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This paper overviews the study of skew Θ-𝜆-constacyclic codes over finite fields and finite commutative chain rings. The structure
of skew Θ-𝜆-constacyclic codes and their duals are provided. Among other results, we also consider the Euclidean and Hermitian
dual codes of skew Θ-cyclic and skew Θ-negacyclic codes over finite chain rings in general and over F𝑝𝑚 + 𝑢F𝑝𝑚 in particular.
Moreover, general decoding procedure for decoding skew BCH codes with designed distance and an algorithm for decoding skew
BCH codes are discussed.

1. Introduction

Reliable communication has been an unavoidable problem
for a long time. Before 1948, communication was strictly
an engineering discipline. However, there was very little
scientific to develop a system to understand it. In 1948,
Shannon’s1 landmark paper “A Mathematical Theory of
Communication” [1] on the mathematical theory of com-
munication, which showed that good codes exist, gave birth
to information theory and coding theory. Coding theory
is applicable in many situations that involve a common
feature that a sender wants to send a message to a receiver
through a noisy-channel. When the receiver has a message, it
might contain some errors. Therefore, rather than sending it
directly, the sender will encode it and send it to a decoder that
estimates the message to give the receiver. Figure 1 describes
a communication channel that transmits information from a
source to a destination through a system.

Shannon’s noisy-channel coding theorem ensures that
our hopes of getting the correct messages to the users will
be fulfilled a certain percentage of the time. Based on the
characteristics of the communication channel, it is possible to

build the right encoders and decoders so that this percentage,
although not 100%, can be made as high as we desire. How-
ever, the proof of Shannon’s noisy-channel coding theorem is
probabilistic and only guarantees the existence of such good
codes. No specific codes were constructed in the proof that
provides the desired accuracy for a given channel. The main
goal of coding theory is to establish good codes that fulfill
the assertions of Shannon’s noisy-channel coding theorem.
During the last 50 years, while many good codes have been
constructed, but only from 1993, with the introduction of
turbo codes2, the rediscoveries of LDPC codes3, and the study
of related codes and associated iterative decoding algorithms,
researchers started to see codes that approach the expectation
of Shannon’s noisy-channel coding theorem in practice.

In real life, the noise is unavoidable, so we want to
DETECT if there is an error and CORRECT if there is one.
In 1950, a colleague of Shannon, Hamming4, developed a
ground-breaking idea in his famous paper “Error Detecting
and Error Correcting Codes” [2]. The ground-breaking idea
in Hamming’s paper describes a single error correcting
code.5 A simple extension of this code is also discovered by
Hamming in [2]. For more details, we refer the readers to [2].
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The classes of cyclic and negacyclic codes in particular,
and constacyclic codes in general, play a very significant role
in the theory of error correcting codes. All 𝜆-constacyclic
codes of length 𝑛 are classified as ideals ⟨𝑓(𝑥)⟩ of F[𝑥]/⟨𝑥𝑛 −
𝜆⟩, where 𝑓(𝑥) is a divisor of 𝑥𝑛 − 𝜆. Due to their rich
algebraic structure, constacyclic codes can be efficiently
encoded using shift registers, which explains their preferred
role in engineering.

In fact, cyclic codes are the most studied of all codes.
Many well-known codes, such as BCH, Kerdock, Golay,
Reed-Muller, Preparata, Justesen, and binary Hamming
codes, are either cyclic codes or constructed from cyclic
codes. Cyclic codes over finite fields were first studied in the
late 1950s by Prange [4–7], while negacyclic codes over finite
fields were initiated by Berlekamp in the late 1960s [8, 9].The
case when the code length 𝑛 is divisible by the characteristic
𝑝 of the field yields the so-called repeated-root codes, which
were first studied since 1967 by Berman [10] and then in the
1970s and 1980s by several authors such as Massey et al. [11],
Falkner et al. [12], Roth and Seroussi [13], Castagnoli et al.
[14], and van Lint [15].

In 2007, Boucher et al. initiated [3] the study of skew cyclic
codes. They generalized the notion of cyclic codes by using
generator polynomials in noncommutative skew polynomial
rings. In 2008 and 2011, Boucher andUlmer [16, 17] continued
to study skew Θ-𝜆-constacyclic codes over Galois rings and
codes as modules over skew polynomial rings.

In [16], Boucher et al. generalized the construction of
linear codes via skew polynomial rings by using Galois
rings instead of finite fields as coefficients. If finite fields
are replaced by Galois rings, then the technical difficulty in
studying from finite fields alphabet to Galois rings alphabet
is that the skew polynomial rings are not Ore rings. They are
neither left nor right Euclidean rings. However, left and right
divisor can be defined for some suitable elements. Therefore,
in [16], self-dual codes over GR(42) are constructed and used
for three applications: self-dual Euclidean codes give self-
dual Z4 codes by projection on a trace orthogonal basis,
self-dual Hermitian codes build 3-modular lattices, and self-
dual Hermitian codes yield self-dual quasi-cyclic codes over
Z4 by the cubic construction. For more details, we refer the
readers to [16] and the references therein. Boucher andUlmer
also studied the factorization of skew polynomial in skew
polynomial rings [18].These results allowed them to study the
skew self-dual cyclic codes with length 2𝑠.

The class of finite rings of the form F𝑝𝑚 + 𝑢F𝑝𝑚 has been
widely used as alphabets of certain constacyclic codes. For
example, the structure of F2 + 𝑢F2 is interesting; it is lying
between F4 andZ4 in the sense that it is additively analogous
to F4 andmultiplicatively analogous toZ4. It has been studied
by a lot of researchers (see, e.g., [19–24]). The classification

of codes plays an important role in studying their structures,
but, in general, it is very difficult. Only some codes of certain
lengths over certain finite fields or finite chain rings are
classified. All constacyclic codes of length 2𝑠 over the Galois
extension rings of F2 + 𝑢F2 are classified and their detailed
structures are also established in [25].

In 2012, Jitman et al. [26] introduced the notion of
skew Θ-𝜆-constacyclic (or skew constacyclic) codes over
finite chain rings. They studied the structure of skew Θ-
𝜆-constacyclic, the Euclidean, and Hermitian dual codes of
skew Θ-cyclic and negacyclic codes over finite chain rings.
The goal of this survey is to study skew Θ-𝜆-constacyclic
codes over finite fields and finite chain rings.

