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Abstract In this paper, we investigate the late-time cosmic
acceleration in mimetic f (R, T ) gravity with the Lagrange
multiplier and potential in a Universe containing, besides
radiation and dark energy, a self-interacting (collisional) mat-
ter. We obtain through the modified Friedmann equations the
main equation that can describe the cosmological evolution.
Then, with several models from Q(z) and the well-known
particular model f (R, T ), we perform an analysis of the
late-time evolution. We examine the behavior of the Hub-
ble parameter, the dark energy equation of state and the total
effective equation of state and in each case we compare the
resulting picture with the non-collisional matter (assumed as
dust) and also with the collisional matter in mimetic f (R, T )

gravity. The results obtained are in good agreement with the
observational data and show that in the presence of the colli-
sional matter the dark energy oscillations in mimetic f (R, T )

gravity can be damped.

1 Introduction

One of the most important recent scientific discoveries is
provided by a set of observational data, as regards on the
late-time acceleration expansion of the whole Universe as
well as the initial era, the inflationary epoch [1–3]. It is note-
worthy that the accelerated expansion of the Universe is cre-
ated by a mysterious energy called dark energy that is the
dominant component. The modified gravity method is one
of the methods used to describe the accelerated expansion
of the Universe. Modified gravity can be considered a new
challenge to cure the shortcomings of the General Relativity
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at infrared and ultraviolet scales. It is an approach that, by
preserving the undoubtedly positive results of Einstein’s the-
ory, aims to address the conceptual and experimental prob-
lems recently emerged in astrophysics, cosmology and high
energy physics. In particular the goal is to encompass in a
self-consistent scheme problems like inflation, dark energy,
dark matter, large scale structure and, first of all, to give at
least an effective description of quantum gravity. The late-
time cosmic acceleration can in principle be derived from a
modification of gravity rather than an exotic source of matter
with a negative pressure. A lot of work on modified gravity
has been done to identify the origin of the dark energy [4–6]
over the last years. The attractive point in modified gravity
models is that they are generally more strongly constrained
by cosmological observations and local gravity experiments
than the models based on the exotic source of matter. One
of the simplest modifications to GR is the f (R) theories
of gravity in which the Lagrangian density is supposed to
an arbitrary function of R [7,8]. For informative reviews and
very important papers on these theories, see [9–24]. In recent
years a new theory, named f (R, T ) gravity, has been devel-
oped: see Ref. [25]. That theory can also be considered as a
generalization of the f (R) gravity. In this theory, an arbitrary
function of the Ricci scalar R and the trace of the energy-
momentum tensor is introduced and is used instead of an arbi-
trary function of only the Ricci scalar. The main justifications
for employing the trace of the energy-momentum tensor may
be associated with exotic imperfect fluids or quantum effects
(conformal anomaly). Different aspects of such a theory have
been investigated in the literature [26–40]. Recently, another
kind of alternative gravity model has been proposed in which
the metric is not considered a fundamental quantity. Instead,
it is taken as a function of an auxiliary metric g̃μν and a scalar
field φ, contemplating so called Mimetic Gravity (MG) [41].
Note that such a dependence on the metric makes the appli-
cation of the variational principle in the model action yield
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more general equations of motion (EoM) than the Einsteinian
relativity theory. To unify the f (R) gravity with this very
interesting mimetic theory one has proposed mimetic f (R)

gravity [42] as a new class of modified gravities with the
same inspiration as mimetic theory. Very recently the author
[43] demonstrated how f (R) gravity, the mimetic potential
and the Lagrange multiplier affect the late-time cosmolog-
ical evolution, and in Ref. [44] it was demonstrated that in
the context of the mimetic f (R) gravity with the Lagrange
multiplier and the mimetic potential it is possible to solve the
problem of dark energy oscillations at late times in an ele-
gant way. The review of the main aspects of mimetic gravity,
as well as the extensions of the minimal formulation of the
model have been addressed in Ref. [45]. For the work on
mimetic modified gravity by several authors, see [46–52]. In
this paper, we adopt the mimetic f (R, T ) gravity approach
with the scalar potential V (φ) and with the Lagrange mul-
tiplier λ(φ) to describe the late-time cosmological evolution
and the dark energy eras. The specific goal in this paper is
to extend the work of authors [53] in the context of mimetic
f (R, T ) gravity. We shall investigate how the f (R, T ) grav-
ity in the presence of the potential and the Lagrange mul-
tiplier can offer much freedom in realizing various cosmic
evolution scenarios and can be allowed to have compatibility
with observational data. The present paper is organized as
follows: in Sect. 2 we briefly review mimetic cosmology in
f (R, T ) gravity. Section 3 is dedicated to the study of the
late-time cosmological evolution in mimetic f (R, T ) grav-
ity. Our conclusion is presented in the last section.

