CORE

Anti-periodic boundary value problem for first order impulsive delay difference equations

Peiguang Wang ${ }^{1 *}$ and Wenli Wang ${ }^{2}$

"Correspondence:
pgwang@hbu.edu.cn
${ }^{1}$ College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071002, P.R. China

Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the anti-periodic boundary value problem for first order impulsive delay difference equations. To begin with, we establish two comparison theorems. Then, by using these theorems, we prove the existence and uniqueness of solutions for the linear problem. Finally, by using the method of upper and lower solutions coupled with the monotone iterative technique, we obtain the new existence results of extremal solutions. Meanwhile, an example is given to illustrate the results obtained.

MSC: 39A10; 34B37
Keywords: anti-periodic boundary value problem; impulsive delay difference equations; monotone iterative technique; extremal solutions

1 Introduction

Impulsive differential equations are recognized as important models which describe many evolution processes that abruptly change their state at a certain moment. Such equations have extensive application in economics, physics, chemical technology, medicine, dynamic systems, optimal control, population dynamics and many other fields. The theory of impulsive differential equations has drawn much attention in recent years and is much richer than the corresponding theory of differential equations. For more information about the theory of important differential equations, see $[1-4]$ and the references therein.

Anti-periodic boundary value problem is an important branch of boundary value problem, and it has recently become an interesting area of investigation. The existence and uniqueness of solutions for such a problem have received a great deal of attention, we refer the readers to [5-12] and the references therein. For the case of differential equations, Chen et al. [5] investigated the anti-periodic solutions for first order differential equations, Aftabizadeh et al. [7] discussed the anti-periodic boundary value problem for second order differential equations, Wang and Zhang [8] considered the anti-periodic problem for impulsive differential equations. Ahmad and Nieto [9] studied anti-periodic problem for impulsive functional differential equations. Moreover, for difference equations, a lot of results have been investigated in the literature [13-17]. For example, Liu [14] studied higher order functional difference equations with p-Laplacian. Immediately after this, he [15] studied higher order nonlinear periodic difference equations. However, we noticed that
all these known results are related to anti-periodic problem for differential equations and to difference equations. Motivated by some recent work on anti-periodic problems and difference equations with impulse (see [18-23]), in this paper, we attempt to propose some results concerning the impulsive delay difference equations with anti-periodic boundary conditions

$$
\left\{\begin{array}{l}
\Delta u(n)=f(n, u(n), u(\theta(n))), \quad n \neq n_{k}, n \in J, \tag{1}\\
\Delta u\left(n_{k}\right)=I_{k}\left(u\left(n_{k}\right)\right), \quad k=1,2, \ldots, p, \\
u(0)=-u(T),
\end{array}\right.
$$

where $\Delta u(n)=u(n+1)-u(n), f \in C\left(J \times \mathbb{R}^{2}, \mathbb{R}\right), \theta \in C[J, \mathbb{Z}], 0 \leq \theta(n) \leq n, J=[0, T]=$ $\{0,1, \ldots, T\}, I_{k} \in C(\mathbb{R}, \mathbb{R})(k=1,2, \ldots, p), 0<n_{1}<n_{2}<\cdots<n_{p}<T, T$ is a positive integer.
In [19], He and Zhang investigated first order impulsive difference equations with periodic boundary conditions. Wang and Wang [18] analyzed first order impulsive difference equations with linear boundary conditions. Zhang et al. [12] investigated impulsive antiperiodic boundary value problems for nonlinear q_{k}-difference equations. To the best of our knowledge, there are few results on the anti-periodic boundary value problem for impulsive delay difference equations. Hence, we are concerned with the existence of solutions for anti-periodic boundary value problem (1). In Section 2, we introduce the concept of upper and lower solutions and establish two comparison principles. In Section 3, we discuss the existence of solutions and uniqueness for the linear anti-periodic boundary value problem. Moreover, by using the monotone iterative technique and the method of upper and lower solutions, we obtain the existence theorem of extremal solutions for problem (1). Finally, an example is worked out to demonstrate the obtained results.

2 Comparison results

In this section, we introduce relative notation and some lemmas. Throughout this paper, let \mathbb{N} denote the set of all natural numbers and let Ω denote the set of real-valued functions defined on J with the norm $\|u\|=\max _{n \in J}|u(n)|$ for $u \in \Omega$. For $\alpha, \beta \in \Omega$, we write $\alpha \leq \beta$ if $\alpha(n) \leq \beta(n)$ for all $n \in J$.
A function $u \in \Omega$ is said to be a solution of problem (1) if it satisfies (1).

Definition 2.1 Functions $\alpha, \beta \in \Omega$ are called lower and upper solutions of problem (1) if

$$
\left\{\begin{array}{l}
\Delta \alpha(n) \leq f(n, \alpha(n), \alpha(\theta(n))), \quad n \neq n_{k}, n \in J, \\
\Delta \alpha\left(n_{k}\right) \leq I_{k}\left(\alpha\left(n_{k}\right)\right), \quad k=1,2, \ldots, p, \\
\alpha(0) \leq-\alpha(T),
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta \beta(n) \geq f(n, \beta(n), \beta(\theta(n))), \quad n \neq n_{k}, n \in J, \\
\Delta \beta\left(n_{k}\right) \geq I_{k}\left(\beta\left(n_{k}\right)\right), \quad k=1,2, \ldots, p, \\
\beta(0) \geq-\beta(T) .
\end{array}\right.
$$

