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Research on stealthiness has become an important topic in the field of data integrity (DI) attacks. To construct stealthy DI attacks,
a common assumption in most related studies is that attackers have prior model knowledge of physical systems. In this paper, such
assumption is relaxed and a covert agent is proposed based on the least squares support vector regression (LSSVR). By estimating
a plant model from control and sensory data, the LSSVR-based covert agent can closely imitate the behavior of the physical plant.
Then, the covert agent is used to construct a covert loop, which can keep the controller’s input and output both stealthy over a finite
time window. Experiments have been carried out to show the effectiveness of the proposed method.

1. Introduction

Industrial control systems (ICSs) are widely deployed in
modern critical infrastructures (CIs), and their incapacita-
tion can cause serious damage to equipment, environment,
or even people’s lives [1]. During the past ten years, many
efforts have been made to improve the security of ICSs [2, 3].
Among the existing research on ICSs security, a great deal of
attention has been given to the study of stealthy data integrity
(DI) attacks [4, 5], which can violate the integrity of control
and sensory data. The purpose of such attacks is to disrupt
the physical process while remaining stealthy with respect to
anomaly detectors [6].

To construct stealthy DI attacks, a common assumption
in most related studies is that attackers have prior model
knowledge of physical systems. Kwon et al. [7] investigated
three kinds of stealthy deception attacks on a linear time-
invariant system with Gaussian noise. Their results showed
that if an attacker had perfect model knowledge of the target
system, he could carefully design a stealthy attack to avoid
being detected by the monitoring system. Pang et al. [8]
proposed stealthy false data injection (FDI) attacks for both
feedback and forward channels of the networked control
systems. It was assumed that the attacker knew the detailed

system parameters. Such assumption can also be found in
the recent work of Teixeira et al. [9], Sedghi and Jonckheere
[10], Manandhar et al. [11], and Dutta and Langbort [12].
In particular, in [9], the authors also considered a more
moderate scenario where the attacker’s model knowledge
contains some uncertainties. In [13], the authors presented a
covert agent structure and showed that the better the covert
agent’smodel of the plant, the easier it was for the covert agent
to hide its actions.

Besides the perfect model knowledge of physical systems,
there is a more rigorous assumption that attackers also have
other model knowledge of target systems. Cárdenas et al.
[14] studied three types of stealthy attacks that aimed at
raising the pressure in a tank without being detected. The
powerful attacker was assumed to have prior knowledge of
the exact plant model and the anomaly detection scheme.
In the work of Teixeira et al. [15], the model knowledge
was divided into three categories: the model of the physical
system, themodel of the feedback controller, and themodel of
the anomaly detector. Attacks constrained by different levels
of prior model knowledge were illustrated by experiments
on a quadruple-tank process control testbed. In [16], the
authors considered a stronger adversary who not only knew
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the physical model and the detection scheme, but also could
adapt to different detection thresholds.

As discussed before, most prior works on stealthy DI
attacks are based on various assumptions that attackers have
model knowledge of target systems at different levels. How-
ever, there is no description of how such model knowledge
can be obtained by an attacker. Although the assumptions of
model knowledge are very useful for identifying subtle and
stealthy malicious attacks, it may be difficult to acquire such
prior knowledge in many practical scenarios, where explicit
models of physical systems are usually not available directly
[17].

Recently, increasing attention has been paid to stealthy
DI attacks without the prior model knowledge of physical
systems. Unlike the studies discussed before, Yu and Chin
[18] proposed a principal component analysis (PCA) based
method to design blind FDI attacks, which did not need any
prior knowledge of Jacobian matrix in smart grid. Further-
more, Anwar andMahmood [19] clarified that the PCA based
blind attack strategy was only valid for the measurements
with Gaussian noises. In the case of gross errors, they
proposed the accelerated proximal gradient (APG) method
to circumvent the gross error issue and construct stealthy
attacks. Most recently in [20], the authors proposed a sparse
optimization based stealthy attacks construction strategy and
demonstrated how FDI attacks could be constructed blindly,
that is, without the system model knowledge. However,
unfortunately, these three studies were closely related to the
smart grid, and the proposed methods were designed for the
approximation of Jacobian matrix.