2 Brief review in mimetic f (R, T ) gravity models

We provide in this section a brief review of mimetic f (R, T )

gravity with the Lagrange multiplier and potential. The main
idea is to study the mimetic approach in modified gravity
coming from the general class of mimetic gravities [41,54–
61] by parametrizing the metric using new degrees of free-
dom modified field equations that may admit a wider family
of solutions that be obtained. Therefore we express the phys-
ical metric gμν in terms of an auxiliary metric g̃μν and of an
auxiliary scalar field φ, as follows:

gμν = −g̃ρσ ∂ρφ∂σ φg̃μν, (1)

and thus the gravitational field variation will be performed
in terms of both the auxiliary metric ĝμν and the auxiliary
scalar field φ. Equation (1) shows

gμν(g̃μν, φ)∂μφ∂νφ = −1. (2)

Since we are interested in investigating the cosmological
implications of the mimetic f (R, T ) gravity we consider in
the following the flat Friedmann–Robertson–Walker (FRW)
metric of which the line element is

ds2 = dt2 − a(t)2[dx2 + dy2 + dz2], (3)

where a(t) is the scale factor. We assume in the mimetic
f (R, T ) gravity with the Lagrange multiplier λ(φ) and the
mimetic potential V (φ) the gravitational action coupled with
matter as

S =
∫ √−gdx4

[
f
(
R(gμν), T

) − V (φ)

+ λ(gμν∂μφ∂νφ + 1) + Lm

]
, (4)

where we assume 16πG = 1; R = gμνRμν and T = gμνTμν

denotes, respectively, the curvature scalar of the Ricci tensor
Rμν and the trace of the energy-momentum tensor Tμν ; Lm

being the matter Lagrangian density of all fluids present.
We defined the energy-momentum tensor of the matter from
the Lagrangian density Lm as

Tμν = − 2√−g

δ
(√−gLm

)
δgμν

. (5)

Variation of the action (4) with respect to the tensor metric
gμν is given by

1

2
gμν f (R, T ) − Rμν fR + ∇μ∇ν fR − gμν� fR

+1

2
gμν

(
− V (φ) + λ(gρσ ∂ρφ∂σ φ + 1)

)

− λ∂μφ∂νφ − fT (Tμν + 
μν) + 1

2
Tμν = 0, (6)

where


μν ≡ gαβ δTαβ

δgμν
= −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
.

(7)

∇i denotes the covariant derivative with respect to the metric
gμν and � = ∇ i∇i the d’Alembertian operator. In Eq. (6),
fR and fT represent the partial derivation of f (R, T ) with
respect to the R, T , respectively. Notice that the auxiliary
metric g̃μν does not appear in these equations by itself but
only via the physical metric gμν , while the scalar field φ

enters the equations explicitly.
Now it is assumed that the matter content of the Universe

can be described by a perfect fluid for which the energy-
momentum tensor is expressed as

Tμν = (ρmatt + pmatt)uμuν + pmattgμν, (8)

where ρmatt and pmatt, respectively, are the energy density
and the pressure of the matter and uμ is the four-velocity.
In this way the matter Lagrangian density can be chosen as
Lm = −pmatt. In fact, the field equations (6) yield

1

2
gμν f (R, T ) − Rμν fR + ∇μ∇ν fR − gμν� fR

+ 1

2
gμν

(
− V (φ) + λ(gρσ ∂ρmφ∂σ φ + 1)

)
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− λ∂μφ∂νφ + fT (Tμν + pmgμν) + 1

2
Tμν = 0. (9)

Varying the gravitational action (4) with respect to the aux-
iliary scalar field φ, one gets

− 2∇μ(λ∂μφ) − V ′(φ) = 0, (10)

where the prime denotes the derivative of the mimetic poten-
tial with respect to the auxiliary scalar φ. On the other hand,
by the variation with respect to the Lagrange multiplier λ,
we obtain

gμν∂μφ∂νφ = −1, (11)

which shows that the scalar field will not be a propagating
degree of freedom [46]. This equation expresses the con-
straint equation (2) in the mimetic gravity, The equation is
obtained by varying the gravitational action with respect to
the Lagrange multiplier λ.

