ATHLETES HEART AND EXERCISE RELATED SUDDEN CARDIAC DEATH:
ACROSS THE AGE SPAN

MATHEW G. WILSON MPhil

A thesis submitted in partial fulfilment of the
requirements of the University of Wolverhampton
for the degree of Doctor of Philosophy

This research programme was carried out in collaboration with the
CRY Centre for Sport Cardiology, Olympic Medical Institute,
Cardiovascular Disease and Sports Cardiology Centre, St George's Hospital, London,
and
Department of Cardiac Magnetic Resonance, Royal Brompton and Harefield NHS
Trust

October 2010

This work or any part thereof has not previously been presented in any form to the University
or to any other body whether for the purposes of assessment, publication or for any other
purpose (unless otherwise indicated). Save for any express acknowledgments, references
and/or bibliographies cited in the work, I confirm that the intellectual content of the work is
the result of my own efforts and of no other person.

The right of Mathew G. Wilson to be identified as author of this work is asserted in accordance with
ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the
author.

Signature………………………………………………

Date………………………………………………
Acknowledgements

This PhD would not have been possible without the collaboration from a good research team. I have benefited from being supported by a large number of genuinely great intellectuals, who helped me throughout my career as an Exercise Physiologist, and whom I now call good friends and colleagues.

Special thanks to Professor Gregory P. Whyte for his truly inspirational supervision and guidance. Our work and friendship has been an adventure in itself, definitively never boring. He guided and pushed me further than any other person in this undertaking, yet gave me time and space to explore the questions I wanted to pursue.

I’d also thank the following people who have contributed all my work and offered an extremely critical yet friendly eye for every publication this thesis contains. They are: Professor Alan Nevill, Professor Keith George, Professor Sanjay Sharma, Dr Rory O’Hanlon, Dr Sanjay Prasad, Dr Sandeep Basavarajaiah, Dr Dave Oxborough, Dr Mike Loosemore, Dr Richard Godfrey, Dr Nigel Stephens, Professor Robert Shave, Mr Anthony Shaw and of course, Professor Andy Lane.

Lastly, I would like to thank my wife, Camilla, and my two children, Ruby and Harry. This document belongs to you, just as much as to me! Finally, I would like to thank my (extended) family; Mr Alastair Wilson, Ms Janet Wilson and Mr Adrian Shakeshaft, Mr Graham Wilson and Mrs Judy Leanne, Mr Lee and Margaret Jerman, Mr Richard Jerman et al., Mr Brian Jerman et al., Colonel Peter Weeks and Mr Patrick and Sarah Tighe et al.
ABSTRACT

Background - Regular exercise reduces the risk of cardiovascular disease and subsequent sudden cardiac death (SCD). However, a small, but notable proportion of athletes die suddenly due to inherited or congenital disorders of the heart that predispose to malignant ventricular arrhythmias. Such tragedies are highly publicised, particularly when high-profile athletes are involved. To date, limited evidence for the efficacy of cardiovascular pre-participation screening exists outside of the Italian experience. Furthermore, limited data exists examining the impact of ethnicity on cardiac adaptations to physical training. Whilst the cardiovascular benefits of exercise are well known, the impact of life-long endurance exercise is less well understood. Long term high-intensity endurance exercise is associated with changes in cardiac morphology together with electrocardiographic alterations that are believed to be physiologic in nature. Recent data however, has suggested a number of deleterious adaptive changes in cardiac structure, function and electrical activity in response to life-long endurance activity.

Aims and Objectives - The aims of this PhD were; 1) To find an effective preparticipation screening method that would successfully identify pre-existing cardiovascular abnormalities, 2) To identify the prevalence of hypertrophic cardiomyopathy and Long QT syndrome in elite UK athletes; 3) To examine the impact and significance of ethnicity upon left ventricular remodelling in elite athletes, and 4) To examine the acute and chronic impact of ultra-endurance exercise across the life-span in male endurance athletes.

Major Results and Conclusions – 1) Study 2 sought to confirm the efficacy of resting 12-Lead ECG ‘alongside’ personal/family history questionnaires and physical examinations as collective tools to identify diseases that have the potential of causing sudden death within a cohort of elite junior athletes (n=1074) and physically active school children (n=1646). Nine participants were identified with a positive diagnosis of a disease associated with SCD. None of those diagnosed with a disease associated with SCD were symptomatic or had a family history of note. Thus, personal symptoms and family history questionnaires alone are inadequate in the identification of individuals with diseases associated with SCD. In conclusion, resting 12-Lead ECG is paramount when screening for diseases that have the potential of causing sudden death in the young.