Lemma 2.1 ([19]) Assume that
(i) the sequence n_{k} satisfies $0 \leq n_{0}<n_{1}<\cdots<n_{k}<\cdots$ with $\lim _{k \rightarrow \infty} n_{k}=\infty$;
(ii) for $k \in \mathbb{N}, n \geq n_{0}$,

$$
\left\{\begin{array}{l}
\Delta m(n) \leq l_{n} m(n)+q_{n}, \quad n \neq n_{k}, \\
m\left(n_{k}+1\right) \leq b_{k} m\left(n_{k}\right)+e_{k},
\end{array}\right.
$$

where $\left\{l_{n}\right\}$ and $\left\{q_{n}\right\}$ are two real-valued consequences and $l_{n}>-1, b_{k}$ and e_{k} are constants, and $b_{k} \geq 0$. Then

$$
\begin{aligned}
m(n) \leq & m\left(n_{0}\right) \prod_{n_{0}<n_{k}<n} b_{k} \prod_{n_{0}<i \ll, i \neq n_{k}, k \in \mathbb{N}}\left(1+l_{i}\right)+\sum_{i=n_{0}, i \neq n_{k}}^{n-1} \prod_{i<n_{k}<n} b_{k} \prod_{i<s<n, s \neq n_{k}}\left(1+l_{s}\right) q_{i} \\
& +\sum_{n_{0}<n_{k}<n} e_{k} \prod_{n_{k}<n_{j}<n} b_{j} \prod_{n_{k}<i<n, i \neq n_{j}, j \in \mathbb{N}}\left(1+l_{i}\right) .
\end{aligned}
$$

Remark 2.2 When k is finite, Lemma 2.1 also holds. In this paper, we only consider this case.

Next, we will establish two new comparison results which play an important role in the monotone iterative technique.

Lemma 2.2 Let $m \in \Omega$ be such that

$$
\left\{\begin{array}{l}
\Delta m(n)+M m(n)+N m(\theta(n)) \leq 0, \quad n \neq n_{k}, n \in J \\
\Delta m\left(n_{k}\right) \leq-L_{k} m\left(n_{k}\right), \quad k=1,2, \ldots, p \\
m(0) \leq 0
\end{array}\right.
$$

where $N \geq 0,0 \leq L_{k}<M<1$ for $k=1,2, \ldots, p$, and

$$
\begin{equation*}
N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-1}-\prod_{k=1}^{p}\left(1-L_{k}\right)<M-1 . \tag{2}
\end{equation*}
$$

Then $m(n) \leq 0$ on J.

Proof Let $v(n)=(1-M)^{-n} m(n), n \in[0, T]$,

$$
\begin{align*}
& \Delta v(n) \leq-N(1-M)^{\theta(n)-n-1} v(\theta(n)) \tag{3}\\
& v\left(n_{k}+1\right) \leq(1-M)^{-1}\left(1-L_{k}\right) v\left(n_{k}\right) \tag{4}
\end{align*}
$$

Obviously, $v(n) \leq 0$ implies $m(n) \leq 0$. So it suffices to show $v(n) \leq 0$ on J. Suppose on the contrary that there exists $n^{*} \in J$ such that $v\left(n^{*}\right)>0$. Since $v(0)=m(0) \leq 0$, then $n^{*} \in(0, T]$. Let $\bar{n} \in\left[0, n^{*}\right)$ such that $v(\bar{n})=\inf _{n \in\left[0, n^{*}\right)} v(n)=-\lambda \leq 0$. We suppose that $\bar{n} \neq n_{k}$ (if $\bar{n}=n_{k}$, the proof is similar). From (3) we have

$$
\begin{equation*}
\Delta v(n) \leq \lambda N(1-M)^{\theta(n)-n-1}, \quad n \in\left[0, n^{*}\right] . \tag{5}
\end{equation*}
$$

By (4) and (5), using Lemma 2.1, we have for $n \in\left[\bar{n}, n^{*}\right]$

$$
\begin{aligned}
v(n) & \leq v(\bar{n}) \prod_{\bar{n}<n_{k}<n}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=\bar{n}, i \neq n_{k}}^{n-1} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} \\
& \leq-\lambda \prod_{k=1}^{p}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} .
\end{aligned}
$$

Let $n=n^{*}$, we can get

$$
\begin{aligned}
v\left(n^{*}\right) & \leq \lambda\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2}-\prod_{k=1}^{p}(1-M)^{-1}\left(1-L_{k}\right)\right\} \\
& =\lambda(1-M)^{-1}\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-1}-\prod_{k=1}^{p}\left(1-L_{k}\right)\right\} \\
& <0,
\end{aligned}
$$

which is a contradiction. Hence $v(n) \leq 0$ on J, this completes the proof.

Lemma 2.3 Let (2) hold and $m \in \Omega$,

$$
\left\{\begin{array}{l}
\Delta m(n)+M m(n)+N m(\theta(n)) \leq 0, \quad n \neq n_{k}, n \in J, \tag{6}\\
\Delta m\left(n_{k}\right) \leq-L_{k} m\left(n_{k}\right), \quad k=1,2, \ldots, p, \\
m(0) \leq-m(T),
\end{array}\right.
$$

where $N \geq 0,0 \leq L_{k}<M<1$ for $k=1,2, \ldots, p$.
Then $m(n) \leq 0$ on J.

Proof Suppose on the contrary that $m(n)>0$ for some $n \in J$. Then there are two cases as follows.

Case 1: There exists $n^{*} \in J$ such that $m\left(n^{*}\right)>0$ and $m(n) \geq 0$ for all $n \in J$. In this case, (6) implies $\Delta m(n) \leq 0$ and $m\left(n_{k}+1\right) \leq\left(1-L_{k}\right) m\left(n_{k}\right) \leq m\left(n_{k}\right), k=1,2, \ldots, p$. So $m(n)$ is a nonincreasing function. Then we have $m(0) \geq m(T)$. Since $m(0) \leq-m(T)$ and $m(n) \geq 0$ for all $n \in J$, we get $m(0)=m(T)=0$, then $m(n) \equiv 0$, which is a contradiction with $m\left(n^{*}\right)>0$.
Case 2: There exist n^{*} and n_{*} such that $m\left(n^{*}\right)>0$ and $m\left(n_{*}\right)<0$. The proof demonstrates that $m(0) \leq 0$, so that we can apply Lemma 2.2 and affirm that $m(n) \leq 0$ on J. If $m(0)>0$, then $m(T)<0$. Let $v(n)=(1-M)^{-n} m(n)$ on J, we get $v(0)>0, v(T)<0, v\left(n^{*}\right)>0, v\left(n_{*}\right)<0$. Set $\min _{n \in J} v(n)=-\lambda$, then $\lambda>0$. Without loss of generality, we shall suppose $v\left(n_{*}\right)=-\lambda$ (if for some k such that $v\left(n_{k}\right)=-\lambda$, the proof is similar), we have