In the framework of a general dynamic cyberphysical
system (CPS), Yuan and Mo [21] applied the classical sys-
tem identification technique to the construction of stealthy
attacks. The spectral factorization based method was used
to identify the transfer function of the physical system by
observing the input-output data from the system. Further-
more, they proved a necessary condition and a sufficient
condition, under which the perfect model of the system
could be successfully identified. However, such conditions
are overly restrictive for widespread applications. In fact, it
is more realistic to consider that the identified model of the
system is not perfect. That is, there is a model error between
the identifiedmodel and the real systemmodel. Motivated by
this consideration, we explored the possibility that an attacker
can carry out stealthy DI attacks on the ICS by identifying a
not so perfect model of the system.

The most similar work to ours is the recent study of
Kim et al. [22], where a subspace estimation method was
used to estimate a system operating subspace from sensor
measurements. Based on the subspace information, stealthy
attacks could be constructed without the need of prior system
model knowledge. As shown in Figure 1(a), the unobservable
attack is launched by adding a corresponding perturbation
to the sensor data, and the modified sensor data can avoid
being detected by the anomaly detector. However, because
the ultimate objective of the attack is to disrupt the system’s
behavior, the controller’s output will be abnormal. Another
similar case is the replay attack, which also does not require
any prior knowledge. It gathers sequences of data for a certain

amount of time and afterwards just repeats the recorded data.
Teixeira et al. [15] introduced an interesting instance of this
attack scenario which consists of applying a physical attack to
the plant while using the replay attack to render the physical
attack stealthy. However, the replay attack on the sensor data
could also cause anomalies in the controller’s output, and this
point will be revealed later in our experiments.

Our goal is to design a covert agent to keep the controller’s
input and output both stealthy over a finite time window. To
this end, we propose a function estimation based covert agent
as shown in Figure 1(b). The proposed covert agent can be
used to construct a two-loop covert structure in Figure 1(c),
which consists of two loops: the covert loop and the attack
loop. In comparison, Figure 1(d) shows a typical structure
of the prior model knowledge based covert attack [13]. The
core idea of such structure is to calculate the attack effect
on the plant output measurements and subtract the effect
from the measured plant output. By contrast, in the two-loop
covert structure, the covert loop covers up the effect of the real
attack on the physical plant by closely imitating the expected
behavior of the physical plant over a finite time window. For
the sake of concentrating on the stealthiness, this paper will
be restricted to the construction of the covert loop and will
not deal with the attack loop.

The main contribution of this paper is the exploratory
attempt to establish the feasibility of machine learning based
stealthy DI attacks. In this paper, we use the least squares
support vector regression (LSSVR) to demonstrate that point.
The LSSVR has emerged as a popular data-driven modeling
method, and it has uniform approximation ability for any
complex nonlinear system [23]. As far as we know, there is
no LSSVR-based DI attack reported in the literature. Overall,
the contributions of this work are threefold. First, we give a
formal description of the LSSVR-based covert agent. Second,
we present the procedure of how to train a covert agent
model. Third, we provide a case study of a continuous stirred
tank heater (CSTH) pilot plant to illustrate and demonstrate
the effectiveness of the covert agent.

It is necessary to mention that the purpose of this work is
not to facilitate stealthy attacks but to disclose the potential
attacks, where the attackers do not need any prior model
knowledge of physical systems, and to encourage the corre-
sponding research of the defending methods. The rest of this
paper is organized as follows. Section 2 introduces the LSSVR
for function estimation. Section 3 gives the covert agent
model and the procedure of training the model. Section 4 is
an overview of the experiments, and the experimental results
are presented in Section 5. Finally, conclusions and future
work are summarized in Section 6.

2. Least Squares Support Vector
Regression (LSSVR)

The least squares support vector machine (LSSVM) is an
alteration of the standard support vector machine (SVM)
[24]. By changing the inequality constraints in SVR into
equality ones, the LSSVM method can avoid the long and
computationally difficult convex quadratic programming
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Figure 1: Schematic diagrams for the proposed covert agent and the closely related stealthy attacks. (a) The subspace estimation based
unobservable attack, (b) the proposed covert agent, (c) application of the proposed covert agent, and (d) the prior model knowledge based
covert structure.

and, thus, largely speeds up training. The LSSVM for regres-
sion is called LSSVR, which has been extended and applied to
forecasting bymany studies [25–27]. In this section,we briefly
introduce the LSSVR for function estimation.

