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Differential evolution (DE) is simple and effective in solving numerous real-world global optimization problems. However, its
effectiveness critically depends on the appropriate setting of population size and strategy parameters. Therefore, to obtain optimal
performance the time-consuming preliminary tuning of parameters is needed. Recently, different strategy parameter adaptation
techniques, which can automatically update the parameters to appropriate values to suit the characteristics of optimization
problems, have been proposed. However, most of the works do not control the adaptation of the population size. In addition,
they try to adapt each strategy parameters individually but do not take into account the interaction between the parameters that
are being adapted. In this paper, we introduce a DE algorithm where both strategy parameters are self-adapted taking into account
the parameter dependencies by means of a multivariate probabilistic technique based on Gaussian Adaptation working on the
parameter space. In addition, the proposed DE algorithm starts by sampling a huge number of sample solutions in the search space
and in each generation a constant number of individuals from huge sample set are adaptively selected to form the population that
evolves. The proposed algorithm is evaluated on 14 benchmark problems of CEC 2005 with different dimensionality.

1. Introduction

Like most of the stochastic numerical optimization algo-
rithms, differential evolution (DE) [1] starts with randomly
sampled solution vectors which evolve over the generations
with the help of genetic operators such asmutation, crossover,
and selection. Due to its effectiveness, DE has been success-
fully employed to solve numerous optimization problems in
various fields of engineering as communication [1], optics [2],
and power systems [3].

However, experimentally [4] and theoretically [5] it has
been demonstrated that the performance of DE is sensitive
to the selection of mutation, crossover strategies, and their
associated parameters such as, crossover rate (CR) and scale
factor (𝐹) and the population size (𝑁𝑃). In other words,
the optimal combination of population size, strategies, and
their associated control parameters can be different for
different optimization problems. In addition, for the same
optimization problem the optimal combination can vary
depending on the available computational resources and
accuracy requirements [6]. Therefore, to successfully solve
a specific optimization problem, it is necessary to perform

trial-and-error search for the most appropriate combination
of population size, strategies, and their associated parameter
values. However, the trial-and-error search process is time
consuming and incurs high computational costs. Therefore,
to overcome the time-consuming trial-and-error procedure
different adaptation schemes such as SaDE [7] and JADE [8]
have been proposed in the literature.

From the literature on adaptive/self-adaptive parameter
control techniques, it is clear that it can be observed that
even a moderate parameter adaptation scheme is much
better than a well-tuned combination of individual param-
eters on a given set of benchmark problems. In addition,
adaptive/self-adaptive technique can enhance the robustness
by dynamically adapting the parameters to the characteristic
of different fitness landscapes. In otherwords, awell-designed
parameter adaptation technique can effectively solve various
optimization problems without the need for the trial-and-
error process of parameter tuning. In addition, the conver-
gence rate can be improved if the control parameters are
adapted to appropriate values at different evolution stages of
a specific problem.
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Unlike most parameter adaptation techniques in DE
[7] that employ explorative mutation strategies to obtain
better performance, the authors in [8] proposed a parameter
adaptation method with a greedy mutation strategy and
binomial crossover strategy as search basis. The proposed
greedy mutation strategy “DE/current-to-pbest” utilizes the
information present in multiple best solutions to balance the
greediness of the mutation and diversity of the population.
In addition, the parameter adaptation technique is based
on evolving the mutation factors and crossover probabilities
based on their historical record of success.

In DE literature, most of the parameter adaptation tech-
niques proposed consider the adaptation of the two different
parameters, crossover probability and the scale factor, indi-
vidually but do not consider the interaction between the two
parameters. In other words, they do not take into account
the side effects introduced by changing the values of the
parameters individually. In addition, unlike the adaptation of
strategies and their associated parameters, the adaptation of
the population size in enhancing the performance of the DE
algorithm has not been given significant consideration [9].

In this paper, we propose a parameter adaptation tech-
nique based on Gaussian Adaptation (GaA) [10], an estima-
tion of distribution algorithm (EDA), to manage the depen-
dencies between the two parameters (mutation scale factor,𝐹,
and the crossover probability, CR) considered. In addition, we
propose a population adaptation schemewhere the algorithm
has a large set of sampled solutions which evolve over the
generations. In each generation, a fixednumber of individuals
from the large set become the population members of the DE
algorithm. The fixed number of individuals from the large
set can be selected randomly or based on the objective value
depending on the stage of evolution.

