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Due to their central role in our classical intuition of the physical world and their potential for interacting with
the gravitational field, mechanical degrees of freedom are of special interest in testing the nonclassical predictions
of quantum theory at ever larger scales. The projection postulate of quantum theory predicts that, for certain
types of measurements, continuously measuring a system induces a stochastic collapse of the state of the system
toward a random eigenstate. Here we propose an optomechanical scheme to observe this fundamental effect in
a vibrational mode of a mechanical membrane. The observation in the scheme is direct (it is not inferred via
an a priori assumption of the projection postulate for the mechanical mode) and is made possible through an
in situ probe of the mechanical energy variance. In the scheme, quantum theory predicts that a steady state is
reached as the measurement-induced collapse is counteracted by dissipation to the unmonitored environment.
Numerical simulations show this to result in a monotonic decrease in the time-averaged energy variance as the
ratio of continuous measurement strength to dissipation is increased. The measurement strength in the proposed
scheme is tunable in situ, and the behavior predicted by the simulations therefore implies a way to verifiably
control the time-averaged variance of a mechanical wave function over the course of a single quantum trajectory.
The scheme’s ability to directly probe the energy variance of the mechanical mode may also enable further
investigations of the effects on the mechanical state of coupling the mechanical mode to other quantum systems.
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I. BACKGROUND AND OVERVIEW

Quantum theory, whose predictions are manifest at micro-
scopic scales, contains no intrinsic prohibition for application
to macroscopic degrees of freedom. The manifestly classical
nature of the macroscopic world, however, makes such an
extrapolation far from trivial in significance. To be clear,
macroscopic phenomena such as superconductivity and crystal
structure were well understood to be direct manifestations of
quantum mechanics long ago. However, the possibility of a
macroscopic degree of freedom (i.e., one that is collective in
many microscopic degrees of freedom), such as the center
of mass of a crystal, itself exhibiting a classically forbidden
state or dynamical trajectory was mere speculation for several
decades after the advent of quantum theory (the Schrödinger
cat thought experiment is iconic of this). This changed with
the theoretical investigations of Leggett [1], which provided
momentum to a series of experiments in the 1980s with
collective electronic degrees of freedom in superconducting
circuits. These investigations culminated in the landmark
1988 experiment of Clarke et al. [2], which provided the
first unambiguous demonstration of the quantum tunneling
of a macroscopic degree of freedom (in this case, the phase
difference across a Josephson junction). Since then, microwave
cavity states [3], C60 molecules [4], macroscopic currents [5,6],
and even a macroscopic mechanical dilation mode [7] have
all been demonstrated to occupy superpositions of classically
distinct states, clearly validating the Schrödinger equation for
macroscopic degrees of freedom.

Quantum-theoretical predictions, however, are sharply dis-
tinct from classical ones not only by way of the Schrödinger
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equation, which dictates the behavior of a system in the
absence of measurement, but also through the projection
postulate, which applies in the scenario of measurement. In the
case of real finite-strength quantum measurements, in which
only partial information of an observable is extracted, the
projection postulate predicts that a measurement will result
in a partial, stochastic modification of the quantum state rather
than a complete collapse [8]. Observing this fundamental effect
requires a special class of measurements referred to as quantum
nondemolition (QND): a QND measurement of an observable,
which is possible for observables that commute with the
system Hamiltonian, leaves the postmeasurement state station-
ary (under the system Hamiltonian) in the eigenbasis of that
observable, and the difference between the pre- and postmea-
surement states in this basis can therefore be attributed solely
to the effect of measurement. QND measurements have in fact
been used to successfully observe such measurement-induced
nonunitary quantum state evolution in the macroscopic degrees
of freedom of microwave cavities and superconducting qubits.
In [9], successive QND measurements on a microwave cavity
field initially prepared in a coherent state were used to infer the
progressive collapse of the coherent state toward a nearly pure
Fock state. Complete and permanent collapse to a pure state,
however, is never achievable in such a scenario due to unavoid-
able finite coupling to the unobserved environment; instead, if
measurement is continued after the collapse process, quantum
jumps between nearly pure Fock states arise, and these
were also observed in the same experiment. In [10–12] the
nonunitary modifications of a superconducting qubit state due
to QND measurements were observed, and the study in [13]
observed the progressive effect of continuous measurement on
the combined state of two qubits. Quantum jumps between the
ground and excited states of a superconducting qubit were first
observed in [14]. Regarding macroscopic mechanical degrees
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FIG. 1. (Color online) A depiction of the membrane-in-the-
middle system wherein the mechanical membrane (black) is sus-
pended in a cavity (gray) orthogonal to its axis. The a1,L (R) [red, solid
(dashed)] and a2,L (R) [blue, solid (dashed)] optical modes shown with
respective frequencies ω1 and ω2 arise on each side of the membrane
if it is perfectly opaque and still. Due to the finite transparency,
however, the normal modes a1,± = (1/

√
2)(a1,L ± a1,R) and a2,± =

(1/
√

2)(a2,L ± a2,R) become the physically relevant modes. The finite
transparency of the membrane lifts the degeneracy between aj,+ and
aj,−, and the optomechanical interaction introduces a modulation
of the spectra that is proportional to x2 for a1,± and x4 for a2,±.
ω1 �= ω2 such that all normal modes may be driven and monitored
independently.

of freedom, however, no such experimental tests of nonunitary-
state evolution due to measurement have been performed. Var-
ious theoretical investigations [15–26] have been done regard-
ing proposals to observe, via continuous QND measurement,
quantum jumps between nearly pure mechanical Fock states,
but no proposals exist in the mechanical realm for experimental
studies of the nonunitary-state collapse process itself.