$$
\begin{cases}\Delta v(n) \leq-N(1-M)^{\theta(n)-n-1} v(\theta(n)), & n \neq n_{k}, n \in J \tag{7}\\ v\left(n_{k}+1\right) \leq(1-M)^{-1}\left(1-L_{k}\right) v\left(n_{k}\right), & k=1,2, \ldots, p \\ v(0) \leq-v(T)(1-M)^{T} & \end{cases}
$$

If $n_{*}<n^{*}$, using (7) and Lemma 2.1, for $n \in\left[n_{*}, n^{*}\right]$, we obtain

$$
\begin{aligned}
v(n) & \leq v\left(n_{*}\right) \prod_{n_{*}<n_{k}<n}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=n_{*}, i \neq n_{k}}^{n-1} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} \\
& \leq-\lambda \prod_{k=1}^{p}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} .
\end{aligned}
$$

Let $n=n^{*}$, we get

$$
\begin{aligned}
v\left(n^{*}\right) & \leq \lambda\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2}-\prod_{k=1}^{p}(1-M)^{-1}\left(1-L_{k}\right)\right\} \\
& =\lambda(1-M)^{-1}\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-1}-\prod_{k=1}^{p}\left(1-L_{k}\right)\right\} \\
& <0,
\end{aligned}
$$

which is a contradiction.
If $n_{*}>n^{*}$, using (7) and Lemma 2.1, for $n \in\left[n_{*}, T\right]$, we get

$$
v(n) \leq v\left(n_{*}\right) \prod_{0<n_{k}<n}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=0, i \neq n_{k}}^{n-1} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} .
$$

Let $n=T$, it then follows from (2) that

$$
\begin{aligned}
v(T) & \leq v\left(n_{*}\right) \prod_{0<n_{k}<n}(1-M)^{-1}\left(1-L_{k}\right)+\lambda N \sum_{i=0, i \neq n_{k}}^{n-1} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2} \\
& \leq \lambda\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-2}-\prod_{k=1}^{p}(1-M)^{-1}\left(1-L_{k}\right)\right\} \\
& =\lambda(1-M)^{-1}\left\{N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<n}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-1}-\prod_{k=1}^{p}\left(1-L_{k}\right)\right\} \\
& <-\lambda=v\left(n_{*}\right),
\end{aligned}
$$

which is a contradiction with the definition of $v\left(n_{*}\right)$. So $m(0) \leq 0$. By Lemma 2.2, we get $m(n) \leq 0$ on J, the proof is complete.

3 Main results

Let us consider the linear problem of (1) as follows:

$$
\left\{\begin{array}{l}
\Delta u(n)+M u(n)+N u(\theta(n))=\sigma(n), \quad n \neq n_{k}, n \in J, \tag{8}\\
\Delta u\left(n_{k}\right)=-L_{k} u\left(n_{k}\right)+\gamma_{k}, \quad k=1,2, \ldots, p, \\
u(0)=-u(T),
\end{array}\right.
$$

where $N \geq 0,0 \leq L_{k}<M<1, \gamma_{k} \in \mathbb{R}, \sigma \in C(J, \mathbb{R})$.

Lemma 3.1 A function $u \in \Omega$ is a solution of (8) if and only if u is a solution of the following impulsive summation equation:

$$
\begin{equation*}
u(n)=\sum_{j=0, j \neq n_{k}}^{T-1} G(n, j)(\sigma(j)-N u(\theta(j)))+\sum_{0<n_{k} \leq T-1} G\left(n, n_{k}\right)\left[\left(M-L_{k}\right) u\left(n_{k}\right)+\gamma_{k}\right], \tag{9}
\end{equation*}
$$

where

$$
G(n, j)=\frac{1}{1+(1-M)^{T}} \begin{cases}\frac{(1-M)^{n}}{(1-M)^{j+1}}, & 0 \leq j \leq n-1, \\ \frac{-(1-M)^{T+n}}{(1-M)^{+1}}, & n \leq j \leq T-1 .\end{cases}
$$

Proof Assume that $u \in \Omega$ is a solution of (8). Set $v(n)=\frac{u(n)}{(1-M)^{n}}, n \in J$. From (8), we see that $\nu(n)$ satisfies

$$
\left\{\begin{array}{l}
v(n+1)=v(n)+\frac{\sigma(n)-N v(\theta(n))(1-M)^{\theta(n)}}{(1-M)^{n+1}}, \quad n \neq n_{k}, n \in J, \tag{10}\\
\Delta v\left(n_{k}\right)=\frac{M-L_{k}}{1-M} v\left(n_{k}\right)+\frac{\gamma_{k}}{(1-M)^{n_{k}+1}}, \quad k=1,2, \ldots, p, \\
v(0)=-v(T)(1-M)^{T}
\end{array}\right.
$$

By using (10), we have

$$
\begin{align*}
v(n)= & v(0)+\sum_{j=0, j \neq n_{k}}^{n-1} \frac{\sigma(j)-N v(\theta(j))(1-M)^{\theta(j)}}{(1-M)^{j+1}} \\
& +\sum_{0<n_{k} \leq n-1}\left(\frac{M-L_{k}}{1-M} v\left(n_{k}\right)+\frac{\gamma_{k}}{(1-M)^{n_{k}+1}}\right) . \tag{11}
\end{align*}
$$