This paper is arranged as follows. Basic concepts are
reviewed in Section 2. After presenting preliminary concepts
in Section 2, we study skew Θ-negacyclic, cyclic, and Θ-𝜆-
constacyclic codes over finite fields in Section 3. We also
introduce some results for Euclidean andHermitian self-dual
codes over finite fields. In Section 4, general decoding proce-
dure for decoding skew BCH codes with designed distance
is provided. We also discuss an algorithm for decoding skew
BCH codes. Finally, in Section 5, we consider the structure
of skew Θ-𝜆-constacyclic codes over finite chain rings. The
Euclidean and Hermitian dual codes over finite chain rings
are also exhibited in this section.

2. Preliminaries

2.1. Finite Fields and Their Automorphisms. In this subsec-
tion, we will not give entire properties of finite fields and their
automorphisms; rather we will only introduce without proofs
some properties of finite fields and their automorphisms that
are needed in our consideration later.

Definition 1. Let F be a finite field with multiplicative identity
1. The characteristic of F is the least positive integer 𝑝 such
that 𝑝 ⋅ 1 = 0. Such 𝑝 always exists for a finite field and it is
well known that the characteristic 𝑝must be a prime.

Theorem 2. A finite field F of characteristic 𝑝 contains 𝑝𝑛
elements for some integer 𝑛 ≥ 1. For every element 𝛽 of a finite
field F with 𝑝𝑚 elements, we have 𝛽𝑝

𝑚

= 𝛽.

Definition 3. An element 𝛼 in a finite field F𝑝𝑚 is called
a primitive element (or generator) of F𝑝𝑚 if F𝑝𝑚 = {0, 𝛼,

𝛼
2
, . . . , 𝛼

𝑝
𝑚

−1
}.

Example 4. F5 has 2 primitive elements, namely, 2 and 3. F4
has 2 primitive elements. In fact, expressing F4 as F2(𝛼) =

{0, 1, 𝛼, 𝛼 + 1}, where 𝛼2 + 𝛼 + 1 = 0, then 𝛼 and 𝛼 + 1 are
primitive elements of F4.
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Note that an automorphism 𝜑 of a field F is a bijection
𝜑 : F → F such that 𝜑(𝑎 + 𝑏) = 𝜑(𝑎) + 𝜑(𝑏) and 𝜑(𝑎𝑏) =
𝜑(𝑎)𝜑(𝑏) for all 𝑎, 𝑏 ∈ F . Suppose that F𝑝𝑚 is a finite field of
characteristic 𝑝 > 0, and then the map 𝜑𝑝 : F𝑝𝑚 → F𝑝𝑚 is
defined by 𝜑𝑝(𝑥) = 𝑥

𝑝, the Frobenius automorphism of F𝑝𝑚 .
Since F𝑝𝑚 is a field of characteristic 𝑝, we have 𝜑𝑝(𝑎 + 𝑏) =

(𝑎+𝑏)
𝑝
= 𝑎
𝑝
+𝑏
𝑝
= 𝜑𝑝(𝑎)+𝜑𝑝(𝑏). From 𝜑𝑝(𝑎𝑏) = (𝑎𝑏)

𝑝
= 𝑎
𝑝
⋅

𝑏
𝑝
= 𝜑𝑝(𝑎)𝜑𝑝(𝑏), we can see that𝜑𝑝 is a field homomorphism.

Similarly, the map 𝜑𝑝𝑡 : F𝑝𝑚 → F𝑝𝑚 defined by 𝜑𝑝𝑡(𝑥) =

𝑥
𝑝
𝑡

is also a field homomorphism.The set of automorphisms
of F𝑝𝑚 forms a group under composition which we denote as
Aut(F𝑝𝑚). Next, we give the following theorem characterizing
this group.

Theorem 5 (see [27,Theorem 3.6.1]). (i) If F𝑝𝑚 is a finite field,
then Aut(F𝑝𝑚) is a cyclic group of order 𝑚 and is generated by
Frobenius automorphism 𝜑𝑝.

(ii) The prime subfield of F𝑝𝑚 is precisely the set of elements
in F𝑝𝑚 such that 𝜑𝑝(𝛼) = 𝛼.

(iii) The subfield F𝑞 of F𝑞𝑡 is precisely the set of elements in
F𝑞𝑡 such that 𝜑𝑝(𝛼) = 𝛼, where 𝑞 = 𝑝

𝑚.

Theorem 6 (see [27, Theorem 3.6.2]). If F1 = F𝑝𝑘 ⊂ F2 = F𝑝𝑛 ,
then Aut(F2/F1) is a cyclic group of order 𝑛/𝑘 and is generated
by 𝜑𝑝𝑘 .

2.2. Codes, Cyclic Codes, Generator, and Parity-Check Matri-
ces. Let F𝑝𝑚 be a finite field. A linear (𝑛, 𝑘)-code over F𝑝𝑚 is a
𝑘-dimensional vector subspaceC of the vector space

𝑉 = F
𝑛

𝑝𝑚
= {(𝑎0, . . . , 𝑎𝑛−1) | 𝑎𝑖 ∈ F𝑝𝑚} . (1)

In this paper, all codes are assumed to be linear codes unless
otherwise stated. We use polynomial representation of the
code 𝐶, where we identify codewords (𝑎0, . . . , 𝑎𝑛−1) ∈ 𝐶 with
coefficient tuples of polynomials:

𝑐0 + 𝑐1𝑥 + ⋅ ⋅ ⋅ + 𝑐𝑛−1𝑥
𝑛−1

∈ F𝑝𝑚 [𝑥] . (2)

Those polynomials can also be seen as elements of a quotient
ring F𝑝𝑚[𝑥]/⟨𝑥

𝑛
− 1⟩, and any code 𝐶 of length 𝑛 over F𝑝𝑚

corresponds to a subset of F𝑝𝑚[𝑥]/⟨𝑥
𝑛
− 1⟩.

Example 7. The polynomial 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2
+ ⋅ ⋅ ⋅ +

𝑎𝑛−1𝑥
𝑛−1 of degree at most 𝑛 − 1 over finite field F𝑝𝑚 may be

regarded as the word V = 𝑎0𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑎𝑛−1 of length 𝑛 in F𝑛
𝑝𝑚
.