2) Study 3 examined 3,500 asymptomatic elite athletes (75% male) with a mean age of 20.5 ± 5.8 years with 12-lead ECG and 2-dimensional echocardiography. None had a known family history of HCM. Of the 3,500 athletes, 53 (1.5%) had LVH (mean 13.6 ± 0.9mm, range 13 to 16mm), and of these 50 had a dilated LV cavity with normal diastolic function to indicate physiological left ventricular hypertrophy. Three (0.08%) athletes with LVH had a non-dilated LV cavity and associated deep T-wave inversion that could have been consistent with HCM. However, none of the 3 athletes had any other phenotypic features of HCM on further non-invasive testing and none had first-degree relatives with features of HCM. In conclusion, the prevalence of HCM in elite athletes is significantly less than in the general population; with the demands of strenuous exercise on the cardiovascular system selecting out most individuals with HCM.

Study 4 examined 2000 elite athletes in order to identify the prevalence of Long QT syndrome. Three athletes had a QTc value of >500 ms and all exhibited one of: paradoxical prolongation of QTc during exercise, a confirmatory genetic mutation, or prolonged QTc in a first-degree relative. In contrast, none of the athletes with a QTc value of <500 ms had any
other features to indicate LQTS. Accordingly, the prevalence of a prolonged QTc interval in elite British athletes is 0.4%.

3) Study 6 examined 300 nationally ranked UK black male athletes (mean age 20.5 years) in comparison to 150 black and white sedentary individuals and 300 highly-trained white male athletes. Black athletes exhibited greater LV wall thickness and cavity size compared with sedentary black and white individuals. Black athletes had greater LV wall thickness compared with white athletes. A minority of black athlete’s exhibit LVH ≥15 mm; proposing that in the absence of cardiac symptoms or a family history of HCM, an LV wall thickness ≥15 mm in black athletes may represent physiologic LVH when the LV cavity is enlarged and diastolic indexes are normal. 7 black athletes (12%) with LVH displaying deep T-wave inversions in leads V1 to V4. In conclusion, in the absence of obvious pathology, these electrical anomalies in black athletes likely represent a normal spectrum of ECG changes in response to physical training.

4) Study 8 examined 17 male participants (age 33.5 ± 6.5 years, 26–40 years) using cardiac magnetic resonance (CMR) and echocardiography before and after a marathon to investigate the relationship between systolic function and diastolic function against biomarkers of cardiac damage. Results demonstrates biomarkers of myocardial cell damage following an acute bout of prolonged exercise are not associated with either systolic or diastolic functional measures, and do not seem to be associated with any detectable myocardial inflammation, oedema, or scarring using either gold standard techniques of gadolinium enhanced CMR or echocardiography respectively. The impact of multiple episodes of prolonged exercise, as experienced by highly trained veteran endurance athlete is not fully understood.

5) Study 10 examined the cardiac structure and function of 12 life-long, competitive endurance veteran athletes (> 50 yrs, mean ± SD marathons 178 ± 209 (range 20 – 650)) against 17 young male endurance athletes (<40 yrs) using echocardiography and CMR with late gadolinium enhancement (LGE) to assess myocardial fibrosis. Lifelong veteran athletes had smaller LV and RV end-diastolic and end-systolic volumes (p<0.05) but maintained LV and RV systolic function compared with young athletes. In 6 (50%) of the veteran athletes LGE of CMR indicated the presence of myocardial fibrosis; no LGE in the young athletes. The prevalence of LGE in veteran athletes was not associated with the number of competitive marathons or ultra-endurance marathons (>50 miles) completed, age, LV and RV end-diastolic volumes or LV mass (p>0.05). In conclusion, there is limited evidence at present demonstrating that cardiovascular re-modelling following lifelong endurance exercise leads to long-term disease progression, cardiovascular disability or SCD.

KEY WORDS: sudden cardiac death, preparticipation screening, hypertrophic cardiomyopathy, long QT syndrome, myocarditis, veteran athlete, endurance, arrhythmia, and fibrosis.
CHAPTER ONE

1.1. Introduction 1

CHAPTER TWO – THE ATHLETES HEART

2.1. Cardiac Remodelling with Prolonged Intensive Exercise 6
2.2. Cardiac dimensions in athletes 6
2.3. Electrocardiographic changes in athletes 11
2.4. Athletes with cardiac dimensions exceeding predicted values 15
2.5. Effect of age on cardiac adaptation to regular intensive exercise 16
 2.5.1. STUDY ONE (Appendix 1) 18
 2.5.2. Methods – Athletes 18
 2.5.3. Results 19
 2.5.4. Discussion 22
 2.5.5. Study One Conclusions 23