In this theoretical work we propose a scheme to observe the
measurement-induced progressive collapse of a mechanical
wave function in the energy eigenbasis by directly monitoring
its time-averaged variance in situ. The scheme is based on
the platform of optomechanics (see [27–34] for reviews),
wherein optical field modes are coupled to the motion of
mechanical resonators. The particular system considered is
the “membrane-in-the-middle” optomechanical system [35],
which consists of a dielectric membrane suspended in the
middle of an optical cavity and orthogonal to the cavity axis
(see Fig. 1). Depending on the equilibrium position x0 of
the membrane along the cavity axis, the system can exhibit
a modulation of the energy of a full cavity optical mode
(having annihilation operator a) that could be either linear
or quadratic in the mechanical membrane displacement x

along the cavity axis from x0: H ∝ xa†a or H ∝ x2a†a. In the
quantum regime and under the rotating-wave approximation,
the latter becomes H ∝ b†ba†a for a single mechanical mode
(with annihilation operator b), thereby providing a channel
for continuous QND measurement of mechanical energy:
if mode a is continuously driven with a fixed drive, the
phase of its continuous output signal will depend on the
mechanical energy, but mode a does not exchange any quanta
with mode b and therefore does not perturb its energy. The
linear-in-x coupling provides a channel for actively cooling
the mechanical mode to low occupation numbers [36,37]:
driving mode a at the red mechanical sideband induces a
net up-conversion of the pumped photons via absorption
of mechanical quanta. Further, tilting the membrane with
respect to the cavity axis can change the optomechanical
modulation of select optical spectra from x2 to x4 at lowest
order in x [38], providing a channel for QND measurements of

b†b + (b†b)2. Also, an examination of the full optical spectra of
the system reveals that the x, x2, and x4 couplings may all be
achieved simultaneously with independent optical channels.
We show below that the capability of simultaneous x, x2,
and x4 optomechanical coupling permits direct observation of
the time-averaged variance (in the energy eigenbasis) of the
quantum state of the mechanical mode while it is coupled to a
thermal bath but actively cooled to the single-quantum regime.

The energy variance measurement scheme requires only an
a priori assumption that the optical and mechanical modes,
as well as their interaction, obey the Schrödinger equation,
and that the Born rule applies to the optical modes. (The
fully quantum nature of optical fields is well established by
countless experiments, and the Schrödinger equation was first
validated for a micron-scale mechanical degree of freedom in
the experiment of [7]. The validity of the Schrödinger equation
for optomechanical interactions was established in the recent
experiment of [39], where the interaction was used to verifiably
generate entanglement between a propagating microwave field
and a micromechanical oscillator.) The projection postulate,
thus far unvalidated for macroscopic mechanical degrees of
freedom, predicts that the proposed scheme also permits in
situ control of the time-averaged mechanical energy variance.
As the measurement of the mechanical energy variance in
the scheme does not entail an a priori assumption of the
projection postulate, it serves as a legitimate test of this
prediction. This predicted control of the energy variance is due
to the interplay between a finite collapse rate of the quantum
state (due to continuous QND measurement) and a finite
broadening rate (due to continuous dissipation): the continuous
QND measurement of b†b through the x2 optomechanical
coupling produces the action of collapsing the quantum state
toward a single (random) Fock state, while the coupling of the
mechanical mode to dissipative channels induces a broadening
of the quantum state toward a thermal state. The steady
state between these two competing processes yields a finite
time-averaged variance. Increasing the measurement strength
on b†b, which may be done in situ by increasing the drive
strength on the optical mode coupled to x2, results in a smaller
steady-state time-averaged variance because the collapse rate
is thereby increased. Simultaneously, the information from
the x4 measurement channel may be combined with that from
the x2 channel to provide a direct observation of the steady-
state time-averaged variance (see Sec. III). Thus, the collapse
of a mechanical quantum state in the energy eigenbasis may
be observed in a single time-averaged quantum trajectory by
incrementally increasing the measurement strength after each
sufficiently long time average of the measurement signals. The
interplay of measurement-induced collapse and dissipation-
induced broadening of the mechanical quantum state in this
system was conceptually understood in a previous theoretical
study that involved only measurements on b†b [25]; here we
present a proposal to experimentally observe and control this
interplay over a range of relative strengths. The simultaneous
mechanical mode cooling through the x coupling serves the
purpose of lowering the effective bath temperature of the
mode, thereby reducing the x2 coupling strength required to
substantially collapse the quantum state.

The measurement-based collapse scheme outlined above
should be contrasted with the fact that, for the Hamiltonian
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[Eq. (9)] of the system plus its environment, the Schrödinger
equation by itself requires the mechanical quantum state to be
a thermal state with a variance that slightly increases, rather
than decreases, with increasing measurement strength (optical
mode drive strength) [40].

