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In order to understand the physics behind the surface properties andnano-scale phenomena,we aremotivated first to investigate the
inner bond strengths as well as the effect of number of neighboring atoms and their relative distance in addition to space positions
(crystallography). Therefore, in order to study the effect of the nature of metallic bond on their physico-chemical properties, we
first tried to investigate and introduce a mathematical model for transforming the bulk molar cohesion energy into microscopic
bond strengths between atoms. Then an algorithm for estimating the nature of bond type including the materials properties and
lattice scale “cutoff” has been proposed.This leads to a new fundamental energy scale free from the crystallography and number of
atoms.The results of our model in case of fundamental energy scale of metals not only perfectly describe the inter relation between
binding and melting phenomena but also adequately reproduce the bond strength for different bond types with respect to other
estimations reported in literatures. The generalized algorithm and calculation methodology introduced here by us are suggested
to be used for developing energy scale of bulk crystal materials to explain or predict any particular materials properties related to
bond strengths of metallic elements.

1. Introduction

Binding strength inside the material which is mainly ex-
pressed by cohesion energy is classified as a bulk thermody-
namics property. Such energy scale is believed to rule most
of the physicochemical andmechanical properties ofmaterial
[1, 2]. However, even the fundamental researches at nanoscale
and surface science (as the new area ofmaterials science) have
been interrelated strongly with the cohesion phenomenon
[3, 4]. Therefore, any generalized hypothesis at bulk, nano-
scale, or even surface of materials should have been granted
on the well developed cohesive scale of bulk materials.

In researches including bulk metal properties not only
the macroscopic properties such as cohesion energy but also
the number of neighboring atoms and crystallography of
material alongwith the effective length of interaction energies
between atoms play dominant roles in fundamental theories
[5–7].

Moreover, in recent years bond energy calculation has
been applied in estimation of surface properties through

(atomic scale) broken bond model; thus the bond strength
should be known between different neighboring atoms. In
latest works of Fu et al. in [8–10] these estimations have
been mostly supported by complicated quantum chemistry
information through empirical electron theory where the
bond energy of neighboring atoms was evaluated from the
value of bonding capability of covalent electron, screen factor
upon the core electron, bond length, and the number of
covalent electron pair. Obviously, lack of a simple and more
engineering based procedure has been realized which leads
to an inquiry for developing a generalized simple method.

Therefore, we aremotivated to closely study the structural
effect of different crystals on their cohesion energy and
evaluate a structural free energy scale which defines the
materials properties. In this report, we study the effect of
crystallography and number of atomic neighbors on the
cohesive energy in order to define a fundamental energy scale
of material. This information not only enables us to evaluate
the real interatomic bond strength inside the material but
also can be used as a grand energy scale to investigate other
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Figure 1: Schematic representation for (a) number of bonds related to number of atoms and (b) position of equal distance atomic groups and
their distances from an arbitrary (inner) atoms in bcc lattice.

fundamental properties of elements.This knowledge gives us
a tool to evaluate the strength energy from a particular atom
inside thematerial. Alsowedevelop free software usingwhich
anyone can compute the bond strength scale at different
distances as function of number of atoms and their relative
distances for any crystal materials by knowing some simple
input data without any adjusting parameters.

2. Theory

Most problems in solid state science require detailed study
of energies along with the atomistic structural information
inside the material. A detail study of crystallography effect
and its related features on inner cohesive strength of pure
metals needs a fundamental model which not only evolves
macroscopic cohesion properties but also includes the num-
ber of atoms (those which are affected by cohesive force of
an arbitrary inner atom) and their relative distances inside
the materials. In order to fulfill such conditions we need to
develop a model for distribution of cohesion energy between
the (effected) atoms as a function of their number and relative
distances from an arbitrary inner atom.

2.1.Modeling the SolidMaterials. Inmost of theoretical inves-
tigation in materials science dealing with thermodynamics
description of material, the dimension of cohesion energy
is described as a molar quantity. Therefore, theoretically by
applying that amount of energy to the material we can disso-
ciate onemole of material into its atoms [1]. In order to inves-
tigate the amount of any particular bond strength we need
to find an algorithm for transferring macroscopic (molar)
cohesion energy into atomic (inner) bond strength scale.

Regarding Figure 1(a), as long as we consider all bonds
between any two particular atoms inside the material, then,
the total cohesive strength of 𝑁 atoms leads to 𝑁(𝑁 − 1) of
total bonds. However, as we count each bond twice, the total
number of bonds inside material with𝑁 atoms will be

1

2
(𝑁 (𝑁 − 1)) = 𝑛𝑏, (1)

where 𝑁 is the total number of atoms and 𝑛𝑏 is the number
of bonds in material.

Therefore, during the transformation of molar cohesive
energy of material into the atomic bond strength scale, we
have to apply a 1/2 coefficient in order to avoid counting of
multiple bonds between two particular atoms. Considering a
simple case of Figure 1(a) where we have only 1 type of inter
atomic cohesive strength of 𝐸(𝑖𝑗) between each pair of atoms
of 𝑖 and 𝑗, then regarding (1) we can write

𝐸
total
𝑁

𝐸 (𝑖𝑗)
= 𝑛𝑏 ⇒

𝐸
total
𝑁

𝑁
=
1

2
(𝑁 − 1) 𝐸 (𝑖𝑗)

⇒ 𝐸
total
1↔𝑁−1

=
1

2
(𝑁 − 1) 𝐸 (𝑖𝑗) ,

(2)

where 𝐸total
𝑁

is the cohesive strength of 𝑁 atoms, 𝐸total
1↔𝑁−1

is
the cohesive strength between 1 inner and all neighboring
atoms, and𝑁−1 is the number of neighbors (denoted by ccn
(cohesion coordination number (in case of first ccn we reach
the value of classical 𝐶𝑁))).

However, in reality for an arbitrary inner atom we have
more than one type of cohesive strength as Figure 1(b) shows.
Therefore, if we consider a homogeneous cohesive energy
distribution (in all directions of crystal cell) among each
group of atoms with equal distances from an arbitrary inner
atoms (far enough from the surfaces), we can write

𝐸
total
inner = 𝐸inner (1) + 𝐸inner (2) + ⋅ ⋅ ⋅ = ∑

𝑖

𝐸inner (𝑖) , (3)

where 𝐸inner(𝑖) is the total cohesion energy of 𝑖th group of
atoms in [kJ/mol], 𝐸total

inner is the total inner cohesion energy of
material in [kJ/mol], and 𝑖 as the atomic group that represents
the bond type.