Given training set {𝑥𝑘, 𝑦𝑘}𝑁𝑘=1, the regression function of
LSSVR can be defined as follows:

𝑦 (𝑥) = 𝑤𝑇𝜑 (𝑥) + 𝑏, (1)

where 𝑥 ∈ R𝑛, 𝑦 ∈ R, and 𝜑(⋅) is the mapping from
the original feature space to the high dimensional feature
space. 𝑤 is the coefficient vector and 𝑏 is a bias term. The
optimization problem of LSSVR is given as follows:

min
𝑤,𝑏,𝑒

𝐽 (𝑤, 𝑒) = 12𝑤𝑇𝑤 + 𝛾12
𝑁∑
𝑖=1

𝑒2𝑖
subjective to 𝑦𝑖 = 𝑤𝑇𝜑 (𝑥𝑖) + 𝑏 + 𝑒𝑖,

𝑖 = 1, 2, . . . , 𝑁,
(2)

where 𝛾 is the regularization parameter and 𝑒𝑖 is the slack
variable for 𝑥𝑖. The Lagrangian is constructed as follows:

𝐿 (𝑤, 𝑏, 𝑒, 𝛼) = 𝐽 (𝑤, 𝑒)
− 𝑁∑
𝑖=1

𝛼𝑖 {𝑤𝑇𝜑 (𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖} , (3)
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where 𝛼𝑖 (𝑖 = 1, 2, . . . , 𝑁) are the Lagrange multipliers. The
conditions for optimality are

𝜕𝐿𝜕𝑤 = 0 󳨀→ 𝑤 = 𝑁∑
𝑖=1

𝛼𝑖𝜑 (𝑥𝑖) ,
𝜕𝐿𝜕𝑏 = 0 󳨀→ 𝑁∑

𝑖=1

𝛼𝑖 = 0,
𝜕𝐿𝜕𝑒𝑖 = 0 󳨀→ 𝛼𝑖 = 𝛾𝑒𝑖, 𝑖 = 1, . . . , 𝑁,
𝜕𝐿𝜕𝛼𝑖 = 0 󳨀→ 𝑦𝑖 = 𝑤𝑇𝜑 (𝑥𝑖) + 𝑏 + 𝑒𝑖, 𝑖 = 1, . . . , 𝑁.

(4)

With the solution of

[ 0 1𝑇V1V Ω + 𝛾−1𝐼] [𝑏𝛼] = [0𝑦] , (5)

where 𝑦 = [𝑦1; . . . ; 𝑦𝑁], 1V = [1; . . . ; 1], and Ω𝑖𝑗 =𝜑(𝑥𝑖)𝑇𝜑(𝑥𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗), for 𝑖, 𝑗 = 1, . . . , 𝑁, the LSSVRmodel
for function estimation is

𝑦 (𝑥) = 𝑁∑
𝑖=1

𝛼𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏. (6)

The kernel function 𝐾(𝑥𝑖, 𝑥) is any symmetric function
that satisfies Mercer’s condition. In this study, the radial basis
function (RBF) is used as the kernel function due to its strong
nonlinear modeling ability.The RBF is formulated as follows:

𝐾(𝑥𝑖, 𝑥𝑗) = exp(−󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩22𝜎2 ) . (7)

Using RBF kernels, the LSSVR has only two tuning
parameters: the regularization parameter (𝛾) and the kernel
function parameter (𝜎), which is lesser than the tuning
parameters of standard SVR.

3. Covert Agent Based on LSSVR

3.1. Covert Agent Model. Suppose that the physical plant is
a linear time-invariant (LTI) process, which is modeled in a
discrete-time state-space form [28, 29]:

x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘,
y𝑘 = 𝐶x𝑘 + w𝑘, (8)

where x𝑘 ∈ 𝑅𝑚 is the state variable, u𝑘 ∈ 𝑅𝑞 is the
control input, and y𝑘 ∈ 𝑅𝑝 is the measurement vector. The
measurement noise w𝑘 ∈ 𝑅𝑝 is independent Gaussian noise
vector with zero mean and covariance 𝑄 > 0. The system
operates in closed loop and the control input u𝑘 is given by
the feedback controller:

u𝑘 = 𝐾 (y𝑘) , (9)

where𝐾 is the controller function thatmakes the closed-loop
system stable.