The reminder of this paper is organized as follows.
Section 2 presents a literature survey on (1) DE and dif-
ferent adaptive DE variants and (2) Gaussian Adaptation.
Section 3 presents the proposed algorithm. Section 4 presents
the experimental results and discussions while Section 5
concludes the paper.

2. Literature Review

2.1. Differential Evolution. Differential Evolution (DE) [11], a
parallel real-coded global optimization algorithm over con-
tinuous spaces, utilizes 𝑁𝑃, 𝐷-dimensional parameter vec-
tors, X
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different from the index 𝑖 and are randomly generated within
the range [1,𝑁𝑃]. The scale factor 𝐹 is a positive value, while
𝐾 is randomly chosen within the range [0, 1]. Xbest,𝐺 is the
solution vector with the best fitness value in the population
at generation 𝐺.

After mutation, crossover operation is applied to each
pair of the target vector X

𝑖,𝐺
and its corresponding mutant

vector V
𝑖,𝐺

to generate a trial vector U
𝑖,𝐺
. In DE, the

most commonly used crossover is the binomial (uniform)
crossover defined as follows [11]:
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The crossover rate CR is a user-specified constant within the
range [0, 1], while 𝑗rand is a randomly chosen integer in the
range [1, 𝐷].

After the crossover, the trial vectors are evaluated to
obtain the objective function and selection operation is
performed. The objective function value of each trial vector
𝑓(U
𝑖,𝐺

) is compared to that of its corresponding target vector
𝑓(X
𝑖,𝐺

) in the current population. If the trial vector is better
than the corresponding target vector, the trial vector will
replace the target vector and enter the population of the
next generation. In a minimization problem, the selection
operation can be expressed as follows:
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(6)

In DE, mutation, crossover, and selection are repeated gener-
ation after generation until a termination criterion is satisfied.
The algorithmic description of DE is summarized as follows.

Differential Evolution Algorithm

Step 1. Set the generation number 𝐺 = 0 and randomly
initialize a population of𝑁𝑃 individuals.

Step 2. WHILE stopping criterion is not satisfied.
DO.

Step 2.1. Mutation.

Step 2.2. Crossover.

Step 2.3. Selection.
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Step 2.4. Increment the generation count 𝐺 = 𝐺 + 1.

Step 3. ENDWHILE.

As mentioned earlier, the performance of the conven-
tional DE algorithm depends on the population size, chosen
strategies, and their associated control parameters. In addi-
tion, as complexity of the optimization problem increases
the performance of DE algorithm becomes more sensitive to
the parameter settings [4].Therefore, inappropriate choice of
population size, mutation and crossover strategies, and their
associated parameters may lead to premature convergence,
stagnation, or wastage of computational resources [6]. In
literature, various empirical guidelines were suggested for
choosing the appropriate population size, strategies, and
control parameter settings depending on the characteristics
of the optimization problems [6]. However, depending on
the complexity of the optimization problem, choosing an
appropriate population size, strategies, and control parame-
ters is not straight forward due to the complex interaction
of control parameters with the DE’s performance [14]. In
addition, the manual setting and/or tuning of DE strategies
and parameters based on the guidelines result in various
conflicting conclusions, which lack sufficient justifications.
Therefore, to avoid the tuning of parameters by trial-and-
error procedure, various adaptive techniques have been
proposed. Among the three parameters (𝑁𝑃, 𝐹, and CR),
most of the parameter adaptive techniques except [9], set
the population size (𝑁𝑃) to a predefined value based on the
dimensionality of the problem.