If we set $n=T$ in (11), then we get

$$
\begin{align*}
v(T)= & v(0)+\sum_{j=0, j \neq n_{k}}^{T-1} \frac{\sigma(j)-N v(\theta(j))(1-M)^{\theta(j)}}{(1-M)^{j+1}} \\
& +\sum_{0<n_{k} \leq T-1}\left(\frac{M-L_{k}}{1-M} v\left(n_{k}\right)+\frac{\gamma_{k}}{(1-M)^{n_{k}+1}}\right) . \tag{12}
\end{align*}
$$

From the boundary condition $v(T)=\frac{-v(0)}{(1-M)^{T}}$, we obtain

$$
\begin{align*}
v(0)= & -\frac{(1-M)^{T}}{1+(1-M)^{T}}\left[\sum_{j=0, j \neq n_{k}}^{T-1} \frac{\sigma(j)-N v(\theta(j))(1-M)^{\theta(j)}}{(1-M)^{j+1}}\right. \\
& \left.+\sum_{0<n_{k} \leq T-1}\left(\frac{M-L_{k}}{1-M} v\left(n_{k}\right)+\frac{\gamma_{k}}{(1-M)^{n_{k}+1}}\right)\right] . \tag{13}
\end{align*}
$$

Substituting (13) into (11) and using $v(n)=\frac{u(n)}{(1-M)^{n}}, n \in J$, we have

$$
\begin{aligned}
\frac{u(n)}{(1-M)^{n}}= & \frac{1}{1+(1-M)^{T}}\left(\sum_{j=0, j \neq n_{k}}^{n-1} \frac{\sigma(j)-N u(\theta(j))}{(1-M)^{j+1}}+\sum_{0<n_{k} \leq n-1} \frac{\left(M-L_{k}\right) u\left(n_{k}\right)+\gamma_{k}}{(1-M)^{n_{k}+1}}\right) \\
& -\frac{(1-M)^{T}}{1+(1-M)^{T}}\left(\sum_{j=n, j \neq n_{k}}^{T-1} \frac{\sigma(j)-N u(\theta(j))}{(1-M)^{j+1}}+\sum_{n<n_{k} \leq T-1} \frac{\left(M-L_{k}\right) u\left(n_{k}\right)+\gamma_{k}}{(1-M)^{n_{k}+1}}\right) .
\end{aligned}
$$

Let

$$
G(n, j)=\frac{1}{1+(1-M)^{T}} \begin{cases}\frac{(1-M)^{n}}{(1-M)^{j+1}}, & 0 \leq j \leq n-1, \\ \frac{-(1-M)^{T+n}}{(1-M)^{+1}}, & n \leq j \leq T-1,\end{cases}
$$

we see that u is a solution of (9). The proof is complete.

Lemma 3.2 Assume that constants $0<M<1, N \geq 0,0 \leq L_{k}<1, \gamma_{k} \in \mathbb{R}, \sigma \in C(J, \mathbb{R})$, and

$$
\begin{equation*}
\frac{1}{1+(1-M)^{T}}\left(T N+\sum_{k=1}^{p}\left|M-L_{k}\right|\right)<1 . \tag{14}
\end{equation*}
$$

Then (8) has a unique solution.

Proof Define an operator $F: \Omega \rightarrow \Omega$ by

$$
(F u)(n)=\sum_{j=0, j \neq n_{k}}^{T-1} G(n, j)(\sigma(j)-N u(\theta(j)))+\sum_{0<n_{k} \leq T-1} G\left(n, n_{k}\right)\left[\left(M-L_{k}\right) u\left(n_{k}\right)+\gamma_{k}\right] .
$$

For any $u_{1}, u_{2} \in \Omega$, we have

$$
\begin{aligned}
\left|F u_{1}(n)-F u_{2}(n)\right| \leq & \sum_{j=0, j \neq n_{k}}^{T-1}|G(n, j)|\left|N\left(u_{1}(\theta(j))-u_{2}(\theta(j))\right)\right| \\
& +\sum_{0<n_{k} \leq T-1}\left|G\left(n, n_{k}\right)\right|\left|\left(M-L_{k}\right)\left(u_{1}\left(n_{k}\right)-u_{2}\left(n_{k}\right)\right)\right| \\
\leq & \frac{1}{1+(1-M)^{T}}\left(T N+\sum_{k=1}^{p}\left|M-L_{k}\right|\right)\left\|u_{1}-u_{2}\right\| .
\end{aligned}
$$

Hence, $\left\|F u_{1}(n)-F u_{2}(n)\right\|=\max _{n \in J}\left|F u_{1}(n)-F u_{2}(n)\right|=\tau\left\|u_{1}-u_{2}\right\|$, where

$$
\tau=\frac{1}{1+(1-M)^{T}}\left(T N+\sum_{k=1}^{p}\left|M-L_{k}\right|\right)<1 .
$$

By the Banach contraction principle, F has a unique fixed point. The proof is complete.

Theorem 3.1 Let the following conditions hold:
(A_{0}) Functions $\alpha, \beta \in \Omega$ are lower and upper solutions for (1) with $\alpha \leq \beta$.
$\left(\mathrm{A}_{1}\right)$ There exist $N \geq 0,0 \leq L_{k}<M<1$ for $k=1,2, \ldots, p$ such that the function $f \in C(J \times$ $\left.\mathbb{R}^{2}, \mathbb{R}\right)$ satisfies

$$
f(n, x, y)-f(n, u, v) \geq-M(x-u)-N(y-v),
$$

where $\alpha(n) \leq u \leq x \leq \beta(n), \alpha(\theta(n)) \leq v(\theta(n)) \leq y(\theta(n)) \leq \beta(\theta(n)), n \in J$.
$\left(\mathrm{A}_{2}\right)$ The functions $I_{k} \in C(\mathbb{R}, \mathbb{R})$ satisfy

$$
I_{k}(x)-I_{k}(y) \geq-L_{k}(x-y)
$$

$$
\text { where } \alpha\left(n_{k}\right) \leq y \leq x \leq \beta\left(n_{k}\right), 0 \leq L_{k}<1, k=1,2, \ldots, p .
$$