We also suppose that the distribution of cohesive energy is
homogenous between all atoms in each group ccn; therefore,



The Scientific World Journal 3

1 2
3

d1 d1 d2 d1 d2 d3

Epair (1) Epair (1), Epair (2) Epair (1), Epair (2), Epair (3)

ccn(1) = 4 ccn(1) = 4, ccn(2) = 4 ccn(1) = 4, ccn(2) = 4, ccn(3) = 8

Etotal = 4Epair (1) Etotal = 4Epair (1) + 4Epair (2) Etotal = 4Epair (1) + 4Epair (2) + 8Epair (3)

With 1st neighboring With 1st and 2nd neighboring With 1st, 2nd and 3rd neighboring

Figure 2: Simple schematic to illustrate how the number of atoms and their relative distances evolve in philosophy behind (4).

regarding the coefficient of atomic bond scale in (1), the total
cohesive energy in (3) can be rewritten as

𝐸
total
inner =

1

2
ccn (1) 𝐸pair (1) +

1

2
ccn (2) 𝐸pair (2) + ⋅ ⋅ ⋅

=
1

2
∑

𝑖

ccn (𝑖) 𝐸pair (𝑖) ,

(4)

where 𝐸pair(𝑖) is the average cohesive energy (bond strength)
in 𝑖th atomic group between each of the atom in that group
and the particular inner atom from which we count the
distances in [kJ/mol] or [kJ/mol no.] (see also Figure 2).

However, as we fundamentally subtract out the effect
of number of neighbors by introducing the ccn(𝑖) in (4),
the effect of distance on the cohesive strength between
all atoms and the arbitrary inner origin atom should be
considered inside the 𝐸pair(𝑖) function. Such contribution
attributes through soft-sphere model [7] to most of the
pair potentials theories [11–14], where the parameters with
energy dimensions can be extracted out from the distance
or lattice parameters terms. In aforementioned models, all
pair potentials (energy terms) are supposed to be constant as
a material property. Therefore, developing further (4) leads
us to define a distance related dimensionless function 𝑓(𝑑𝑖)
along with a fundamental energy scale 𝐸av, as

𝐸pair (𝑖) = 𝑓 (𝑑𝑖) 𝐸
av
, (5)

where 𝑑𝑖 is the relative atomic distance of 𝑖th group of atoms
from an arbitrary atom in (nm) and if 𝑖 : max. then𝑑𝑖 = 𝑑cutoff
representing the maximum distance for effectiveness of bond
strength.

Further on, by introducing (5) into (4), the total cohesion
energy of material can be written as

𝐸
total
inner =

1

2
∑

𝑖

ccn (𝑖) 𝑓(𝑑𝑖) 𝐸
av
= 𝐸

av∑𝑖 ccn (𝑖) 𝑓(𝑑𝑖)
2

. (6)

2.2. Nature of Distance Function 𝑓(𝑑𝑖). In (5) 𝑓(𝑑𝑖) is not
a simple length related (metric) function, but it represents
the fundamental nature (physics) of bonds among the atoms
of a particular solid at different distances with respect
to an arbitrary inner atom. By applying the soft-sphere
model [7] and considering all potential function theories
like embedded-atommodel [12] EAM, Finnis-Sinclair model
[11, 13] FS, or even the simple Lenard-Jones potential [15] LG,
we consider an inverse power potential form for physics of
bond strength. Therefore, such hypothesis would be a quite
adequate approximation for defining the distance related
cohesion energy term inside the crystal metals. Thus, we can
write

𝑓(𝑑𝑖) ∝
1

𝑑
𝑛

𝑖

, where 𝑛 = 1, 2, . . . , (7)

where 𝑛 defines the nature of particular binding inside
material in a given crystal structure and is called power of
potential function.

The𝑓(𝑑𝑖) function should include atomic diameter 𝑑𝑎 as a
material property and the crystallographic parameter which
is the geometrical position of each atom from an arbitrary
inner atom. Therefore, we can write

𝑓(𝑑𝑖) also ∝ (𝑑𝑎, geometry) . (8)

If we measure the distances of each atom from an arbi-
trary inner atom (equicentral spheres), the first coordination
distance 𝑑1 can be defined at contact condition of two
neighboring atoms 𝑑𝑎. Also 𝑓(𝑑𝑖) should remain dimension-
less; therefore, by summarizing the aforementioned three
constraints on 𝑓(𝑑𝑖) we can conclude that

(i) (7) → 𝑓(𝑑𝑖) ∝
1

𝑑
𝑛

𝑖

(ii) also if 𝑖 = 1 → 𝑑1 = 𝑑𝑎 ⇒ 𝑓(𝑑𝑖) =
𝑑
𝑛

𝑎

𝑑
𝑛

𝑖

.

(iii) (5) → 𝑓(𝑑𝑖) is [nm/nm] → 𝑓(𝑑𝑖) ∝
𝑑𝑎

𝑑𝑖

,

(9)
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As it can be seen from (9), value of𝑓(𝑑𝑖) always represents
a relative distance feature of cohesion effectiveness respect to
the first contact coordination neighbor. Thus, if we have only
the first neighboring coordination atoms, then each atom
senses a maximum cohesive strength as 𝑓(𝑑1) = 1, while by
increasing the number of atoms and being placed far from
the first coordination atoms (ccn = 1), the relative potential
energy exponentially decreases [11–13, 15] by power 𝑛 as (7)
shows it.

Therefore, if we would be able to construct the mathe-
matical algorithms of all geometrical positions in fcc, bcc,
and hcp crystallographic structures, then we would be able
to extract out the 𝑑𝑎 from the 𝑓(𝑑𝑖) function by applying
the mathematical series for each atomic group distances by
𝑑𝑖 = 𝑑𝑎𝑔crystal(𝑖). Thus, (9) can be simplified to

⇒ 𝑓(𝑑𝑖) =
𝑑
𝑛

𝑎

(𝑑𝑎𝑔crystal (𝑖))
𝑛 =

1

𝑔
𝑛

crystal (𝑖)
. (10)

and by substituting the result of (9) into (6) we can write

𝐸
total
inner = 𝐸

av∑𝑖 ccn (𝑖) 𝑓(𝑑𝑖)
2

= 𝐸
av∑𝑖 ccn (𝑖) /𝑔

𝑛

crystal (𝑖)

2

⇒ 𝐸
total
inner = 𝐸

av
𝐹 (distance & geometry) ,

(11)

where 𝐹 is symbolizing a function which includes ccn(𝑖) and
𝑔crystal(𝑖) values.