Among the different adaptive DE variants, adaptive dif-
ferential evolution proposed in [8], referred to as JADE,
demonstrates good performance in terms of convergence
speed and robustness on a variety of optimization problems.
JADE [8] implements a mutation strategy “DE/current-to-
𝑝best” as a generalization to the classic “DE/current-to-best”
strategy. Unlike the classic mutation strategy which uses the
current best individual, “DE/current-to-𝑝best” utilizes the
information present in 𝑝 fitter individuals of the current
population. The use of multiple solutions helps in balancing
the greediness of the mutation and the diversity of the
population. In JADE, the control parameters (𝐹 and CR)
are updated in an adaptive manner in order to alleviate the
trial-and-error search. In JADE, using the “DE/current-to-
𝑝best”, a mutation vector corresponding to the individual X
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in generation 𝐺 is generated as
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population. At each generation, the scale factor 𝐹
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As shown in (8) and (9), the parameters 𝐹 and CR corre-
sponding to each individual are sampled using Cauchy and
Normal distributions, respectively. Then mean values 𝜇

𝐹
and

𝜇CR are initialized to 0.5 and are updated at the end of each
generation as

𝜇
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= (1 − 𝑐) ⋅ 𝜇𝐹 + 𝑐 ⋅mean
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𝜇CR = (1 − 𝑐) ⋅ 𝜇CR + 𝑐 ⋅mean
𝐴
(𝑆CR) , (11)

where 𝑐 is a positive constant between 0 and 1. The terms
mean
𝐴
(⋅) and mean

𝐿
(⋅) denote the arithmetic mean and

Lehmer mean [8], respectively. 𝑆
𝐹
and 𝑆CR denote the sets

of mutation factors and crossover probabilities, respectively,
that produced successful trial vectors in the previous genera-
tion.

During the past decade, hybridization of EAs has gained
significance, due to ability to complement each other’s
strengths and overcome the drawbacks of the individual algo-
rithms. In [15], the authors proposed a DE parameter adap-
tation technique based on harmony search (HS) algorithm
in which a group of DE control parameter combinations are
randomly initialized.The randomly initialized DE parameter
combinations form the initial harmonymemory (HM) of the
HS algorithm. Each combination of the parameters present in
the HM is evaluated by testing on the DE population during
the evolution. Based on the effectiveness of the DE parameter
combinations present in HM, the HS algorithm evolves the
parameter combinations. At any given point of time during
the evolution of the DE population, the HM contains an
ensemble of DE parameters that suits the evolution process
of the DE population.

As mentioned above, among the different adaptive DE
variants [16–22], there exist only a few significant works
considering the adaptation of the population size in DE
algorithm [9]. In addition to the adaptation of control
parameters 𝐹 and CR, the author in [9] considered the self-
adaptation of populations and the algorithm is referred to
as DESAP. In DESAP the population size (𝑁𝑃) is automat-
ically adapted from initialization to the completion of the
evolution process. DESAP is proposed with two encoding
methodologies: absolute encoding methodology and relative
encoding methodology.

2.2. Gaussian Adaptation. Optimization algorithms that rely
on probabilistic models, such as Covariance Matrix Adap-
tation (CMA) [23] and Gaussian Adaptation (GaA) [10],
belong to the class of Estimation of Distribution Algorithms
(EDAs) and do not rely on any variation operators such
as crossover or mutation. In EDAs, the most promising
solutions of the previous generation are used to update
the probability distribution model. The updated probability
distributionmodel is used to sample the solutions for the next
generation.

In other words, EDAs rely on the iterative random
sampling and updating the probability distribution model in
order to approximate the problem at hand. Therefore, the
process in which the random samples are generated plays
a crucial role. In continuous spaces, typical EDAs employ a



4 Mathematical Problems in Engineering

multivariate Gaussian distribution as the probability density
model [24]. Continuous optimization methods, such as GaA
[10] and Evolution Strategies (ES) [23], use Gaussian sam-
pling to generate candidate solutions from the target distribu-
tion and evaluates the target distribution at the sample points.

Covariance Matrix Adaptation (CMA-ES) [6] and GaA
[10] constantly adapt the covariance matrix of the sampling
distribution based on the previously accepted samples. In
CMA-ES covariance adaptation is employed to increase the
likelihood of generating successful mutations, while GaA
adapts the covariance to maximize the entropy of the search
distribution under the constraint that acceptable search
points are found with a predefined, fixed hitting probability.

Gaussian Adaptation (GaA) is a stochastic process that
adapts a Gaussian distribution to a region or set of feasible
points in parameter space. As a result of the adaptation,
GaA becomes a maximum dispersion process extending the
sampling over the largest possible volume in parameter space
while keeping the probability of finding feasible points at a
suitable level. GaA is based on the principle of maximum
entropy and tries tomaximize the entropy𝐻 of amultivariate
Gaussian distribution 𝑁(m,C) given the mean (m) and the
covariance (C) information:

𝐻 = log (√(2𝜋𝑒)
𝐷 det (C)) . (12)

The entropy is maximized by maximizing the determinant of
the covariance matrix.

