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Abstract—In this paper, a continuous valued measure for local color symmetry is introduced. The new algorithm is an extension of the

successful gray value-based symmetry map proposed by Reisfeld et al. The use of color facilitates the detection of focus points (FPs)

on objects that are difficult to detect using gray-value contrast only. The detection of FPs is aimed at guiding the attention of an object

recognition system; therefore, FPs have to fulfill three major requirements: stability, distinctiveness, and usability. The proposed

algorithm is evaluated for these criteria and compared with the gray value-based symmetry measure and two other methods from the

literature. Stability is tested against noise, object rotation, and variations of lighting. As a measure for the distinctiveness of FPs, the

principal components of FP-centered windows are compared with those of windows at randomly chosen points on a large database of

natural images. Finally, usability is evaluated in the context of an object recognition task.

Index Terms—Focus-of-attention, color vision, symmetry, saliency maps, object recognition.
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1 INTRODUCTION

SELECTION of salient image points and regions as candidates
for further processing is a key problem in many fields of

image processing like object recognition [20], [51], content-
based image retrieval [56], [8], [64], [62], active vision [1], [4],
[10], [13], [3], image compression [50], or medical image
registration [40]. There are mainly two different approaches:
Goal-driven techniques search exclusively for regions which
have a high probability to belong to a certain object, an
example is eigenspace methods which allow a highly
selective localization of faces [43]. While goal-driven techni-
ques are designed for a special task, context-free methods are
not specialized on the search for a certain object. Instead, they
judge the relevance of image points from the “saliency” of
signal features alone.Asa consequence, context-freemethods
have awider rangeof applicability andcanbeused to start the
bottomup-top downprocessing cycle, however, at the cost of
less selectivity.

Most algorithms for context-free salientpointdetectionare
designed to detect corners or edges in gray-value images [44],
[21], [56], [60], [66], [67]. Another type of methods is based on
previously extracted contours to find, e.g., points of high
curvature or intersection points [2], [42], [28], [58]. However,
corners and edges often indicate the border of an object, not
the center, which is needed for many object recognition
algorithms.

1.1 Salient Points and Focus Points

In this paper, a distinction is drawn between salient points
(or interest points in terms of [56]) and focus points. Salient
points (SPs) are understood as pixels that are “interesting”
because of the signal features within a small neighborhood.
Therefore, all of the above-mentioned corner and edge-
based algorithms are aimed at detecting SPs. However, as
SPs indicate only the “interestingness” of very small image

patches, these patches often don’t correspond to interesting
larger entities like physical objects.

In contrast, a focus point (FP) will be understood as the
center of a larger region which is 1) interesting as a whole and
which is 2)usable for recognition. So, for FPs, the emphasis is on
their function within a vision system: FPs can serve as the
center of a window W from which features can be extracted
for object recognition. W can be thought of as an object
centered reference frame suitable for recognition in terms of
Palmer [49], however, without being the result of the search
for a special object. The size of W depends on the particular
applicationand isnotnecessarily related to the scale onwhich
saliency was detected. For example, algorithms for corner
detection (see Section 1.4)mightdirect attention to abigobject
requiring a largewindow bymeans of a small detail (corner).
In contrast, a detector for large-scale symmetries will detect
large symmetric objects, though the application may require
smaller windows to recognize object details.

1.2 The Role of Focus Points in View-Based Object
Recognition

Object recognition is a difficult problem since the pixel
appearance of an object is subject to substantial changes due
to its various “visual degrees of freedom” (DOF): Transla-
tion (3 DOF), rotation (3 DOF), lighting conditions (number
and location of sources, brightness, spectra), background,
partial occlusion, and, if so, nonrigidness of the object.
Considering the image patch covered by the object as a
point in a high-dimensional space P spanned by the gray or
color values of its pixels, appearance variability causes an
object to cover a complicated “appearance manifold”
A � P . The view-based approach to object recognition
memorizes a representation of A based on samples.
Recognition means comparing the pixel appearance of an
unknown object with the memorized representations of the
Ai (i ¼ 1 . . .N for N objects).

FPs are a means to simplify the appearance manifold A
and, thus, facilitate its representation: In an object recognition
architecture, FP-detection rules out all but a few points as
centers for feature extraction. In other words, FP-detection
solves part of the well-known “what-where-problem,” i.e.,
the problem of identifying an object’s location and identity
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simultaneously: The where-problem is reduced by the use of
FPs because evaluation is restricted to a few image patches
and the what-problem is partly solved because only certain
image patches are selected by saliency criteria.

1.3 Criteria for FP-Detectors

To fulfill the role in object recognition outlined above, FPs
must meet certain requirements:

1. Stability: FP-positions on objects must be stable
against object rotations over a reasonable angular
range. If an FP disappears under object rotation,
there has to be a stable new one on the object at
another location. Moreover, FPs must be robust
against noise and changes in lighting.

2. Distinctiveness: An FP must represent the center of
a window which is “salient” or “distinctive” in the
sense that the probability to find such a local pattern
is small compared to other, more frequent patterns
of natural images.

3. Usability: FPs serve as centers of windows for feature
extraction, therefore, locations must be such that the
windows overlap largely with the objects of the
domain or with other suitable “visual entities,” like
certain parts of objects. However, it is not required
that all FPs are well-positioned. The task to distin-
guish object centered FPs from others—e.g., at the
borders of objects—remains for the subsequent
classification system.

These criteria reflect two of themainpropertieswhichmake a
point interesting according to Haralick and Shapiro [20]:
invariance and distinctiveness. In contrast to [20], the criteria
used here do not include that an FP must be distinguishable
from its immediate neighbors—this requirement inevitably
favors edges and corners. Therefore, only the distinctiveness
of the window around the FP compared to other (random)
windows is requiredhere.Moreover, globaluniqueness isnot
required because this would forbid the simultaneous detec-
tion of several objects of the same type.

1.4 Algorithms for Focus-of-Attention

Most works on salient point (SP) detection concentrate on
edges or corners. The computation often relies on discrete
approximations of the autocorrelation function of the signal
[21], [16], [63], as proposed originally byMoravec [44]. As an
example, Figs. 5 and 7 show SPs found by the detector of
Harris and Stephens [21] (see the Appendix). Manymethods
rely on first and/or second derivatives of the signal [6], [33],
[15] or evaluate previously extracted contours [2], [42], [28],
[58]. Lee et al. use wavelets for corner detection [36], [11]. An
alternative to filter-basedmethods is presented by Laganiere,
whodetects L-shaped corners usingmorphological operators
[35]. The SUSAN-detector introduced by Smith and Brady
finds corners and edges using form features of the region of
pixels with gray values similar to the central pixel within a
circular mask [60].