Equation (11) shows that macroscopic cohesion energy
𝐸
total
inner can be expressed as multiplication of a fundamental

energy scale 𝐸av and function 𝐹 which is a complicated
function of number of atoms and their relative distances.
Obviously function 𝐹 should converge to a value in order
to express the dependency of 𝐸total

inner from 𝐸
av by the effect

of atomic group distances and geometry of crystal. Thus,
by knowing the total 𝐸total

inner as an overall thermodynamics
quantity [1], the mathematical series which describe the
equilibrium atomic distances (based on crystal structures)
from a particular inner atom, and the number of neighboring
atoms in each distances, along with knowing the value of 𝑛
(power of potential function: nature of interaction between
the atoms), then we are able to subtract out the influences
of distance, geometry, and number of atoms. Therefore, this
leads to a fundamental energy scale𝐸av which is free from any
crystal structure information.

Before any analytical investigation, we have to study
the crystallography of different structures and evaluate the
required mathematical series which represent the equal
atomic distances 𝑑𝑖 and number of neighboring atoms ccn(𝑖).

2.3. Distance and Relative Number of Neighboring Atoms in
fcc, bcc and hcp Lattices. There were already some attempts
in literature to evaluate the effect of number of neighboring
atoms and in some cases the effect of their relative atomic
distances mostly for estimation of surface properties of pure
metals in fcc, bcc, and hcp structures in [8, 9, 17, 18] and
[10, 19, 20], respectively. The value of bond energy in this
literature is originated from either empirical electron theory,

dangling bond analysis methods, atomic potential simula-
tion, or density function theory which mostly are based
on parameters such as covalent electron pairs, bond length,
number of electron, contribution of couple effect between
spin and orbit, bond capability, screen effect, electron density,
and much other quantum chemistry information.

In their reports Zhang et al. in [17] considered only the
effect of 1st nearest neighbors for fcc metals, and Fu et al.
in [8, 9] used up to 3rd nearest neighbors for fcc and bcc,
respectively, and in [10] used up to 7th nearest neighbors for
hcp structures, while Wu et al. in [18, 20] considered up to
12 slabs for fcc and hcp surfaces, respectively, and Matysina
in [19] considered up to 3rd nearest neighbors effect for hcp
crystal structures.

Unfortunately neither the application of above literature
resources nor their mathematical formulations can provide
a generalized mathematical series for estimating the number
of neighboring atoms and their relative distances. However,
Sloane andTeo in [21] reported amagnificent but complicated
mathematical formulation for theta series and magic num-
bers in closed packed clusters (see also Appendix A) which
yet few applications are known in which; one exactly can use
this information in materials science researches.

However, not only our different viewpoint of such series
but also our free-software program (based on information
appearing in Appendix A) enables every researcher to eval-
uate and apply the effect of up to 50th neighboring atomic
groups and their relative distances from an arbitrary inner
atom in fcc, bcc, or hcp structure. For a simple representation
Figure 3 shows examples up to 3rd nearest neighbors in fcc,
bcc, and hcp cells.

Regarding (10) and (11) mathematical series presented in
Appendix A enables us to evaluate the values of 𝑔𝑛crystal(𝑖)
and ccn(𝑖) at given 𝑖th neighboring groups. Table 1 shows
the result of first 15 neighboring atoms and their relative
distances in fcc, bcc, and hcp crystals. Appendix A shows the
generalized mathematical series which is able to reproduce
these numbers. In addition, developed free-software com-
puter code is able to evaluate these calculations.

2.4. Flow Chart of Free Program and Its Algorithm. To
facilitate calculation of𝐸av based on ourmathematicalmodel,
we have written a user friendly code named IBSE-Ver1 in
visual basic. IBSE stands for inner bond strength of solid
elements. In this software, first, appropriate value of 𝐸total

inner
should be chosen. Second, number of bond types, 𝑖, and
power in potential function 𝑛 are determined by user. Finally,
user chooses crystal structure of the element, bcc, fcc, or
hcp. To easily select an element, a periodic table is shown
after starting the program which enables user to choose an
element from it. Initial input values including 𝐸total

inner and
crystal structure are predefined in the software from [1, 16],
or Table 6 for each element at 0 Kelvin. However, users can
introduce their own values for𝐸total

inner or crystal structure. Also
users can change 𝑛 and 𝑖 to see the effect of these parameters
on 𝐸av. The algorithm of calculations is shown in Figure 4 as
described completely in the text.
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Figure 3: Schematic view of first three atomic groups and their relative distances from an arbitrary inner atom in (a) fcc, (b) bcc, and (c) hcp
structures.

After clicking the calculate button, three kinds of infor-
mation are shown as output of the software. First, the value
of 𝐸av is shown in the text box depending on the value of
input parameters (𝐸total

inner, crystal structure, 𝑛, 𝑖). Second,𝐸
av is

depicted against number of selected bond types, 𝑖, in a graph.
Third, there are buttons which by clicking them user can see
some alternative information. More information about IBSE-
Ver1 is available in the help of this software.

3. Results and Discussions

3.1. How to Select the Input Information. Regarding the
aforementioned hypothesis in (11) in addition to 𝐸total

inner we
need to know the maximum number of atomic distances 𝑖
(cutoff length) and the nature of bonds 𝑛 (power of potential
function) inside that particular material. For a given material
at a particular environment conditions while knowing the
value of 𝐸total

inner at given temperature and pressure for a
particular lattice structure (fcc, bcc, or hcp), Appendix A
enables us to evaluate the number of neighboring atoms
and their relative distances from an arbitrary inner atom.
Obviously, this information can be achieved from our free-
software program too.However, in order to estimate the value
of 𝐸av we need to calculate the quantity of 𝐹. In other words,
by knowing the value of 𝑖 and 𝑛 we are able to calculate the
𝐹 = 𝑓(𝑖, 𝑛) function which is needed to estimate the value of
𝐸
av.
One of the advantages of modeling the nature of bond

strength by introducing the dimensionless function 𝑓(𝑑𝑖) in
(9) was the extraction of materials properties such as atomic
diameter (see also (10)). Therefore, function 𝐹 = 𝑓(𝑖, 𝑛)

depends on the number of bond types 𝑖, which should be
considered along with the number of atoms in each of these

Selecting
Number of bond type (i)

and power potential (n)

Etotal
inner as input

Calculation of F considering ccn(i) and gn
crystal (i) using Table 1

F = ∑ ccn(i)

gn
crystal (i)

2Etotal
inner
F

Calculating Eav from Eq. (1)

Eav =

Figure 4: Algorithm of calculating 𝐸av.

groups ccn(𝑖). This pure crystallographic information is one
of the outcomes in Appendix A.