The GaA algorithm starts with mean of a multivariate
Gaussian distribution (m(0)) and an initial point (x(0)). In
iteration (𝑔 + 1), a new solution is sampled as

x(𝑔+1) = m(𝑔) + r(𝑔)Q(𝑔)𝜂(𝑔), (13)

where 𝜂(𝑔)∼𝑁(0, I).Q(𝑔) is the normalized square root ofC(𝑔)
and is obtained by following decomposition:

C(𝑔) = (r ⋅Q(𝑔)) (r ⋅Q(𝑔))
𝑇

= r2 (Q(𝑔)) (Q(𝑔))
𝑇

, (14)

where r is the scalar step size.
In order to minimize a real-valued objective function

𝑓(x), GaA uses a fitness dependent acceptance threshold
𝑐
𝑇
which is monotonically lowered until some convergence

criteria are met. If the objective value of the newly sampled
solution in (13) is less than 𝑐

𝑇
, then the mean (m), covariance

(C), and the scale factor (r) are updated as follows:
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𝑁
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(15)

where 𝑓
𝑒

> 1 is the expansion factor. 𝑁
𝑚
and 𝑁

𝐶
are the

weighting factors. Δx = (x(𝑔+1) − x(𝑔)).

If the objective value of the newly sampled solution x(𝑔+1)
is greater than the threshold then the mean and covariance
are not adapted but the step size is reduced as

r(𝑔+1) = 𝑓
𝑐
⋅ r(𝑔), (16)

where 𝑓
𝑐
< 1 is the contraction factor.

In order to use GaA for optimization, the acceptance
threshold 𝑐

𝑇
is continuously lowered as follows:

𝑐
𝑇

(𝑔+1)
= (1 −

1

𝑁
𝑇

) 𝑐
𝑇

(𝑔)
+

1

𝑁
𝑇

𝑓 (x(𝑔+1)) , (17)

where 𝑁
𝑇
is the weighting factor. The fitness-dependent

update of 𝑐
𝑇
makes the algorithm invariant to the linear

transformations in the objective function.

Gaussian Adaptation Algorithm

Step 1. Set generation number 𝐺 = 0. Initialize m, C, r, and
𝑐
𝑇.

Step 2. WHILE stopping criterion is not satisfied.
DO.

Step 2.1. Sample a new solution using (13).

Step 2.2. Evaluate and Check if the objective value of newly
sampled solution is less the threshold 𝑐

𝑇
.

Step 2.3. Updatem, C, r, and 𝑐
𝑇
.

Step 2.4. Increment the generation count 𝐺 = 𝐺 + 1.

Step 3. ENDWHILE.

3. Proposed Differential Evolution Algorithm

As highlighted in the previous section, depending on the
nature of problem (unimodal or multimodal) and avail-
able computation resources, different optimization problems
require different population sizes, mutation, and crossover
strategies combined with different parameter values to obtain
optimal performance. In addition, to solve a specific problem,
different mutation and crossover strategies with different
parameter settingsmay be better during different stages of the
evolution than a single set of strategies with unique parameter
settings as in the conventional DE. Motivated by these obser-
vations, many adaptive and self-adaptive parameter adaptive
techniques have been proposed [16–22]. Asmentioned earlier
most of the adaptive DE algorithms consider adapting scaling
and crossover rate parameters only. In addition, most of
the adaptive techniques which consider adapting the 𝐹 and
CR values adapt them individually. For instance, in JADE
[8], the mutation factors and crossover probabilities are
evolved based on their historical record of success. 𝐹 and
CR values corresponding to the individuals in the current
generation are generated from corresponding mean values
using Cauchy and Gaussian distributions, respectively. After
the selection process, the 𝐹 and CR values that were able
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to produce successful trial vectors are collected. Then the
respective mean values of 𝐹 and CR are updated using
Lehmer and arithmetic means, respectively. In other words,
the 𝐹 and CR are generated (see (8) and (9)) and adapted
(see (10) and (11)) individually. Therefore, JADE does not
consider the intercorrelation between the two parameters.
However, in [6], it has been demonstrated that performance
of DE depends on the combination of 𝐹 and CR. In other
words, the parameters 𝐹 and CR on which the performance
of DE depends are intercorrelated. Therefore, adapting the
two parameters individually may not result in the optimal
performance of the DE algorithm.