One of the most simple approaches to compute saliency
from image features other than corners and edges is entropy
calculation of the gray-value histogram of image windows
([31], for an application see [19]). Since this procedure is
related to local gray-value variance computation, textured
regions are highly favored. To detect larger, “blob-like”

visual entities anapproachwas introducedbyLindeberg [37],
which is based on scale space theory [38].

Application of saliency detectors as components of real
image processing architectures can be found in the area of
active vision. Rao et al. [52] introduced a model for visual
search using steerable filters [17]. Approaches for the
integration of several elementary saliency features for gaze
control were proposed by Itti et al. [30] and Backer et al.
[3]. Both architectures rely on findings about the primate
visual system and are highly domain-independent. Sho-
koufandeh et al. use saliency maps in an entirely different
way: They define graphs between detected salient object
regions and calculate the difference to memorized graphs
for recognition [59].

One of the most promising approaches to context-free
saliency detection is the evaluation of local symmetries
proposed by Reisfeld et al. [53], which will be outlined in
the next section. The use of symmetry is motivated by
psychophysical findings [32], [9], [39] which indicate that
“symmetry catches the eye” as stated by Locher and Nodine
[39]. Further evidence for the approach of Reisfeld et al. was
found by Privitera and Stark [50], who found a high
correlation of the predicted SPs with human eye fixations
for general images. Another continuous symmetry measure
proposed by Zabrodsky et al. [65] yields similar advantages,
but, as it depends strongly on a preceding contour
extraction, it was not considered here.

1.5 Contents of This Paper

Based on the algorithm proposed by Reisfeld et al. [53], a
novel method for the continuous, context-free judgment of
local color symmetries will be developed in Section 3. To
compare both methods, it will be checked in Section 4
whether the three requirements to FPs set up in Section 1.3 are
fulfilled. Stability against rotations is tested using the
Columbia Object Image Library (COIL), robustness against
noise is tested on images from a low-cost camera, and the
influence of lighting is evaluated for four different illumina-
tions. Saliency is judged by comparing the principal
components of FP-centered windows of natural images with
those of randomly sampled windows on a database of over
89,000 images. For comparison, the well-known SP-detector
of Harris and Stephens [21] will be tested as a representative
of corner and edge-based methods and a detector using
Daubechies4 wavelets [14] proposed by Tian et al. [62].

Usability of FPs can be judged only in the framework of
an actual recognition system. Therefore, in Section 5, the
recognition of assembled wooden toy pieces is presented as
a sample application.

2 THE ORIGINAL APPROACH OF REISFELD ET AL.

2.1 Construction of the Symmetry Map

The algorithm proposed by Reisfeld et al. [53] calculates a
continuous, local symmetry judgment based on gray-value
edges. First, the original version of the isotropic symmetry
measure MOrg will be outlined. Notation is slightly different
from [53] for later convenience. Let the image be given by its
gray values IðpÞ, where p denotes a pixel at location ðx; yÞ.
The gradient of IðpÞ is denoted by ðIxðpÞ; IyðpÞÞ, from which
the gradient magnitude GIðpÞ and direction �IðpÞ can be
calculated (horizon is � ¼ 0):
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IxðpÞ ¼
@IðpÞ
@x

; IyðpÞ ¼
@IðpÞ
@y

;

GIðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IxðpÞ2 þ IyðpÞ2

q
; �IðpÞ ¼ arctan

IyðpÞ
IxðpÞ

� �
:

ð1Þ

For each pixel p, a set �ðpÞ of index pairs ði; jÞ of
surrounding pixel pairs ðpi; pjÞ is defined by

�ðpÞ ¼ ði; jÞ pi þ pj
2

¼ p
���n o

; ð2Þ

(see Fig. 1a). The isotropic symmetry map MOrgðpÞ is a sum
over all pixel pairs surrounding p:

MOrgðpÞ ¼
X

ði;jÞ2�ðpÞ
PWFGrayði; jÞ �GWF ði; jÞ �DWF�ði; jÞ: ð3Þ

The contributions of the functions PWFGray, GWF , and
DWF� will be discussed in detail.

2.1.1 Original Phase Weight Function PWFGray

The most important contribution is the gray value-based
Phase Weight Function PWFGray, which consists of two
factors:

PWFGrayði; jÞ ¼ 1� cosð�i þ �jÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PWFþ
Gray

ði;jÞ

� 1� cosð�i � �jÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PWF�
Gray

ði;jÞ

: ð4Þ

�i; �j denote the angle between the local gradients at pi and
pj, respectively, and the line pipj connecting pi and pj, see
Fig. 1b. Let �ij denote the angle between pipj and the
horizon, so

�i ¼ �i � �ij; �j ¼ �j � �ij: ð5Þ

PWFGray takes a high value if the gradients at pi and pj are
directed such that they might be part of the contours of an
object which is symmetric around the central point
p ¼ ðpi þ pjÞ=2. This is achieved by two factors:

PWF�
Gray: PWF�

Grayði; jÞ is maximal for opposite gradient
directions (�i � �j ¼ �180�) which indicate a bright/dark
object at p on dark/bright background, respectively
(Fig. 1d). PWF�

Grayði; jÞ is minimal for �i ¼ �j, which
indicates that pi and pj are on the same side of an object
(Fig. 1e). The transition between these extremes is
continuous, thus allowing nonperfect symmetries. How-
ever, as shown in Figs. 1d, 1e, 1f, and 1g, this criterion
indicates symmetry only if the condition imposed by
PWFþ

Gray is fulfilled simultaneously.

PWFþ
Gray:PWFþ

Grayði; jÞ is ameasure for the symmetryof the
two gradientswith respect to the perpendicular bisector of
pipj (Figs. 1d, 1e, 1f, and 1g). Again, a bright object on dark
background is treated like a dark object on a bright
background.

2.1.2 Gradient Weight Function GWF

The Gradient Weight Function GWF is aimed to weight the
contribution of pixels ðpi; pjÞ higher if they are both on
edges because edges might relate to object borders:

GWF ði; jÞ ¼ logð1þGIðpiÞÞ � logð1þGIðpjÞÞ; ð6Þ

with GI defined in (1). The logarithm attenuates the
influence of very strong edges.