For sake of simplicity we will classify all metallic elements
into three main lattice groups (fcc, bcc, and hcp) and try to
evaluate the quantity of𝐹 for each of these groups collectively.
Therefore, we can study the mathematical behavior of 𝐹 in
each three main crystallographic structures as function of 𝑖
and 𝑛.
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Table 1: First 15 numbers of neighboring atoms and their relative distances for each atomic group in fcc, bcc, and hcp crystallography while
the relations 𝑎 = √2𝑑𝑎, √3𝑎 = 2𝑑𝑎, and 𝑎 = 𝑑𝑎 (𝑎: lattice distance) are held in those crystal structure, respectively (knowing that: 𝑔crystal(𝑖) =
𝑑𝑖/𝑑𝑎).

𝑖
ccn(𝑖)
in fcc

Distance in
fcc as
(𝑑𝑖/𝑑𝑎)

2

Distance in
fcc as (𝑑𝑖/𝑎)

2

ccn(𝑖)
in bcc

Distance in
bcc as
(𝑑𝑖/𝑑𝑎)

2

Distance in
bcc as (𝑑𝑖/𝑎)

2

ccn(𝑖)
in hcp

Distance in
hcp as
(𝑑𝑖/𝑑𝑎)

2

Distance in
hcp as (𝑑𝑖/𝑎)

2

1 12 1 4/2 8 3/3 4/3 12 3/3 3/3
2 6 2 4/4 6 3/4 4/4 6 3/6 3/6
3 24 3 4/6 12 3/8 4/8 2 3/8 3/8
4 12 4 4/8 24 3/11 4/11 18 3/9 3/9
5 24 5 4/10 8 3/12 4/12 12 3/11 3/11
6 8 6 4/12 6 3/16 4/16 6 3/12 3/12
7 48 7 4/14 24 3/19 4/19 12 3/15 3/15
8 6 8 4/16 24 3/20 4/20 12 3/17 3/17
9 36 9 4/18 24 3/24 4/24 6 3/18 3/18
10 24 10 4/20 32 3/27 4/27 6 3/19 3/19
11 24 11 4/22 12 3/32 4/32 12 3/20 3/20
12 24 12 4/24 48 3/35 4/35 24 3/21 3/21
13 72 13 4/26 30 3/36 4/36 6 3/22 3/22
14 48 15 4/30 24 3/40 4/40 12 3/25 3/25
15 12 16 4/32 24 3/43 4/43 12 3/27 3/27

Obviously, by increasing the value of 𝑖 (increasing the
effective bond length and number of bond types), the number
of atoms sensing the chosen arbitrary atom from which
these atomic groups are measured increases, but the bond
energy that each atom experiences decreases too. Thus,
there will be a length (cutoff) above which the addition
of atomic groups is unrealistic. Therefore, regarding the
geometrical andmathematical nature of𝐹 functionwe expect
a convergence feature in each structure. Figure 5 shows the
results of such calculation for 1/𝐹(𝑖) on the example of fcc
crystals up to 18 atomic slabs for different 𝑛 values.

As it can be seen in Figure 5, by increasing the value
of 𝑛 the decreasing rate of cohesive force (bond strength)
increases which lead to overall bigger value of 1/𝐹 func-
tion. In addition, by increasing the value of 𝑖 above 8-9 a
convergence feature is observable. Now that the convergence
of 𝐹 has been proved, we try to find an algorithm which
enables us to estimate the optimum value of 𝑖 (number of
maximum slabs something similar to “cutoff”) and the nature
of interaction which is represented by 𝑛 in (10).

In classical literatures, value of 𝑛 = 2, 3, 4 attributes to
ion-ion, ion-dipole, and dipole-dipole interactions behavior,
respectively, whereas in latter pair potential models like LG
values vary around 6 [15] while in FSmodel [11, 14] the square
root power of distance effect for Ni, Cu, Rh, Ag, Ir, and Al was
found to be 6 while for Pd and Pb it was fitted by 7 and for Pt
and Au it became 8. But in the following we propose a simple
algorithm using which value of 𝑖 and 𝑛 can be evaluated more
adequately in a simple manner.

Figure 6(a) shows the calculated results of 𝐹 for different
series 𝑖 using different 𝑛 values in case of bcc crystal.
Obviously lower amount of 𝑛 leads to divergent behavior of 𝐹
function (see 𝑛 = 1, 2, 3, or 4 in Figure 6).
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Figure 5: Calculated results of 1/𝐹(𝑖) as a function of 𝑖 in different
𝑛 values on the example of fcc crystal, (a) applying 𝑛 = 1–4, 6, 9 and
(b) using 𝑛 = 9 in smaller scale section.

Proposed algorithm: regarding the behaviors of simple
metals, we can overview the following simple three boundary
conditions (two plus one) using which the acceptable values
of 𝑛 and 𝑖 can be estimated.

(a) As 𝑛 represents the nature of bonds between the
atoms, its value should be between 6 and 9 in order



The Scientific World Journal 7

to satisfy the basics quantum chemistry requirements;
thus 6 ≤ 𝑛 ≤ 9. Obviously, for a given problem 𝑛 can
be set differently.

(b) 𝑖 represents the longest distance where an arbitrary
atom can exerts its cohesive attraction force; there-
fore, it shows the so-called cutoff length of crystal.
In simulation algorithms usually value of 2–2.5 a (a:
lattice distance) is used [11]; therefore, regarding the
values of Table 1, here we choose its corresponding
value of 𝑖 in different crystals. Therefore, 𝑖 can either
be estimated or the indirect experimental values of
effective number of atomic layers can be transferred
into the length scale.

(c) In addition to the above two conditions, we consider
a limitation of 10−3 for the relative change of 𝐹 =

𝑓(𝑖, 𝑛) function in (11) while the values of 𝑖, and 𝑛 vary.
This condition shows the acceptable mathematical
convergence limit for 𝐹; therefore, by varying 𝑖 we
have [𝐹(𝑖 + 1) − 𝐹(𝑖)] ≤ 10−3.

