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Abstract

In light of pioneering findings in the 1980s and an estimation of more than 130 million global annual births,
umbilical cord blood (UCB) is considered to be the most plentiful reservoir of cells and to have regenerative
potential for many clinical applications. Although UCB is used mainly against blood disorders, the spectrum of
diseases for which it provides effective therapy has been expanded to include non-hematopoietic conditions; UCB
has also been used as source for regenerative cell therapy and immune modulation. Thus, collection and banking
of UCB-derived cells have become a popular option. However, there are questions regarding the cost versus the
benefits of UCB banking, and it also raises complex ethical and legal issues. This review discusses many issues
surrounding the conservation of UCB-derived cells and the great potential and current clinical applications of UCB
in an era of new therapies. In particular, we describe the practical issues inherent in UCB collection, processing, and
long-term storage as well as the different types of ‘stem’ or progenitor cells circulating in UCB and their uses in
multiple clinical settings. Given these considerations, the trend toward UCB will continue to provide growing assistance
to health care worldwide.
Introduction
The perspective regarding therapies based on multipo-
tent ‘stem’ or progenitor cells is rather encouraging be-
cause of the large amount of research that recognizes
human tissues as plentiful reservoirs of cells with a high
capacity to regenerate damaged tissues [1–4]. Collection
and banking of umbilical cord blood (UCB)-derived cells
have become a popular option worldwide. However,
there are questions regarding the cost versus the benefits
of UCB banking, and it also raises complex ethical and
legal issues [5–7].
This review discusses many issues surrounding the

conservation of UCB-derived cells. In the context of
other potential regenerative cell sources, we review the
great potential and current clinical applications of UCB
in the era of cell therapy. Briefly, we describe the prac-
tical issues inherent in UCB collection, processing, and
long-term storage; UCB banking categories and ethical
aspects; the relative benefits and economic burden asso-
ciated with a rather long and costly procedure that is
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necessary to isolate and store cells for 25 to 30 years;
and the different types of ‘stem’ or progenitor cells cir-
culating in UCB and their uses in multiple clinical
settings.

Umbilical cord blood collection, processing, and
cryopreservation
Because UCB is a highly enriched stem cell source
(Fig. 1) [8], it is thought to be a helpful treatment for a
number of genetic diseases, blood malignancies, and im-
mune deficiencies. UCB may be also of medical use for a
sick sibling or relative. Banking UCB is thus a way to
preserve potentially life-saving cells that are usually dis-
carded after the interruption of the blood supply from
the umbilical cord to the newborn infant. Prior to collec-
tion, UCB donors are required to sign an informed con-
sent form. At this time or alternatively up to 7 days
before or 7 days after birth of the child, they are also
tested for infectious diseases and microbial sterility. The
precise timing for clamping and extracting the residual
cord blood is important because umbilical vessels tend
to collapse, according to Burton’s theory [9], as a con-
sequence of (among other unknown mechanisms) the
loss of blood flow (and thus pressure) and possibly
temperature. The immediate consequence of the vascular
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Fig. 1 Umbilical cord: a tube containing highly ‘stem’ cell-enriched blood. Representative images show a the fetal face of a placenta from which
an umbilical cord grows as a flexible, spongy-looking, tube-like structure usually around 55 cm or 2 feet, b a transversal section of umbilical cord
showing two arteries (A) and one vein (V), and c a Masson’s trichrome staining of a complete umbilical cord microsection. At the structural level,
amniotic membrane (AM), Wharton’s jelly (WJ), and smooth musculature (SM) associated with a blood vessel’s wall (VW) and lumen (VL) can be
clearly distinguished. d The blood entrapped in the umbilical cord is recognized as a highly enriched source of valuable cells which can be
visualized by, for example, fluorescence in situ hybridization using specific probes for X (green) and Y (red) chromosome
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occlusion is the coagulation of the trapped cord blood,
which hinders the extraction of uncoagulated blood. Co-
agulation is one of the most cumbersome barriers to opti-
mal sample extraction. The intent is to collect blood
entrapped in the cord that would otherwise be released as
a birth surplus. In addition, this procedure is non-invasive,
not painful, and applicable to the vast majority of cases
(vaginal or caesarean, induced or non-induced). Collection
itself is a simple matter of venipuncture and drainage to a
sterile container. Routinely, this procedure is completed
within 5 minutes. However, UCB contamination predom-
inantly occurs at this simple but critical point. During a
vaginal birth, the external side of the cord (epithelial am-
niotic membrane) has been in close contact with vaginal
or even colon-derived fluids, thus providing an entrance
for contaminants throughout the venipuncture. UCB is
not supposed to be contaminated, because it is an aseptic
and closed system including only the baby, cord, and pla-
centa; venipuncture is the only way to open this enclosed
system.
Once the blood is collected, samples are included in a