CHAPTER THREE – SUDDEN CARDIAC DEATH

3.0. Inherited or Congenital Diseases that may lead to Sudden Cardiac Death (SCD) 24
3.1. Hypertrophic Cardiomyopathy (HCM) 24
3.2. Arrhymogenic right ventricular cardiomyopathy (ARVC) 27
3.3. Ion channelopathies that may cause SCD 31
3.4. Congenital long QT syndrome and Brugada syndrome 32
3.5. Brugada syndrome 34
3.6. Repolarisation changes in young athletes vs. ion channelopathies 35
3.7. Wolff–Parkinson–White syndrome (WPW) 36
3.8. Congenital coronary artery anomalies (CAA’s) 37

CHAPTER FOUR - PRE-PARTICIPATION SCREENING

4.1. Preparticipation Screening 39
 4.1.1. STUDY TWO (Appendix 2) 43
 4.1.2. Methods 43
 4.1.3. Physical Examination and Questionnaire Consultation 44
 4.1.4. Personal and Family History Questionnaire 44
 4.1.5. Results 46
 4.1.6. Discussion 48
 4.1.7. Conclusion 51

4.2. Prevalence of HCM in Elite Athletes 51
 4.2.1. STUDY THREE (Appendix 3) 52
 4.2.2. Background 52
 4.2.3. Methods 53
 4.2.4. Criteria for consideration of the diagnosis of HCM in athletes 53
 4.2.5. Results 55
 4.2.6. Discussion 59
 4.2.7. Prevalence of HCM in elite athletes 59
 4.2.8. Screening for HCM in elite athletes 60
 4.2.9. Conclusion and Limitations 62

4.3. Prevalence and significance of an isolated long QT interval in elite Athletes 63
 4.3.1. STUDY FOUR (Appendix 4) 64
 4.3.2. Methods 64
 4.3.3. Results 66
 4.3.4. Discussion 70
 4.3.5. Prevalence of isolated long QTc interval on a 12-lead ECG in athletes 70
 4.3.6 Significance of an isolated long QT interval in an athlete 71
5.5.3. Results 116
5.5.4. Discussion 120
5.5.5. Limitations 124
5.5.6. Conclusions 124

CHAPTER SIX
6. Electrocardiography and the Veteran Endurance Athlete 126
 6.1. Cardiac autonomic function 126
 6.2. Electrocardiographic (ECG) changes 127
 6.3. Supraventricular, complex ventricular and profound bradyarrhythmias 128
 6.4. Paroxysmal and Lone Atrial Fibrillation 129
 6.5. Potential arrhythmic substrate(s) for AF 131
 6.5.1. STUDY NINE (Appendix 9) 132
 6.6. Ventricular arrhythmias 134
 6.7. Idiopathic interstitial myocardial fibrosis 138
 6.7.1. STUDY TEN (Appendix 10) 141
 6.7.2. Methods 141
 6.7.3. Results 143
 6.7.4. Discussion 150
 6.7.5. Diastolic function and the Veteran Athlete 150
 6.7.6. LGE in Veteran Athletes 151
 6.7.7. Causes of LGE 153
 6.7.8. Correlation of LGE with Ultra-Endurance History 154
 6.7.9. Myocarditis: A substrate for Arrhythmia and Fibrosis 155
 6.8. Role of Cardiac Biomarkers with Ultra-Endurance Exercise 156
 6.8.1. Conclusion 157
 6.8.2. Limitations 158

6.9. PART TWO CONCLUSIONS 158

CHAPTER SEVEN
7. Thesis Conclusions and Directions for Future Studies 165
Tables Page