By applying the condition (a), while searching with
condition (c) (Δ𝐹 ≤ 10−3; see Figure 6(b), e.g., of bcc lattice),
the following atomic distances (slabs) have been found:

(i) in fcc by 𝑛: 6, 7, 8, and 9 at 𝑖: 23, 15, 11, and 8,
respectively,

(ii) in bcc by 𝑛: 6, 7, 8, and 9 at 𝑖: 17, 16, 11, and 10,
respectively,

(iii) in hcp by 𝑛: 6, 7, 8, and 9 at 𝑖: 19, 19, 15, and 13,
respectively.

Therefore, considering the condition (b), using mathe-
matical series in Appendix A in fcc, bcc, and hcp structures,
respectively, the values of 𝑖: 11, 10, and 13 (with cutoff values
of almost ≈2.3 a, ≈2.5 a and ≈2.7 a) could satisfy all three
conditions.These values of 𝑖: 11, 10, and 13 in fcc, bcc, and hcp
belong to 𝑛: 8, 9, and 9, respectively, which will be used here
for our calculation. Obviously, upon request applying similar
algorithm using our free-software program a more reliable
values can be generated for any particular condition.

3.2. Structural Free Cohesive Scale of Elements (Computation
and Verification). By factorizing out the crystallographic
aspect of total cohesive energy regarding the classical or
corrected cohesion scales [1] along with separating the effect
of atomic distances in (11), the achieved energy scale 𝐸av

represents the pure material characteristics of each particular
metal. By analyzing the aforementioned hypothesis, in (11),
one can say that the nature of four physical quantity 𝐸total

inner,
𝐸
av, 𝑔crystal, and ccn can be expressed as follows

𝐸
total
inner = 𝑓(𝑇, 𝑑𝑎,material, crystal, . . .) ,

𝑔
𝑛

crystal (𝑖) = 𝑓(𝑛, crystal) , ⇒ 𝐸
av
≈ 𝑓(material) .

ccn (𝑖) = 𝑓(crystal) ,

(12)

Obviously, regarding the temperature dependency of
relation (12) we know that by increasing the temperature
from 0 Kelvin the lattice expansion along with increasing
vacancy effects also should be considered. However, 𝐸total

inner as
a macroscopic property at different temperature represents
the real behavior of materials including the vacancies and
lattice parameters; therefore, for the time being we neglect
such contribution.The results of our calculation for𝐸av at 0 K
and at 𝑇𝑚 for fcc, bcc, and hcp metal materials are presented
in Table 2. As it can be seen some metals melt in different
lattice crystal than they are usually in solid state at 0 K.
Applying the attached free-software, one can produce more
reliable values for structural free energy scale separately for
any metallic element. (The attached free-software in this paper
is available at our website (http://www.fcrgroup.org). At our
website under the Achievements main menu goes to Setups and
Software submenu and find IBSE-Ver1 software. The terms of
service/use (TOS) for attached free-software ARE the correct
citation to this paper.).

𝐸
av is mainly affected by the nature of atomic interaction

between each pair of the inner atoms. Moreover, considering
the potential function phenomenon developed in literature

and our aforementioned hypothesis, we can say that 𝐸av
=

𝑓(𝑛). Thus, by rearrangement of (11) we can write

𝐸
av
= 2𝐸

total
inner∑

𝑔
𝑛

crystal (𝑖)

ccn (𝑖)
→ 𝐸 scale. (13)

3.2.1. Verification with Melting Points. The bulk melting
phenomenon in crystalline materials takes place when the
bindings of crystallographic cells lose its structure; thus the
best verification properties for cohesive energy scale are
believed to be the melting point [1]. The value of cohesion
energy has been defined in classical literature as a negative
value of sublimation enthalpy while in the past decades there
have been several attempts for correcting these values in order
to fit the melting point more adequately [1, 2].

However, regarding the logic mentioned in (13) we
expect that 𝐸av should verify more adequately the main
physicochemical properties of materials such as melting with
respect to classical cohesive energy scale. In the following this
verification for three different main crystallographic forms
has been shown (in Figure 7).

As our calculation results show, the correlation in three
different crystallographic forms is perfectly represented by
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Table 2: Calculated structural free cohesive energy scale 𝐸av of most pure crystalline elements in three main crystallographic structures in
[kJ/mol] based on the cohesive energy scale in [1].

fcc∗ at 𝑇
𝑚

∗∗
𝐸
av
0k 𝐸

av
𝑇
𝑚

bcc∗ at 𝑇
𝑚

∗∗
𝐸
av
0k 𝐸

av
𝑇
𝑚

hcp∗ at 𝑇
𝑚

∗∗
𝐸
av
0k 𝐸

av
𝑇
𝑚

Ca bcc 49.610 55.800 Li bcc 25.087 22.700 Be bcc 69.309 78.070
Sr bcc 51.712 52.540 Na bcc 20.821 18.560 Mg hcp 41.618 36.590
Rh fcc 100.593 86.400 K bcc 18.977 16.830 Sc bcc 83.824 90.680
Ir fcc 122.614 105.09 Rb bcc 17.721 15.640 Y bcc 82.411 90.030
Ni fcc 77.813 66.86 Cs bcc 17.112 15.090 Ti bcc 88.974 97.030
Pd fcc 81.294 70.610 Ba bcc 58.575 50.040 Zr bcc 97.193 106.340
Pt fcc 91.404 79.130 V bcc 126.739 109.600 Hf bcc 116.398 125.110
Cu fcc 59.976 52.540 Nb bcc 159.683 137.620 Re hcp 159.975 136.880
Ag fcc 54.518 47.740 Ta bcc 188.851 163.050 Ru hcp 116.029 100.010
Au fcc 59.255 51.770 Cr bcc 123.929 106.590 Os hcp 150.348 130.820
Al fcc 41.231 36.110 Mo bcc 169.613 144.930 Co fcc 81.932 68.410
Pb fcc 26.422 23.230 W bcc 216.034 184.160 Tl bcc 25.929 28.870
In fcc 18.741 16.610 Fe bcc 106.917 90.530 Zn hcp 31.225 27.460

Cd hcp 26.757 23.540
fcc 𝑛 = 8, 𝑖 = 11, bcc 𝑛 = 9, 𝑖 = 10, hcp 𝑛 = 9, 𝑖 = 13.
∗Crystal structure between 0K and 298K [16].
∗∗The crystal structure at which the metal will melt.
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𝐸
av considering the boundary conditions of 𝑖 and 𝑛. There-

fore, we may introduce the 𝐸av concept as a simple structural
free cohesive energy scale for pure crystal elements as a
fundamental correlation scale regarding the physic-chemical
properties of metals.