It is also important to note that the previous state collapse
investigations with microwave cavities and superconducting
qubits mentioned above were all in the regime of sufficiently
efficient measurements and negligible environmentally in-
duced decay such that a significant fraction of the purity of
the initial state was maintained over each quantum trajectory
during the collapse process. By contrast, the scheme proposed
here deals with macroscopic nonunitary quantum effects in
the opposite regime of significant environmental dissipation.
And, although the state of the system in such a regime is highly
decohered, the decoherence arises due to entanglement with
the unmonitored environment, and the state is therefore still
distinctly quantum and may not be interpreted classically [41].

II. MODEL

To derive the model Hamiltonian for the scheme, we first
follow some of the analysis of [22,26] for the case of x2 optical
spectrum modulation in a two-sided cavity. In the membrane-
in-the-middle system, when the membrane is orthogonal to the
cavity axis the finite optical transmittance of the membrane and
the finite optomechanical coupling give rise to the following
Hamiltonian at select values of x0 and valid for small x of a
single mechanical mode:

H̃1 = �ω1a
†
1La1L + �ω1a

†
1Ra1R − �J1(a†

1La1R + H.c.)

− �g1(x/xzpf)(a
†
1La1L − a

†
1Ra1R), (1)

where J1 is proportional to the transmittance of the membrane
for a1L (1R), g1 is an optomechanical coupling constant, xzpf is
the zero-point fluctuation of the mechanical mode, and a1L (1R)

form a degenerate cavity mode pair, that would arise on the
left (right) of the membrane with frequency ω1 if J1 = x = 0
(see Fig. 1). In terms of the full cavity modes a1,± = (a1L ±
a1R)/

√
2, the Hamiltonian is

H1 = H
(0)
1 + H

(int)
1 , (2)

H
(0)
1 = �ω1−a

†
1−a1− + �ω1+a

†
1+a1+, (3)

H
(int)
1 = −�g1(x/xzpf)(a

†
1+a1− + a

†
1−a1+), (4)

where ω1± = ω1 ∓ J1. Thus, although a1,± are degenerate
without the transmittance and optomechanical interactions
(i.e., when J1 = g1 = 0), their presence modifies the optical
spectrum of a1,± such that, in the physically relevant case of
J1 � g1(x/xzpf), the transmittance lifts the degeneracy by an
amount 2�J1, and the optomechanical interaction induces a
further perturbation of the spectrum that is quadratic in x.

We may analogously go beyond [22,26] to model the case
of x4 spectrum modulation of the full cavity optical modes
a2,± = (a2L ± a2R)/

√
2:

H2 = H
(0)
2 + H

(int)
2 , (5)

H
(0)
2 = �ω2−a

†
2−a2− + �ω2+a

†
2+a2+, (6)

H
(int)
2 = −�g2(x/xzpf)

2(a†
2+a2− + a

†
2−a2+), (7)

where ω2± = ω2 ∓ J2. Analogous to the case with H1, when
J2 � g2(x/xzpf)2 the finite transmittance of the membrane
lifts the degeneracy of a2,± by an amount 2�J2, and the
optomechanical interaction induces a further perturbation of
the spectrum that is quartic in x.

We are interested here in the case of simultaneous x, x2,
and x4 coupling for the fundamental mechanical mode b so
that the full Hamiltonian is given by

H = ��b†b + H1 + H2 + H1,drive + H2,drive + Hdiss, (8)

where � is the fundamental mechanical mode frequency,
Hj,drive = �(ε∗

j aj+eiωj+t + H.c.) encapsulates coherent drives
of amplitude εj on optical modes aj+, and Hdiss encapsulates
all of the intrinsic and induced dissipation channels, including
the mechanical sideband cooling bath that arises from the x

coupling [36] and the dissipation from Raman scattering (see
the Appendix), for the relevant optical and mechanical modes.
It can be shown (see the Appendix) that in a picture moving
with the zeroth-order optical and mechanical dynamics and
after the rotating-wave approximation, the model Hamiltonian
becomes

Hmodel = −�

2
g2

1A1n1+nb − �

2
g2

2A2n2+
(
n2

b + Anb

)

+H ′
1,drive + H ′

2,drive + Hdiss, (9)

where nb = b†b, nj± = a
†
j±aj±, H ′

j,drive = �(ε∗
j aj+ + H.c.),

A1 = 2( 1
2J1−�

+ 1
2J1+�

), A = B/A2, A2 = 4
J2

+ 2J2

J 2
2 −�2 , and

B = 4
J2

+ 2J2+4�

J 2
2 −�2 .

III. COLLAPSE OBSERVATION AND CONTROL

The protocol for observation and control of measurement-
induced mechanical quantum state collapse is as follows. As
mentioned in Sec. I, the projection postulate dictates that
the steady-state mechanical quantum state under continuous
measurement of nb is the result of a competition between
collapse due to acquisition of information in the measurement
record and broadening due to loss of information through the
unmonitored dissipation channels. Although in this situation
the quantum state itself fluctuates in time due to the continuous
QND measurement, the long time average of its variance is
constant. If the dissipation rates are constant, increasing the
measurement strength on nb results in a smaller time-averaged
variance for nb. As the nb measurement strength is proportional
to the drive on a1+, the drive strength serves as an in situ
experimental knob for the time-averaged variance. Selecting
any values for the aj+ drive strengths, one may take a long
time average of both the output of a1+ and its squared value to
respectively extract 〈nb〉s(t) and 〈nb〉2

s (t), where the subscript
s denotes that 〈u〉s(t) is not an ensemble average but the mean
value of the observable u according to the single mechanical
quantum state at time t . Simultaneously, one may obtain
〈n2