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Absolute cardiac dimensions in athletes and matched non-athletes</td>
<td>8</td>
</tr>
<tr>
<td>Table 2</td>
<td>Prevalence of ECG abnormalities in an unselected population of 32,652 young individuals undergoing the pre-participation cardiovascular screening</td>
<td>12</td>
</tr>
<tr>
<td>Table 3</td>
<td>Comparative proportions of ECG abnormalities observed in Pelliccia et al. (2007) vs. Sharma et al. (1999) athletic populations in relation to age and level of achievement</td>
<td>13</td>
</tr>
<tr>
<td>Table 4</td>
<td>Common and Less Common and Significant ECG Abnormalities</td>
<td>14</td>
</tr>
<tr>
<td>Table 5</td>
<td>Classification of abnormalities of the athlete’s ECG</td>
<td>15</td>
</tr>
<tr>
<td>Table 6</td>
<td>Comparison between male and female adolescent tennis players</td>
<td>20</td>
</tr>
<tr>
<td>Table 7</td>
<td>Distribution of LV wall thickness in different age groups of male and female tennis players</td>
<td>20</td>
</tr>
<tr>
<td>Table 8</td>
<td>Distribution of LV cavity size in different age groups of male and female tennis players</td>
<td>21</td>
</tr>
<tr>
<td>Table 9</td>
<td>Task Force Criteria for diagnosis of ARVC (McKenna et al., 1994)</td>
<td>30</td>
</tr>
<tr>
<td>Table 10</td>
<td>Personal Symptoms and Family History Questionnaire</td>
<td>45</td>
</tr>
<tr>
<td>Table 11</td>
<td>A list of ECG patterns considered to represent a potentially serious cardiac disorder</td>
<td>45</td>
</tr>
<tr>
<td>Table 12</td>
<td>The number of positive answers given by junior athletes and school children to the personal symptom and family history questionnaire</td>
<td>46</td>
</tr>
<tr>
<td>Table 13</td>
<td>The number of participants screened with the number of follow ups, the reasons for follow up and the prevalence of diseases that may have the potential of causing SCD</td>
<td>47</td>
</tr>
<tr>
<td>Table 14</td>
<td>Nine participants with a positive diagnosis of a disease associated with SCD</td>
<td>48</td>
</tr>
<tr>
<td>Table 15</td>
<td>Characteristics of the seven athletes with prolonged QTc intervals</td>
<td>67</td>
</tr>
</tbody>
</table>
Table 16: Comparison between black athletes, white athletes, and black control participants 83

Table 17: Data indices for LV diastolic function pre-, post- and 6hr post-marathon 117

Table 18: CMR Indices pre and post marathon 118

Table 19: Myocardial oedema (STIR), hyperemia assessment (rGE), and fibrosis (LHE) pre and post marathon 119

Table 20: Data for indices of biological markers of cardiac damage pre-, post-, 6hr post-marathon. 119

Table 21: Participant demographics including length of endurance career and competitive curriculum vitae 143

Table 22: Echocardiographic data indices for LV diastolic function 144

Table 23: CMR data indices of LA, LV and RV volumes, mass and systolic function 146

Table 24: CMR STIR and LGE data indices 148

Table 25: Location and extent of LGE in veteran athletes 149
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>Diagram documenting proposed means of ischemia of anomalous right (upper level) and left (lower level) coronary arteries (Basilico, 1999)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Annual Incidence Rates of Sudden Cardiovascular Death in Screened Competitive Athletes and Unscreened Non-athletes Aged 12 to 35 Years in the Veneto Region of Italy (1979-2004) (Corrado et al., 2006a)</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Distribution of LVWT in 3500 Elite Athletes</td>
<td>56</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Electrocardiograms and Parasternal Short-Axis Views of the LV at the Level of Papillary Muscle of the 3 Athletes with LVH and a Non-dilated LV Cavity</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Electrocardiograms of a Swimmer with LVH and Inferolateral T-Wave Inversions Before and After Detraining for 12 Weeks</td>
<td>58</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>Panel showing the 12-lead ECG’s of three athletes with QTc > 500 ms</td>
<td>67</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>12-Lead ECG of an athlete (athlete 1) demonstrating paradoxical prolongation of the QTc during the recovery phase of exercise</td>
<td>68</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>12-Lead ECG of the brother of an athlete (athlete 3) with a long QTc</td>
<td>69</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>A 12-Lead ECG from a 17 year old swimmer showing sinus rhythm with deep T wave inversion (>0.2 mV) in inferior and lateral leads and isolated Sokolow voltage criterion for left ventricular hypertrophy.</td>
<td>75</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>A 12-Lead ECG from the same athlete after detraining showing complete resolution of T wave inversions in inferior and lateral leads.</td>
<td>76</td>
</tr>
<tr>
<td>Figure 11:</td>
<td>Representative images of CMR acquisitions to detect myocardial oedema/inflammation (STIR) (A), hyperaemia (rGE) (B), and myocardial fibrosis (LGE) (C).</td>
<td>118</td>
</tr>
<tr>
<td>Figure 12:</td>
<td>Myocardial scarring in the basal, lateral wall as a result of previous myocarditis.</td>
<td>133</td>
</tr>
<tr>
<td>Figure 13:</td>
<td>Correlations between athlete’s age and LV and RV volumes and systolic function</td>
<td>147</td>
</tr>
</tbody>
</table>
Figure 14: Diastolic function of veteran athletes presenting with and without LGE
APPENDICES

Appendix 1

Appendix 2

Appendix 3

Appendix 4

Appendix 5

Appendix 6
Appendix 7

Appendix 8

Appendix 9

Appendix Ten