$\left(\mathrm{A}_{3}\right)$

$$
N \sum_{i=0, i \neq n_{k}}^{T} \prod_{i<n_{k}<T}\left(1-L_{k}\right)(1-M)^{\theta(i)-i-1}-\prod_{k=1}^{p}\left(1-L_{k}\right)<M-1 .
$$

$\left(\mathrm{A}_{4}\right)$

$$
\frac{1}{1+(1-M)^{T}}\left(T N+\sum_{k=1}^{p}\left|M-L_{k}\right|\right)<1
$$

Then there exists a solution u of problem (1) such that $\alpha(n) \leq u(n) \leq \beta(n)$ on J.

Proof We consider the following modified problem:

$$
\left\{\begin{array}{l}
\Delta u(n)+M u(n)+N u(\theta(n))=\sigma_{q}(n), \quad n \neq n_{k}, n \in J \tag{15}\\
\Delta u\left(n_{k}\right)=-L_{k} u\left(n_{k}\right)+d_{k}, \quad k=1,2, \ldots, p \\
u(0)=-u(T)
\end{array}\right.
$$

where

$$
\begin{aligned}
& \sigma_{q}(n)=f(n, q(n, u(n)), q(\theta(n), u(\theta(n))))+M q(n, u(n))+N q(\theta(n), u(\theta(n))), \\
& d_{k}=I_{k}\left(q\left(n_{k}, u\left(n_{k}\right)\right)\right)+L_{k} q\left(n_{k}, u\left(n_{k}\right)\right), \\
& q(n, u(n))=\max \{\alpha(n), \min \{u, \beta(n)\}\} \quad \text { for } n \in J .
\end{aligned}
$$

We can easily see that if $\alpha(n) \leq u(n) \leq \beta(n)$ on J, then u is a solution of (1) if and only if u is a solution of (15). Indeed, suppose that $u \in \Omega$ is a solution of (15), we now prove that $\alpha(n) \leq u(n)$ on J. Set $m(n)=\alpha(n)-u(n), n \in J$. Owing to $\left(\mathrm{A}_{0}\right)-\left(\mathrm{A}_{2}\right)$, we acquire

$$
\begin{aligned}
\Delta m(n)= & \Delta \alpha(n)-\Delta u(n) \\
\leq & f(n, \alpha(n), \alpha(\theta(n)))-[-M u(n)-N u(\theta(n)) \\
& +f(n, q(n, u(n)), q(\theta(n), u(\theta(n))))+M q(n, u(n))+N q(\theta(n), u(\theta(n)))] \\
\leq & -M m(n)-N m(\theta(n)), \\
\Delta m\left(n_{k}\right)= & \Delta \alpha\left(n_{k}\right)-\Delta u\left(n_{k}\right) \\
\leq & I_{k}\left(\alpha\left(n_{k}\right)\right)-I_{k}\left(q\left(n_{k}, u\left(n_{k}\right)\right)\right)-L_{k} q\left(n_{k}, u\left(n_{k}\right)\right)+L_{k} u\left(n_{k}\right) \\
\leq & -L_{k} m\left(n_{k}\right)
\end{aligned}
$$

and

$$
m(0)=\alpha(0)-u(0) \leq-\alpha(T)+u(T)=-m(T) .
$$

By Lemma 2.3, we have $m(n) \leq 0$ on J, i.e., $\alpha(n) \leq u(n)$ on J. Similarly, we can show that $u(n) \leq \beta(n)$ on J.
Next, we need to prove that problem (15) has a solution. To do this, we write problem (15) in the following way by Lemma 3.1:

$$
u(n)=\sum_{j=0, j \neq n_{k}}^{T-1} G(n, j)(\sigma(j)-N u(\theta(j)))+\sum_{0<n_{k} \leq T-1} G\left(n, n_{k}\right)\left[\left(M-L_{k}\right) u\left(n_{k}\right)+d_{k}\right] .
$$

We define the continuous and compact operator $\mathcal{A}: \Omega \rightarrow \Omega$ by

$$
\begin{aligned}
{[\mathcal{A} u](n)=} & \sum_{j=0, j \neq n_{k}}^{T-1} G(n, j)(\sigma(j)-N u(\theta(j))) \\
& +\sum_{0<n_{k} \leq T-1} G\left(n, n_{k}\right)\left[\left(M-L_{k}\right) u\left(n_{k}\right)+d_{k}\right], \quad n \in J .
\end{aligned}
$$

The continuity of f and the definition of q imply that σ_{q} and d_{k} are bounded. We can choose constants $h>0$ and $w>0$ such that $\left|\sigma_{q}\right| \leq h,\left|d_{k}\right| \leq w$. For $\lambda \in(0,1)$, we find that any solution of $u=\lambda \mathcal{A} u$ satisfies

$$
\begin{aligned}
\|u\|= & \lambda\|\mathcal{A} u\| \\
\leq & \max _{n \in J} \sum_{j=0, j \neq n_{k}}^{T-1}|G(n, j)|\left[\left|\sigma_{q}(j)\right|+N|u(\theta(j))|\right] \\
& +\max _{n \in J} \sum_{0<n_{k} \leq T-1}\left|G\left(n, n_{k}\right)\right|\left[\left|M-L_{k}\right|\left|u\left(n_{k}\right)\right|+\left|d_{k}\right|\right] \\
\leq & \frac{h T}{1+(1-M)^{T}}+\frac{T N}{1+(1-M)^{T}}\|u\|+\frac{\sum_{k=1}^{p}\left|M-L_{k}\right|}{1+(1-M)^{T}}\|u\|+\frac{p w}{1+(1-M)^{T}} .
\end{aligned}
$$

Then by $\left(\mathrm{A}_{4}\right)$ we have

$$
\|u\| \leq\left(1-\frac{1}{1+(1-M)^{T}}\left(T N+\sum_{k=1}^{p}\left|M-L_{k}\right|\right)\right)^{-1}\left(\frac{h T+p w}{1+(1-M)^{T}}\right) .
$$

From the Schaefer fixed-point theorem, \mathcal{A} has at least a fixed point. It is clear that this fixed point is the solution of (15). Such a solution lies between α and β and in consequence is a solution of (1). The proof is complete.