sterile bag (approximately 250 mL in size) that is then
placed in an extraction kit in which temperature, pH,
and CO2 and O2 levels, among other factors, depend
only on time and external conditions. This encapsulated
system, which must meet all regulatory shipping require-
ments, can regulate these basic features to a limited extent
in order to maximize the number of cells that remain vi-
able. Because cell survival is time-dependent, most collec-
tion facilities use external-induction-free boxes (with a
temperature logging system) to isolate samples from the
external influences of light and temperature. Transporta-
tion to cell processing laboratories is thus achieved within
controlled and registered conditions.
Ideally, the separation and processing of large numbers

of UCB units should be partially automated (Fig. 2). The
majority of UCB collections are first red blood cell
(RBC)-depleted prior to cryopreservation (Fig. 3). This
step guarantees high rates of stem cell recovery because
RBCs can make up more than half of the collection by
volume, and only the mononuclear cell (MNC) fraction
- where the stem cell population resides - is needed for
banking. Furthermore, the volume reduction procedure,
which is essential for cord blood banks to be economic-
ally efficient, rationalizes storage space and permits the
reduction of dimethyl sulfoxide (DMSO) quantity in cel-
lular products; it also diminishes the cytotoxicity caused
by the thawing of RBCs [10–12]. Multiple methods have



Fig. 2 Umbilical cord blood collecting, processing, and banking: basic steps. In brief, once the umbilical cord blood extraction kit
(temperature-insulated and padded for safety during transport) arrives at the processing laboratory, the blood bag’s external surfaces are
disinfected prior to entrance in Cleanroom type B. Here, under highly sterile conditions, a pre-cryopreserved cell suspension enriched with
mononuclear cells is collected following hydroxyethyl starch-based sedimentation of red blood cells (RBCs) and centrifugation. The resultant
cell product is finally cryopreserved in a freezing bag cassette following a controlled-rate freezing process to slowly reduce the temperature
to −180 °C and is stored in commercially available liquid nitrogen dewars. Routinely, quality controls based on the estimation of total nucleated cells
(TNCs), percentage of CD34+ and CD45+ cells, and cell viability are performed throughout sample processing. The figure was designed and
hand-drawn by CG-M

Roura et al. Stem Cell Research & Therapy  (2015) 6:123 Page 3 of 11
been used without significant loss of cell viability, includ-
ing density gradient separation [13], sedimentation by gel-
atin [14], rouleaux formation induced by hydroxyethyl
starch and centrifugation [15, 16], and differential centri-
fugation with expression of RBCs and plasma [17–19].
The methodology for UCB cryopreservation has been

developed over time. Basically, UCB is processed and
Fig. 3 Sedimentation of red blood cells (RBCs). Representative photograph
the end (b) of the process of RBC sedimentation. Note that a yellow modif
the bag. This procedure is central to reduce volume sample, storage space
stored in either liquid- or vapor-phase nitrogen to main-
tain the viability and potential of the cell product [20].
The finding of Broxmeyer et al. [21] that controlled
UCB cryopreservation for over 20 years had no signifi-
cant effects on cell viability and function was proof-of-
concept for the use of UCB banks in cell transplantation
in humans. Others have also developed small-scale
s show umbilical cord blood collections at the beginning (a) and at
ied buffy coat, enriched in mononuclear cells, is obtained at the top of
, and the cytotoxicity caused by the thawing of RBCs
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automated cryopreservation systems, such as the Mini-
BioArchive system (Cesca Therpeutics Inc., Rancho Cor-
dova, CA, USA), to provide cellular products adequate
for UCB transplantation [22]. Methodologically, UCB
banks use two methods to freeze cell products by using
DMSO: red cell reduction (RCR) and plasma depletion
(PD) [23]. Briefly, in the RCR method, cord blood is cen-
trifuged in hetastarch or albumin to isolate 21 mL of
cord blood containing mostly white blood cells; 4 mL of
50 % DMSO is added, and the resulting 25 mL of cell
suspension is frozen. In the PD method, plasma is re-
moved, and all of the cells are retained and frozen in
10 % DMSO. PD UCB units are cheaper to process but
more expensive to store and somewhat more trouble-
some to thaw. However, when properly thawed and
washed, PD UCB units have as many or more total nu-
cleated cells (TNCs), CD34+ cells, and colony-forming
units as well as higher cell engraftment rates; therefore,
they may treat certain conditions, such as β-thalassemia,
more effectively than RCR units [24]. As previously
mentioned, DMSO is added immediately before the cord
blood is frozen in order to protect cells by reducing the
intracellular formation of ice crystals. However, DMSO
concentrations of more than 1 % are toxic to blood cells
for periods exceeding 30 minutes at 37 °C. For that rea-
son, DMSO must be removed shortly after thawing to
minimize adverse effects to transplanted patients [23].
The minimum acceptable pre-cryopreserved cell prod-