2.1.3 Distance Weight Function DWF�

The Distance Weight Function DWF� makes the symmetry
MOrgðpÞ a local measure:

DWF�ði; jÞ ¼
1ffiffiffiffiffiffi
2�

p
�
exp �kpi � pjk2

2�2

 !
: ð7Þ

The choice of � defines the scale on which symmetries are
detected.

2.2 Implementation of the Symmetry Map

In principle, for each pixel p the saliency MOrgðpÞ has to be
summed up over the entire set �. However, the computa-
tional effort can be reduced greatly by minor modifications
without substantial influence on the resulting map:

1. Restriction to edge evaluation: Since edges give the
main symmetry contribution due to GWF , computa-
tions can be restricted to edges only, as proposed by
Nattkemper [46], [24]. x and y-gradients are calcu-
lated by Sobel filtering, then, from the two maps, the
gradient magnitude GI is calculated and, from GI , a
thresholded binary version GB

I . All computationally
more expensive steps are carried out only for pixels
where GB

I is 1. So, instead of �, a restricted set �0 ¼
� n fði; jÞ j GB

I ðpiÞ ¼ 0 _ GB
I ðpjÞ ¼ 0g is used.

2. Restriction to circular area: As DWF� practically
excludes contributions of pixels p0 with distance
kp� p0k > 3�, �0 can be further restricted to
�� ¼ �0 n fði; jÞ j kpi � pjk > 2Rg, where R will be
called the “symmetry radius.”

3. Dispose of DWF�: The Gaussian weighting within
the surroundings of p has a slightly smoothing effect
on the resulting symmetry map. However, the effect
of DWF� on the resulting FP-positions can be
neglected if the map is postprocessed by convolution
with a Gaussian. Therefore,DWF� is left out, so now
the symmetry radius R alone defines the “scale of
interest” instead of �.

Hence, (3) can be replaced by the more efficient version

To obtain FPs, MGray is smoothed by convolution with a
Gaussian kernel. The FPs are then the NFP highest maxima.
This entire procedure for FP-detection will be referred to as
GraySym.

To check that the influence of the modifications is
negligible, FPs were generated on 30 randomly chosen
natural images of the Art Explosion1 Photo Gallery [48]
using both the original (3) and the modified version (8). As
long as R � 3� holds, there are no substantial differences: It
was checked that the FPs generated from the 10 best maxima
of the symmetry map did not change their pixel positions.
Hence, contributions of pixels farther than 3� from the center
are not essential for FP-detection.

3 SALIENCY MAPS FROM COLOR SYMMETRIES

In the following, a new symmetry measure based on color
edges will be described. The idea is to exploit not only gray-
value contrast but also color contrast. As an example, Fig. 2
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shows colored squares on a background of equal gray-value

luminance: MGray does not reflect the symmetries as the

edges are invisible in the gray value-based edge map,

whereas the color symmetry map MCol proposed in

Section 3.2 indicates all symmetries visible within the

chosen radius R. As a motivation for the more difficult

calculation of MCol, in Section 3.1 first a simple extension of

the gray value-based measure (8) will be discussed.

3.1 Motivation: A Simple extension of Gray-Value
Symmetry

As a “naive” solution to detect objects which differ from the
background in color but not in gray values, Fig. 2 shows a
“colored” symmetry map M3!3

Col . This map is the straight-
forward extension of the gray-value map: (8) is applied to
the R, G, and B channels separately. So, the three input

channels are mapped to three output channels (“3 ! 3”),
which can be interpreted as “colored” symmetry map. In
Fig. 2, the resulting colored symmetry map M3!3

Col shows,
e.g., a “yellow symmetry” for the green-on-red square, for
the red-on-green or the cyan-on-magenta square, as all of
these have edges both in the red channel and in the green
channel. To generate FPs, M3!3

Col could be evaluated for
maxima in each channel separately.

However, M3!3
Col has an obvious shortcoming: In Fig. 2, a

“green symmetry” between the green-on-blue square and the
border between the blue and the cyan background is detected
(which is correct), but no symmetry between the blue-on-
green square and the border between the green and yellow
background (as indicated). The reason for this cognitively
unsatisfying result is that no blue edge occurs on the green-
yellowborder. This effect becomes evenmore clear inFigs. 3a,
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indicated by the double arrows.



3b, 3c, 3d, and 3e, where the radius R is chosen such that the

symmetries of the black orwhite bars between the squares are

to be detected (not the symmetry of the squares themselves).

Here,M3!3
Col detects part of the symmetries but not all: There

is, e.g., no symmetry indicated for the black bar between the

red and the green square, whereas the symmetry is detected

for the black bar between the magenta and yellow squares.

Onemight object that the black bars are not “foreground,” so

their symmetrywould not be relevant. But, this fact 1) cannot

be recognized on the low level and 2) results should at least be

the same for ablackbarbetween redandgreenandablackbar

between magenta and yellow. The symmetry map MCol

proposed in the next section will fulfill these requirements.
MGray does detect all symmetries, but differently in

strength: The symmetry of the black bar between red and

green is weaker than between magenta and yellow.

3.2 The Color Symmetry Map MCol

To avoid the inconsistencies of M3!3
Col , a color symmetry

map MCol will be constructed that evaluates not only pairs

of color edges of the same channel (i.e., red-red, green-green,

blue-blue), but also pairs of edges of different color

channels (e.g., red-green). By this means, the symmetry of

an object, which is confined by edges resulting from varying

color transitions, can be detected. MCol maps the three color

input channels to only one symmetry value (“3 ! 1”).
For better understanding, first a preliminary version

M 0
Col will be described: Let the color image be given by color

values IiðpÞ, where i ¼ 0; 1; 2 denotes the red, green, and

blue channel. Similar to (1), the gradients are defined as

Ii;xðpÞ ¼ @IiðpÞ
@x ; Ii;yðpÞ ¼ @IiðpÞ

@y ;

GiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii;xðpÞ2 þ Ii;yðpÞ2

q
;

�iðpÞ ¼ arctan Ii;yðpÞ = Ii;xðpÞ
� 	

:

ð9Þ

Fig. 1c illustrates the notation. The symmetry values

M 0
ColðpÞ are calculated like MGrayðpÞ in (8) but with an

additional summation over all significant color edge pairs:

M 0
ColðpÞ ¼

X
ði;jÞ2��ðpÞ

X
ðk;lÞ2�ðp;i;jÞ

PWF 0
Colði; j; k; lÞ

�GWFColði; j; k; lÞ;
ð10Þ

where �� and � are defined as follows: As in (8), ��ðpÞ
denotes again the set of index pairs ði; jÞ of all opposing

pixels around p within radius R:

��ðpÞ ¼ ði; jÞ pi þ pj
2

¼ p ^ kpi � pjk � 2R
���n o

: ð11Þ

Foreachpixelpair ðpi; pjÞ, givenby��ðpÞ,�ðp; i; jÞdenotes the
set of pairs of color indices ðk; lÞ; k; l 2 ½0; 2	, for which the

gradients exceed predefined thresholds #k; #l (note the edge

thresholds might be different for each color channel):

�ðp; i; jÞ ¼
n
ðk; lÞ

�� k; l 2 f0; 1; 2g

^ GkðpiÞ � #k ^ GlðpjÞ � #l

o
:

ð12Þ

For the first version, M 0
ColðpÞ, the original phase weight

function (4) is extended to

PWF 0
Colði; j; k; lÞ ¼ 1� cosð�ik þ �jlÞ

� �
� 1� cosð�ik � �jlÞ
� �

;

ð13Þ
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Fig. 2. As the gray values of the squares do not differ from the
background, the symmetry is not visible in the symmetry map MGray

after Reisfeld et al. [53]. In contrast, the color edge-based symmetry
maps M3!3

Col and MCol indicate the symmetries of the squares and also
between the squares and the borders of the background rectangles.
Symmetry radius is R ¼ 12, edge length of squares ¼ 20.

Fig. 3.Colored squares image (a), (b), (c), (d), and (e): Symmetry radius
R ¼ 5, edge length of squares ¼ 20, distance between squares ¼ 10, so
note it is the aim to detect the symmetry of the black or white bars
between the squares, not the symmetry of the squares themselves.
MGray (b) detects all symmetries but differently in strength, M3!3

Col
(c) misses some symmetries.M 0

Col(d) andMCol (e) detect all symmetries.
(a) Input image. (b)MGray. (c)M

3!3
Col . (d)M

0
Col. (e)MCol.Gray bars image

(f), (g), (h), (i), and (j): Symmetry radius R ¼ 5, width of the bars ¼ 10.
Only MCol (j) detects the symmetry of the gray bars because of its �-
periodic phase weight function PWFCol, while the PWFGray-based maps
MGray (g), M3!3

Col (h), and M 0
Col (i) fail. Image (f) resembles part of a

SUSAN test image ([60, p. 55]). (f) Input image. (g) MGray. (h) M
3!3
Col .

(i) M 0
Col. (j) MCol.



where �ik denotes the angle between gradient Gik of color
channel k at pixel pi and the line pipj (similar to (4) and(5)).
See Fig. 1c for the notation.

By analogy to (6), the gradient weight function becomes

GWFColði; j; k; lÞ ¼ logð1þGkðpiÞÞ � logð1þGlðpjÞÞ: ð14Þ

Fig. 3d shows that M 0
Col overcomes the inconsistencies of

M3!3
Col : Symmetries are equally detected for all black or

white bars between the squares. However, it turns out that
the summation over all color edge pairs does not solve all
problems. Figs. 3f, 3g, 3h, and 3i show another shortcoming
of MGray, M

3!3
Col , and also M 0

Col: Only the symmetry of the
white bar can be detected, not of the two gray bars. This is
due to the fact that all three symmetry measures use the
same 2�-periodic phase weight function 1� cosðxÞ. This
choice is the reason that symmetric objects on inhomoge-
neous background cannot be detected if the background is
brighter on one side than the object and darker on the
opposite side—which is the case for the gray bar in the
middle of Fig. 3f. However, inhomogeneous background is
to be expected in natural environments.

Hence, the requirement of Reisfeld et al. [53] that only
gradients pointing toward each other or away from each
other contribute to the symmetry of the central point will be
abandoned by introduction of a new phase weight function

PWFColði; j; k; lÞ ¼ cos2ð�ik þ �jlÞ
� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

PWFþ
Col

ði;j;k;lÞ

� cos2ð�ikÞ � cos2ð�jlÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PWF�
Col

ði;j;k;lÞ

;

ð15Þ

where now the �-periodic function cos2ðxÞ ¼ 1
2 ð1þ cosð2xÞÞ

is used instead of 1� cosðxÞ. This makes PWFCol invariant
to transformations �ik ! �ik þ �, which means PWFCol has
the same value for gradients rotated by �:

PWFColð�ik; �jlÞ ¼ PWFColð�ik þ �; �jlÞ ð16Þ
¼ PWFColð�ik; �jl þ �Þ
¼ PWFColð�ik þ �; �jl þ �Þ: ð17Þ

Similarly to the gray-value measure (4), PWFCol consists of
two factors which will be discussed separately. Figs. 1h, 1i,
1j, 1k, 1l, and 1m show some examples for the judgment of
different gradient directions, the 180�-invariance is indicated
by the double arrows.

PWF�
Col: PWF�

Colði; jÞ is a continuous judgment on how
parallel both gradients are to pipj. It is maximal
(PWF�

Col ¼ 1) if both are parallel. It is minimal
(PWF�

Col ¼ 0) if at least one is perpendicular to pipj.
This factor expresses that only gradients pointing
towards or away from the central pixel p can contribute
to the symmetry value of p. If gradients perpendicular to
pipj belong to a symmetric object, they may contribute
only to the symmetry values of other pixels but not of p.

PWFþ
Col: PWFþ

Colði; jÞ judges how well gradients (or the
opposites) at pi and pj conform to a mirror symmetry
through the central pixel p. For example, in Figs. 1h, 1i,
and 1j, perfect mirror symmetry to a vertical axis
through the central pixel is realized, so PWFþ

Col ¼ 1.
Nonperfect symmetry exists in Figs. 1k and 1m, where
PWFþ

Col ¼ 0:933. In Fig. 1l, there is no mirror symmetry,
so PWFþ

Col ¼ 0—though the gradients are parallel.

Using the �-periodic PWFCol, the final version of the
color symmetry map is

with ��,�,GWFCol, and PWFCol given by (11), (12), (14), and
(15), respectively. Again, FPs are detected as theNFP highest
maxima from a smoothed version of MCol. This entire
procedure of FP-detection will be referred to as ColSym.

3.3 Color Representation

ColSymwasdescribed for theRGB color space. SinceColSym
exploits color based on gradient detection, the use of other
color spaces is simple as long as gradient calculation is
possible. If necessary, the edge thresholds #i (12) have to be
adjusted. Gradient calculation is straightforward for most
color spaces, an exception is, e.g., the HSV representation,
where the hue-channel and the singularity require special
treatment.