Theorem 3.2 Let all assumptions of Theorem 3.1 hold. Then there exist monotone sequences $\left\{\alpha_{j}(n)\right\},\left\{\beta_{j}(n)\right\}$ with $\alpha_{0}=\alpha, \beta_{0}=\beta$ such that $\lim _{j \rightarrow \infty} \alpha_{j}(n)=\rho(n), \lim _{j \rightarrow \infty} \beta_{j}(n)=$ $r(n)$ uniformly on J, and $\rho(n), r(n)$ are the extremal solutions of problem (1).

Proof Let

$$
\left\{\begin{array}{l}
\Delta \alpha_{j}(n)+M \alpha_{j}(n)+N \alpha_{j}(\theta(n)) \tag{16}\\
\quad=f\left(n, \alpha_{j-1}(n), \alpha_{j-1}(\theta(n))\right)+M \alpha_{j-1}(n)+N \alpha_{j-1}(\theta(n)), \quad n \neq n_{k}, n \in J, \\
\Delta \alpha_{j}\left(n_{k}\right)+L_{k} \alpha_{j}\left(n_{k}\right)=I_{k}\left(\alpha_{j-1}\left(n_{k}\right)\right)+L_{k} \alpha_{j-1}\left(n_{k}\right), \quad k=1,2, \ldots, p, \\
\alpha_{j}(0)=-\alpha_{j}(T),
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\Delta \beta_{j}(n)+M \beta_{j}(n)+N \beta_{j}(\theta(n)) \tag{17}\\
\quad=f\left(n, \beta_{j-1}(n), \beta_{j-1}(\theta(n))\right)+M \beta_{j-1}(n)+N \beta_{j-1}(\theta(n)), \quad n \neq n_{k}, n \in J \\
\Delta \beta_{j}\left(n_{k}\right)+L_{k} \beta_{j}\left(n_{k}\right)=I_{k}\left(\beta_{j-1}\left(n_{k}\right)\right)+L_{k} \beta_{j-1}\left(n_{k}\right), \quad k=1,2, \ldots, p, \\
\beta_{j}(0)=-\beta_{j}(T),
\end{array}\right.
$$

for $j=1,2, \ldots$, where $\alpha_{0}=\alpha, \beta_{0}=\beta$. It follows from Lemma 3.2 that problems (16) and (17) have a unique solution, respectively.

First, we show that $\alpha_{0} \leq \alpha_{1} \leq \beta_{1} \leq \beta_{0}$.
Let $m=\alpha_{0}-\alpha_{1}$, then owing to $\left(\mathrm{A}_{0}\right)$ and $\alpha_{1}(0)=-\alpha_{1}(T)$, we obtain

$$
\begin{aligned}
\Delta m(n)= & \Delta \alpha_{0}(n)-\Delta \alpha_{1}(n) \\
\leq & f\left(n, \alpha_{0}(n), \alpha_{0}(\theta(n))\right)-\left[-M \alpha_{1}(n)-N \alpha_{1}(\theta(n))\right. \\
& \left.+f\left(n, \alpha_{0}(n), \alpha_{0}(\theta(n))\right)+M \alpha_{0}(n)+N \alpha_{0}(\theta(n))\right] \\
\leq & -M m(n)-N m(\theta(n)), \\
\Delta m\left(n_{k}\right)= & \Delta \alpha_{0}\left(n_{k}\right)-\Delta \alpha_{1}\left(n_{k}\right) \\
\leq & I_{k}\left(\alpha_{0}\left(n_{k}\right)\right)-\left[I_{k}\left(\alpha_{0}\left(n_{k}\right)\right)+L_{k} \alpha_{0}\left(n_{k}\right)-L_{k} \alpha_{1}\left(n_{k}\right)\right] \\
\leq & -L_{k} m\left(n_{k}\right),
\end{aligned}
$$

and

$$
m(0)=\alpha_{0}(0)-\alpha_{1}(0) \leq-\alpha_{0}(T)+\alpha_{1}(T)=-m(T)
$$

It then follows from Lemma 2.3 that we have $m(n) \leq 0$ on J, which implies $\alpha_{0}(n) \leq \alpha_{1}(n)$ for $n \in J$. Similarly, we get $\beta_{1}(n) \leq \beta_{0}(n)$ on J.

Next, take $m=\alpha_{1}-\beta_{1}$, by using $\left(\mathrm{A}_{0}\right),\left(\mathrm{A}_{1}\right)$, we have

$$
\begin{aligned}
& \Delta m(n)+M m(n)+N m(\theta(n)) \\
& \quad=\Delta \alpha_{1}(n)+M \alpha_{1}(n)+N \alpha_{1}(\theta(n))-\Delta \beta_{1}(n)-M \beta_{1}(n)-N \beta_{1}(\theta(n)) \\
& \quad \leq f\left(n, \alpha_{0}(n), \alpha_{0}(\theta(n))\right)+M \alpha_{0}(n)+N \alpha_{0}(\theta(n))-f\left(n, \beta_{0}(n), \beta_{0}(\theta(n))\right) \\
& \quad-M \beta_{1}(n)-N \beta_{1}(\theta(n)) \leq 0 .
\end{aligned}
$$