b〉s(t) + A〈nb〉s(t) from a long time average of the output of
a2+ and combine it with the information from a1+ to determine
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〈n2
b〉s(t). Thus, one obtains sufficient information to determine

the time-averaged steady-state mechanical energy variance
σ 2

b (t) = 〈n2
b〉s(t) − 〈nb〉2

s (t) of the single quantum trajectory
at the selected values of the drive strengths. This experimental
procedure requires no a priori assumption of the projection
postulate. Repeating this procedure for incrementally stronger
values of the drive on a1+, one may therefore test for
the collapse of σ 2

b (t) with increasing measurement strength
as predicted by the projection postulate. By relying on
the measurements through the a1+ channel to collapse the
quantum state, this protocol accommodates the fact that the
experimentally observed g2 is very weak [38]; the information
required from a2+ can always be obtained through sufficiently
long time averages.

Being able to collapse the quantum state in this manner,
however, implies certain parameter constraints. The study in
[25] established two fundamental conditions for ensuring that
the mechanical quantum state remained collapsed to a nearly
pure Fock state so that quantum jumps would arise: both κ1+
(the damping rate for mode a1+) and the nb measurement
rate �1 must be much greater than the mechanical Fock state
decay rate. The collapse observation and control protocol in
the present proposal therefore requires that both κ1+ and the
maximum attainable value of �1 satisfy the same constraint.
The study in [25] considered the special case of a one-sided
cavity where coupling to a thermal bath was the only source
of mechanical dissipation. In the more realistic case that we
consider here of a two-sided cavity with continuous sideband
cooling of the mechanical mode, the fundamental conditions
may be expressed as

�
(max)
1 and κ1+ � γth[(nth + 1)nb + nth(nb + 1)]

+ (γ1,Ram + γ2,Ram + γopt)nb, (10)

where �
(max)
1 denotes the maximum attainable value of �1,

γth is the mechanical dissipation rate to the mechanical mode
thermal bath of average occupation nth, γopt is the mechanical
dissipation rate to the zero-temperature optical cooling bath
induced by the sideband cooling [36], and γj,Ram are due to
Raman scattering processes (see Appendix). Although γ1,Ram

is itself proportional to n1+, which must be increased to
increase �1 for each successive collapse increment of the
protocol, the total mechanical cooling rate γcool = γ1,Ram +
γ2,Ram + γopt may be kept constant by simultaneously reducing
γopt via in situ adjustment of the sideband cooling drive [36].

The contraints on �
(max)
1 and κ1+ show that the feasibility

of the scheme entails that nb be small. From detailed
balance, nb = (γcoolnopt + γthnth)/(γcool + γth). As the optical
bath occupation nopt is very small, choosing γcool ≈ γthnth

yields nb ≈ 1 and �
(max)
1 ,κ1+ � 4γthnth. Thus, the steady state

nb ≈ 1 can be achieved via continuous sideband cooling that
is simultaneous with the collapse measurement and quantum
jump measurement protocols without significantly increasing
�

(max)
1 beyond what would be required in the absence of

continuous sideband cooling, where the mechanical mode was
instead passively cooled to nb ≈ 1. Observing phonon-number
quantum jumps and quantum state collapse with simultaneous
sideband cooling may prove to be an experimentally more
viable route than with passive cooling.

The authors of [22] derive the additional condition g2
1 >

κ1+κ1− for detection of quantum jumps in energy, where
κ1− is the damping rate for mode a1−, by requiring that
the phonon-number measurement rate be greater than the
mechanical Fock state decay rate due to the Raman process
mentioned above. However, because the measurement plays
the dual role of detecting the Fock state and also collapsing the
quantum state to create the Fock state, what is actually required
is that the measurement rate be much greater than the Fock state
decay rate. This was established in [25] and is reflected in the
constraint on �

(max)
1 above. The true requirement is therefore

g2
1 � κ1+κ1−. (11)

IV. SIMULATIONS AND IMPLICATIONS FOR
EXPERIMENTAL SIGNATURES

In this section we produce numerical predictions that
assume the projection postulate to hold true for the mechanical
mode, and we present expressions for the experimental pho-
tocurrents that are derived without recourse to the projection
postulate for the mechanical mode. The experimental signals
may therefore be used to test the numerical predictions.
To produce the numerical predictions, we consider the case
where the measurement modes aj+ are strongly driven so that
aj+ → αj + a′

j+, where αj are the steady-state background
amplitudes of aj+ and a′

j+ are the quantum fluctuations on
top of αj . We may therefore proceed in analogy to [25] to
move to a displaced picture for the modes aj+ and use the
following stochastic master equation [8] for the (conditional)
system density matrix ρc to treat the transmitted outputs of
aj+ as continuously observed via homodyne detection and the
rest of the dissipative channels as unobserved:

dρc = − i

�
[HI,ρc]dt + [γth(nth + 1) + γcool]D[b]ρcdt

+ γthnthD[b†]ρcdt +
2∑

j=1

(κj+ + κj+,Ram)D[aj+]ρcdt

+
2∑

j=1

√
ηκj+,t dWjH[aj+e−i π

2 ]ρc. (12)