The choice of the color space depends on the application.
Since different color representations provide different
similarity measures, edges of a certain object may be strong
in one color space but weak in another, thus affecting the
visibility of its possible symmetries. Therefore, finding the
best color space for symmetry detection is a similar task as
in the field of color segmentation, where, e.g., objects have
to be separated from background by color difference.

4 EVALUATION

4.1 Qualitative Discussion of ColSym

Calculation of symmetries profits most from the use of color
when a symmetric object differs from its surroundings not in
gray values but in color only. Examples are shown in Fig. 4:
Theeyesof the cat areobviously symmetric, but the contrast is
low in the gray-value version (upper row). As a consequence,
GraySym detects only the symmetry of the pupils (small
white dots in MGray) and some minor symmetries of the
surroundings. In contrast, ColSym detects the symmetry of
the green eyes as a whole. This leads to a large peak in the
symmetry map that can be detected much better.

In Fig. 4, bottom row, a picture of poor quality is shown
with low contrast in the gray-value version. Though the
color version is not sharper, color contrast leads to the
detection of the row of small windows above the arc.
Further examples for the superiority of ColSym in the
presence of color contrast are show in Fig. 5: In the
“Apples” image, most of the 30 highest maxima of MCol

are on the highly symmetric apples in the foreground,
which are hardly “visible” for GraySym. Instead, FPs are
found by GraySym only in the strongly contrasted light-
shadow regions under the tree—which appear only as
minor maxima inMCol because they are not very symmetric.
The leaves are not detected since their symmetry is poor (in
the projection to the image plane) and contrast is low both
in color and gray values. So, the leaves could be detected
only for large values of NFP , as becomes clear from MCol.

For the Lena image, differences between ColSym and
GraySymare small due to the good contrast in the gray-value
image. The “Flowers” image shows results similar to the
“Apples” image. The gray value-based algorithms “Harris”
and“Daubechies4”outlinedinthenextsectionyieldpointson
corners and edgeswhich are only in few cases on the flowers.
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4.2 Saliency Detectors for Comparison

Two other methods will be used for comparison: The
detector of Harris and Stephens [21] and the Daubechies4
transform [14].

The calculation of the saliency map MHarris after Harris
and Stephens [21], and the choice of parameters are
outlined in the Appendix. FPs are detected at the highest
maxima of a smoothed version of MHarris; this method will
be referred to as Harris. Harris was chosen for comparison
because it could be shown superior to other, related
approaches [12], [16], [27], [28] in the work of Schmid et
al. [57]. Interest points obtained from MHarris proved to be
the most stable against 2D image rotations, scaling, lighting
variation, viewpoint change, and camera noise. Moreover,
Harris produced interest points with a higher information
content in terms of the entropy measure proposed in [57].

The algorithm referred to as Daubechies4 is based on
wavelet filtering. SPs detected by a multiresolution wave-
lets approach turned out to cohere with human eye
fixations in the investigations of Privitera and Stark [50].
Here, the SP-detector proposed by Tian et al. is adopted,
which proved to be well-suited for the representation of
local image features for context-based image retrieval [62].
Because of its complexity, the approach cannot by outlined

here, see [62] for details. In short, the image is convoluted
with orthogonal Daubechies4 wavelets [14] at different
resolutions which yield a complete and nonredundant
representation of wavelet coefficients. Since this type of
wavelet has a compact support, the set of pixels from which
a certain coefficient was computed is known. Therefore, SPs
can be found by a recursive search for high coefficients
from coarse-to-fine resolutions. The algorithm is made
available in the Internet at http://telesun. insa-lyon.fr/
~loupias/points/demo.html. For a survey of wavelet
theory, see, e.g., [41].

4.3 Repeatability in the Presence of Noise

Stability against signal noise was checked using 10 static
indoor scenes for each of which two frames, F1 and F2, were
recorded by a low-cost color CCD-camera. The average
difference between corresponding pixels ofF1 andF2 was 2.1
for the red channel, 2.3 for green, and 5.8 for blue (256 levels
for each channel).

The "-repeatability rate rð"Þ is the fraction of FPs
detected in F1 which can be found in F2 within an
"-neighborhood of the original position:

rð"Þ ¼

fp1i found inF1 j 9 p2j found inF2 ^ kp1i � p2jk � "g
��� ���

NFP

with i; j ¼ 1 . . .NFP ;

ð19Þ

where NFP is the number of FPs found in F1. Using the best
NFP ¼ 10 FPs detected by each algorithm, all algorithms
reach good repeatability rates rð" ¼ 1:5Þ: ColSym 0.92,
GraySym0.93, Harris 0.96, andDaubechies4 0.92. Radius " ¼
1:5was chosen because it encircles the 8-neighborhood of the
pixel in F1.

Additional corruption of 5 percent of the pixels of F2

with salt-and-pepper noise leads to reduced repeatability
rates rð" ¼ 1:5Þ: ColSym 0.82, GraySym 0.79, Harris 0.72,
and Daubechies4 0.54.

4.4 Stability Against 3D Object Rotation

According to the criteria defined in Section 1.3, FPs should
be stable against object rotations over a certain angular
range. But, what is “stability”? “Repeatability” as defined
above is not applicable for 3D object rotation because
repeatability requires a unique relation between object
points of different images. For planar rotation, this relation
is a simple homography. Therefore, in [57], SP-stability is
tested by rotation of the camera around its optical axis.

In the more realistic case of an object rotating in 3D, the

problem is more complex than finding a point-to-point

relation for different frames. Consider an object in a reference

pose with an FP at p 2 IR2 in image coordinates which

corresponds to a point on the surface of the object withworld

coordinates S 2 IR3. If the object is rotated to another pose,

the surface point changes its world coordinates to S0. The

“naive” definition of FP-stability would be that the FP must

be found at the projection of S0 to the image plane, p0. This

definition, however, is unsatisfactory since p0 does not

necessarily have the same “saliency properties” which made

p an FP. For example, let’s consider the “degenerate case” of a
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Fig. 4. Exploitation of color is most fruitful when symmetric regions differ
from the surroundings more in color than in gray-value contrast. Maxima
detection of the color-based symmetry map is more stable (cats’ eyes).
Bottom row: Due to the poor quality of the original, MGray detects only
the windows under the arc which have white frames around dark glass.
In MCol, additionally, the symmetry of the upper row of windows stands
out. The 50 best FPs are displayed. Note not all FP-markers are visible
due to very close maxima, in particular, for MGray, maxima are crowded
under the arc. Both images are from [48]: Cat: “domesticated461,”
building: “architecture1051.”



perfect sphere with an FP p in its center, detected because of

symmetry. Rotationof the sphere shifts the original locationS

on the sphere to S0, but the FP will stay in the center

(at p)—which is perfectly all right both from a semantical

point-of-view and from the signal properties because the

symmetric sphere looks the same as before. Nevertheless, the

naive definition of FP-stability is hurt.