uct is 2.5 × 107 TNCs per kilogram of patient body
weight [25]. Only approximately 10 % of banked units
contain enough cells to be transplanted into an adult. In
2005, a team led by John Wagner published satisfactory
results achieved in 23 recipients who received double
partially human leukocyte antigen (HLA)-matched UCB
units [26, 27]. Since then, this technique has been dem-
onstrably efficient as a simple approach for overcoming
cell dose limitations in older or heavier patients, in
whom UCB transplantation with cell doses below this
threshold is associated with slow hematopoietic recov-
ery, poor engraftment, and high transplantation-related
mortality [28, 29].

Umbilical cord blood banking: options, ethics,
and costs
A variety of UCB banks have been created worldwide in
order to appropriately preserve donated units [6]. Ini-
tially, blood services were run by hospitals or non-profit
institutions, which processed UCB samples and provided
cells when needed. Accredited ‘public’ UCB banks were
subsequently linked to national registries, which in turn
were linked to international inventories. This coordin-
ation has favored the identification of the most suitable
sample for each patient who requires a transplant [6].
Currently, since private companies have been offering
UCB storage for their own or for family-related use,
UCB banks are classified into the following categories:
private or public and for-profit or non-profit. In general,
public (non-profit) banks preserve cells derived from
UCB and provide them altruistically; in contrast, private
or commercial banks offer parents the service of exclu-
sively preserving UCB stem cell products for expected
progeny. Nevertheless, with many more UCB units
banked privately than publicly in countries such as the
US, other options, including mixed or hybrid private-
public banks, have recently emerged [6, 7]. Preliminary
analysis concludes that this hybrid UCB model offers
limited benefit to the general public and also provides
few advantages and potential disadvantages to private
clients [30]. Indeed, whether the private option is prefer-
able to the public option in UCB banking and whether it
is possible to find a combined program of UCB banking
with the best of both options remain topics of contro-
versy. Nevertheless, as physicians, researchers, or even
informed parents, we should make it our objective to in-
form new parents of all the options that are available
since that is the most ethical thing to do. We must keep
in mind that no other person should be allowed to de-
cide the fate of your blood and other tissues (which be-
long to your child) and that public banking, private
banking, or research use are equally valuable as a start-
ing point.
Of course, concerning legal and regulatory aspects,

many questions and ‘perils’ surrounding collection and
storage of UCB can be identified and largely discussed.
In brief, they include the following: informed consent,
ownership, medical indications, claims related to medical
benefits, allogeneic versus autologous use, legal frame-
works, public versus commercial banks, financing systems,
access and organization, quality assurance, traceability,
relative costs, advertising, commercialization and patent-
ing, personal data protection, privacy and confidentiality,
and relationships between recipients, patients, doctors,
and UCB banks [31]. For instance, a growing debate on
donation versus self-preservation of cord blood has
emerged [32]. As a result, a variety of national and inter-
national documents addressing these concerns have been
drafted by national governments, parliaments, and author-
ities; bioethics committees; and national and international
agencies, organizations, and societies. UCB donation and
preservation are, however, endorsed by the major world
religions [33].
But how much do UCB processing and banking cost?