If 𝑛 = 6, then the polynomial 1 + 𝑥 + 𝑥
2
+ 𝑥
3
+ 𝑥
5 may be

regarded as the word 𝑐 = 111101. Similarly, the polynomial
1 + 𝑥
3
+ 𝑥
4
+ 𝑥
5 may be regarded as the word V = 100111.

Definition 8. Let 𝑐 be a word of length 𝑛, and the cyclic shift
𝜏(𝑐) the word of length 𝑛:

𝜏 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) = (𝑐𝑛−1, 𝑐0, . . . , 𝑐𝑛−2) . (3)

A code 𝐶 is said to be cyclic if 𝜏(𝑐) ∈ 𝐶, for all 𝑐 ∈ 𝐶.

Example 9. Let 𝐶 = {000, 111, 121, 222, 012, 120, 201, 021,

102, 210} be a linear code over Z3. It is easy to see that 𝜏(𝑐) ∈
𝐶, ∀𝑐 ∈ 𝐶. This implies that 𝐶 is a linear cyclic code over Z3.

Let 𝐶1 = {021, 012, 000, 112, 121, 100, 212, 221, 200} be
a linear code over Z3. Since 𝜏(112) = 211 ∉ 𝐶1, we can
conclude that 𝐶1 is not cyclic code.

Definition 10. A code 𝐶 is said to be a 𝜆-constacyclic code
of length 𝑛 if it is closed under the 𝜆-constacyclic shift 𝜏𝜆 :

F𝑛
𝑝𝑚

→ F𝑛
𝑝𝑚

defined by

𝜏𝜆 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) = (𝜆𝑐𝑛−1, 𝑐0, . . . , 𝑐𝑛−2) . (4)

In particular, when 𝜆 = 1 or 𝜆 = −1, such codes are called
cyclic and negacyclic codes, respectively.

We now give some properties of cyclic code. The follow-
ing results are well known (cf. [27]).

Theorem 11 (see [27, Theorem 4.2.1]). Let 𝐶 be a nonzero
cyclic code in F𝑝𝑚[𝑥]/⟨𝑥𝑛−1⟩.There exists a polynomial 𝑔(𝑥) ∈
𝐶 with the following properties:

(i) 𝑔(𝑥) is the unique monic polynomial of minimum
degree in 𝐶, and it is called the generating polynomial
for 𝐶.

(ii) 𝐶 = ⟨𝑔(𝑥)⟩.
(iii) The generating polynomial 𝑔(𝑥) divides 𝑥𝑛 − 1.
(iv) If deg𝑔(𝑥) = 𝑟, then 𝐶 has dimension 𝑛 − 𝑟 and

{𝑔(𝑥), 𝑥𝑔(𝑥), . . . , 𝑥
𝑛−𝑟−1

𝑔(𝑥)} is a basis for 𝐶.
(v) Every element of 𝐶 is uniquely expressible as a product

𝑓(𝑥)𝑔(𝑥), where 𝑓(𝑥) = 0 or deg𝑓(𝑥) < 𝑛 − 𝑟, that is,
𝐶 = ⟨𝑔(𝑥)⟩ = {𝑓(𝑥)𝑔(𝑥) | deg𝑓(𝑥) < 𝑛 − 𝑟}.

(vi) If 𝑔(𝑥) = 𝑔0 + 𝑔1𝑥 + ⋅ ⋅ ⋅ + 𝑔𝑟𝑥
𝑟, then 𝑔0 ̸= 0 and 𝐶 has

the following generator matrix:

𝐺 fl
(
(
(

(

𝑔0 𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑟 0 0 ⋅ ⋅ ⋅ 0

0 𝑔0 𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑟 0 ⋅ ⋅ ⋅ 0

0 0 𝑔0 𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑟 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 ⋅ ⋅ ⋅ 0 𝑔0 𝑔1 𝑔2 ⋅ ⋅ ⋅ 𝑔𝑟

)
)
)

)

⇐⇒(

𝑔(𝑥)

𝑥𝑔 (𝑥)

d

𝑥
𝑛−𝑟−1

𝑔 (𝑥)

) .

(5)

From this theorem, we can see that 𝐶 is a nonzero cyclic
code in F𝑝𝑚[𝑥]/⟨𝑥

𝑛
− 1⟩ and 𝑔(𝑥) is the monic polynomial of

minimum degree in 𝐶 if and only if 𝐶 = ⟨𝑔(𝑥)⟩, and 𝑥𝑛 − 1 is
divisible by 𝑔(𝑥).

Let 𝐶 be a cyclic code in F𝑝𝑚[𝑥]/⟨𝑥
𝑛
− 1⟩ with gen-

erator polynomial 𝑔(𝑥), such that deg𝑔(𝑥) = 𝑟. Let
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ℎ(𝑥) = (𝑥
𝑛
−1)/𝑔(𝑥) = ∑

𝑛−𝑟

𝑖=0
ℎ𝑖𝑥
𝑖. Then a parity-check matrix

for 𝐶 is given by

𝐻

fl (
(

(

ℎ𝑛−𝑟 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ0 0 0 ⋅ ⋅ ⋅ 0

0 ℎ𝑛−𝑟 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ0 0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅ 0 ℎ𝑛−𝑟 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ𝑛−𝑟 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ℎ0

)
)

)

.

(6)

Example 12. Let 𝐶 be a cyclic code of length 𝑛 = 9 over the
binary field F2. Put 𝑔(𝑥) = 𝑥

6
+ 𝑥
3
+ 1. Then we have ℎ(𝑥) =

𝑥
3
− 1. We can see that 𝐶 has dimension 3 and generating

matrix is given by

𝐺 fl (

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

) . (7)

Hence, a parity-check matrix for 𝐶 is given by

𝐻 fl
(
(
(
(
(

(

1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1

)
)
)
)
)

)

. (8)

Definition 13. (i) The Hamming distance 𝑑𝐻(𝑥, 𝑦) between
two vectors 𝑥, 𝑦 ∈ F𝑛

𝑝𝑚
is defined to be the number of

coordinates in which 𝑥 and 𝑦 differ.
(ii)TheHamming weight𝑤𝐻(𝑥) of a vector 𝑥 ∈ F𝑛

𝑝𝑚
is the

number of nonzero coordinates in 𝑥.
(iii) For a code 𝐶 containing at least two words, the

minimum distance of a code 𝐶, denoted by 𝑑(𝐶), is

𝑑 (𝐶) = min {𝑑 (𝑥, 𝑦) , 𝑥, 𝑦 ∈ 𝐶, 𝑥 ̸= 𝑦} . (9)

It is easy to see that the definition of distance satisfies
nonnegativity, symmetry, and the triangle inequality, so our
code 𝐶 is living in a metric space.