Considering the FRW space-time (3) and assuming that
φ depends only on time coordinate t , the field equations (9),
(10) and (11) are written

− f (R, T ) + 6(Ḣ + H2) fR − 6H
d fR
dt

− λ(φ̇2 + 1)

+ V (φ) + ρmatt(2 fT + 1) − 2 fT pmatt = 0, (12)

f (R, T ) − 2(Ḣ + 3H2) fR + 4H
d fR
dt

+ 2
d2 fR
dt2

− λ(φ̇2 − 1) − V (φ) + (4 fT + 1)pmatt = 0, (13)

2
d(λφ̇)

dt
+ 6Hλφ̇ − V ′(φ) = 0, (14)

φ̇2 − 1 = 0. (15)

In these expressions, the dot represents the derivative with
respect to the cosmic time t whereas the prime denotes the
derivative with respect to the auxiliary scalarφ. From Eq. (15)
we remark that φ can be identified as the time coordinate
(φ = t). Then Eq. (12) reduces to

f (R, T ) − 2(Ḣ + 3H2) fR + 4H
d fR
dt

+ 2
d2 fR
dt2 − V (t) + (4 fT + 1)pmatt = 0. (16)

In the f (R, T ) gravity the mimetic potential V (t) can be
expressed by

V (t) = 2
d2 fR
dt2 + 4H

d fR
dt

+ f (R, T )

− 2(Ḣ + 3H2) fR + (4 fT + 1)pmatt. (17)

Within specific forms of the f (R, T ) model and the Hubble
parameter the correspondent mimetic potential can be found.
Once this expression is known, Eq. (12) can be solved with
respect to the Lagrange multiplier λ(t),

λ(t) = −1

2
f (R, T ) + 3(Ḣ + H2) fR − 3H

d fR
dt

+ ρmatt

(
fT + 1

2

)
− fT pmatt + 1

2
V (t). (18)

3 Late-time cosmological evolution in mimetic f (R, T )
gravity

In order to establish the main differential equation which
governs the dark energy oscillations evolution we recast the
FRW equation (12) as follows:

3H2 fR =ρmatt

(
fT + 1

2

)
− fT pmatt+ 1

2
(R fR− f (R, T ))

+ V (t) − 2λ(t)

2
− 3H ḟR = 0, (19)

where ρmatt and pmatt are the total energy density and the
pressure of all fluids present in Universe. In f (R, T ) grav-
ity the trace T of the energy-momentum tensor depends on
the nature of the matter content. As a novelty, we assume
in this paper the matter content of the Universe to be colli-
sional matter and relativistic matter (radiation). The model
of collisional matter has been studied in some work before,
leading to interesting results [53,62–64]. This approach of
considering forms of matter other than cold dark matter can
teach us about the choice of the models of modified gravity.
Accordingly, we can write the total energy density for the
mimetic f (R, T ) gravity case thus:

ρmatt = εm + ρr0a
−4, (20)

where εm is the energy density of collisional matter given by

εm = ρm0a
−3

(
1 + �0 + 3w ln(a)

)
, (21)

and ρr0 the current energy density of radiation, ρm0 and �0

denote present values of the motion invariant mass energy
density and of the potential energy, respectively. We can
reformulate the total matter energy density in Eq. (20) in
terms of the parameter G(a) describing the nature of the col-
lisional matter (view as perfect fluid) as

ρmatt = ρm0

(
G(a) + χa−4

)
, (22)

where the parameter G(a) is equal to

G(a) = a−3 (1 + �0 + 3w ln(a)) . (23)

Note that for the non-collisional matter (assumed to be dust)
for which the parameter w = 0, G(a) = a−3 is obtained.
Equation (19) can be reformulated:
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H2 + (1 − fR)

(
H

dH

d ln a
+ H2

)

+1

6

(
f (R, T ) − R

)
+ H2 fRR

dR

d ln a

− 1

3
fT (ρmatt − pmatt) − V (t) − 2λ(t)