Even public cord blood banks state that the total cost of
collecting, testing, processing, cryopreserving, and ad-
ministering UCB-derived cells is considerable (up to
$1,500 to $2,500 per UCB unit). Private banks usually
charge a first-year processing fee ranging from about
$1,400 to $2,300, plus annual storage costs of about
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$115 to $150. Private firms also proffer payment plans
that range from no-interest installments paid over a few
months to longer-term financing with interest. Special
discounts if you prepay for longer periods of storage (5,
10, or 20 years) may be offered. Interestingly, a new
trend in the industry is to offer a single all-inclusive
price for 20 years of cell storage. In the long run, this is
less expensive than the traditional price model with an-
nual fees.

Umbilical cord blood: a highly appropriate cell
source for regenerative purposes
Given the current estimation of more than 130 million
annual births, UCB is considered the most plentiful res-
ervoir of regenerative cells for a large number of clinical
applications [34]. In contrast to other unrelated donor
cell sources, UCB is collected safely and painlessly, with-
stands long-term cryopreservation without loss of basic
characteristics such as viability and function, and carries
a low risk of transmitting viral infections and somatic
mutations that could complicate patients’ clinical course
after transplantation [35]. Furthermore, UCB can be
used for allogeneic transplantation [36]. It is estimated
that, as recently as 2012, about 115,000 solid organ
transplants were performed worldwide [37]. Thus, alter-
native strategies to minimize maintenance immunosup-
pression in organ transplant recipients, including the use
of regulatory cells [38] or induced tolerance by mixed
chimerism [39], are evaluated. In terms of immunogen-
icity, some UCB-derived cell populations show inherent
‘immunoprivileged’ properties because they exhibit class
I HLA antigens, and class II HLA antigens are seen only
in response to interferon-gamma [40–42]. This lower
UCB immunogenicity may be attributed to its immatur-
ity, in contrast to adult stem cell sources. For these rea-
sons, certain UCB-derived cell lineages are considered
very useful tools for current regenerative medicine.
In terms of disadvantages, cell dosage and the possibility

of delayed engraftment represent the main challenges to
be fully resolved for the widespread use of UCB. For ex-
ample, conventional UCB-based therapies are restricted
when larger recipients are treated and for patients with
diseases known to be resistant to engraftment because of
a low number of hematopoietic cells per UCB unit. Thus,
there is a need to develop more efficient ex vivo expansion
strategies to increase the number of hematopoietic pro-
genitor cells (HPCs) available from a single UCB unit for
transplantation. For that reason, several culture conditions
and automated devices have been developed in order to
make UCB-derived cell products available to more pa-
tients, enhance the homing of transplanted cells, and
allow more rapid post-transplant immune reconstitution
[43–46]. Other developments consistent with good manu-
facturing practices for clinical application are expected,
including serum-free media and a variety of reagents and
potency assays to assess cell product activity. Nevertheless,
because ex vivo culture can lead to spontaneous cell trans-
formation and uncontrolled proliferative activity [47], an
accurate preclinical evaluation of the safety profile of ex-
panded cells is mandatory.
Many reports have indicated that a variety of cells with

both in vitro and in vivo multilineage differentiation po-
tential are contained in circulating UCB [48]. In general,
these ‘stem’ or progenitor cells belong to hematopoietic
or non-hematopoietic lineages and show higher in vitro
proliferative ability than those from additional body
sources such as bone marrow and adipose tissue [49,
50]. In particular, UCB-derived CD34+ cells transplanted
in vivo exhibit greater repopulating ability than those ex-
tracted from bone marrow or mobilized peripheral
blood. Kim et al. [51] compared the hematopoietic activ-
ities of CD34+ and CD34− cells derived from human
bone marrow and UCB and demonstrated that UCB is a
better source of immature hematopoietic cells and that
cells in its CD34− fraction facilitate hematopoietic cell
repopulation. This powerful hematopoietic capacity of
UCB is attributed to its immaturity, in contrast to alter-
native adult cell sources.
As mentioned above, together with HPCs, UCB also