Consequently, a stability rating must include the seman-

tics of FPs. As a database, the ColumbiaObject Image Library

(COIL-100) [47], [45] was used. The library consists of RGB-

images of objects presented on a turntable that is rotated by

360 degrees in steps of 5 degrees, so there are 72 images of

each object. An FP is considered stable if it appears over at

least three subsequent frames at the same part of the object,

the idea being that there must be at least one frame for which

the FP is found also for �5� rotations. Stronger stability

criteria, e.g., presence of the FP for�10�, are reasonablewhen

a method must be judged for a particular application.

However, such judgments can be easily derived once the

FPs have been tracked using the �5�-criterion. The key

problem is that a humanmust decidewhether an FP “stays in

place” or not, so the result depends on human interpretation.

Fig. 6 shows an example from COIL-100 together with a
recording of FP-stability. The best six FPs of ColSym are
tracked over 24 frames from 0 degrees to 115 degrees. A
green line indicates a stable FP that must range over at least
three frames. In this case, the FP is counted a true positive in
each frame. A red line indicates an unstable FP, ranging
over one or two frames. The FP is then counted a false
positive in each frame. In some cases, green lines are
interrupted by dashed red lines, meaning one or two
missing links in a chain of an otherwise stable FP. Such
missing FPs are counted as false negatives.

SomeFPs inFig. 6 canbe easily judgedas stable, e.g., theFP

on the left eye is stable over six frames (frame1 to 6). TheFPon

the right foot is stable from frame 1 to 24with interruptions at

frame 2 and 18, 19. In total, there areNtp ¼ 130 true positives,

Nfp ¼ 14 false positives, andNfn ¼ 5 false negatives.
The stability measure Q is defined as:

Q ¼ 1�# wrongly placed FPs

# all FPs
¼ 1�Nfp þNfn �NCO

Ntp þNfp
:

ð20Þ

NCO denotes the number of cases where false negatives
(“missing links”) coincide with the appearance of false
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Fig. 5. Gray-value contrast is low in the “Apples” and “Flowers” image, so only ColSym detects the obvious symmetry of the apples and the flowers.
The Lena image offers good gray-value contrast, so both GraySym and ColSym are successful. FPs are located at the highest maxima of the
symmetry maps. Images: Apples: “food303” of [48], flowers: “flowers3762” of [48].



positives elsewhere, i.e., an FP temporarily shifted to

another location. NCO is subtracted to avoid two errors

being counted in this case, so Q � 0 holds. This procedure is

justified by the way FPs are generated from maxima of a

continuous saliency map: Since only the NFP highest

maxima are accepted, the NFP th and ðNFP þ 1Þth maxima

may easily change positions in the height ranking, which

leads to a “hopping” FP. Subtraction of NCO avoids such

errors being counted twice. In case all errors are due to

hopping FPs, Nfp ¼ Nfn ¼ NCO, so Q reduces to the

percentage of true positives of all FPs: Q ¼ Ntp=ðNtp þNfpÞ.

The problem of FP-tracking being subject to human

judgment is illustrated in Fig. 6, e.g., by the FP which

indicates, at first (frames 9 and10), the symmetry between the

blue tie and the red spot on the body of the figure. It moves

continuously toward the red spot and remains there from

frame 11 to 24. Here, the FP was considered false positive in

frames 9 and 10 because it shifts from a yellow to a red spot.

However, frames 9 and 10 could also be interpreted as stable

because the shift of the FP is a continuous movement.
FPs were generated for eight different objects of COIL-

100 over the entire 360�-range. The original resolution of
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Fig. 6. Testing FP-stability for 3D object rotation: An FP is counted as “stable” if it is located at the same part of the object over at least three
subsequent frames (true positives). Unstable FPs appearing only in one or two connected frames are false positives. An interruption of no more than
two frames in an otherwise stable chain of FPs is counted as false negative. NFP ¼ 6 is fixed for each frame. Image series: “obj17” of [47].



128
 128 was subsampled to 64
 64. All FP-detectors
reached good results:

QColSym ¼ 91:6%; QGraySym ¼ 90:3%;

QHarris ¼ 94:0%; QDaubechies4 ¼ 84:1%:

4.5 Repeatability for Varying Lighting

FP-stability against variations of lighting was tested using
the repeatability rate rð"Þ, (19). Images were acquired from
the “Baufix1-scenario” of the collaborative research project
“Situated Artificial Communicators” at Bielefeld Univer-
sity, Germany (see, e.g., [54], [7], [5], [61]). The objects are
wooden toy pieces of the Baufix1—system. These objects
are well-suited for a comparison of different types of
algorithms because they offer symmetries as well as corners
and edges. Fig. 7 shows an example for four different
lighting conditions (top to bottom): direct sunlight, diffuse
daylight on a cloudy day, diffused halogen lamps, and light
from five candles. For all four lighting conditions, images of
10 different Baufix-scenes, including single and assembled
pieces, were recorded.

For each algorithm, the Nbest ¼ 30 FPs were evaluated.
Since the candles attract some FPs, Nbest was increased by
this number individually for each algorithm in the last
experiment. The symmetry-based algorithms both detect
the holes, but only ColSym is able to also find the
symmetries of the colored bolt heads. Harris and Daube-
chies4 concentrate on corners and edges. Since none of the
lighting conditions are predetermined as a reference F1 (in
terms of Section 4.3), the repeatability rate rð" ¼ 3Þ was
averaged over the 12 pairs of different lighting conditions

(e.g., candles as F1 and sunlight as F2). The tolerance of
" ¼ 3 is chosen larger than in Section 4.3 because the
original scenes were built in sunlight and had to be
reconstructed on a cloudy day, which leads to slight
differences. The averaged repeatability rates are: ColSym
0.45, GraySym 0.48, Harris 0.18, and Daubechies4 0.14.

