
 
443

1. INRODUCTION 

For triaxial tests to determine the peak and the 
residual strength of rock materials the ISRM 
standardized the “Continuous Failure State” 
triaxial test (CFS-triaxial test) [1]. According to 
this method confining pressure and axial stress are 
applied so as to cause the test specimen to be 
permanently in a state of failure. In this way it is 
possible to obtain at least parts of the failure 
envelope for both the peak and the residual 
strength with the aid of a single specimen. Kovári 
et al. [2] explained this method and realized that to 
keep the material in a pre-failure state the best is to 
chose the rate of the increasing confining pressure 
so that the slope of the axial stress–axial 
displacement curve is equal to the  Young’s 
modulus of the sample. Because the slope of the 
stress-strain curve of a damaged material is 
decreasing with the axial stress, one can avoid an 
early failure and the measured strength will have 
some reserves. 

Tisa and Kovári [3] showed that CFS-triaxial test 
might be directly adapted to the direct shear test, 
because on comparing the results of conventional 
triaxial tests with those of direct shear tests on 
joints or planes of weakness a considerable 
similarity may be observed. The curves 
representing the relationship between axial stress 
and axial strain in the triaxial test exhibit basically 
the same form as those for shear deformation and 
shear force in the direct shear test, including the 
characteristics for peak and residual strength (Fig. 
1). After several investigations they realized that 

using the CFS direct shear test the determination of 
the residual shear strength is exact. However, for 
determining the peak strength envelope of rough 
surfaces (or with teeth) only with decreasing 
normal load is correct [3]. This material 
investigation for determining the shearing 
constants of jointed rocks is also used in the 
practice. 

According to the results of Tisa and Kovári [3] 
using continuously increasing normal load as CFS 
direct shear test for rough surfaces or those with 
teeth on cement mortar and brick specimens the 
slope of shear stress–normal stress curves was 
always under the curve of the exact failure 
envelope (measured with single specimens under 
constant normal load). (see Fig. 1). 

Fig. 1. Characteristic results of direct tests on rock joints 
indicating similarity to triaxial test results [3] 
Shearing tests with regular triangular teeth were 
carried out with increasing normal load from the 
maximal shearing stress point according to the 
research of Tisa and Kovári [3] with nine different 
starting normal loads and the relationship between 
the shear and the normal stress was described. 
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2. RELATIONSHIPS BETWEEN THE 
CRITICAL SHEAR STRESS AND NORMAL 
STRESS 

Patton [4] was the first who performed a series of 
constant load stress direct shear tests on rock with 
regular teeth inclination (i), at varying normal 
stresses. From these tests he established a bilinear 
failure envelope – failure from an asperity sliding 
and asperity shearing mode. The equation for the 
first part of the two portions of the failure envelope 
is: 

τ σ φ µ= +n itan( ),                                              (1) 

if the σn normal stress is less than the σT transition 
stress, the boundary between the different modes 
of failure. Here τ is the shear stress and φµ denotes 
the sliding friction angle. If the normal stress equal 
or exceeds the transition stress (σn ≥ σT), the shear 
stress is: 

τ σ φ= +c n rtan ,                                                (2) 

where c is the cohesion and φr is the angle of the 
internal friction. Generally it can be assumed that 
 φµ ≈ φr. The theoretical background of the Patton 
failure envelope supposes rigid asperities in the 
sliding region and failure according to the 
Coulomb-Mohr criteria in the shearing region 
above the transition stress. 

Later Ladanyi and Archambault [5] extended the 
Patton Eq. (1), considering natural rock joints with 
irregular (but rigid) asperities. They proposed the 
following equation for the sliding part of the 
failure envelope if the shear area is one : 

τ σ φ νµ= +n tan( ),                                             (3) 

where tanν = v&  is the rate of dilation at failure. If 
the asperities are supposed to be rigid and regular 
then ν = i therefore Eq. (3) reduces to Eq. (1). For 
the shear part they proposed a fitting to the 
Coulomb-Mohr failure criteria as well as to the 
Fairhurst criteria, extending Eq. (3) with additional 
terms. 