Example 14. Let 𝐶 = {00000, 00111, 11111} be a binary code.
Then we have

𝑑𝐻 (00000, 00111) = 3;

𝑤𝐻 (00111) = 3.

(10)

We can see that

𝑑 (00000, 00111) = 3;

𝑑 (00111, 11111) = 2;

𝑑 (00000, 11111) = 5.

(11)

This shows that 𝑑(𝐶) = 2.

The following theorem gives a relationship between min-
imum distance 𝑑 and the minimum weight of the nonzero
codewords of a linear code 𝐶.

Theorem 15 (see [27, Theorem 1.4.2]). If 𝑥, 𝑦 ∈ F𝑛
𝑝𝑚
, then

𝑑(𝑥, 𝑦) = 𝑤𝑡(𝑥, 𝑦). If 𝐶 is a linear code, the minimum distance
𝑑 is the same as the minimumweight of the nonzero codewords
of 𝐶.

2.3. The Skew Polynomial Ring F𝑝𝑚[𝑥; Θ]. Now let Θ be an
automorphism of F𝑝𝑚 . We consider the set F𝑝𝑚[𝑥; Θ] =

{𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝑥
𝑛
| 𝑎𝑖 ∈ F𝑝𝑚 , 𝑛 ∈ N} of formal

polynomials where coefficients are written on the left of the
variable 𝑥. The set F𝑝𝑚[𝑥; Θ] forms a ring under the usual
addition of polynomials and the multiplication is defined by
the following basic rule: 𝑥𝑎 = Θ(𝑎)𝑥. The multiplication
is extended to all elements in F𝑝𝑚[𝑥; Θ] by associativity and
distributivity. The ring F𝑝𝑚[𝑥; Θ] is called a skew polynomial
ring over F𝑝𝑚 , and each element in F𝑝𝑚[𝑥; Θ] is called a
skew polynomial. It is easy to see that the ring F𝑝𝑚[𝑥; Θ] is
noncommutative unless Θ is the identity automorphism on
F𝑝𝑚 . If𝑓(𝑥) = 𝑎0+𝑎1𝑥+⋅ ⋅ ⋅+𝑎𝑛𝑥

𝑛 with 𝑎𝑛 ̸= 0, thenwe say that
𝑓(𝑥) has degree 𝑛, denoted by deg(𝑓(𝑥)). The following facts
are straightforward for the skew polynomial ring F𝑝𝑚[𝑥; Θ]:

(i) It has no nonzero zero-divisors,

(ii) the units of F𝑝𝑚[𝑥; Θ] are the units of F𝑝𝑚 ,

(iii) deg(𝑓 + 𝑔) ≤ max{deg(𝑓), deg(𝑔)},

(iv) deg(𝑓 ⋅ 𝑔) = deg(𝑓) + deg(𝑔).

Recall that a left (right) ideal 𝐼 of a ring 𝑅 is called a left
(right) principal ideal if there exists an element 𝑔 ∈ 𝐼 such that
𝐼 = ⟨𝑔⟩, where ⟨𝑔⟩ = {𝑟 ⋅ 𝑔 (𝑔 ⋅ 𝑟) : 𝑟 ∈ 𝑅}. The element 𝑔 is
called a generator of 𝐼 and 𝐼 is said to be generated by𝑔. A ring
𝑅 is called a left (right) principal ideal ring if every left (right)
ideal of 𝑅 is principal. The skew polynomial ring F𝑝𝑚[𝑥; Θ]

is left and right Euclidean ring whose left and right ideals
are principal. For 𝑓(𝑥), 𝑔(𝑥) ∈ F𝑝𝑚[𝑥; Θ] which are nonzero,
there exists unique polynomial ℎ(𝑥), 𝑟(𝑥) ∈ F𝑝𝑚[𝑥; Θ] such
that 𝑓(𝑥) = ℎ(𝑥)𝑔(𝑥) + 𝑟(𝑥). If 𝑟(𝑥) = 0, then 𝑔(𝑥) is a right
divisor of 𝑓(𝑥) in F𝑝𝑚[𝑥; Θ]. The definition of left divisor in
F𝑝𝑚[𝑥; Θ] is similar.

The centre 𝑍(F𝑝𝑚[𝑥; Θ]) of the skew polynomial ring
F𝑝𝑚[𝑥; Θ] is the set of all elements that commutewith all other
elements of F𝑝𝑚[𝑥; Θ]. An element 𝑓 ∈ 𝑍(F𝑝𝑚[𝑥; Θ]) is called
a central element. An automorphism Θ ∈ Aut(F𝑝𝑚) is said to
fix an element 𝛼 ∈ F𝑝𝑚 if Θ(𝛼) = 𝛼. We denote FΘ

𝑝𝑚
⊂ F𝑝𝑚 the

subfield of elements of F𝑝𝑚 which are fixed byΘ.Then the ring
FΘ
𝑝𝑚
[𝑥] is a commutative subring of F𝑝𝑚[𝑥; Θ]. A polynomial

𝑓 ∈ F𝑝𝑚[𝑥; Θ] is central element if and only if 𝑓 is both in
FΘ
𝑝𝑚

and in F𝑝𝑚[𝑥
𝑚
], where F𝑝𝑚[𝑥

𝑚
] = {𝑎0 + 𝑎1𝑥

𝑚
+ ⋅ ⋅ ⋅ +

𝑎𝑑𝑥
𝑚𝑑
, 𝑑 ∈ N, 𝑎𝑖 ∈ F𝑝𝑚}. In other words, a polynomial 𝑃 ∈

F𝑝𝑚[𝑥; Θ] is central element (i.e., commutes with all elements
of F𝑝𝑚[𝑥; Θ]) if and only if 𝑃 = ∑

𝑚

𝑖=0
𝑐𝑖𝑋
𝑖𝛼
∈ F𝑝𝑚[𝑥; Θ], where

𝛼 = |⟨Θ⟩| is the order of Θ [28, Theorem II.12].
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3. Structure and Duals of Skew Constacyclic
Codes over Finite Fields

In this section, we study skew Θ-𝜆-constacyclic codes over
finite fields.We extend thework of Boucher et al. (in 2007) [3]
on skew cyclic codes. For more details, we refer the readers
to [3] and the references therein. We first introduce the
definition of skew Θ-𝜆-constacyclic codes over finite fields.