3.2.2. Verification with Bond Strength for Different Neigh-
boring Atoms. Applying the aforementioned computational
algorithm in (11) and considering the relative atomic group

distances in Table 1 along with the results of Appendix A, we
are able to evaluate the bond strength inside the fcc, bcc, and
hcpmetals by𝐸pair(𝑖) in (4).𝐸pair(𝑖) simply expresses the bond
strength at 𝑖th atomic groups (bond type).

The latest reported about the applications of bond
strengths were for estimating the surface properties of pure
metals inworks of Fu et al. in [8–10] which the bond strengths
were calculated using the empirical electron theory. Fu et al.
in [8, 9] used up to 3rd nearest neighbors (bond types: A,
B, and C) for fcc and bcc, respectively, which are compared
to our calculation results in Tables 3 and 4. Obviously, not
only the simplicity of our model but also the fact that neither
the number of atomic neighbors nor the nature of bonds is a
limitation here could give extra advantages for our method.
In addition to proposed value of 𝑖 and 𝑛 in Table 2, a set of
calculation with 𝑖 = 3 (limitation in [8, 9] for fcc and bcc,
resp.) and 2𝑛 for power of potential function shows more
similarity to values in literatures (see Tables 3 and 4).

Fu et al. in [10] reported up to 7th nearest neighbor
(bond types: A, B, C, D, E, F, and G) bonds strength for hcp
structures which is compared also to our results in Table 5. As
our hcp crystal has considered to be a perfect cell, between
type A and B and type E and F the nearest neighbor value
in [10] has been considered for the first and forth type bond
strength. As a result, we evaluate up to 5th nearest neighbor
values from [10] to compare with our results.

In case of hcp metallic crystals we also evaluated a set
of calculation with 𝑖 = 5 (limitation in [10] for hcp) while
keeping 2𝑛 for power of potential function with respect to
Table 2 which shows more similarity to values in [10]. These
calculations illustrate the ability and flexibility of model and
software for fitting and adjustment. As it can be seen in Tables
3–5, not only the tendency of rate of decreasing the bond
strengths is similar, but also the absolute estimated values
adequately fall in a comparable energy zone. Moreover, using
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Table 3: Comparison between our 𝐸pair (𝑖) calculations at 0 K from Table 1 and (4) and (11), with reported estimation bonds strength of first
3 neighboring atoms inside fcc metals [8].

fcc 1b. t. ccn(𝑖) [8] 2Equations (4) and (11) 3
⋅ ⋅ ⋅ fcc 1b. t. ccn(𝑖) [8] 2Equations (4) and (11) 3

⋅ ⋅ ⋅

Au

A or 1 12 31.34491 29.627500 31.51

Pt

1 12 40.31798 45.702000 48.61
B or 2 6 0.22635 1.851719 0.1230 2 6 0.34635 2.856375 0.1898
C or 3 24 0.00548 0.365772 0.0048 3 24 0.00959 0.564222 0.0074
4 12 0.115732 4 12 0.178523

Ag

1 12 25.88074 27.259000 28.99

Pd

1 12 49.24018 40.647000 43.23
2 6 0.18539 1.703688 0.1132 2 6 0.43890 2.540438 0.1688
3 24 0.00446 0.336531 0.0044 3 24 0.01250 0.501815 0.0065
4 12 0.106480 4 12 0.158777

Al

1 12 25.50269 20.615500 21.92

Ni

1 12 48.16400 38.906500 41.38
2 6 0.38510 1.288469 0.0856 2 6 0.64762 2.431656 0.1616
3 24 0.01643 0.254512 0.0033 3 24 0.02529 0.480327 0.0063
4 12 0.080529 4 12 0.151979

Cu

1 12 37.39334 29.988000 31.89
2 6 0.45492 1.874250 0.1245
3 24 0.01644 0.370222 0.00486
4 12 0.117141

1b. t. is bond type.
2With 𝑛 = 8 and 𝑖 = 11.
3Equations (4) and (11) with 𝑛 = 16 and 𝑖 = 3.

Table 4: Comparison between our 𝐸pair (𝑖) calculations at 0 K from Table 1 and (4) and (11), with reported estimation bonds strength of first
3 neighboring atoms inside bcc metals [9].

bcc 1b. t. ccn(𝑖) [9] 2Equations (4) and (11) 3
⋅ ⋅ ⋅ bcc 1b. t. ccn(𝑖) [9] 2Equations (4) and (11) 3

⋅ ⋅ ⋅

Ba

A or 1 8 26.94813 29.287500 34.27

Cr

1 8 76.53049 61.964500 72.51
B or 2 6 2.63391 8.025239 2.573 2 6 15.03984 16.979255 5.444
C or 3 12 0.354669 0.0050 3 12 0.10841 0.750384 0.0106
4 24 0.084618 4 24 0.179028

V

1 8 53.13139 63.369500 74.16

Mo

1 8 91.04682 84.806500 99.25
2 6 9.70330 17.364247 5.568 2 6 15.64323 23.238325 7.452
3 12 0.05577 0.767399 0.0010 3 12 0.07440 1.026999 0.0145
4 24 0.183088 4 24 0.245023

Nb

1 8 95.48674 79.841500 93.44

W

1 8 107.09495 108.017000 126.41
2 6 15.15142 21.877837 7.015 2 6 18.22915 29.598370 9.491
3 12 0.966873 0.0137 3 12 0.08422 1.308076 0.0185
4 24 0.230679 4 24 0.312083

Ta

1 8 109.20519 94.425500 110.5

Fe

1 8 59.67579 53.458500 62.56
2 6 17.31214 25.874084 8.296 2 6 11.84176 14.648476 4.697
3 12 1.143484 0.0162 3 12 0.08796 0.647377 0.0091
4 24 0.272815 4 24 0.154453

1b. t. is bond type.
2With 𝑛 = 9 and 𝑖 = 13.
3Equations (4) and (11) with 𝑛 = 18 and 𝑖 = 3.

our free-software and generalized algorithms for any metals
in any crystal structure at a particular temperature, one can
regenerate a new set of data.

4. Conclusions

A detailed investigation on the crystallography of fcc, bcc,
and hcp lattices has been performed. This application of

mathematical theta series gives us the information about the
number of atoms and their relative equal distances from a
central inner atom for up to 50th layers. Therefore, as long
as the cutoff length (longest atomic distances from which an
atom could sense the attraction of other one) is known, the
maximum number of neighboring atoms and their distances
from the central atom can be calculated.