Seidel and Haberfield [6] argued in favor of the 
original Patton equation (1) for the sliding part. 
They claimed to consider elastic teeth and their 
theoretical model was supported by constant 
normal stiffness (CNS) experiments. 

Vásárhelyi [7] investigated the dependence of the 
constant normal load on the rate of dilation at 
failure with constant normal load (CNL) 
experiments, too. According to his results the 

Ladanyi and Archambault’s equation (3) can be 
extended the whole curve (including the shearing 
part) and it is better then Patton’s (1), then correct 
until the teeth (or irregularities) are not shorn off. 
Therefore Eq. (3) is valid far beyond the transition 
stress and gives a unified approach to the two 
seemingly independent failure modes. The 
practical disadvantage of the approach that in this 
case the rate of dilation ( v& ) is a variable to be 
measured. 

The real measurements are better approximated by 
a smooth curve instead of the bilinear one of 
Patton. One of the simplest generalizations was 
suggested by Jaeger [8] on purely 
phenomenological reasoning: 

[ ]τ σ φσ
µ= − +−c e b

n
n1 tan

                                 (4) 

where b is an empirical constant. This equation is 
asymptotically equal with the bilinear one of 
Patton when the normal load σn goes to infinity. 

3. MATERIAL DESCRIPTION AND 
EXPERIMENT 

Cement mortar was selected as test material 
because has rock-like properties. Basic material 
and shearing constants were determined in the 
previous researches [3, 7]. All specimens were 150 
mm wide and 140 mm long with four regular teeth 
where the distance between the teeth was kept 
constant at 20 mm. The teeth were 5 mm high, 15 
mm thick in the bottom and the inclination angle 
(i) of the teeth was 26.6°. The transition stress (σT) 
and the cohesion (c) of the cement mortar 
specimen was 2.1 and 2.13 N/mm2, respectively, 
and the basic friction angle (φµ) and the asperity 
sliding angle (α) was 33.6° and 59.0°, 
respectively. 

The CNL equipment was designed and built in the 
Rock Mechanics Laboratory of the Swiss Federal 
Institute of Technology, Zurich [3]. Using this 
machine the normal load could be changed 
manually during the research. 

The test monitoring arrangement is shown 
schematically in Fig. 2. It is necessary that the 
shear stress, normal stress and shear displacements 
were monitored continuously. The two x – y 
recorders allow to the separate recording of the 
shear stress – shear displacement development and 
that of the corresponding stress path. Every 
research was carried out at constant 0.003 mm/sec 
shear displacement rate. 
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Fig. 2. Schematic diagram of the test monitoring arrangement 
[3]. S Shear force, ST Shear load transducer, N Normal 
force, NT Normal load transducer, DT Shear displacement 
transducer, XY Recorder 
Till the maximal shearing stress (which was 
determined by single tests and using the previous 
results, as well) the normal load was constant. 
Measurements have been carried out starting with 
the following constant normal load: 0.3; 0.6; 1.0; 
1.5; 2.0; 2.5; 3.0; 3.5 and 4.0 N/mm2. At the 
maximal shearing stress the normal load was 
increased manually keeping the slope of the shear 
stress – shear displacement curve constant which 
were equal to the slope of this curve at constant 
normal load, according to the shearing model of 
[3]. In this case the specimen was maintained in a 
state of permanent sliding. 

4. EXPERIMENTAL RESULTS AND 
THEORETICAL MODEL 

The measured shear stress – normal stress curves 
are shown in Fig. 3. 

Fig. 3. Measured shear-stresses in the function of the 
continuously increasing normal stress. 

Analyzing the curves it was chosen that the shear 
stress – normal stress curves are linear (or quasi 
linear) after the maximal shear stress and tend to 
the residual line. With low normal stress the 
changing of the direction of the curve is longer 
(i.e. big curvature of the curve before the second 
linear part) but beyond 1.5 N/mm2 normal stress 
the curves have very small curvature. Remarkable 

that the slope of measured curves is similar to the 
Ostwald curves for shear stress and shear rate [9]. 
The linear part of the graphs is quasi parallel with 
each other both before and after the transition 
stress, thus they are not influenced by the starting 
normal stress. Both linear and non-linear model 
was written for the curves. 