Noticing $\alpha_{0} \leq \beta_{0}$ and (A_{2}), we get

$$
\begin{aligned}
& \Delta m\left(n_{k}\right)=-L_{k} \alpha_{1}\left(n_{k}\right)+I_{k}\left(\alpha_{0}\left(n_{k}\right)\right)+L_{k} \alpha_{0}\left(n_{k}\right)-I_{k}\left(\beta_{0}\left(n_{k}\right)\right)-L_{k} \beta_{0}\left(n_{k}\right) \\
& \quad \leq-L_{k} m\left(n_{k}\right), \\
& m(0)=\alpha_{1}(0)-\beta_{1}(0)=-\alpha_{1}(T)+\beta_{1}(T)=-m(T) .
\end{aligned}
$$

Again by Lemma 2.3 we get $m(n) \leq 0$ on J, that is, $\alpha_{1}(n) \leq \beta_{1}(n)$ for all $n \in J$. Thus we get $\alpha_{0} \leq \alpha_{1} \leq \beta_{1} \leq \beta_{0}$. Continuing this process, by induction, we can get the sequences $\left\{\alpha_{j}(n)\right\}$ and $\left\{\beta_{j}(n)\right\}$ such that

$$
\alpha_{0} \leq \alpha_{1} \leq \cdots \leq \alpha_{j} \leq \cdots \leq \beta_{j} \leq \cdots \leq \beta_{1} \leq \beta_{0} \quad \text { on } J .
$$

Clearly, the sequences $\left\{\alpha_{j}(n)\right\},\left\{\beta_{j}(n)\right\}$ are uniformly bounded and equi-continuous. Since they are monotone sequences, by the Ascoli-Arzela theorem, we can get that the entire sequences $\left\{\alpha_{j}(n)\right\}$ and $\left\{\beta_{j}(n)\right\}$ converge uniformly and monotonically on J with $\lim _{j \rightarrow \infty} \alpha_{j}(n)=\rho(n)$ and $\lim _{j \rightarrow \infty} \beta_{j}(n)=r(n)$.

Obviously ρ, r are the solutions of (1). Next we prove that ρ, r are extremal solutions of (1), let $u \in \Omega$ be any solutions of problem (1) such that $\alpha_{0} \leq u \leq \beta_{0}$. Suppose that there exists a positive integer j such that $\alpha_{j} \leq u \leq \beta_{j}$ on J. Setting $m=\alpha_{j+1}-u$, we have

$$
\begin{aligned}
\Delta m(n)= & \Delta \alpha_{j+1}(n)-\Delta u(n) \\
\leq & f\left(n, \alpha_{j}(n), \alpha_{j}(\theta(n))\right)-M \alpha_{j+1}(n)-N \alpha_{j+1}(\theta(n)) \\
& -f(n, u(n), u(\theta(n)))+M \alpha_{j}(n)+N \alpha_{j}(\theta(n)) \\
\leq & -M\left(\alpha_{j+1}(n)-u(n)\right)-N\left(\alpha_{j+1}(\theta(n))-u(\theta(n))\right) \\
= & -M m(n)-N m(\theta(n)), \quad n \neq n_{k}, n \in J, \\
\Delta m\left(n_{k}\right)= & \Delta \alpha_{j+1}\left(n_{k}\right)-\Delta u\left(n_{k}\right) \\
= & I_{k}\left(\alpha_{j}\left(n_{k}\right)\right)-I_{k}\left(u\left(n_{k}\right)\right)-L_{k} \alpha_{j+1}\left(n_{k}\right)+L_{k} \alpha_{j}\left(n_{k}\right) \\
\leq & -L_{k} m\left(n_{k}\right), \quad k=1,2, \ldots, p, \\
m(0)= & \alpha_{j+1}(0)-u(0)=-\alpha_{j+1}(T)+u(T)=-m(T) .
\end{aligned}
$$

By Lemma 2.3, $m(n) \leq 0$ on J, i.e., $\alpha_{j+1}(n) \leq u(n) n \in J$. Similarly, one derives $\alpha_{j+1}(n) \leq$ $u(n) \leq \beta_{j+1}(n)$ on J. Since $\alpha_{0}(n) \leq u(n) \leq \beta_{0}(n)$ on J, by induction we see that $\alpha_{j}(n) \leq u(n) \leq$ $\beta_{j}(n)$ on J for every j. Taking the limit as $j \rightarrow \infty$, we conclude $\rho(n) \leq u(n) \leq r(n)$ on J. The proof is then finished.

Example 3.1 Consider the equations

$$
\left\{\begin{array}{l}
\Delta u(n)=f(n, u(n), u(\theta(n)))=-u^{2}(n)-\frac{1}{200} u\left(\frac{1}{2} n\right)+\frac{2^{-n}}{25}, \quad n \in Z[0,3], n \neq n_{1}, \tag{18}\\
\Delta u\left(n_{k}\right)=-\frac{1}{2} u\left(n_{1}\right), \quad n_{1}=2, \\
u(0)=-u(3) .
\end{array}\right.
$$

It is easy to verify that $\alpha=-\frac{1}{201}$ is a lower solution and $\beta(n)=\frac{1}{12}\left(4-2^{-n}\right)$ is an upper solution for (18). Indeed,

$$
\begin{aligned}
& \Delta \beta(n)=\frac{1}{12}\left(2^{-n}-2^{-n-1}\right) \geq-\left[\frac{1}{12}\left(4-2^{-n}\right)\right]^{2}-\frac{1}{200} \cdot \frac{1}{12}\left(4-2^{-\frac{1}{2} n}\right)+\frac{1}{25} \cdot 2^{-n}, \\
& \Delta \beta(2)=\frac{1}{12}\left(2^{-2}-2^{-3}\right)>-\frac{1}{2} \cdot \frac{1}{12}\left(4-2^{-2}\right), \\
& \beta(0)=\frac{1}{12}(4-1)>-\frac{1}{12}\left(4-2^{-3}\right)=-\beta(3), \\
& f(n, x, y)-f(n, u, v)=-\left(x^{2}-u^{2}\right)-\frac{1}{200}(y-v) \geq-\frac{2}{3}(x-u)-\frac{1}{200}(y-v),
\end{aligned}
$$