Definition 16. Given an automorphism Θ of F𝑝𝑚 and a unit 𝜆
in F𝑝𝑚 , a code 𝐶 is said to be skew Θ-𝜆-constacyclic of length
𝑛 if it is closed under the skew Θ-𝜆-constacyclic shift 𝜏Θ,𝜆 :

F𝑛
𝑝𝑚

→ F𝑛
𝑝𝑚

defined by

𝜏Θ,𝜆 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

= (Θ (𝜆𝑐𝑛−1) , Θ (𝑐0) , . . . , Θ (𝑐𝑛−2)) .

(12)

In particular, when 𝜆 = 1 or 𝜆 = −1, such codes are
called skewΘ-cyclic and skewΘ-negacyclic codes, respectively.
WhenΘ is the identity automorphism, they become classical
constacyclic cyclic, cyclic, andnegacyclic codes. A right factor
of degree 𝑛 − 𝑘 of 𝑥𝑛 − 𝜆 generates [𝑛, 𝑘] linear code. While
the ring F𝑝𝑚[𝑥] is a commutative ring, so every ideal in F𝑝𝑚[𝑥]
is two-sided ideal, the skew polynomial ring F𝑝𝑚[𝑥; Θ] is
noncommutative.Therefore, we need to have conditions ofΘ
and 𝜆 to ensure that ⟨𝑥𝑛−𝜆⟩ is a two-sided ideal of F𝑝𝑚[𝑥; Θ].
If 𝑛 is divisible by the order of Θ and 𝜆 is fixed by Θ, then
⟨𝑥
𝑛
− 𝜆⟩ is a two-sided ideal of F𝑝𝑚[𝑥; Θ]. Indeed, for all

ℎ(𝑥) = ∑
𝑡

𝑖=0
ℎ𝑖𝑥
𝑖 in F𝑝𝑚[𝑥; Θ], we can see that

(𝑥
𝑛
− 𝜆)(

𝑡

∑

𝑖=0

ℎ𝑖𝑥
𝑖
) = Θ

𝑛
(ℎ0) 𝑥

𝑛
+ Θ
𝑛
(ℎ1) 𝑥

𝑛+1
+ ⋅ ⋅ ⋅

+ Θ
𝑛
(ℎ𝑡) 𝑥

𝑛+𝑡
− 𝜆(

𝑡

∑

𝑖=0

ℎ𝑖𝑥
𝑖
) .

(13)

Since 𝑛 is divisible by the order ofΘ, we haveΘ𝑛(ℎ𝑖) = ℎ𝑖,∀𝑖 =
{1, . . . , 𝑡}. If 𝜆 is fixed byΘ, then we have (𝑥𝑛−𝜆)(∑𝑡

𝑖=0
ℎ𝑖𝑥
𝑖
) =

(∑
𝑡

𝑖=0
ℎ𝑖𝑥
𝑖
)(𝑥
𝑛
−𝜆), proving that 𝑥𝑛−𝜆 is in𝑍(F𝑝𝑚[𝑥; Θ]).This

implies that ⟨𝑥𝑛 − 𝜆⟩ is a two-sided ideal of F𝑝𝑚[𝑥; Θ], which
makes the quotient ring F𝑝𝑚[𝑥; Θ]/⟨𝑥

𝑛
−𝜆⟩ well defined. IfΘ

is not the identity, then F𝑝𝑚[𝑥; Θ] is in general not a unique
factorization ring. In this case, there are typically many more

right factors than in the commutative case, producing many
Θ-𝜆-constacyclic codes.

Example 17. Let 𝛼 be a generator of the multiplicative group
of F4; that is, 𝛼 is a zero of 𝑧2 + 𝑧 + 1 ∈ F2[𝑧]. Let Θ be the
automorphism 𝑎 󳨃→ 𝑎

2 of F4. We consider the polynomial
𝑥
6
+ 𝛼𝑥
3
∈ F4[𝑥; Θ]. We have

𝑥
6
+ 𝛼𝑥
3
= (𝑥
4
+ 𝛼𝑥) 𝑥

2
= (𝑥
4
+ 𝛼𝑥
3
) (𝑥
2
+ 𝛼𝑥 + 1)

= (𝑥
4
+ 𝛼𝑥
3
+ 𝑥
2
) (𝑥
2
+ 𝛼𝑥) .

(14)

This shows that the ring F4[𝑥; Θ] is not a unique factorization
ring.

Lemma 1 in [3] can be extended as follows.

Lemma 18 (extending [3, Lemma 1]). Let Θ be an automor-
phism of F𝑝𝑚 , 𝑛 an integer divisible by the order of Θ, and 𝜆 a
unit in F𝑝𝑚 which is fixed byΘ. The ring F𝑝𝑚[𝑥; Θ]/⟨𝑥𝑛 − 𝜆⟩ is
a principal left ideal ring, in which the left ideals are generated
by 𝑔(𝑥), where 𝑔(𝑥) is a right divisor of 𝑥𝑛 − 𝜆 in F𝑝𝑚[𝑥; Θ].

Consider a codeword 𝑐(𝑥) = 𝑐0+𝑐1𝑥+⋅ ⋅ ⋅+𝑐𝑛−1𝑥
𝑛−1.Then

𝑥𝑐 (𝑥) = 𝑥𝑐0 + 𝑥𝑐1𝑥 + ⋅ ⋅ ⋅ + 𝑥𝑐𝑛−1𝑥
𝑛−1

= Θ (𝑐0) 𝑥 + Θ (𝑐1) 𝑥
2
+ ⋅ ⋅ ⋅ + Θ (𝑐𝑛−1) 𝑥

𝑛

= Θ (𝜆𝑐𝑛−1) + Θ (𝑐0) 𝑥 + Θ (𝑐1) 𝑥
2
+ ⋅ ⋅ ⋅

+ Θ (𝑐𝑛−2) 𝑥
𝑛−1

.