Using these data, we introduced a model for transforma-
tions of bulk molar cohesion energy into inter atomic bond
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Table 5: Comparison between our 𝐸pair (𝑖) calculations at 0 K from Table 1 and (4) and (11), with reported estimation bonds strength of first
5 neighboring atoms inside hcp metals [10].

hcp 1b. t. ccn(𝑖) 2,3Reference [10] 4Equations (4) and (11) 5
⋅ ⋅ ⋅ hcp 1b. t. ccn(𝑖) 2,3Reference [10] 4Equations (4) and (11) 5

⋅ ⋅ ⋅

Be

A, B, 1 12 26.63648 34.654500 36.02

Hf

1 12 63.18858 58.199000 60.49
C or 2 6 0.81081 1.531527 0.0703 2 6 0.2562 2.572057 0.1181
D or 3 2 0.2014 0.419663 0.0052 3 2 0.02446 0.704784 0.0088
E, F, 4 18 0.06083 0.247010 0.0018 4 18 0.00410 0.414830 0.0030
G or 5 12 0.01951 0.100124 0.0003 5 12 0.00059 0.168149 0.0005
6 6 0.067685 6 6 0.113670

Mg

1 12 10.26661 20.809000 21.63

Re

1 12 77.23997 79.987500 83.14
2 6 0.0961 0.919637 0.0422 2 6 0.66184 3.534981 0.1623
3 2 0.0092 0.251995 0.0031 3 2 0.06507 0.968641 0.0121
4 18 0.00285 0.148322 0.0010 4 18 0.01845 0.570133 0.0042
5 12 0.00041 0.060121 0.0001 5 12 0.00272 0.231100 0.0006
6 6 0.040643 6 6 0.156226

Sc

1 12 30.80765 41.912000 43.56

Co

1 12 61.57229 40.966000 42.58
2 6 0.24091 1.852266 0.0850 2 6 0.79776 1.810459 0.0831
3 2 0.02786 0.507550 0.0063 3 2 0.09046 0.496094 0.0062
4 18 0.00634 0.298740 0.0022 4 18 0.03042 0.291997 0.0021
5 12 0.00107 0.121092 0.0003 5 12 0.00504 0.118359 0.0003
6 6 0.081859 6 6 0.080012

Y

1 12 33.92099 41.205500 42.83

Zn

1 12 13.52421 15.612500 16.22
2 6 0.1627 1.821043 0.0836 2 6 0.06636 0.689982 0.0316
3 2 0.01822 0.498995 0.0062 3 2 0.00438 0.189066 0.0023
4 18 0.00298 0.293704 0.0021 4 18 0.00241 0.111282 0.0008
5 12 0.00049 0.119051 0.0003 5 12 0.00008 0.045108 0.0001
6 6 0.080479 6 6 0.030493

Ti

1 12 41.89133 44.487000 46.24

Cd

1 12 15.34774 13.378500 13.9
2 6 0.50957 1.966066 0.0903 2 6 0.03772 0.591252 0.0271
3 2 0.07548 0.538733 0.0067 3 2 0.00206 0.162012 0.0020
4 18 0.01884 0.317094 0.0023 4 18 0.00097 0.095359 0.0007
5 12 0.00393 0.128532 0.0003 5 12 0.00002 0.038653 0.0001
6 6 0.086889 6 6 0.026130

Zr

1 12 44.28581 48.596500 50.51
2 6 0.37696 2.147682 0.0986
3 2 0.04472 0.588499 0.0074
4 18 0.01056 0.346385 0.0025
5 12 0.00183 0.140405 0.0004
6 6 0.094915

1b. t. is bond type.
2For type 1 nearest neighbor bonds A or B.
3For type 4 nearest neighbor bonds E or F.
4With 𝑛 = 9 and 𝑖 = 13.
5Equations (4) and (11) with 𝑛 = 18 and 𝑖 = 5.

strengths inside the metallic elements. Obviously, in addition
to number of neighboring atoms and their distances, the
nature of bond type of particular material (as power in an
inverse power potential) in given crystal structure should be
known.

Therefore, an algorithm for estimating the value of neigh-
boring atoms and distances from the central atom as function
of crystal type and type of bond (nature of bond strength) has

been proposed and for the sake of simplicity three collective
results for all fcc, bcc, and hcp crystals have been evaluated
and reported here.

The effect of number of neighboring atoms and their
distance along with the physics of bond type inside the
metallic elements has been investigated. This study leads to
defining an energy scale free from crystallographic infor-
mation. The aforementioned energy scale presented here is
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Table 6: Value of 𝐸total
inner in [kJ/mol] at 0 K and melting point of some selected metals from [1].

Metal 𝐸
total
inner,𝑇

𝑚

𝐸
total
inner,0K Metal 𝐸

total
inner,𝑇

𝑚

𝐸
total
inner,0K metal 𝐸

total
inner,𝑇

𝑚

𝐸
total
inner,0K

Ca 275.99 317.35 Li 112.30 124.08 Be 386.14 432.76
Sr 259.90 330.80 Na 91.83 102.98 Mg 228.47 259.86
Rh 552.72 643.48 K 83.25 93.86 Sc 448.51 523.39
Ir 672.28 784.35 Rb 77.39 87.65 Y 445.30 514.57
Ni 427.72 497.76 Cs 74.64 84.64 Ti 479.95 555.55
Pd 451.73 520.03 Ba 247.52 289.71 Zr 525.99 606.87
Pt 506.19 584.70 V 542.08 626.85 Hf 618.81 726.78
Cu 336.14 383.66 Nb 680.69 789.79 Re 854.70 998.87
Ag 305.45 348.75 Ta 806.44 934.05 Ru 624.50 724.48
Au 331.19 379.05 Cr 527.23 612.95 Os 816.83 938.76
Al 231.05 263.75 Mo 716.83 838.90 Co 437.62 511.58
Pb 148.66 169.02 W 910.89 1068.5 Tl 142.82 161.90
In 106.26 119.89 Fe 447.77 528.81 Zn 171.46 194.97

Cd 147.03 167.07
Values of inner cohesion energy of other elements can be collected from [1].
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Figure 7: Verification of structural free cohesive scale with their
melting points for fcc, bcc, and hcp crystals.

suggested to be used for scaling any fundamental properties
of metallic elements which are interrelated to their inner
cohesive feature.

We developed a free-software (IBSE-Ver1) which enables
us to evaluate the number of neighboring atoms and their
relative distance from a central atom in fcc, bcc, or hcp
up to 50th layers. The free-software is able to calculate the
structural free energy scale and interatomic bond strengths
at different neighboring atomic distances depending on the
total number of atoms, cutoff length, and the nature of bond
type. The results of our calculation in case of structural
free energy scale for the first time perfectly reproduced the
expected classical hypothesis of linear dependency of bond

energy and melting points. Also the results of bond strengths
for different type of metallic elements adequately produced
the tendencies reported in literature.