4.1. Linear Model 
The slopes of the shear stress – normal stress lines 
(Fig. 4) are independent on the starting normal 
stress and it was approximately 25°. This slope can 
depend on the mechanical behavior, shear 
displacement rate and the roughness of the rock. 
Therefore a linear equation of this curve is: 

τ = τs + (σnx - σs)tan γ.                                        (5) 

where τs is the maximal shearing stress at the 
starting normal load (σs) and σnx is the 
continuously increasing normal stress and tanγ is 
the average slope of the normal stress – shear 
stress line. Fig. 4 compares the measured result 
with the linear equation in case of 2 N/mm2 
starting normal stress. 

Fig. 4. Comparing the linear equation, the non-linear 
equation and the measured normal stress-shear stress curve in 
case of 2 N/mm2 starting normal stress. 
Accepting the validity of Eq. (3) for both modes of 
failure (supported by the experiments of [7]) we 
can get that τs linearly depends on the σs starting 
normal stress 

τs = σs tan (φµ + ν)                                              (6) 

In case of planar surface ν = 0 and the shear stress 
– normal stress curve is equal to the failure 
envelope (tan γ = tan φµ) thus τs = σs tan γ. 

Eq. (5) can be reduced to the easier form with Eqs. 
(1) & (2). If the starting normal stress is below the  
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transition stress (σs < σT) the rate of the dilation is 
equal (or nearly equal) to the teeth angle (ν = i): 

τ  = σs (tan (φµ + i) - tan γ ) + σnx tan γ.              (7) 

If the starting normal stress is equal or above the 
transition stress 

τ  = c +σs (tan φµ - tan γ ) + σnx tan γ,                 (8) 

where the material constants are as it was written 
to Eq. (2). 

4.2. Non-linear Model 
The previous linear model is not entirely 
satisfactory because according to Eq. (5) in case of 
large normal stresses the shear stress can go below 
the residual strength (see Fig. 4). Therefore a 
nonlinear modification of the linear equation above 
should satisfy the following requirements 

• the curve starts from the same point as the 
linear one, that is τ(σs)=τs; 

• the slope of the curve at σnx = σs equals to tanγ; 

• the asymptote at σnx ∞→  is the residual 
strength envelope (σnx tanφµ); 

• the tangent of the curve is positive. 

In the spirit of Jaeger equation (4) we can suggest 
the following non-linear equation to get a correct 
asymptotic behavior 

,tanφσ)etanφσ(ττ µnx
)σb(σ

µss
snx +− = −               (9) 

where 
µss

µ

tanφστ
tanφtanγ

b
−

−
=  and τs is given in Eq. (6). 

The linear approximation of Eq. (9) gives back Eq. 
(5) for small normal stresses and goes to the 
residual strength envelope (σnxtanφµ) if σnx tends to 
infinity, for large normal stresses. Let us remark 
that Eq. (9) does not contain any parameters to 
adjust. Fig. 4 compares the measured curve in case 
of 2 N/mm2 starting normal stress, the linear and 
the non-linear equations. Let us remark that the 
non-linear Eq. (9) does not consider the concave 
part of the normal stress - shear stress curve, which 
is typical if the starting normal stress is under the 
critical value, therefore the initial slope of the non-
linear curve on Fig. 4 is under the initial slope of  
measured line. 

5. CONCLUSION 

Shearing tests with regular triangular teeth were 
carried out similarly to the CFS triaxial test with 
different starting constant normal stress. The shear 
stress – normal stress curve was analyzed where 

the normal stress was increased continuously from 
the maximal shear stress. In this case the specimen 
is in “Continuous Sliding State” which is not equal 
to the “Continuous Failure State”, as it was 
supposed before [3]. The slope of the measured 
shear stress – normal stress curves are always 
independent on the starting constant normal stress. 
Both linear and non-linear equations were 
suggested to explain the experimental results. The 
slope of this line depends on the roughness and the 
mechanical behavior of the rock and the ratio of 
the shear and normal stress rate. 
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