In this paper, we present a population size, crossover
rate, and scale factor adaptation. The proposed algorithm
considers the intercorrelation between the two parameters,
mutation scale factor, and crossover probability, during the
process of adaptation. In other words, the parameters evolve
based on the Gaussian adaptation process which is used for
parameter optimization.

3.1. Parameter Adaptation Based on Gaussian Adaptation.
Unlike most DE adaptation algorithms, the proposed algo-
rithm adapts 𝐹 and CR by employing GaA on the bidimen-
sional continuous space composed of 𝐹 and CR. Therefore,
the data structures employed by the proposed algorithm are
the mean vector m and the covariance matrix C. The mean
vector (m) comprises the mean values of 𝐹 and CR while
the covariance matrix (C) comprises the interdependencies
between the two parameters.

As in JADE [8], every DE individual is assigned with a
personal version of the parameters; that is, there is a couple
𝐹
𝑖
, CR
𝑖
for each individual 𝑖 sampled using (13). In other

words, every time that these parameters are needed (for
mutation and crossover in DE), they are sampled from the
multivariate Gaussian Distribution identified bym and C. In
the current work, the mean vectorm is initialized to [0.5, 0.5]
and covariance matrix (C) is set to an identity matrix.

During every generation of the DE evolution, the 𝐹
𝑖
and

CR
𝑖
values corresponding to the individuals in the population

are generated using the mean (m) and the covariance matrix
(C) using (13). Each individual in the DE algorithm uses
the 𝐹
𝑖
and CR

𝑖
values to produce the mutation vectors and

consequently trial vectors. The combination of 𝐹
𝑖
and CR

𝑖

values that resulted in an offspring that produces maximum
improvement is used to update the mean (m) and the
covariance (C). The continuous updating of m and C by the
parameter combinations that produced better solutions will
help the parameter search to move to the regions where more
suitable combination of the parameters can be generated.The
limits of the 𝐹 and CR are set to be (0, 1.0] and [0, 1.0],
respectively.

3.2. Population Adaptation. In this work, the proposed algo-
rithm starts by sampling a huge set of solutions within
the search space. During every generation, the number of
solutions equal to the population size (𝑁𝑃) is selected to
evolve with the help of mutation, crossover, and selection
operations. After the generation, during which the evolution

of the individuals selected takes place, the members of the
population are replaced into respective places in the huge set.

In the proposed algorithm, the selection of individuals
from the huge set during every generation should be done
in an appropriate manner to balance the exploration and
exploitation. In this paper, we use a simple criterion to select
the population individuals that can evolve based on objective
value distribution of the individuals in the huge set.

The mean objective value corresponding to a set of
individuals that are uniformly and randomly sampled from
a search space will always be less than the median objective
value of the set of individuals. As long as the mean objective
value is less than the median objective value in the large set
the population members for the next generation are selected
using a tournament selection. The selection of individuals
based on the tournament selection allows the fittest individ-
uals to allow the population and evolve. However, when the
mean objective value is greater than the median objective
value it gives an indication that most of the solutions in the
large set are within a basin. The solutions within a basin may
lead to premature convergence and therefore to balance the
exploration capability the population members for the next
generation are taken at random from the large set.

Outline of Proposed DE Algorithm

Step 1. Set the generation count 𝐺 = 0, and randomly sample
20 ∗ 𝑁𝑃 solution vectors. Initializem, C, r, and 𝑐

𝑇
.

Step 2. WHILE stopping criterion is not satisfied.
DO.

Step 2.1. Select population members from the large set.

Step 2.2. Sample new parameter combinations using (14).

Step 2.3. Mutation.

Step 2.4. Crossover.

Step 2.5. Selection.

Step 2.6. Replace the solution vectors in the large set with the
members of the current population at the respective indices.

Step 2.7. Check if the improvement by the best parameter
combination is greater than the threshold 𝑐

𝑇
.

Step 2.8. Updatem, C, r, and 𝑐
𝑇
.

Step 2.9. Increment the generation count 𝐺 = 𝐺 + 1.