6
= ρmatt

6
, (24)

while the scalar curvature R can be expressed as

R = 12H2 + 6H
dH

d ln a
. (25)

We introduce for reasons of simplicity the following function
of the redshift z:

Q(a(z)) = V (a(z)) − 2λ(a(z)), (26)

which depends on the mimetic potential and on the Lagrange
multiplier. In terms of the parametersG(a) and Q(a), Eq. (24)
can be rewritten

H2 + (1 − fR)

(
H

dH

d ln a
+ H2

)

+ 1

6

(
f (R, T ) − R

)
+ H2 fRR

dR

d ln a

− ρm0

(
G(a) + χa−4

)(
1

6
+ 1

3
fT (1 − w)

)
− Q(a)

6
= 0.

(27)

In an effort to study the late-time cosmological evolution
in mimetic f (R, T ) gravity better, we introduce the follow-
ing variable:

yH ≡ ρDE

ρm0
= H2

m̄2 − G(a) − Q(a) − χa−4, (28)

yR ≡ R

m̄2 − dG(a)

d ln a
− dQ(a)

d ln a
, (29)

where ρDE denotes the energy density of the dark energy, m̄2

being the mass scale and χ the ratio defined as χ = ρr0/ρm0.
The dark energy scale yH is the new variable that can describe
the late-time cosmological evolution. Making use of Eq. (27),
the expression 1

m̄2
dR

d ln a yields

1

m̄2

dR

d ln a
= 1

H2 fRR

[(
G(a) + χa−4

)

×
(

ρm0

m̄2

(
1

6
+ 1

3
fT (1 − w)

)
− 1

)

− 1

6m̄2

(
f (R, T ) − R

)

− yH + Q(a)

(
1

6m̄2 − 1

)

−(1 − fR)

(
H

m̄2

dH

d ln a
+ H2

m̄2

)]
. (30)

Combining the differentiation of Eq. (29) with respect to ln a
with Eq. (30), we obtain

dyR
d ln a

= −d2G(a)

d ln a2 − d2Q(a)

d ln a2

+ 1

m̄2
(
yH + G(a) + Qa(z) + χa−4

)
fRR

×
[(

G(a) + χa−4
)(

ρm0

m̄2

(
1

6
+ 1

3
fT (1 − w)

)
− 1

)

− 1

6m̄2

(
f (R, T ) − R

)
+ Q(a)

(
1

6m̄2 − 1

)

− yH − (1 − fR)

(
1

2

dyH
d ln a

+ 1

2

dG(a)

d ln a

+ 1

2

dQ(a)

d ln a
+ yH + G(a) + Q(a) − χa−4

)]
. (31)

Moreover, the curvature scalar (25) can be expressed by

R = 3m̄2
[

4yH + 4G(a) + 4Q(a) + dyH
d ln a

+ dG(a)

d ln a
+ dQ(a)

d ln a

]
. (32)

Upon differentiation of Eq. (28) with respect to ln a we obtain

dyH
d ln a

= 2H

m̄2

dH

d ln a
− dG(a)

d ln a
− dQ(a)

d ln a
+ 4χa−4. (33)

Using Eqs. (25), (28) and (29), Eq. (33) becomes

dyH
d ln a

= 1

3
yR − 4yH − 2

3

dG(a)

d ln a

− 2

3

dQ(a)

d ln a
− 4G(a) − 4Q(a). (34)

By differentiation of Eq. (34) with respect to ln a and also by
using Eq. (31), we obtain the following differential equation:

d2yH
d ln a2 +

(
4 + 1 − fR

6m̄2 fRR(yH + G(a) + Q(a) + χa−4)

)
dyH
d ln a

+
(

2 − fR
3m̄2 fRR(yH + G(a) + Q(a) + χa−4)

)
yH + P(a) = 0,

(35)

where P(a) is given by

P(a) = d2G(a)

d ln a2 + d2Q(a)

d ln a2 + 4
dG(a)

d ln a
+ 4

dQ(a)

d ln a

+ 1

18m̄2

(
yH + G(a) + Q(a) + χa−4

)
fRR

×
[(

G(a) + χa−4
)(

ρm0

m̄2

(
− 1 + 2 fT (w − 1)

))