We now consider the case where the attacker can both
capture and inject the data transmitted via the network (i.e.,
y and u). The control and sensory data are recorded by the
attacker to generate the training dataset, which is described
by the following notation:

(i) 𝑇 = {1, 2, . . . , 𝑘, . . . , 𝑛} is a set of sampling instants
over a finite time window;

(ii) 𝑌 = {y1, . . . , y𝑘, . . . , y𝑛} is a dataset of output variables
captured over the sampling time window 𝑇;

(iii) 𝑈 = {u1, . . . , u𝑘, . . . , u𝑛} is a dataset of input variables
captured over the sampling time window 𝑇;

(iv) y𝑘 = {𝑦1𝑘 , . . . , 𝑦𝑗𝑘, . . . , 𝑦𝑝𝑘 } is a data record of output
variables at the 𝑘th time instant;

(v) u𝑘 = {𝑢1𝑘, . . . , 𝑢𝑖𝑘, . . . , 𝑢𝑞𝑘} is a data record of input
variables at the 𝑘th time instant;

(vi) 𝑦𝑗
𝑘
denotes the value of the 𝑗th output variable at the𝑘th time instant;

(vii) 𝑢𝑖𝑘 denotes the value of the 𝑖th input variable at the 𝑘th
time instant;

(viii) 𝐽 = {1, 2, . . . , 𝑗, . . . , 𝑝} is a set of output variables of
the physical plant;

(ix) 𝐼 = {1, 2, . . . , 𝑖, . . . , 𝑞} is a set of input variables of the
physical plant.

From the system model in (8), we have

y𝑘 = 𝐶x𝑘 + w𝑘,
y𝑘+1 = 𝐶𝐴x𝑘 + 𝐶𝐵u𝑘 + w𝑘+1. (10)

If 𝐶𝑇𝐶 is nonsingular, then we can obtain

y𝑘+1 − w𝑘+1 = 𝐶𝐴 (𝐶𝑇𝐶)−1 C𝑇 (y𝑘 − w𝑘) + 𝐶𝐵u𝑘. (11)

In order to reduce the effect of Gaussian noise, a wavelet
filter𝑊(⋅) is applied to the data.The filtered data are given by

ỹ𝑘+1 = 𝑊(y𝑘+1) ,
ỹ𝑘 = 𝑊(y𝑘) , (12)

and the estimated noises are

ŵ𝑘+1 = y𝑘+1 − 𝑊(y𝑘+1) ,
ŵ𝑘 = y𝑘 − 𝑊(y𝑘) . (13)

Based on (12) and (13), (11) can be rewritten as

ỹ𝑘+1 = 𝐶𝐴 (𝐶𝑇𝐶)−1 𝐶𝑇ỹ𝑘 + 𝐶𝐵u𝑘 + e𝑘+1, (14)

where

e𝑘+1 = 𝐶𝐴 (𝐶𝑇𝐶)−1 𝐶𝑇 (ŵ𝑘 − w𝑘) + w𝑘+1 − ŵ𝑘+1. (15)
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Figure 2: Procedure of training the covert agent model.

Assume that the signal noise can be well filtered by 𝑊(⋅)
and the error e𝑘+1 can be ignored. Then, (14) changes to

ỹ𝑘+1 ≈ 𝐶𝐴 (𝐶𝑇𝐶)−1 𝐶𝑇ỹ𝑘 + 𝐶𝐵u𝑘 = 𝐹 (ỹ𝑘, u𝑘) . (16)

Without the prior knowledge of 𝐴, 𝐵, and 𝐶, we use the
LSSVR to estimate 𝐹 of 𝐹 from the training data with the

input [ỹ𝑘, u𝑘] and the output ỹ𝑘+1. However, for each 𝑦𝑗
𝑘+1

in
ỹ𝑘+1, we donot have the knowledge of the relatedness between𝑦𝑗
𝑘+1

and the other variables. For the relatedness between 𝑦𝑗
𝑘+1

and u𝑘, we keep it loose and select all u𝑘 as the input data. For
the relatedness between 𝑦𝑗

𝑘+1
and ỹ𝑘, we select 𝑦𝑗𝑘 as the input,

for the reason that the sample 𝑦𝑗
𝑘
is heavily correlated with the
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Figure 5: Setups of the experiments. (a) The proposed covert agent and (b) the replay attack.

next sample𝑦𝑗
𝑘+1

in a physical process.Therefore, the function
estimation 𝐹 of 𝐹 is given by

𝐹 = {𝑓1, . . . , 𝑓𝑗, . . . , 𝑓𝑝} , (17)

where

𝑓𝑗 = LSSVR train (𝑦𝑗
𝑘+1

, [𝑦𝑗
𝑘
, u𝑘]) . (18)

