

can be safely obtained up to n = 40. However, beyond n ≈ 30, multiprecision should be

used to avoid ambiguities in the non necessarily integer values of the tensor polarizabilities.

From small subsets of values, analytical expressions for the polarizabilities can easily be

extracted. These formulas can be tested with all other values. The two reduced dipole
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nl h N En α
(nl)
0 α

(nl)
2

1s 0.5 3 −0.4999999999999997 4.500000000000 0

2s 1.0 4 −0.1249999999999999 120.000000000000 0

2p −0.1249999999999998 175.999999999999 −19.999999999999

3s 1.5 5 −0.05555555555555552 1012.500000000018 0

3p −0.05555555555555559 1295.999999999986 −161.999999999997

3d −0.05555555555555564 1862.999999999988 −485.999999999997

4s 2.0 6 −0.03125000000000000 4991.999999999993 0

4p −0.03124999999999998 5887.999999999932 −780.799999999996

4d −0.03124999999999995 7680.000000000189 −1920.000000000067

4f −0.03124999999999990 10367.99999999927 −3647.999999999685

TABLE I. Energies, scalar and tensor dipole polarizabilities obtained in a variational calculation

with N = n + 2 Lagrange-Laguerre basis functions and h = n/2 for principal quantum numbers

n ≤ 4.

polarizabilities read

α(nll+1) =
l + 1

4(2l + 1)
n4[6(2n2 + 7) + (5n2 + 58)l + 24l2 + 3l3] (30)

and

α(nll−1) =
l

4(2l + 1)
n4[7n2 + 5− (5n2 + 19)l + 15l2 − 3l3]. (31)

They allow calculating the separate contributions of l′ = l + 1 and l′ = l − 1 for any nlm

state and µ = −1, 0, or 1.

The scalar dipole polarizability of level nl is given by three times the sum of expressions

(30) and (31),

α
(nl)
0 =

1

4
n4[4n2 + 14 + 7l(l + 1)]. (32)

For l = 0, the formula (2) of McDowell [9] is recovered. See Table II for a comparison with

numerical results at n = 30. The tensor dipole polarizability of level nl reads

α
(nl)
2 = − n4l

4(2l + 3)
[3n2 − 9 + 11l(l + 1)]. (33)
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n l Variational Lagrange mesh Eq. (32)

30 0 731834999.9998 731835000.0002 731835000

1 734669999.9984 734670000.0000 734670000

2 740339999.9730 740340000.0000 740340000

3 748845000.0436 748845000.0001 748845000

4 760184999.9699 760184999.9999 760185000

25 1653210000.1764 1653210000.0003 1653210000

26 1726919998.8397 1726920000.0004 1726920000

27 1803465000.8468 1803464999.9983 1803465000

28 1882845000.0327 1882845000.0014 1882845000

29 1965059999.9875 1965059999.9998 1965060000

TABLE II. Typical scalar dipole polarizabilities α
(nl)
0 for n = 30 levels. Comparison of variational

and Lagrange-mesh results with exact formula (32).

These results reproduce those of Krylovetsky, Manakov, and Marmo [5]: combining Eqs. (29),

(32), and (33) for m = 0 provides Eq. (4). For l = n− 1, the sum α
(n,n−1)
0 + α

(n,n−1)
2 agrees

with Eq. (3). The 2p0 and 3d0 polarizabilities of Ref. [6] (216 and 2349, respectively) are

easily reproduced with Eq. (29).

V. CONCLUDING REMARKS

The central results of this work are the analytical expressions (32) and (33). They allow a

simple calculation of the dipole polarizability for any state nlm of the hydrogen atom. The

computer-aided technique used to derive these analytical formulae is unusual. In a strict

mathematical sense, expressions (32) and (33) are not proven; they are only conjectured.

However, in a numerical sense, they are fully established since they agree with all results

obtained with a numerical method which would be exact in a computation with an infinite

number of digits. The roundings made necessary by the limited computer accuracy are

unambiguous for all states up to n = 30 at least.

This is a special example of use of the Lagrange-mesh method. To ensure the exactness of

the energies and wave functions, the calculations are performed with the exact overlap and
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kinetic-energy matrix elements. As already noticed in other cases [13, 18], calculations with

the usual Gauss quadrature approximation for these matrix elements lead to the same results

with often a better accuracy. An excellent accuracy has also been obtained in calculations

of polarizabilities of the confined hydrogen atom [19] and the hydrogen molecular ion [20].

The originality here is that a rare case where the method is exact leads to general analytical

results.
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