(15)

Thus, 𝑥𝑐(𝑥) is corresponding to a Θ-𝜆-constacyclic shift of
𝑐(𝑥), proving that the code𝐶 is a skewΘ-𝜆-constacyclic code
if and only if 𝐶 is a left ideal ⟨𝑔(𝑥)⟩ ⊆ F𝑝𝑚[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩,

where 𝑔(𝑥) is a right divisor of 𝑥𝑛 − 𝜆. We summarize this
discussion by the following theorem, which is an extension
of [3, Theorem 1].

Theorem 19 (extending [3, Theorem 1]). Let Θ be an auto-
morphism of F𝑝𝑚 , 𝑛 an integer divisible by the order of Θ,
and 𝜆 a unit in F𝑝𝑚 which is fixed by Θ. Then the code 𝐶 is
a skew Θ-𝜆-constacyclic code if and only if 𝐶 is a left ideal
⟨𝑔(𝑥)⟩ ⊆ F𝑝𝑚[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩, where 𝑔(𝑥) is a right divisor

of 𝑥𝑛 − 𝜆.

Given a monic right divisor of degree 𝑛 − 𝑘 of 𝑥𝑛 − 𝜆 :

𝑔(𝑥) = ∑
𝑛−𝑘−1

𝑖=0
𝑔𝑖(𝑥) + 𝑥

𝑛−𝑘, then a generator matrix of the
Θ-𝜆-constacyclic code 𝐶 generated by 𝑔(𝑥) is given by

𝐺 fl
(
(
(
(

(

𝑔0 ⋅ ⋅ ⋅ 𝑔𝑛−𝑘−1 1 0 ⋅ ⋅ ⋅ 0

0 Θ (𝑔0) ⋅ ⋅ ⋅ Θ (𝑔𝑛−𝑘−1) 1 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Θ
2
(𝑔𝑛−𝑘−1) ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 ⋅ ⋅ ⋅ 0 Θ
𝑘−1

(𝑔0) ⋅ ⋅ ⋅ Θ
𝑘−1

(𝑔𝑛−𝑘−1) 1

)
)
)
)

)

. (16)
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Lemma 20 (see [29, Lemma 17]). LetΘ be an automorphism
of F𝑝𝑚 , 𝑛 an integer divisible by the order of Θ, and 𝜆 a unit
in F𝑝𝑚 which is fixed by Θ. Let 𝐶 be the Θ-𝜆-constacyclic code

generated by a monic right divisor 𝑔(𝑥) of ⟨𝑥𝑛 −𝜆⟩ and ℎ(𝑥) fl
(𝑥
𝑛
− 𝜆)/𝑔(𝑥). If ℎ = ℎ0 + ℎ1𝑥 + ⋅ ⋅ ⋅ + 𝑥

𝑛−𝑟, then the following
matrix

𝐻 fl
(
(
(
(

(

1 Θ(ℎ𝑛−𝑟−1) ⋅ ⋅ ⋅ Θ
𝑛−𝑟

(ℎ0) 0 ⋅ ⋅ ⋅ 0

0 1 Θ
2
(ℎ𝑛−𝑟−1) ⋅ ⋅ ⋅ Θ

𝑛−𝑟+1
(ℎ0) ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d d

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 1 Θ
𝑟
(ℎ𝑛−𝑟−1) ⋅ ⋅ ⋅ Θ

𝑛−1
(ℎ0)

)
)
)
)

)

(17)

is a parity-check matrix for 𝐶.

Since Θ(1) = 1 for any Θ ∈ Aut(F𝑝𝑚), we have Θ(−1) =
−1.This shows that −1 ∈ F𝑝𝑚 is fixed byΘ. The following two
corollaries are direct consequences of Theorem 19.

Corollary 21. Let Θ be an automorphism of F𝑝𝑚 and 𝑛 an
integer divisible by the order of Θ. Then the code 𝐶 is a skew
Θ-negacyclic code if and only if 𝐶 is a left ideal ⟨𝑔(𝑥)⟩ ⊆

F𝑝𝑚[𝑥; Θ]/⟨𝑥
𝑛
+ 1⟩, where 𝑔(𝑥) is a right divisor of 𝑥𝑛 + 1.

Corollary 22 (see [3, Lemma 1]). LetΘ be an automorphism
of F𝑝𝑚 and 𝑛 an integer divisible by the order of Θ. Then the
code 𝐶 is a skew Θ-cyclic code if and only if 𝐶 is a left ideal
⟨𝑔(𝑥)⟩ ⊆ F𝑝𝑚[𝑥; Θ]/⟨𝑥

𝑛
− 1⟩, where 𝑔(𝑥) is a right divisor of

𝑥
𝑛
− 1.

We give an example to illustrate these results.

Example 23. Let 𝛼 be a generator of the multiplicative group
of F4; that is, 𝛼 is a zero of 𝑧2 + 𝑧 + 1 ∈ F2[𝑧]. Let Θ be the
automorphism 𝑎 󳨃→ 𝑎

2 of F4. To list all [4, 1] skew Θ-cyclic
codes over F4, we find all monic degree 1 right factors of 𝑥4 −
1 ∈ F4[𝑥; Θ]. They are

𝑓1 = 𝑥 + 1,

𝑓2 = 𝑥 + 𝛼,

𝑓3 = 𝑥 + 𝛼
2
.

(18)

Similarly, to list all [4, 2] skewΘ-cyclic codes over F4, we find
all monic degree 2 right factors of 𝑥4 − 1 ∈ F4[𝑥; Θ]. They are

𝑔1 = 𝑥
2
+ 1,

𝑔2 = 𝑥
2
+ 𝛼𝑥 + 𝛼

2
,

𝑔3 = 𝑥
2
+ 𝛼
2
𝑥 + 𝛼,

𝑔4 = 𝑥
2
+ 𝛼
2
𝑥 + 𝛼
2
,

𝑔5 = 𝑥
2
+ 𝑥 + 𝛼,

𝑔6 = 𝑥
2
+ 𝑥 + 𝛼

2
,

𝑔7 = 𝑥
2
+ 𝛼𝑥 + 𝛼.