Step 3. ENDWHILE.

4. Experimental Setup and Results

We evaluated the performance of the proposed algorithm
on a set of 14 test problems of CEC 2005 [25]. Each of the
14 test problems is scalable and the algorithm is tested on
the 10D, 30D, 50D, and 100D versions of the test problems.
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Table 2: Comparison between JADE with proposed population adaptation and JADE with different population sizes.

Fcn JADE with different population sizes JADE with adaptive population
Mean Std. Mean Std.

𝐹1 (𝑁𝑃 = 50, 100, 200 & 400) 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
𝐹2 (𝑁𝑃 = 100) 1.79E− 28 1.50E− 28 7.30E− 28 1.14E− 28
𝐹3 (𝑁𝑃 = 400) 9.52E− 08 4.15E− 07 5.89E − 13 2.73E − 12
𝐹4 (𝑁𝑃 = 400) 5.64E− 18 1.68E− 17 3.56E− 18 5.09E− 18
𝐹5 (𝑁𝑃 = 400) 2.91E+ 01 2.55E+ 01 2.86E+ 01 2.80E+ 01
𝐹6 (𝑁𝑃 = 50) 4.06E+ 00 1.47E+ 01 3.08E+ 00 1.29E+ 01
𝐹7 (𝑁𝑃 = 1000) 4.22E − 04 2.64E − 04 1.23E− 03 3.22E− 03
𝐹8 (𝑁𝑃 = 100) 2.08E+ 01 3.25E− 01 2.08E+ 01 3.17E− 01
𝐹9 (𝑁𝑃 = 50 & 100) 0.00E+ 00 0.00E+ 00 0.00E+ 00 0.00E+ 00
𝐹10 (𝑁𝑃 = 100) 2.58E+ 01 5.13E+ 00 2.20E + 01 4.39E + 00
𝐹11 (𝑁𝑃 = 100) 2.58E+ 01 1.25E+ 00 2.50E+ 01 1.20E+ 00
𝐹12 (𝑁𝑃 = 50) 4.80E+ 03 4.26E+ 03 3.92E + 03 1.80E + 03
𝐹13 (𝑁𝑃 = 50) 1.22E+ 00 1.05E− 01 1.30E+ 00 1.18E− 01
𝐹14 (𝑁𝑃 = 200) 1.23E+ 01 2.41E− 01 1.23E+ 01 2.30E− 01

The maximum number of function evaluations considered
is 10000 ∗ 𝐷 (100000 for 10D; 300000 for 30D; 500000 for
50D; 1000000 for 100D). The algorithm is terminated when
the maximum number of function evaluations is reached.

In the current work, each algorithm is run 30 times inde-
pendently on each problem. To compare the performance
of different algorithms, we employ two types of statistical
tests, namely 𝑡-test and Wilcoxon rank-sum test. The 𝑡-test
being a parametric method can be used to compare the
performance of two algorithms on a single problem. To
compare the performance of two algorithms over a set of
different problems, we use a nonparametric test such as the
Wilcoxon rank-sum test.

The proposed algorithm employs “DE/current-to-pbest”
mutation strategy alongwith the binomial crossover. Asmen-
tioned above, the proposed adaptation scheme works in the
bidimensional parametric space (𝐹 and CR). In the proposed
algorithm, we initially sample 20D solution vectors, out of
which 100 individuals are selected as the populationmembers
at the start of every generation. After the generation the
solution vectors are replaced. In addition to the parameters
of the DE algorithm, the parameters of the GaA algorithm
are set to the same values that are proposed in [10].

4.1. Effect of Population Size and Population Adaptation in DE
Algorithm. At first, we demonstrate the effect of population
size (𝑁𝑃) on the performance of the adaptive DE algorithms.
To demonstrate the effect, we consider the JADE algorithm
as the base algorithm and evaluated the 30D versions of 14
benchmark problems of CEC 2005 with different population
sizes such as 50, 100, 200, 400, 600, 800, and 1000.The results
are summarized in Table 1.