The superiority of the symmetry-based methods is
obvious and can partly be explained by the fact that long
edges do not offer outstanding points, so even small
changes in lighting make FPs move along edges. Most
important, however, for an actual recognition system is that
ColSym produces FPs on semantically meaningful visual
entities, as becomes clear in Section 5.

4.6 Judging Saliency

Finding ameasure for the “saliency” or “distinctiveness” of a

point is the most difficult task. Schmid et al. [57] compute

rotation invariants froma local jet ofGaussianderivatives [34]

as descriptors for local gray-value patterns around SPs. They

argue that most information is conveyedwithin a population

of observed SPs if the descriptors are not similar to each other

but spread out, which can bemeasured in terms of entropy.
However, this method has a serious drawback: Calcula-

tion of entropy requires that the descriptor space is parti-
tioned into cells, then the number of descriptors within the
cells is counted. Because of the curse of dimensionality, this is
possible only for a low-dimensional descriptor space—else
anenormousnumberof sample SPsanddescriptorswouldbe
needed.Therefore, in [57], only a four-dimensionaldescriptor
space is used, which leads to a poor representation of shape
around an SP in, e.g., a 20
 20-window.
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Fig. 7. Top to bottom: Direct sunlight from a window, diffuse daylight from a window on a cloudy day, diffused halogen lighting, five candles. To
increase difficulty, the camera color temperature was fixed to optimal for sunlight, so the cloudy daylight images appear bluish. The symmetry-based
algorithms both find holes, but the obvious symmetry of the colored bolt heads is detected only by ColSym. Harris and Daubechies4 detect corners
and edges, most of which do not facilitate recognition of the assembled objects.



Therefore, another method is used here to measure
distinctiveness of an observed FP population: The principal
components (PCs) of FP-centered windows are compared to
those centered at random points. Hancock et al. extracted the
“natural” PCs from gray-level images, i.e., the PCs of a
collection of randomly chosen image patches [18]. They used
a single layer feed forward neural network proposed by
Sanger [55] for the successive calculation of the PCs with the
largest eigenvalues. The d-dimensional training vectors ~xx 2
IRd represent the gray values of square image patches of d ¼
w
 wpixels fromwhich themean gray-value over all images
was subtracted. The net has one node for each PC with an
input weight vector ~WWi 2 IRd with i ¼ 1 . . .n for n different
PCs. The activation Vi of the nodes is calculated using the
linear function

Vi ¼
Xd
j¼1

Wijxj; i ¼ 1 . . .n: ð21Þ

After training by Sanger’s adaptation rule,

�Wij ¼ �Vi xj �
Xi�1

k¼1

VkWkj

 !
� ViWij

" #
; i ¼ 1 . . .n; ð22Þ

the weight vectors represent the PCs in the order of the
corresponding eigenvalues, beginning with the largest.

To evaluate the FP-detectors, the 12 PCs with the highest
eigenvalues were computed after (21) and (22) for ran-
domly chosen points (“natural PCs”) and for windows
centered by the four FP-algorithms. The window size was
63
 63, each window was masked by a Gaussian with
10 pixels standard deviation to avoid edge effects. As a
database, the photos-section of [48] was used which contains
over 89,000 photographs covering a large range of topics
like landscapes, cityscapes, people, animals, entertainment,
or sports to name but a few. Convergence was achieved
with a learning rate � decreasing exponentially from 1:0 to
0:01 over 5 � 106 adaptation steps. Images were chosen at
random from the collection, then 10 points were chosen
either randomly for the natural PCs or by the FP-detector
for FP-centered PCs. To ensure orthonormality of the
obtained weight vectors, Gram-Schmidt orthonormalization
[29] was carried out after the training. This has no visible
effect but makes the difference estimation outlined below
possible.

Fig. 8 clearly shows that the PCs of FP-centered windows
differ from the natural PCs. To quantify this difference, let
the orthonormalized natural PCs of the n largest eigenva-
lues be denoted by ~uu1 . . .~uun and the orthonormalized PCs of
FP-centered windows by ~vv1 . . .~vvn. Note that

~uui �~uuj ¼ �ij and ~vvi �~vvj ¼ �ij for i; j ¼ 1 . . .n: ð23Þ

The most simple approach to compare the sets f~uu1 . . .~uung
and f~vva . . .~vvngwould be to check howmany of the vectors~vvi
are within spanf~uu1 . . .~uung, i.e., which ~vvi are linear combina-
tions of the f~uu1 . . .~uung. This method, however, would be
inappropriate: Consider the first, Gaussian-like natural PC
~uu1. Even if ~vv1 was equal to ~uu1 for all but one pixel, ~vv1 would
probably not be within spanf~uu1 . . .~uung as long as n � d,
because the PCs with high eigenvalues mostly represent low
spatial frequencies. So, a high-frequency perturbation like

the single disrupted pixel of ~vv1 cannot be represented by
f~uu1 . . .~uung.

A better measure D for the “difference” between
f~uu1 . . .~uung and f~vv1 . . .~vvng is the mean square reconstruction
error of the ~uui in the basis f~vv1 . . .~vvng:

D ¼ 1

n
�
Xn
i¼1

k~uui �
Xn
j¼1

aij~vvjk2 with aij ¼ ~uui �~vvj: ð24Þ

For the evaluation, the n ¼ 12 PCs with the largest

eigenvalues were used since they capture most of the

variance within the windows and can be viewed as a

representation of the “typical” surroundings of the FPs.

Using the natural PCs as reference, the following

differences D were computed for the FP-centered PCs:

ColSymðR ¼ 10Þ 0:335; GraySymðR ¼ 10Þ 0:376;
ColSymðR ¼ 6Þ 0:244; GraySymðR ¼ 6Þ 0:267;
Harris 0:169; Daubechies4 0:0625:

A major advantage of the PC-based saliency judgment is
that visualization of the PCs facilitates interpretation
considerably. The smallest difference D to natural PCs
was found for Daubechies4. The reason becomes obvious in
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Fig. 8. PCs of randomly chosen windows of natural images (left) and of

windows chosen by the FP-detectors. Note the algorithm of Sanger

leads to PCs with random signs, so signs of the PCs were chosen to

facilitate visual comparison.



Fig. 8: Most of the PCs resemble the natural ones;
differences become visible only for higher spatial frequen-
cies (note spatial frequencies of the PCs roughly increase
with decreasing eigenvalues). This behavior is not surpris-
ing as FPs from Daubechies4 are located mostly on edges.