for $\alpha \leq u \leq x \leq \beta$. Taking $M=\frac{2}{3}, N=\frac{1}{200}, L_{k}=\frac{1}{2}$, we get

$$
\prod_{k=1}^{p}\left(1-L_{k}\right)+M-1=\frac{1}{2}+\frac{2}{3}-1=\frac{1}{6},
$$

$$
\begin{aligned}
& \frac{1}{200} \sum_{i=0, i \neq n_{k}}^{3} \prod_{i<n_{k}<3}\left(1-L_{k}\right)(1-M)^{-\frac{1}{2} i-1}=\frac{1}{200} \sum_{i=0, i \neq n_{k}}^{3} \prod_{i<n_{k}<3} \frac{1}{2} \cdot\left(\frac{1}{3}\right)^{-\frac{1}{2} i-1} \\
& \quad=\frac{1}{200} \sum_{i=0}^{1}\left(\frac{1}{3}\right)^{-\frac{1}{2} i-1}+\frac{1}{200} \sum_{i=2}^{3} \frac{1}{2} \cdot\left(\frac{1}{3}\right)^{-\frac{1}{2} i-1}<\frac{1}{6}
\end{aligned}
$$

which shows that condition $\left(\mathrm{A}_{3}\right)$ is satisfied, and

$$
\frac{1}{1+\left(1-\frac{2}{3}\right)^{3}}\left(3 \cdot \frac{1}{200}+\sum_{k=1}^{p}\left(\frac{2}{3}-\frac{1}{2}\right)\right)<1,
$$

which shows that condition $\left(\mathrm{A}_{4}\right)$ is satisfied. Hence, by Theorem 3.2, we obtain the existence of monotone sequences that converge to the extremal solutions of (18) in a function interval contained in $[\alpha, \beta]$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Author details

${ }^{1}$ College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071002, P.R. China. ${ }^{2}$ Department of Information Engineering, China University of Geosciences Great Wall College, Baoding, Hebei 071000, P.R. China.

Acknowledgements

The authors sincerely thank the reviewers and the editors for their valuable suggestions and comments. This paper is supported by the National Natural Science Foundation of China (11271106), the Natural Science Foundation of Hebei Province, China (A2013201232) and the Science and Technology Research Projects of Higher Education Institutions of Hebei Province, China (Z2013038).

Received: 10 November 2014 Accepted: 13 March 2015 Published online: 20 March 2015

References

1. Samoilenko, AM, Perestyuk, NA, Chapovsky, Y: Impulsive Differential Equations. World Scientific, Singapore (1995)
2. Bainov, DD, Lakshmikantham, V, Simeonov, P: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
3. Stamov, GT: Almost Periodic Solutions of Impulsive Differential Equations. Springer, New York (2012)
4. Fu, X, Yan, B, Liu, Y: Nonlinear Impulsive Differential Systems. Science Press, Beijing (2008) (in Chinese)
5. Chen, Y, Nieto, JJ, O’Regan, D: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Model. 46, 1183-1190 (2007)
6. Chen, Y, O'Regan, D, Agarwal, RP: Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl. Math. Lett. 23, 1320-1325 (2010)
7. Aftabizadeh, AR, Aizicovici, S, Pavel, NH: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171, 301-320 (1992)
8. Wang, X, Zhang, J: Impulsive anti-periodic boundary value problem of first-order integro-differential equations. J. Comput. Appl. Math. 234, 3261-3267 (2010)
9. Ahmad, B, Nieto, JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differentia equations with anti-periodic boundary conditions. Nonlinear Anal. 69, 3291-3298 (2008)
10. Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74, 792-804 (2011)
11. Chen, AP, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations with impulses. Adv. Differ. Equ. 2011, Article ID 915689 (2011)
12. Zhang, L, Ahmad, B, Wang, G: Impulsive antiperiodic boundary value problems for nonlinear q_{k}-difference equations Abstr. Appl. Anal. 2014, Article ID 165129 (2014). doi:10.1155/2014/165129
13. Kelley, WG, Peterson, AC: Difference Equations: An Introduction with Applications. Academic Press, Tokyo (1991)
14. Liu, Y: On nonlinear boundary value problems for higher order functional difference equations with p-Laplacian. Appl. Math. Comput. 38, 195-208 (2012)
15. Liu, Y, Liu, X: The existence of periodic solutions of higher order nonlinear periodic difference equations. Math. Methods Appl. Sci. 36, 1459-1470 (2013)
16. Wang, P, Tian, S, Wu, Y: Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions. Appl. Math. Comput. 203, 266-272 (2008)
17. Wang, P, Zhang, J: Monotone iterative technique for initial-value problems of nonlinear singular discrete systems. J. Comput. Appl. Math. 221, 158-164 (2008)
18. Wang, P, Wang, W: Boundary value problems for first order impulsive difference equations. Int. J. Difference Equ. 1, 249-259 (2006)
19. He, Z, Zhang, X: Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions. Appl. Math. Comput. 156, 605-620 (2004)
20. He, D, Ma, Q: Asymptotic behavior of impulsive non-autonomous delay difference equations with continuous variables. Adv. Differ. Equ. 2012, Article ID 118 (2012)
21. Li, B, Song, Q: Asymptotic behaviors of non-autonomous impulsive difference equation with delays. Appl. Math. Model. 35, 3423-3433 (2011)
22. Li, D, Long, S, Wang, X: Difference inequality for stability of impulsive difference equations with distributed delays. J. Inequal. Appl. 2011, Article ID 8 (2011)
23. Zhu, W, Xu, D, Yang, Z: Global exponential stability of impulsive delay difference equation. Appl. Math. Comput. 181, 65-72 (2006)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