+ 1

m̄2

(
f (R, T ) − R

)
+

(
Q(a) + G(a)

)
(12 − 6 fR)

− 1

m̄2 Q(a) + 6χa−4 fR

− 3( fR − 1)

(
dG(a)

d ln a
+ dQ(a)

d ln a

)]
. (36)
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Taking into account the relations

d

d ln a
= −(1 + z)

d

dz
, (37)

d2

d ln a2 = (1 + z)2 d2

dz2 + (1 + z)
d

dz
, (38)

all the physical quantities of (35) can easily be expressed in
terms of the redshift z, as follows:

d2 yH
dz2 + 1

1 + z

(
− 3 + fR − 1

6m̄2 fRR(yH + G(z) + Q(z) + χ(1 + z)4)

)
dyH
dz

+ 1

(1 + z)2

[
2 − fR

3m̄2 fRR(yH + G(z) + Q(z) + χ(1 + z)4)

]
yH + P(z) = 0,

(39)

where

P(z) = d2G(z)

dz2 + d2Q(z)

dz2 − 3

1 + z

(
dG(z)

dz
+ dQ(z)

dz

)

+ 1

18(1 + z)2m̄2

(
yH + G(z) + Q(z) + χ(1 + z)4

)
fRR

×
[(

G(z) + χ(1 + z)4
)(

ρm0

m̄2

(
− 1 + 2 fT (w − 1)

))

+ 1

m̄2

(
f (R, T ) − R

)
+

(
Q(z) + G(z)

)
(12 − 6 fR)

− 1

m̄2 Q(z) + 6χ(1 + z)4 fR

+ 3(1 + z)( fR − 1)

(
dG(z)

dz
+ dQ(z)

dz

)]
, (40)

g(z) = (1 + z)3
(

1 + �0 − 3w ln(1 + z)

)
. (41)

Inserting Eq. (41) in the differential equation (39) gives

d2yH
dz2 + 1

1 + z

[
− 3 + fR − 1

6m̄2 fRR

(
yH + (1 + z)3(1 + �0 − 3w ln(1 + z)

) + Q(z) + χ(1 + z)4
)

]
dyH
dz

+ 1

(1 + z)2

[
2 − fR

3m̄2 fRR

(
yH + (1 + z)3(1 + �0 − 3w ln(1 + z)

) + Q(z) + χ(1 + z)4

]
yH + P(z) = 0, (42)

and the corresponding function P(z) reads

P(z) = d2Q(z)

dz2 − 3

1 + z

dQ(z)

dz
− 3(1 + z)(1 + �0 + 2w)

+ 1

18(1 + z)2m̄2
(
yH + (1 + z)3(

1 + �0 − 3w ln(1 + z)
) + Q(z) + χ(1 + z)4

)
fRR

×
[(

(1 + z)3(
1 + �0 − 3w ln(1 + z)

) + χ(1 + z)4
)(

ρm0

m̄2

(
− 1 + 2 fT (w − 1)

))

+ 1

m̄2

(
f (R, T ) − R

)
+

(
Q(z) + (1 + z)3(

1 + �0 − 3w ln(1 + z)
))

(12 − 6 fR)

− 1

m̄2 Q(z) + 6χ(1 + z)4 fR + 3(1 + z)( fR − 1)
dQ(z)

dz
+ 9(1 + z)3( fR − 1)(1 + �0 − w − 3w ln(1 + z))

]
. (43)

By inspecting the main equation (42) it is obvious that it
describes the late-time cosmological evolution of the dark
energy in a Universe filled with collisional matter and radi-
ation and is strongly affected by the mimetic potential and
the Lagrange multiplier which are contained in the function
Q(z). We now shall specify the exact form of the function
Q(z) and the f (R, T ) models to solve numerically the dif-
ferential equation (42). Once this equation is solved, we will
perform the late-time evolution of the cosmological param-
eters in mimetic f (R, T ) gravity.

4 Numerical analysis for variable Q(z) models

In this section we perform the numerically analysis of
Eq. (42) to study the late-time cosmological evolution in
mimetic f (R, T ) gravity. To do so, we focus attention in
particular on viable f (R, T ) = f (R)+ f (T ) models where

f (R) = R − 2�(1 − e
R
b� ) [44] and f (T ) = T β [53].