Obviously using the enclosed free-software more reliable
values of structural free energy scale can be evaluated sepa-
rately for each metallic element via considering better set of
cutoff length and power of potential energy related to nature
of bond types in particular crystal structure.

In next paper the mathematical series and other free-
software for estimating the surface bond strength and related
surface properties of all metallic elements at different crystal
structures and crystal planes will be submitted.

Appendices

A. Application of Theta Series for Calculating
Number of Neighboring Atoms and Their
Relative Distance from a Central Atom in
a Close Pack Structure

Assuming the origin of coordinates at the center of an
arbitrary atom in a close pack structure, theta series are able
to calculate number of neighbors and their distance from this
central atom. These series are used for 2D (circular) or 3D
(spherical) close pack structures. Let 𝑆𝑛 denote the number
of atoms at distance√𝑛 from the origin.These 𝑆𝑛 atoms form
a shell of radius √𝑛. Central atom, its neighbors, and shells
are shown in Figures 8(a) and 8(b) for 2D square lattice and
2D hexagonal lattice, respectively.

Theta series for a close packing structure (Λ) is given by

∑

𝑥∈Λ

𝑞
𝑁(𝑥)

= ∑

𝑛

𝑆𝑛𝑞
𝑛
. (A.1)

This equation is a power series in the variable 𝑞. 𝑆𝑛 is the
number of atoms (ccn in (4)), √𝑛 is the distance from the
origin (𝑑𝑖 in (5)), and𝑁(𝑥) = 𝑥 ⋅ 𝑥 is norm of a vector 𝑥.
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(a) (b)

Figure 8: (a) 2D square lattice. (b) 2D hexagonal lattice.

For example in 2D square lattice shown in Figure 8(a),
theta series is described by the following equation:

𝜃3(𝑞)
2
= 1 + 4𝑞 + 4𝑞

2
+ 4𝑞
4
+ 8𝑞
5
+ 4𝑞
8
+ ⋅ ⋅ ⋅ . (A.2)

This power series predicts that there are 4, 4, 4, 8, 4,. . .
neighbors at distance of√1,√2,√4,√5, and√8, respectively,
from the central atom as shown in Figure 8(a).

Similarly, for hexagonal lattice shown inFigure 8(b), theta
series is introduced as follows:

𝜃2 (𝑞
2
) 𝜃2 (𝑞

6
) + 𝜃3 (𝑞

2
) 𝜃3 (𝑞

6
) = 1 + 6𝑞

2
+ 6𝑞
6
+ 6𝑞
8

+ 12𝑞
14
+ 6𝑞
18
+ ⋅ ⋅ ⋅ .

(A.3)

In the same way, all 2D and 3D close pack structures can
be expressed using the following three special Jacobi theta
series:

𝜃2 (𝑞) =

∞

∑

𝑚=−∞

𝑞
(𝑚+1/2)

2

= 2𝑞
1/4
(1 + 𝑞

2
+ 𝑞
6
+ ⋅ ⋅ ⋅ + 𝑞

𝑛(𝑛+1)
+ ⋅ ⋅ ⋅ ) ,

𝜃3 (𝑞) =

∞

∑

𝑚=−∞

𝑞
𝑚
2

= 1 + 2𝑞 + 2𝑞
4
+ 2𝑞
9
+ 2𝑞
16
+ ⋅ ⋅ ⋅ ,

𝜃4 (𝑞) = 𝜃3 (−𝑞) = 1 − 2𝑞 + 2𝑞
4
− 2𝑞
9
+ 2𝑞
16
− ⋅ ⋅ ⋅ .

(A.4)

The Jacobi theta series satisfy large number of identities
using which they can be simplified.

For some clusters the following series is also helpful:

𝜓 (𝑞) =

+∞

∑

𝑚=−∞

𝑞
(𝑚+1/𝑘)

2

, (A.5)

where 𝑘 is a nonzero number.

For fcc structure, theta series are given below which can
predict up to 10 numbers of neighbors and their distance from
central atom:

1

2
𝜃3(𝑞)
3
+ 𝜃4(𝑞)

3
= 1 + 12𝑞

2
+ 6𝑞
4
+ 24𝑞

6

+ 12𝑞
8
+ 24𝑞

10

+ 8𝑞
12
+ 48𝑞

14
+ 6𝑞
16

+ 36𝑞
18
+ 24𝑞

20
+ ⋅ ⋅ ⋅ .

(A.6)

Similarly for hcp

𝜃2 (𝑞
16/3

) {𝜃2 (𝑞
2
) 𝜓6 (𝑞

6
) + 𝜃3(𝑞)

3
𝜓3 (𝑞
6
)}

+ 𝜃3 (𝑞
16/3

) {𝜃2 (𝑞
2
) 𝜃2 (𝑞

6
) + 𝜃3 (𝑞

2
) 𝜃3 (𝑞

6
)}

= 1 + 12𝑞
2
+ 6𝑞
4
+ 2𝑞
16/3

+ 18𝑞
6
+ 12𝑞

22/3

+ 6𝑞
8
+ 12𝑞

10
+ 12𝑞

34/3
+ 6𝑞
12
+ 6𝑞
38/3

+ ⋅ ⋅ ⋅

(A.7)

and in bcc

𝜃2(𝑞
4
)
3

+ 𝜃3(𝑞
4
)
3

= 1 + 8𝑞
3
+ 6𝑞
4
+ 12𝑞

8
+ 24𝑞

11

+ 8𝑞
12
+ 6𝑞
16
+ 24𝑞

19
+ 24𝑞

20

+ 24𝑞
24
+ 32𝑞

27
+ ⋅ ⋅ ⋅ .

(A.8)

Sloane and Teo in [21] considered the 𝑑𝑖 (first coordina-
tion distance) by √2, √3, and √2 during the construction
of theta series for fcc, bcc, and hcp structure, respectively.
Although in this paper we considered a more general algo-
rithm of 𝑑𝑖 = 1. Therefore, for transferring the series of
distances for fcc, bcc, and hcp in (A.6), (A.8), and (A.7) into
our values in Table 1, in above equations one should multiply
the theta series values by 2−1/2, 3−1/2, and 2−1/2, respectively.
For more information about theta series and magic numbers
[21] is useful.
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B. Selected Values of 𝐸total
inner

For more details see Table 6.
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