(19)

Let 𝑔 be a right divisor of 𝑥𝑛−1 of degree 𝑟.Then the skew
Θ-cyclic code is [𝑛, 𝑛 − 𝑟] linear code with generator matrix

𝐺 fl (
(

(

𝑔0 𝑔1 ⋅ ⋅ ⋅ 𝑔𝑟 0 ⋅ ⋅ ⋅ 0

0 Θ (𝑔0) ⋅ ⋅ ⋅ Θ (𝑔𝑟−1) Θ (𝑔𝑟) ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0
.
.
. Θ
𝑛−𝑟−1

(𝑔0) Θ
𝑛−𝑟−1

(𝑔1)
.
.
. Θ
𝑛−𝑟−1

(𝑔𝑟)

)
)

)

. (20)

A right factor of degree 𝑛 − 𝑘 of 𝑥𝑛 − 1 generates a
linear code with parameters (𝑛, 𝑘). If Θ is not the identity,
then the skew polynomial ring F𝑝𝑚[𝑥; Θ] is in general not
a unique factorization. In this case, we have more right
factors than in the commutative case. For small values of
𝑛, all right skew factors of 𝑥𝑛 − 1 can be found by a
computational algebra system such as MAGMA (cf. [30]).
Minimum distance of a code can be also calculated by

using the MAGMA procedures. However, these procedures
must be spent a long time for larger codes to check them.
Therefore, the process will only find the smaller codes. The
code parameters and the number of codes are introduced
with these parameters (𝑛, 𝑘, 𝑑min) because many different
codes with the same minimum distance can be found. A
generating polynomial for one code respected the class of
parameters (𝑛, 𝑘, 𝑑min) is also exhibited. Table 1, computed
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Table 1: Generating polynomial of skew Θ-cyclic codes over F4 with their parameters (𝑛, 𝑘, 𝑑min), where 𝑛 ≤ 56. This result is given by
Boucher et al. [3].

(𝑛, 𝑘, 𝑑min) Number 𝑔
(30, 16, 9) 422 𝑥

14
+ 𝑥
13
+ 𝛼𝑥
11
+ 𝑥
10
+ 𝑥
9
+ 𝑥
8
+ 𝛼𝑥
7
+ 𝑥
6
+ 𝛼𝑥
5
+ 𝛼
2
𝑥
4
+ 𝛼
2
𝑥
2
+ 𝛼𝑥 + 𝛼

2

(36, 20, 10) 13 𝑥
16
+ 𝛼
2
𝑥
15
+ 𝑥
13
+ 𝛼
2
𝑥
12
+ 𝑥
11
+ 𝛼𝑥
10
+ 𝑥
9
+ 𝛼
2
𝑥
8
+ 𝛼𝑥
7
+ 𝛼𝑥
6
+ 𝛼𝑥
4
+ 𝛼
2
𝑥
3
+ 𝛼
2
𝑥
2
+ 1

(40, 16, 15) 6 𝑥
24
+ 𝛼𝑥
23
+ 𝑥
22
+ 𝑥
21
+ 𝛼
2
𝑥
20
+ 𝛼𝑥
19
+ 𝛼𝑥
18
+ 𝛼𝑥
17
+ 𝑥
15
+ 𝑥
14
+ 𝑥
13
+ 𝛼𝑥
11
+ 𝛼
2
𝑥
10
+ 𝑥
9
+ 𝑥
8
+ 𝑥
7
+ 𝛼
2
𝑥
6
+ 𝛼𝑥
5 +

𝛼
2
𝑥
4
+ 𝛼𝑥
2
+ 𝛼
2

(42, 23, 11) 92 𝑥
19
+ 𝑥
17
+ 𝛼
2
𝑥
16
+ 𝛼𝑥
15
+ 𝛼
2
𝑥
14
+ 𝛼𝑥
13 + 𝛼𝑥11 + 𝛼2𝑥10 + 𝛼𝑥9 + 𝑥7 + 𝛼𝑥6 + 𝛼2𝑥5 + 𝛼𝑥4 + 𝛼𝑥 + 𝛼2

(42, 17, 16) 3 𝑥
25
+ 𝑥
23
+ 𝛼𝑥
22
+ 𝑥
21
+ 𝑥
20
+ 𝑥
19
+ 𝑥
18
+ 𝛼
2
𝑥
17
+ 𝛼
2
𝑥
16
+ 𝛼𝑥
15
+ 𝛼𝑥
14
+ 𝑥
13
+ 𝑥
11
+ 𝑥
10
+ 𝑥
8
+ 𝛼
2
𝑥
4
+ 𝛼
2
𝑥
3
+ 𝑥
2 +

𝛼𝑥 + 1

(48, 25, 13) 2 𝑥
23
+ 𝛼
2
𝑥
22
+ 𝑥
21
+ 𝛼𝑥
20
+ 𝛼𝑥
19
+ 𝛼
2
𝑥
18
+ 𝛼𝑥
17
+ 𝛼𝑥
14
+ 𝛼
2
𝑥
13
+ 𝛼
2
𝑥
11
+ 𝑥
9
+ 𝛼𝑥
7
+ 𝑥
6
+ 𝑥
3
+ 𝛼
2
𝑥
2
+ 1

(48, 19, 17) 2 𝑥
29
+ 𝛼
2
𝑥
28
+ 𝑥
26
+ 𝛼𝑥
25
+ 𝛼
2
𝑥
24
+ 𝛼𝑥
23
+ 𝛼𝑥
21
+ 𝛼𝑥
20
+ 𝛼
2
𝑥
19
+ 𝛼𝑥
18
+ 𝛼𝑥
17
+ 𝛼𝑥
16
+ 𝑥
15
+ 𝑥
14
+ 𝛼𝑥
13
+ 𝛼𝑥
10
+ 𝛼𝑥
8 +