For Harris, the detector with second smallest D, even the
first PCs differ strongly from the natural PCs—but only in the
center of the window, which indicates the large amount of
focused corners. Apart from the center, the first three PCs are
almost equal to the natural PCs and, also, the PCs of higher
spatial frequencies resemble the natural ones, though slightly
out of order. A likely explanation for these effects is that
Harris works on a small scale and detects only relatively
simple structures. Windows detected by Harris mainly have
corners at the center, so this part is guaranteed to be different
from the averagewindow. But, sinceHarris does not evaluate
the area around corners, the rest of the focused windows are
not necessarily different from random windows. In other
words, corners are “special” only on the small scale detected
by Harris, but not on a larger scale—the surroundings of
corners look like other parts of an image, at least from a
statistical point of view.

The focused symmetric image windows are more “spe-
cial” than corners and edges in termsof (24). Fig. 8 showswhy
D is much higher for the symmetry-based algorithms: PCs of
both high and low-spatial frequencies differ considerably
from the natural PCs. Some of the PCs clearly reflect the
symmetry of the focused imagewindows.A larger symmetry
radius R increases this effect because it ensures that a larger
part of the focusedwindows is symmetricwhich increases the
“statistical difference” to random windows.

5 SAMPLE APPLICATION

The major benefit of ColSym is that FPs can be detected
even for low gray-value contrast. In the Baufix-scenario of
the collaborative research project SFB 360 at Bielefeld
University, detection of toy pieces within assemblies is
required in the context of a human-machine interaction
scenario, where a robot assembles the toy pieces guided by
hand gestures and speech from a human instructor. For
details see, e.g., [54], [7], [5], [61]. As many of the toy pieces
have similar gray values, color is necessary: Fig. 7 shows
that the symmetric colored bolt heads can be detected only
by ColSym, not by GraySym.

To verify that ColSym indeed simplifies the task of view-
based object recognition as outlined in Section 1.2, a simple
classification system was trained to recognize four classes of
parts of the objects which are relevant for the robot system:
Holes of bars, holes of nuts, holes of cubes, and heads of bolts.
FPs were generated and hand labeled on 80 sample images.
From the FP-centered windows, 20 PCs were calculated. As
pointed out in Section 1.1, the window size is application
specific; here it is approximately the size of a bolt head.
Projections of the sample windows onto the PCs were then
used to establish a simple nearest neighbor classifier C1. C1

reaches a rate of 89 percent correctly classified FPs on 30 test
images, including even difficult scenes, as shown in Fig. 9.
According to the requirements pointed out in Section 1.3,
most but not all FPs are well-positioned on objects. Ill-
positioned FPswere assigned to an additional rejection class.
The classifier puts no label on the FP in this case.

In a second experiment, the FP-detection was replaced by
random point generation. Of the random points, only those

were used which are on objects (not on background),
however, no particular position on the object was required.
From these windows, 20 PCs were calculated, then a nearest
neighbor classifier C2 was established from the (labeled)
window projections. On test samples, C2 yields only
23 percent correct classifications because the translatory
gitter of unfocused objects makes appearance much more
complex on the signal level.

This simple view-based recognition systemwas chosen to
demonstrate the use of stable FPs in away easy to reproduce.
For the actual robot scenario, a much more elaborate vision
system is used which is based on several modules for FP-
generation (including ColSym), subsequent feature extrac-
tion by local PCA and feature classification by several neural
networks. For details, see [22], [7], [26], [23], [25].

6 SUMMARY AND CONCLUSION

In this paper, the role of focus points (FPs) for view based
object recognition was outlined. The key features FPs must
have are stability, distinctiveness, and being located on
parts of objects which are relevant for recognition.

As a means to detect FPs, the algorithm ColSym was
proposed which is based on the context-free symmetry
measure (GraySym) used by Reisfeld et al. [53]. ColSym
exploits color to detect symmetries even when they are not
visible from gray-value contrast alone. It was shown that
other extensions of GraySym to color, which are simpler
than ColSym, do not work.

Together with two other algorithms, Harris and Daube-
chies4, both symmetry-based methods were evaluated for
the three criteria set up for FPs. All algorithms provide
good stability against noise and object rotation, but ColSym
and GraySym are considerably better for varying lighting.
To judge FP-distinctiveness free of context, the principal
components of FP-centered image windows were calculated
and compared to those of random windows. It turns out
that image windows focused by ColSym and GraySym are,
on average, more distinctive than corners and edges.
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Fig. 9. Application of ColSym in the framework of an object recognition
system. There are four classes: Holes in wooden bars, cubes, and
rhomb-shaped nuts plus bolt heads. The class “bolt head” has the
highest complexity, comprised of two different shapes and four different
colors. The exact location of the FPs allows good recognition rates even
for complex scenes. FPs classified as “unknown” have no label.



While the performance of ColSym is comparable to

GraySym in stability and distinctiveness, the major advan-

tage of ColSym is its usability: Stable FPs can be generated on

many semantically meaningful visual entities, in particular,

on colored objects which cannot be detected using GraySym.

Thismakes ColSym a usefulmodule in the view-based object

recognition systemoutlined shortly in Section 5. So, the initial

demand that FP-detectors must prove applicability in a real

vision system could be fulfilled. The examples show that

color symmetries coincide with meaningful objects not only

in the scenario of toy objects, but also in real world images.

Naturally, symmetry-basedFP-detection cannot guide visual

attention stand alone, so the cooperation with other saliency

features will be the topic of future investigation.

APPENDIX

THE DETECTOR OF HARRIS AND STEPHENS

The corner and edge detector proposed by Harris and
Stephens [21] is based on first derivatives of the signal Ix; Iy
(see (1)) from which a matrix A is calculated:

AðpÞ ¼
hI2xiWðpÞ hIxIyiWðpÞ
hIxIyiWðpÞ hI2y iWðpÞ

 !
: ð25Þ

Here, h iWðpÞ denotes a weighted averaging over a window

W ðpÞ centered at p. The weight function inside the window

is a Gaussian. A is an approximation of the autocorrelation

function of the signal, see, e.g., [57]. An SP is detected if

both eigenvalues of A are large. To reduce the computa-

tional effort, the saliency map is calculated from

MHarrisðpÞ ¼ detðAÞ � � � TraceðAÞð Þ2: ð26Þ

In the implementation used here, derivatives Ix; Iy are

computed by 5
 5-Sobel operators. A Gaussian with � ¼ 2

is used to weight the components of A within window W .

As suggested in [57], a value of 0:06 is used for the constant

� in (26).
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