contains non-hematopoietic cell types that can be readily
isolated ex vivo by using established methods. Basically,
these cell populations include mesenchymal stem cells
(MSCs) and endothelial-like vascular progenitors, also
termed endothelial progenitor cells (EPCs). In particular,
MSCs comprise a population of multipotent progenitor
cells (there is an estimated frequency of only 1,000 to
5,000 MSCs in a typical UCB unit of approximately
100 mL [52]), are capable of supporting hematopoiesis
in bone marrow niches and differentiating into mesen-
chymal cell lineages (that is, osteogenic, adipogenic, and
chondrogenic), and have immune modulatory properties.
Several populations of mesenchymal-like stem cells with
similar adhesion properties and antigen surface expres-
sion patterns but different pluripotency potential have
been isolated from UCB. Originally, unrestricted somatic
stem cells able to reprogram into mesodermal, endoder-
mal, and ectodermal fates were isolated by Kögler et al.
[53]. MSCs with more restricted pluripotency potential
were subsequently characterized by others [54, 55]. In
recent times, UCB-derived MSCs have garnered a great
deal of attention for therapeutic purposes [56–60] and
to preclinically predict the immunogenicity of prospect-
ive regenerative cells [61]. EPCs and additional cell types
also labeled as EPCs (that is, outgrowth cells and circu-
lating angiogenic cells) contribute to vascular develop-
ment or reconstitution (or both) to varying degrees [62].
Other cells in UCB with regenerative potential are those
expressing high levels of aldehyde dehydrogenase [63]
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and very small embryonic-like stem cells [64], even
though the existence and characterization of the latter
are still controversial [65].

Multiple clinical settings for umbilical cord
blood-derived cell therapy
Since the pioneering findings by Leary et al., Broxmeyer
et al., and Gluckman et al. in the 1980s, there has been
an increasing consensus that UCB can be used in clinical
settings for hematopoietic cell transplantation [66]. As
mentioned previously, several of the advantages of UCB
for traditional transplantation (and some emerging) ap-
proaches are attributable to its collection at birth and
the resultant immunological naivety. Broxmeyer et al.
[8] were the first to firmly demonstrate that UCB is a
rich source of transplantable HPCs. In the same year,
Gluckman et al. [67] documented the first hematopoietic
cell transplant to use UCB instead of bone marrow as
the source of HPCs. Remarkably, the authors were able
to reconstitute the hematopoietic system of a child with
Fanconi anemia by using UCB from an HLA-identical
sibling. However, the earliest evidence of the presence of
relatively mature HPCs dates from 1974, when Knudt-
zon [68] observed in vitro growth of granulocytic col-
onies from circulating cells in human cord blood. About
10 years later, Nakahata and Ogawa [69] reported the
presence of more primitive subpopulations of HPCs in
UCB.
Evidence has continued to accumulate, and the estab-

lishment of a global network of UCB banks has contrib-
uted actively to allogeneic transplantation of HPCs in
adults and children with hematological disorders. Recent
estimates are that 600,000 samples are collected and
more than 20,000 UCB units are distributed worldwide
[34]. The success in HPC transplantation depends on
the availability of a suitable donor. The best donor is a
full HLA-matched sibling or unrelated donor. Unfortu-
nately, on the basis of average family size, less than 30 %
of patients will have a matched sibling donor [70]. Thus,
the success rate of HPC transplantation is limited in part
by immunological complications such as graft-versus-host
disease (GVHD), graft rejection, and delayed immune re-
constitution. Of course, immunological complications
should not be a factor in the case of an autologous trans-
plantation. For instance, acute GVHD is one of the major
causes of morbidity and mortality after allogeneic cell
transplantation. Risk factors for the development of acute
GVHD include recipient age, cytomegalovirus serostatus,
donor cell source, and HLA disparity. In this context, al-
though the limited number of HPCs in a single cord-
blood unit prevents its use in recipients with a larger body
mass and induces delayed hematopoietic recovery and
higher mortality, two partially HLA-matched units or
double UCB grafts are increasingly chosen as alternatives
to meet the minimum cell-dose requirement, mainly for
those without an HLA-matched donor [71]. Indeed,
despite one or two antigen disparities between donor
and host, GVHD occurs with lower frequency after
UCB transplantation compared with that observed after
HLA-matched bone marrow or mobilized peripheral
blood from unrelated donors because of the tolerogenic
nature of UCB-derived T cells, MNCs, and especially
immune regulatory cells [72, 73].
Although UCB is used mainly for HPC transplantation