The subscript c denotes that the quantity is conditioned
upon the measurement record, as required by the projection
postulate. Here we have dropped the prime from a′

j+ for

simplicity, HI = −�
χ1

2 (a†
1+ + a1+)nb − �

χ2

2 (a†
2+ + a2+)(n2

b +
Anb) is the linearized interaction Hamiltonian in the displaced
picture, χj = 2g2

jAjαj , D[c]ρ = cρc† − c†cρ/2 − ρc†c/2 is
the dissipation superoperator, H[c]ρ = cρ + ρc† − Tr(cρ +
ρc†) is the measurement superoperator, η is the efficiency of
the detectors, and dWj are independent Wiener increments.
Each optical mode aj+ has three dissipation channels at zero
temperature with corresponding dissipation rates: reflected
signal (κj+,r ), transmitted signal (κj+,t = κj+ − κj+,r ), and
Raman scattering decay (κj+,Ram) as mentioned above. The
mechanical mode b has four dissipation channels: thermal
bath dissipation (γth) and cooling dissipation (γcool = γ1,Ram +
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γ2,Ram + γopt), which consists of two Raman scattering chan-
nels (γ1,Ram and γ2,Ram) and sideband cooling (γopt). As
explained in the previous section, γcool may be considered
constant over the entire collapse measurement process. Under
only the assumptions of the validity of the Schrödinger
equation and the Born rule for the optical modes, the homodyne
measurement photocurrents may be derived as [8]

ij (t) = ηκj+,t 〈aj+e−iπ/2 + a
†
j+eiπ/2〉(t) + √

ηκj+,t ξj (t),

(13)

where the noise term ξj (t) is due to the local oscillator and
numerically is ξj (t) = dWj/dt .

As per Eq. (10), a1+ must adiabatically follow the me-
chanical mode energy state. For computational simplicity
we assume that a2+ does as well, so that from the quan-
tum Langevin equations we find a1+ = i

χ1

κ1++κ1+,Ram
nb and

a2+ = i
χ2

κ2++κ2+,Ram
(n2

b + Anb). Using this and the fact that the
mechanical mode density matrix remains diagonal due to
environmental decoherence [42], we find

dpn =γthnth[npn−1 − (n + 1)pn]dt

+ [γth(nth + 1) + γcool][(n + 1)pn+1 − npn]dt

− 2
√

η�1(n − 〈n〉c)pndW1

− 2
√

η�2[(n2 + An) − 〈n2 + An〉c]pndW2, (14)

where �j = χ2
j κj+,t

(κj++κj+,Ram)2 , and pn is the occupation probability
of the nth mechanical Fock state. The photocurrents, now
under the additional assumption that the Schrödinger equation
applies to the mechanical mode and the optomechanical
interaction, become

i1(t) = 2ηχ1〈nb〉(t) + √
ηκ1+,t ξ1(t), (15)

i2(t) = 2ηχ2
〈
n2

b + Anb

〉
(t) + √

ηκ2+,t ξ2(t). (16)

Here, �1 is the same phonon-number measurement rate dis-
cussed in the previous section. Experimentally, provided that
A (defined above) is known, for fixed values of �j sufficiently
long time averages of i1(t), i2

1 (t), and i2(t) respectively yield

the values of 〈nb〉, 〈nb〉2 [45], and 〈n2
b〉. As the derivation of the

photocurrent expressions does not require an assumption of the
projection postulate for the mechanical mode, the experimental
acquisition of these values through the photocurrents can serve
as a test of the projection postulate in the mechanical realm.
The prediction of the projection postulate is that σb obtained
from these experimental values will follow the monotonic
behavior in Fig. 2, which is from simulations wherein the
system density matrix is conditioned upon the measurement
record. We remind the reader that �j are proportional to αj ,
which can be adjusted in situ by varying the optical drive
strengths.

Assuming T ≈ 300 mK, � ≈ 2π × 1 MHz [38,46], and
γth = 2π × 0.1 Hz [38], we find nth = 5 × 103. As per above,
we set γcool = γthnth so that nb ≈ 1. Arbitrarily setting A = 1,
we assume κ1+ � 4γthnth so that Eq. (14) is valid and we
numerically integrate it for different values of �1 to produce
the data shown in Fig. 2.
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FIG. 2. (Color online) Simulated collapse of the quantum state in
the energy eigenbasis with increasing nb measurement strength (�1)
and constant n2

b + Anb measurement strength (�2). For each value of
�1, the system is first allowed to reach steady state; then 〈nb〉c, 〈nb〉2

c ,

and 〈n2
b〉c are obtained by computing 〈nb〉c and 〈n2

b〉c (the subscript
c denotes that the quantity is conditioned upon the measurement
record, as required by the projection postulate) at each subsequent
time step and averaging for a sufficiently long time. The steady-state
conditional variance decreases monotonically as a function of �1 and
becomes much less than 1 when �1 � 4γthnth, the regime in which
quantum jumps are predicted to arise in 〈nb〉c(t) [25]. Simulation
parameters are �2 = 10−7(4γthnth), nth = 5 × 103, γcool = γthnth, and
A = 1.

Finally, we note that the environment is modeled here as
a bath of noninteracting harmonic oscillators, but it may be
that two-level systems also play an appreciable role in the
mechanical dissipation [47,48]. This should not, however,
affect the qualitative feature of a monotonic collapse, which
simply depends on the generic effect of dissipation to an
unmonitored environment.