Then, the prediction ̂̃y𝑛+1 of ỹ𝑛+1 can be expressed as

̂̃y𝑛+1 = {̂̃𝑦1𝑛+1, . . . , ̂̃𝑦𝑗𝑛+1, . . . , ̂̃𝑦𝑝𝑛+1} , (19)

where

̂̃𝑦𝑗𝑛+1 = {{{
𝑓𝑗 (𝑦𝑗𝑡

𝑠

, u𝑡
𝑠

) , 𝑛 = 𝑡𝑠,
𝑓𝑗 (̂̃𝑦𝑗𝑛, u𝑛) , 𝑛 > 𝑡𝑠, (20)

where 𝑡𝑠 is the start time when the physical plant is covered
by the covert agent. From (12) and (13), we have the output of
the covert agent, which is the estimation ŷ𝑛+1 of y𝑛+1; that is,

ŷ𝑛+1 = ̂̃y𝑛+1 + ŵ𝑛+1. (21)

3.2. Procedure of Training the Covert Agent Model. The
training of the covert agent model consists of three phases:(1) data recording phase, (2) model training phase, and (3)
output predicting phase. In the first phase, the control and
sensory data are recorded to generate a training dataset𝑌 and𝑈, which will be used to train the covert plant model in the
second phase. As shown in Figure 2, the dataset 𝑌 is firstly
preprocessed to generate the required data for training each
LSSVR model. Then, optimal parameters 𝛾 and 𝑐 for each
LSSVR are obtained through the automated grid search with𝑛-fold cross-validation [30] on the training data. Finally, the
outputs of this phase are 𝑝 LSSVR models; that is, there is a

LSSVRmodel for each output variable of the physical plant. In
the third phase, as described in the previous subsection, the
predictions ŷ are generated based on the LSSVR models, and
they are fed back to the controller to cover the real outputs of
the physical plant.

4. Experiment Overview

The covert loop is illustrated by a case study of a continuous
stirred tank heater (CSTH) pilot plant. In this section, the
CSTH Simulink platform is briefly introduced, and the
experiment setup is presented. Moreover, the assessment
method used to evaluate the experimental results is also
presented.

4.1. The CSTH Simulink Platform. The configuration of the
CSTH plant is shown in Figure 3. Hot water and cold water
aremixed in a stirred tank, heated by steam through a heating
coil, and drained from the tank through a long pipe. A more
detailed description of the CSTHmodel can be found in [31].

Our experiment is based on the CSTH Simulink model
with closed-loop control, which is provided byThornhill et al.
(http://personal-pages.ps.ic.ac.uk/∼nina/CSTHSimulation/
index.htm). Under the closed-loop control, the CSTHmodel
runs to a steady state from a nonsteady initial condition.
The steady-state valve positions and instrument conditions
in this experimental case are shown in Table 1 [31]. The
simulation input and output represent electronic signals on
4–20mA scale. The inputs to the CSTH are control signals of
the cold water and steam valves. The outputs are electronic
measurements from the temperature, level, and cold water
flow.

Based on the CSTH basic Simulink model, Gaussian
noises are added to the three outputs of the CSTH. Figure 4
shows the normal control signals and measurements under
the closed-loop control.The default simulation time is 1000 s,
and the default sampling rate is 3600 samples per hour

http://personal-pages.ps.ic.ac.uk/~nina/CSTHSimulation/index.htm
http://personal-pages.ps.ic.ac.uk/~nina/CSTHSimulation/index.htm
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Figure 6: Data from Observer 1 in the covert agent experiment.

(s/h). The “nonsteady” initial phase of the CSTH plant lasts
for about 150 seconds (s) and is excluded from all the
experiments in this paper.

4.2. Experiment Setup. The CSTH plant depicted in Figure 3
is simulated inMatlab/Simulink, and its execution starts with

the predefined base values. The covert agent is constructed
based on the LSSVR method, which is available in the
free LS-SVMlab toolbox (http://www.esat.kuleuven.be/sista/
lssvmlab). In addition, the cumulative sum (CUSUM) algo-
rithm is used to evaluate the stealthy time, which will
be introduced in the next subsection. The setups of the

http://www.esat.kuleuven.be/sista/lssvmlab
http://www.esat.kuleuven.be/sista/lssvmlab
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Figure 7: Data from Observer 2 in the covert agent experiment.

Table 1: Standard operating conditions.