to treat blood disorders, the spectrum of diseases for
which it is effective has been expanded to non-
hematopoietic conditions, and UCB is also employed as
a form of regenerative cell therapy or immune modula-
tion [74, 75]. Table 1 and Fig. 4 summarize and illustrate
the hematological and non-hematological diseases cur-
rently treated with UCB-derived cell products. Only a
few of these clinical trials have already been completed
and yielded results, whereas some have been stopped for
some reason. For instance, the feasibility of the collec-
tion, preparation, and infusion of fresh autologous UCB
cells for use in infants with hypoxic-ischemic encephal-
opathy was recently reported (NCT00593242) [76]. Allo-
geneic UCB therapy combined with recombinant human
erythropoietin has demonstrated potential therapeutic
efficacy for children with cerebral palsy (NCT01193660)
[77]. Owing to UCB enrichment in vascular progenitors
[78], angiogenesis has been induced in a 27-year-old
woman with Behçet’s multisystemic disease [79] and in
autistic children [80] who had received cells derived
from this cell source. Lv et al. [81] have also reported
preliminary results from a non-randomized, open-label,
single-center phase I/II trial investigating the safety and
efficacy of combined transplantation of human cord
blood-derived MNCs and MSCs from umbilical cord in
children with autism. These authors have concluded that
the combination of the two cell types shows larger thera-
peutic effects than the transplantation of MNCs alone
(NCT01343511). Regarding cerebral adrenoleukodystro-
phy, Miller et al. [82] have reported that progression
of neurologic dysfunction of allogeneic UCB-derived
hematopoietic cells post-transplantation depended sig-
nificantly on the pre-transplantation Loes score and clin-
ical neurologic status (NCT00176904, NCT00668564,
and NCT00383448). In addition, Zhao et al. [83] have
reported benefits in the context of diabetes mellitus type
2 with no safety and ethical concerns associated with
conventional stem cell-based approaches. In particular,
in that study, patients received one treatment with the
Stem Cell Educator therapy in which a patient’s blood is
circulated through a closed-loop system that separates
MNCs from the whole blood, briefly co-cultures them
with adherent cord blood-derived multipotent stem
cells, and returns the educated autologous cells to the



Table 1 Summary of major clinical trials using umbilical cord
blood-derived cell products registered on www.clinicaltrials.gov

Disease Identifier Status Cell origin

Alzheimer disease NCT01297218 Completed Allogeneic

Autism NCT01343511 Completed Allogeneic

Bronchopulmonary
dysplasia

NCT01297205 Completed Allogeneic

Cerebral palsy NCT01072370 Recruiting Autologous

NCT01147653 Active, not
recruiting

Autologous

NCT01193660 Completed Allogeneic

NCT01528436 Completed Allogeneic

Critical limb ischemia NCT00518934 Unknown Allogeneic

Diabetes mellitus type 1 NCT00305344 Completed Autologous

NCT00873925 Completed Autologous

NCT00989547 Active, not
recruiting

Autologous

Diabetes mellitus type 2 NCT01415726 Completed Autologous

Global development delay NCT01601158 Completed Allogeneic

Hematological malignancies NCT00343798 Completed Allogeneic

NCT01175785 Active, not
recruiting

Allogeneic

NCT00498316 Recruiting Allogeneic

Hypoplastic left heart
syndrome

NCT01445041 Recruiting Autologous

Idiopathic dilated
cardiomyopathy

NCT01739777 Recruiting Allogeneic

Inborn metabolic disorders NCT00950846 Recruiting Allogeneic

NCT00920972 Recruiting Allogeneic

NCT01238328 Unknown Allogeneic

NCT00668564 Terminated Allogeneic

NCT00383448 Recruiting Allogeneic

NCT00176917 Completed Allogeneic

NCT00176904 Completed Allogeneic

Liver failure caused by the
hepatitis B virus

NCT01724398 Recruiting Allogeneic

Malignant solid tumors NCT00436761 Unknown Allogeneic

NCT00112645 Completed Allogeneic

Neonatal hypoxic-ischemic
encephalopathy

NCT00593242 Recruiting Autologous

NCT01649648 Recruiting Autologous

Orthopedic cartilage repair NCT01041001 Completed Allogeneic

Osteoporosis NCT00775931 Recruiting Allogeneic

NCT00638820 Terminated Allogeneic

NCT01087398 Unknown Allogeneic

Skin diseases NCT01443689 Unknown Allogeneic

NCT01033552 Recruiting Allogeneic

Spinal cord injury NCT01046786 Completed Allogeneic

NCT01471613 Completed Allogeneic

Stroke NCT01438593 Unknown Allogeneic

Table 1 Summary of major clinical trials using umbilical cord
blood-derived cell products registered on www.clinicaltrials.gov
(Continued)