V. CONCLUSION AND OUTLOOK

This work presents a feasible scheme to observe the
measurement-induced collapse of a mechanical quantum
state through a single time-averaged quantum trajectory. The
proposed observation does not entail an a priori assumption of
the projection postulate for the mechanical quantum state and
can therefore serve as a fundamental test of it in the mechanical
realm. This is of importance for testing quantum theory at
macroscopic scales. The state of the mechanical oscillator in
the absence of measurement is a thermal state, a result of
entanglement with its unmonitored environment [49,50], and
the observable in situ control of its variance via measurement
may lead to further applications or other fundamental tests,
as it is effectively a control of the amount of entanglement
shared between the mechanical mode and its unmonitored
environment. Also, setting the strengths of both measurement
channels to be extremely weak can serve as a means of probing
the time-averaged mechanical energy variance with very little
measurement disturbance, and could serve as an in situ means
of probing the time-averaged effects on the mechanical energy
variance of other quantum systems that may be coupled to the
mechanical mode.
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The scheme that we present is not too far from experimental
reach as the latest iteration of the particular system considered
shows orders of magnitude improvement in the x2 optome-
chanical coupling strength [46]. A further order of magnitude
increase in g1 and optimization of κ1± should achieve the
requirement g2

1 � κ1+κ1−.
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APPENDIX

Below is a derivation of the model Hamiltonian Hmodel in the
main text. An explanation of the Raman scattering processes
is contained in the final paragraph.

The full Hamiltonian is given by

H = ��b†b + H1 + H2 + H1,drive + H2,drive + Hdiss, (A1)

where

H1 = H
(0)
1 + H

(int)
1 , (A2)

H
(0)
1 = �ω1−a

†
1−a1− + �ω1+a

†
1+a1+, (A3)

H
(int)
1 = −�g1(x/xzpf)(a

†
1+a1− + a

†
1−a1+), (A4)

and

H2 = H
(0)
2 + H

(int)
2 , (A5)

H
(0)
2 = �ω2−a

†
2−a2− + �ω2+a

†
2+a2+, (A6)

H
(int)
2 = −�g2(x/xzpf)

2(a†
2+a2− + a

†
2−a2+), (A7)

and H1,drive + H2,drive + Hdiss is given in the main text. If H
(int)
j

are treated as perturbations to H
(0)
j , the perturbations of the

frequencies ωj± can appear as a power series in gj , and this is
what we seek by using the approach of [26].

We first find the zeroth-order-in-gj time dependence of x

and (a†
j+aj− + a

†
j−aj+) from the bare system Hamiltonian in

the aj,L/R basis:

Hsys = ��b†b +
∑

j

(�ωja
†
jLajL + �ωja

†
jRajR (A8)

− �Jj (a†
jLajR + H.c.)

− �gj (x/xzpf)
j (a†

jLajL − a
†
jRajR)), (A9)

and then plug into H
(int)
j to find the force exerted on the

mechanical mode:

Fj (t) = −∂H
(int)
j

∂x

= �gj

xzpf
j (b†ei�t + H.c.)j−1(a†

j+aj−e−i2Jj t + H.c.).

(A10)

For j = 1 this induces the forced mechanical motion

xf,1 = F1(t)/m
(
�2 − 4J 2

1

)
, (A11)

pf,1 = Ḟ1(t)/
(
�2 − 4J 2

1

)
, (A12)

while for j = 2 the forced mechanical motion is

xf,2 = 1

2

F2−(t)

m[�2 − (2J2 − �)2]

+ 1

2

F2+(t)

m[�2 − (2J2 + �)2]
, (A13)

pf,2 = mẋf,2, (A14)

where F2,±(t) = 2�g2

xzpf
(a†

+a−b†e−i(2J±�)t + H.c.). xf,j and pf,j

are the first-order-in-gj perturbations to the mechanical dy-
namics.

The next step is to make a time-dependent canonical
transformation of the bare system Hamiltonian to a frame
moving at the first-order-in-gj dynamics so that it cancels
and the higher-order-in-gj perturbations become explicit:

ei(S1+S2)(��b†b + H1 + H2)e−i(S1+S2)

= ��b†b + H
(0)
1 + H

(0)
2 + i

2

[
S1,H

(int)
1

] + i

2

[
S2,H

(int)
2

]

+ i

2

[
S1,H

(int)
2

] + i

2

[
S2,H

(int)
1

] + O
(
g3

j

)
, (A15)

where Sj = xf,jp/� − pf,j x/�, x = xzpf(b† + b), p =
i�(b† − b)/xzpf , xzpf = √

�/2m�, and m is the mechanical
mode effective mass. Thus finding the expansion of the
system Hamiltonian in powers of gj , we plug it into
the full Hamiltonian, transform to a picture moving
with the zeroth-order optical and mechanical dynamics,
make the rotating-wave approximation, and drop the
first-order-in-gj terms of the expansion (as they do not
modify the optical spectra) to find the effective Hamiltonian
Heff = H

(2)
1,eff + H

(2)
2,eff + H ′

1,drive + H ′
2,drive + Hdiss + O(g3

j ),
where

H
(2)
1,eff = �

g2
1

2

( 4J1

4J 2
1 − �2

)
(n1− − n1+)(1 + 2nb)

+ �
g2

1

2

( 2�

4J 2
1 − �2

)
(2n1−n1+ + n1+ + n1−),

(A16)