Variables
Operating
conditions

(mA)

Variable in
simulations

Cold water
valve 12.96 𝑢1
Cold water
flow 11.89 𝑦2
Steam valve 12.57 𝑢2
Level 12.00 𝑦1
Temperature 10.50 𝑦3

experiments are illustrated in Figure 5. In order to better
assess the stealthiness of the covert agent, we use the replay
attack as a comparison and set up two observers to get the
experimental data in the simulation. Observer 1 is used to

capture the sensor data (i.e., 𝑦1, 𝑦2, and 𝑦3), and Observer
2 is used to capture the output of the controller (i.e., 𝑢1 and𝑢2).
4.3. Assessment Method. In order to evaluate experimental
results, the stealthy time 𝜏 is used, and it is defined as

𝜏 = 𝑡𝑒 − 𝑡𝑠, (22)

where 𝑡𝑠 is the start time of the covert agent or the replay
attack and 𝑡𝑒 is the time when an anomaly is detected. A
longer stealthy time is favorable to the attackers, as they can
have more time to make the physical plant go into an unsafe
state while remaining stealthy with respect to the anomaly
detectors. In this paper, the anomaly detector is designed
based on the CUSUM algorithm, which is one of the most
commonly used algorithms for change detection problems
[14]. Mathematical details of the CUSUM method can be
found in [32].
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Figure 8: Data from Observer 1 in the replay attack experiment.
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Figure 9: Data from Observer 2 in the replay attack experiment.

5. Experimental Results

In this study, we capture data from the two observers within
the time window [201 s, 400 s] in a normal process and use
them as the training or replaying data in the experiments.
In order to get the statistical results, we run 100 simulations
for the covert agent and the replay attack, respectively. In
each individual simulation run, the covert agent or the replay
attack starts at a random time 𝑡, where 500 s ⩽ 𝑡 ⩽ 800 s (time
is discrete), and persists for 200 seconds.

To get the corresponding stealthy time, the CUSUM
algorithm is applied to the data that are obtained from the
two observers in the simulations. The thresholds in CUSUM
algorithm are determined based on the normal data in the
timewindow ranging from 200 s to 1000 s, and each threshold
is selected under the condition that it will not cause any false
alarm on the normal data. In this section, we first introduce
a covert agent experiment and a replay attack experiment.
Then, we give the statistical results of all the experimental
tests.

5.1. The Covert Agent and Replay Attack Experiments. In the
two experiments, the covert agent and the replay attack are
both started at the time 𝑡 = 501 s. Figures 6 and 7 show the
results of the covert agent experiment. Figures 6(a) and 7(a)
show a comparison of data with and without a covert agent,
and Figures 6(b) and 7(b) show the detection of the changes
using the CUSUM algorithm. In comparison, Figures 8 and 9
show the results of the replay attack experiment.

From Figures 6 and 8, we can see that the covert agent
is able to imitate the behaviors of the three output variables
over a finite time window, just like the replay attack does.
What is more, the peaks of the CUSUM standard errors in
the covert agent experiment are smaller than the ones in
the replay attack experiment, which means that the covert
agent has better stealthiness and can avoid being detected by
the CUSUM with a lower threshold. From Figures 7 and 9,
we can see that the covert agent can also keep the control
output stealthy, but the replay attack causes anomalies in the
controller’s output.
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Figure 10: Statistical results of the covert agent experiments.

5.2. Statistical Results. Figure 10 shows the statistical results
of the 100 simulations on the covert agent. Figure 10(a)
provides the number distributions of the stealthy time by his-
tograms, and Figure 10(b) gives the proportion distributions
by the empirical cumulative distribution function (CDF).
The empirical CDF 𝐹(𝑥) is defined as the proportion of the
values less than or equal to 𝑥. As can be seen, the stealthy
time is longer than 40 seconds in most of the covert agent
simulations. Figure 11 shows the statistical results of the
100 simulations on the replay attack. Although the replayed
sensor data can avoid being detected by the CUSUMdetector,
it is more likely to induce an abnormal behavior in the
controller’s output. More specifically, for the control variable

𝑢1, the stealthy time is no more than 40 seconds in all the
replay attack simulations.

6. Conclusions and Future Work

This paper has investigated the design problem of machine
learning based stealthy DI attacks on industrial control
systems. A LSSVR-based covert agent has been presented to
estimate the model of the physical system, by which attackers
can carry out a stealthy DI attack without the need of prior
model knowledge of the physical system. The experimental
results demonstrate that the covert loop can keep the control
output and sensor data both stealthy over a finite time
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Figure 11: Statistical results of the replay attack experiments.

window. For future work, the proposed covert agent can be
further extended to a two-loop covert structure, in which an
attack agent can be added. In addition, it is also interesting
to investigate the detecting methods of the LSSVR-based
attacks.
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