In the f (R, T ) models currently considered, � represents
the present time cosmological constant, b is a positive free
parameter which is assumed to beO(1) and β a real constant.
With variable models of Q(z) we plot in mimetic f (R, T )

gravity the evolution of the Hubble parameter H(z), the total
effective equation of state weff , the parameter of the equation
of state for dark energy wDE versus z and we compare the
results obtained in mimetic f (R, T ) gravity in the presence
of the collisional matter (w = 0.6) with those in the pres-
ence of the non-collisional matter (w = 0). Respectively,
these parameters can be expressed as follows:
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Fig. 1 Comparison of the Hubble parameter H(z) versus z, of the
dark energy equation of state parameter wDE versus z and of the effec-
tive equation of state parameter weff versus z. The red curves corre-
spond to the mimetic f (R, T ) model in a Universe filled with colli-

sional matter, while the blue curves correspond to the mimetic f (R, T )

model in the presence of the non-collisional matter (dust) for the model
Q(z) = √

2z + 5 [44]

H(z) =
√
m̄2

(
yH + Q(z) + (1 + z)3(1 + �0 − 3w ln(1 + z)

) + χ(1 + z)4
)

(44)

weff(z) = −1 + 2(1 + z)

3H(z)

dH(z)

dz
. (45)

wDE (z) = −1 + 1

3
(1 + z)

1

yH

dyH
dz

. (46)

Concerning Fig. 1 we remark that the Hubble parame-
ter, the dark energy equation of the state parameter and the
effective equation of the state parameter show practically the
same evolution for each type of matter content considered.

We note no significant oscillating behavior at the Hubble
parameter and the effective equation of the state parameter
level, whereas for the dark energy equation of state param-
eter, it can be seen that, in mimetic f (R, T ) gravity and in
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Fig. 2 Comparison of the Hubble parameter H(z) versus z, of the dark
energy equation of state parameter wDE versus z and of the effective
equation of state parameter weff versus z. The red curves correspond to
the mimetic f (R, T ) in Universe filled with collisional matter, while

the blue curves correspond to the mimetic f (R, T ) in the presence of
the non-collisional matter (dust) for the model Q(z) = 2z+5

z+100 [44]. The

graphs are plotted for �0 = 2.58423, ρm0 = 3.1 × 10−4, β = 1+3w
2(1+w)

,

χ = 1.5, b = 10−5 and m̄2 = 1.03 × 10−4

the presence of the non-collisional matter, oscillations occur
when the redshift increases and goes toward z = 3.5. For
the second figure, we remark that the Hubble parameter and
the dark energy equation state parameter show very similar
behavior for each type of matter content. Moreover, at the
dark energy equation state level the oscillating behavior is
milder in comparison to the mimetic f (R, T ) gravity in a
Universe filled with non-collisional matter and these oscilla-
tions occur until approximately z � 2. Regarding the effec-
tive equation of the state parameter as shown in the bottom
plot of Fig. 2, the two curves are very similar in behavior for
low values of the redshift but move toward weff = 0 when
the redshift z increases.

5 Conclusion

In this paper, we examined the late-time cosmological evolu-
tion in the context of mimetic f (R, T ) gravity with Lagrange
multiplier and mimetic potential. Assuming that the matter
contents of the Universe are collisional matter and relativis-
tic matter (radiation), we demonstrated how f (R, T ) grav-
ity, the mimetic potential and the Lagrange multiplier affect
the late-time cosmological evolution. By numerically solv-
ing the main equation that describes the cosmological evo-
lution of the dark energy we focused our attention on the
cosmological evolution of the Hubble parameter, the dark
energy equation parameter and also the effective equation
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of state parameter in mimetic f (R, T ) gravity in a Universe
filled with collisional matter. We compared this with the case
that the Universe essentially contains non-collisional matter
(dust). The results obtained showed that in both cases and
for two Q(z) models the curves correspond to the mimetic
f (R, T ) gravity in the presence with the collisional matter
are in better agreement with the observational data than those
obtained in mimetic f (R, T ) gravity in the presence of the
non-collisional matter (dust) and can be used to reduce the
amplitude of the dark energy oscillations. Generally the late-
time behavior appears and the contribution of the collisional
matter in mimetic f (R, T ) gravity may be considered to be
an alternative method to damp the dark energy oscillations.
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