In Table 1, corresponding to each problem, statistically
significant results (based on the statistical t-test) are marked
in bold font. From the results, it can be observed that
JADE with a single population size setting is not apt on all
benchmark problems. JADE with 𝑁𝑃 values less than 400
perform better on almost all the benchmark problems except

𝐹7. In addition, 𝑁𝑃 = 50 and 𝑁𝑃 = 100 perform equally
better on most of the benchmark problems compared to
𝑁𝑃 = 200 and 𝑁𝑃 = 400, in terms of solution quality.
However, there 𝑁𝑃 = 400 shows a significantly better
performance compared to𝑁𝑃 = 50 and𝑁𝑃 = 100 on 𝐹3, 𝐹4,
and 𝐹5. During the experimentation, a similar observation
wasmade with the benchmark problems with dimensionality
10D, 50D, and 100D. Therefore, from the results it can be
observed that a single setting of the population even when
the strategy parameters (𝐹 and CR) are self-adapted may not
result in optimal performance on a given set of benchmark
problems. In other words, these results demonstrate the need
for the self-adaptation of the population in DE algorithm.

In Table 2, we compare the performance of the proposed
population adaptation scheme with JADE using fixed pop-
ulation size. In Table 2, the best results corresponding to
each benchmark problem obtained using JADE with fixed
population size is present inTable 2. InTable 2, the population
size in the first column indicates the population size at which
the results (reported in columns 2 and 3 are taken from
Table 1) are taken.The results in columns 4 and 5 correspond
to mean and standard deviation values obtained using JADE
with the proposed population adaptation scheme.

From the results in Table 2, it can be observed that the
proposed population adaptation scheme is slightly better or
equal (based on 𝑡-test) to the best results obtained using fixed
population size. In addition, the adaptation of population
alleviates the need to tune the parameter depending on the
characteristics of the benchmark problems. In other words,
the proposed population adaptation scheme is robust and
can overcome the need to tune the population size parameter
using trial-and-error method which is time consuming. In
addition, Figure 1 shows the convergence characteristic of
JADE with fixed population of 400 and JADE with the
proposed adaptive population techniques. From the figure, it
is clear that the proposed population adaptation can better
balance between the exploration and exploitation capabilities.
In addition, the Wilcoxon rank-sum test results demonstrate
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Figure 1: Convergence characteristics of JADE with fixed and
adaptive population for 𝐹3.

that the adaptive population is better than each of the individ-
ual population sizes (50, 100, 200, 400, 600, 800, and 1000).

4.2. Adaptation of 𝐹 and 𝐶𝑅 Using Gaussian Adaptation. In
this section, we evaluate the performance of the proposed
algorithm which includes the population adaptation and
adapts the strategy parameters (𝐹 and CR) using Gaussian
adaptation. The proposed algorithm is evaluated using 10D,
30D, 50D, and 100D versions of the 14 benchmark problems
of CEC 2005 and is compared with the JADEwith population
adaptation. The results are summarized in Table 3 and
statistically significant (based on 𝑡-test) results are marked by
bold font.

From the results in Table 3, it can be observed that
the proposed algorithm is always better or equal but not
worse, statistically in terms of the solution quality. The
significant difference in the performance between JADE and
the proposed GaA based parameter adaptation is in the
linked problems such as 𝐹3 and 𝐹10. In these problems, the
superiority of the proposed algorithm can be attributed to the
modelling of the interdependency between the two strategy
parameters (𝐹 and CR). Even in the unimodal problems such
as 𝐹1 and 𝐹2, the difference in the performance becomes
significant as dimensionality increases.

In Table 3, the last column contains the results of
Wilcoxon rank-sum test results. Number 1 below the pro-
posed algorithm indicates that the proposed algorithm is
statistically better than JADE with adaptive𝑁𝑃 alone.

5. Conclusion

In this paper, we propose a DE algorithm where the pop-
ulation is adapted in addition to the strategy parameters.
Unlike in most of the adaptive DE algorithms, the proposed
algorithm adapts the DE strategy parameters by taking into
account the interactions between them. The interactions
are modelled using a Gaussian distribution in the bivariate
parameter space, referred to as Gaussian adaptation. With

the help of simulations, we were able to demonstrate the
superiority of the proposed population adaptation technique
compared to the fixed population size in terms of balancing
the exploitation and explorations stages of the evolution. In
addition, the Gaussian Adaptation of the strategy parameters
demonstrates the importance of considering the interactions
between the parameters while designing parameter adapta-
tion techniques in evolutionary algorithms.
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