H
(2)
2,eff = �

g2
2

2
(n2− − n2+)

(
A2n

2
b + Bnb + C

)

− �g2
2

�

J 2
2 − �2

n2+n2−(3 + 4nb),

+ �g2
2

�2/J2

J 2
2 − �2

n2+ (A17)
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nb = b†b, nj± = a
†
j±aj±, H ′

j,drive = �(ε∗
j aj+ + H.c.), Hdiss is

unchanged as it is modeled with Lindbladian superoper-
ators (see below) that are invariant under transformation
to the zeroth-order dynamics, A2 = 4

J2
+ 2J2

J 2
2 −�2 , B = 4

J2
+

2J2+4�

J 2
2 −�2 , and C = �(3+�/J2)

J 2
2 −�2 + 1

J2
+ 2J2

J 2
2 −�2 . These expressions

are valid for all values of the ratios �/Jj . We note that
the coupling enhancement when 2J1 − �  J1,� noted in
[26] for x2 coupling has an analogous counterpart in the
case of x4 coupling when J2 − �  J2,�, and if Jj �
� the second lines of Eqs. (A16) and (A17) become
negligible.

It is clear that the frequency of mode a1,± is sensitive to nb

and the frequency of a2,± is sensitive to both nb and n2
b. When

the modes aj+ are continuously driven, their outputs therefore
yield continuous information on nb and n2

b. However, in the
case that 2J1 − �  J1,�, the frequency of a1+ is actually
sensitive to (n1− − nb). Although we model the situation
where the aj− are left undriven, H

(int)
j support secondary

Raman processes whereby quanta from aj+ combine with
phonons to scatter into aj−. Letting κj± be the total intrinsic
dissipation rates of aj±, Ref. [26] determines this to occur
at a rate γ1,Ramnb = κ1+,Ramn1+ = g2

1n1+nbκ1−/(2J1 − �)2

for scattering from a1+ to a1−, and an analogous golden rule

calculation yields γ2,Ramnb=κ2+,Ramn2+=g2
2n2+nbκ2−/(2J2 −

2�)2 for scattering from a2+ to a2−. Therefore γ1,Ram is
also amplified when 2J1 − �  J1,�, and a non-negligible
n1− may result. In the case of quantum jump measurements,
although not noted in the study of [26], this Raman process
can thereby register as a double jump in the output signal of
a1+ due to its sensitivity to (n1− − nb). Similarly, in the case
of J2 − �  J2,�, a2+ becomes sensitive to n2− and γ2,Ram

is amplified so that n2− may become non-negligible. We are
interested here, however, in the case of long time averages of
the outputs of aj+ and assume that even in the cases where
the second lines of Eqs. (A16) and (A17) become significant,
their time-averaged contributions to the output signals may be
subtracted away by, for example, independently monitoring
the outputs of aj− [51]. For simplicity, then, we deal with the
following model Hamiltonian:

Hmodel = −�

2
g2

1A1n1+nb − �

2
g2

2A2n2+
(
n2

b + Anb

)

+H ′
1,drive + H ′

2,drive + Hdiss, (A18)

where A1 = 2( 1
2J1−�

+ 1
2J1+�

), A = B/A2, and dissipation
due to the environment and Raman processes is contained
in Hdiss.
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[29] M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel, J.

Opt. Soc. Am. B 27, A189 (2010).
[30] G. J. Milburn and M. J. Woolley, Acta Phys. Slov. 61, 483

(2011).
[31] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65(7),

29 (2012).
[32] P. Meystre, Ann. Phys. (NY) 525, 215 (2013).
[33] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt,

arXiv:1303.0733.