NCT01673932 Recruiting Allogeneic

NCT01700166 Withdrawn Autologous

Traumatic brain injury NCT01251003 Withdrawn Autologous

NCT01451528 Withdrawn Allogeneic

NCT01649648 Recruiting Autologous

Roura et al. Stem Cell Research & Therapy  (2015) 6:123 Page 7 of 11
patient’s circulation (NCT01415726). However, autolo-
gous UCB infusion in children with diabetes mellitus
type 1 has been safe and has induced changes in regula-
tory T-cell frequency but fails to preserve C-peptide
(NCT00305344) [84]. Intratracheal transplantation of
allogeneic UCB-derived MSCs in infants with broncho-
pulmonary dysplasia has proven to be safe and feasible
but warrants a larger, controlled phase II study, as re-
ported by Chang et al. [85] (NCT01297205). Interest-
ingly, de Lima et al. [86] have studied cell engraftment
in adults with hematological malignancies who received
transplants of two cord blood units, one of which con-
tained UCB that was ex vivo-expanded by using allogen-
eic MSCs. The authors concluded that transplantation of
UCB-derived cells expanded with MSCs appears to be
safe and effective and significantly improves cell engraft-
ment (NCT00498316).

Conclusions
As ethnic diversity increases in developing countries, it
is imperative to find alternative stem cell sources when
an adult-matched unrelated donor cannot be identified.
At present, there are three alternative options: a partially
HLA-mismatched unrelated donor, a haploidentical re-
lated donor, and a UCB stem cell product. Since the first
UCB transplant in 1988, UCB has increasingly been
employed as an alternative source of hematopoietic cells
for transplantation in the treatment of blood diseases
[34, 87]. Thus, the number of UCB banks worldwide has
grown. This undeniable fact is being reinforced because
of both the reduced alloreactivity of UCB, which allows
greater HLA mismatching between donor cells and re-
cipients, and GVHD incidence [88–90]. However, des-
pite the application of volume reduction systems and
improvements in homogenous recovery indices, several
research groups have indicated that extended transport
and storage times negatively affect UCB viability [91–93].
Therefore, the implementation of more highly qualified
protocols of cell isolation, processing, cryopreservation,
and expansion should be mandatory to guarantee that the
optimal cell dosage is successfully transplanted.
Though used mainly for transplantation of HPCs,

UCB has been extended to the treatment of non-
hematopoietic disorders and immune modulation. This

http://www.clinicaltrials.gov


Fig. 4 Current clinical applications of umbilical cord blood. The blood in the umbilical cord after the birth of a child is a readily available source
of regenerative ‘stem’ or progenitor cells—for example, hematopoietic progenitor cells (HPCs) and mesenchymal stem cells (MSCs)—for use
against many human diseases. The figure was designed and hand-drawn by CG-M
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increasing interest in UCB enforcement has been mir-
rored in an increasing number of ongoing registered
clinical trials. Although overall survival results for UCB
transplantation are comparable to the results associated
with matched unrelated donors, UCB transplants result
in slow engraftment, delayed immune reconstitution,
and increased opportunistic infections. While this may
be a consequence of the lower cell dose in UCB grafts, it
also reflects the relative immaturity of cord blood. Re-
stricted cell numbers and the lack of availability of donor
lymphocyte infusions also prevent post-transplant cellu-
lar immunotherapy to enhance donor-derived immunity
for treating infections, mixed chimerism, or disease re-
lapse. In this context, optimized strategies for engraftment
and immune reconstitution after UCB transplantation are
currently under investigation [94].
In summary, after an accurate analysis of published,

current, and potential activities, UCB is one of the most
active areas in human regenerative medicine. Indeed, be-
cause embryo-destructive transplantation medicine con-
tinues to elicit unfavorable opinion or prejudices, the
trend toward UCB will probably continue to grow with
the objective of assisting health care around the world.
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