063846-7

http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1143/PTPS.69.80
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1126/science.239.4843.992
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1103/PhysRevLett.77.4887
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1038/35017505
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1126/science.290.5492.773
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1038/nature06057
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1126475
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12539
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1038/nature12513
http://dx.doi.org/10.1103/PhysRevLett.106.110502
http://dx.doi.org/10.1103/PhysRevLett.106.110502
http://dx.doi.org/10.1103/PhysRevLett.106.110502
http://dx.doi.org/10.1103/PhysRevLett.106.110502
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevB.70.144301
http://dx.doi.org/10.1103/PhysRevA.70.052105
http://dx.doi.org/10.1103/PhysRevA.70.052105
http://dx.doi.org/10.1103/PhysRevA.70.052105
http://dx.doi.org/10.1103/PhysRevA.70.052105
http://dx.doi.org/10.1103/PhysRevLett.98.120401
http://dx.doi.org/10.1103/PhysRevLett.98.120401
http://dx.doi.org/10.1103/PhysRevLett.98.120401
http://dx.doi.org/10.1103/PhysRevLett.98.120401
http://dx.doi.org/10.1103/PhysRevLett.98.147201
http://dx.doi.org/10.1103/PhysRevLett.98.147201
http://dx.doi.org/10.1103/PhysRevLett.98.147201
http://dx.doi.org/10.1103/PhysRevLett.98.147201
http://dx.doi.org/10.1209/0295-5075/82/18003
http://dx.doi.org/10.1209/0295-5075/82/18003
http://dx.doi.org/10.1209/0295-5075/82/18003
http://dx.doi.org/10.1209/0295-5075/82/18003
http://dx.doi.org/10.1088/1367-2630/10/9/095008
http://dx.doi.org/10.1088/1367-2630/10/9/095008
http://dx.doi.org/10.1088/1367-2630/10/9/095008
http://dx.doi.org/10.1088/1367-2630/10/9/095008
http://dx.doi.org/10.1209/0295-5075/81/10001
http://dx.doi.org/10.1209/0295-5075/81/10001
http://dx.doi.org/10.1209/0295-5075/81/10001
http://dx.doi.org/10.1209/0295-5075/81/10001
http://dx.doi.org/10.1103/PhysRevLett.103.100402
http://dx.doi.org/10.1103/PhysRevLett.103.100402
http://dx.doi.org/10.1103/PhysRevLett.103.100402
http://dx.doi.org/10.1103/PhysRevLett.103.100402
http://dx.doi.org/10.1103/PhysRevB.82.094511
http://dx.doi.org/10.1103/PhysRevB.82.094511
http://dx.doi.org/10.1103/PhysRevB.82.094511
http://dx.doi.org/10.1103/PhysRevB.82.094511
http://dx.doi.org/10.1209/0295-5075/93/18003
http://dx.doi.org/10.1209/0295-5075/93/18003
http://dx.doi.org/10.1209/0295-5075/93/18003
http://dx.doi.org/10.1209/0295-5075/93/18003
http://dx.doi.org/10.1088/1367-2630/13/4/043024
http://dx.doi.org/10.1088/1367-2630/13/4/043024
http://dx.doi.org/10.1088/1367-2630/13/4/043024
http://dx.doi.org/10.1088/1367-2630/13/4/043024
http://dx.doi.org/10.1103/PhysRevLett.109.063601
http://dx.doi.org/10.1103/PhysRevLett.109.063601
http://dx.doi.org/10.1103/PhysRevLett.109.063601
http://dx.doi.org/10.1103/PhysRevLett.109.063601
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1103/Physics.2.40
http://dx.doi.org/10.1364/JOSAB.27.00A189
http://dx.doi.org/10.1364/JOSAB.27.00A189
http://dx.doi.org/10.1364/JOSAB.27.00A189
http://dx.doi.org/10.1364/JOSAB.27.00A189
http://dx.doi.org/10.2478/v10155-011-0005-7
http://dx.doi.org/10.2478/v10155-011-0005-7
http://dx.doi.org/10.2478/v10155-011-0005-7
http://dx.doi.org/10.2478/v10155-011-0005-7
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1063/PT.3.1640
http://dx.doi.org/10.1002/andp.201200226
http://dx.doi.org/10.1002/andp.201200226
http://dx.doi.org/10.1002/andp.201200226
http://dx.doi.org/10.1002/andp.201200226
http://arxiv.org/abs/arXiv:1303.0733


A. A. GANGAT PHYSICAL REVIEW A 88, 063846 (2013)

[34] Y. Chen, J. Phys. B 46, 104001 (2013).
[35] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt,

S. M. Girvin, and J. G. E. Harris, Nature (London) 452, 72
(2008).

[36] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys.
Rev. Lett. 99, 093902 (2007).

[37] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,
Phys. Rev. Lett. 99, 093901 (2007).

[38] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E.
Harris, Nat. Phys. 6, 707 (2010).

[39] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Science 342, 710 (2013).

[40] The b†b measurement strength is proportional to the number
of optical quanta (n1+) in the coupled optical mode. Increasing
n1+ decreases the effective mechanical oscillator frequency and
therefore, if there is no measurement-induced collapse, should
cause the mechanical energy variance to slightly increase, given
a thermal bath at a constant temperature.

[41] M. Schlosshauer, Decoherence and the Quantum-to-Classical
Transition (Springer-Verlag, Berlin, 2007).

[42] The decoherence theory of open quantum systems establishes
that the density matrix of a system (here the mechanical mode)
coupled to a macroscopic measurement apparatus (here the
cavity mode) will be diagonal in the eigenbasis of the system
observable (here the phonon number) that is coupled to the
apparatus due to the environmentally induced rapid decay of
the off-diagonal elements in that basis. In the present case, the

mechanical mode density matrix will therefore be diagonal in
the energy eigenbasis. For reviews of decoherence theory, see
[43,44].

[43] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[44] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
[45] Because ξ1(t) is a Gaussian random variable with zero mean, the

long time average of i1(t)2 yields a term proportional to 〈nb〉2

plus a constant that needs to be calibrated away.
[46] N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova,

A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, Appl.
Phys. Lett. 101, 221109 (2012).

[47] M. Schlosshauer, A. P. Hines, and G. J. Milburn, Phys. Rev. A
77, 022111 (2008).

[48] L. G. Remus, M. P. Blencowe, and Y. Tanaka, Phys. Rev. B 80,
174103 (2009).

[49] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2, 754 (2006).
[50] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi, Phys.

Rev. Lett. 96, 050403 (2006).
[51] To see this in more detail, note that when the second lines of

Eqs. (A16) and (A17) are non-negligible, the photocurrents i1(t),
i2
1 (t), and i2(t) defined in the main text will include undesirable

terms proportional to 〈nj−〉 and 〈n1−〉2. By continuously
monitoring with photon counters the outputs of aj−, which
are spectrally distinct from one another and from aj+, 〈nj−〉
and 〈n1−〉2 may be directly measured and their undesirable
contributions to the time averages of i1(t), i2

1 (t), and i2(t) may
therefore be subtracted.
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