𝛼
2
𝑥
7
+ 𝑥
6
+ 𝑥
5
+ 𝑥
4
+ 𝛼
2
𝑥
3
+ 𝑥
2
+ 𝛼
2

(56, 30, 14) 1 𝑥
26
+ 𝑥
23
+ 𝛼𝑥
22
+ 𝛼
2
𝑥
21
+ 𝛼𝑥
20
+ 𝛼
2
𝑥
19
+ 𝛼
2
𝑥
18
+ 𝛼𝑥
17
+ 𝑥
16
+ 𝑥
14
+ 𝑥
13
+ 𝛼𝑥
11
+ 𝛼
2
𝑥
10
+ 𝛼
2
𝑥
9
+ 𝛼
2
𝑥
8
+ 𝛼𝑥
7
+ 𝛼
2
𝑥
6 +

𝛼𝑥
5
+ 𝛼𝑥
5
+ 𝛼
2
𝑥
4
+ 𝑥
2
+ 𝛼
2
𝑥 + 𝛼

2

by Bosma et al. [30], provides parameters and generating
polynomials of skew Θ-cyclic codes over F4, where Θ is
the Frobenius automorphism and 𝛼 is a generator of the
multiplicative group of F4.

Given 𝑛-tuples 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) and 𝑦 = (𝑦0, 𝑦1, . . . ,

𝑦𝑛−1) ∈ F𝑝𝑚 , their inner product or dot product is defined in
the usual way:

𝑥 ∘ 𝑦 = 𝑥0𝑦0 + 𝑥1𝑦1 + ⋅ ⋅ ⋅ + 𝑥𝑛−1𝑦𝑛−1, (21)

evaluated in F𝑝𝑚 . Two codewords 𝑥, 𝑦 are called orthogonal if
𝑥 ∘ 𝑦 = 0. For a linear code 𝐶 over F𝑝𝑚 , its dual code 𝐶

⊥ is the
set of 𝑛-tuples over F𝑝𝑚 that are orthogonal to all codewords
of 𝐶; that is,

𝐶
⊥
= {𝑥 | 𝑥 ∘ 𝑦 = 0, ∀𝑦 ∈ 𝐶} . (22)

A code 𝐶 is called self-orthogonal if 𝐶 ⊂ 𝐶
⊥, and it is called

self-dual if 𝐶 = 𝐶
⊥. The following result is well known (cf.

[29]).

Lemma 24 (see [29, Corollary 18]). Let Θ be an automor-
phism of F𝑝𝑚 , 𝑛 an integer divisible by the order of Θ, and 𝜆 a
unit in F𝑝𝑚 which is fixed by Θ. Let 𝑔(𝑥) = ∑

𝑟−1

𝑖=0
𝑔𝑖𝑥
𝑖
+ 𝑥
𝑟 and

ℎ(𝑥) = ∑
𝑛−𝑟−1

𝑖=0
ℎ𝑖𝑥
𝑖
+𝑥
𝑛−𝑟 such that ℎ(𝑥)𝑔(𝑥) = 𝑥

𝑛
−1.The dual

of the skewΘ-cyclic code generated by 𝑔(𝑥) in F𝑝𝑚[𝑥; Θ]/⟨𝑥𝑛 −
1⟩ is the skew Θ-cyclic code generated by

𝑔
⊥
= 1 + Θ (ℎ𝑛−𝑟−1) 𝑥 + ⋅ ⋅ ⋅ + Θ

𝑛−𝑟
(ℎ0) 𝑥

𝑛−𝑟
. (23)

We give an example to illustrate how we use Lemma 24 to
determine Euclidean self-dual Θ-cyclic codes.

Example 25. Let 𝛼 be a generator of the multiplicative group
of F4; that is, 𝛼 is a zero of 𝑧2 + 𝑧 + 1 ∈ F2[𝑧]. Let Θ be the
automorphism 𝑎 󳨃→ 𝑎

2 of F4. We find all Euclidean self-dual
Θ-cyclic codes over F4 in F4[𝑥; Θ]/(𝑥

4
−1). From Example 23,

we can list all monic degree 2 right factors of 𝑥4−1 ∈ F4[𝑥; Θ].

Put ℎ𝑖 (𝑖 = {1, . . . , 7}) to be all monic degree 2 right factors
such that ℎ𝑖 ⋅ 𝑔𝑖 = 𝑥

4
− 1, ∀𝑖 ∈ {1, . . . , 7}. Then we have

ℎ1 = 𝑥
2
+ 1,

ℎ2 = 𝑥
2
+ 𝛼𝑥 + 𝛼,

ℎ3 = 𝑥
2
+ 𝛼
2
𝑥 + 𝛼
2
,

ℎ4 = 𝑥
2
+ 𝛼
2
𝑥 + 𝛼,

ℎ5 = 𝑥
2
+ 𝑥 + 𝛼

2
,

ℎ6 = 𝑥
2
+ 𝑥 + 𝛼,

ℎ7 = 𝑥
2
+ 𝛼𝑥 + 𝛼

2
.

(24)

Applying Lemma 24, we have

𝑔
⊥

1
= 𝑥
2
+ 1,

𝑔
⊥

2
= 𝛼𝑥
2
+ 𝛼
2
𝑥 + 1,

𝑔
⊥

3
= 𝛼
2
𝑥
2
+ 𝛼𝑥 + 1,

𝑔
⊥

4
= 𝛼𝑥
2
+ 𝛼𝑥 + 1,

𝑔
⊥

5
= 𝛼
2
𝑥
2
+ 𝑥 + 1,

𝑔
⊥

6
= 𝛼𝑥
2
+ 𝑥 + 1,

𝑔
⊥

7
= 𝛼
2
𝑥
2
+ 𝛼
2
𝑥 + 1,

(25)

where the dual of the skew Θ-cyclic code generated by 𝑔𝑖(𝑥)
in F4[𝑥; Θ]/⟨𝑥

𝑛
− 1⟩ is the Θ-cyclic code generated by 𝑔⊥

𝑖
.

Suppose that 𝐶𝑖, the skew Θ-cyclic code generated by 𝑔𝑖(𝑥)
in F4[𝑥; Θ]/⟨𝑥

𝑛
− 1⟩, is an Euclidean self-dual Θ-cyclic code.

Then we have 𝐶 = 𝐶
⊥. This implies that 𝑔⊥

𝑖
is a constant

multiple of 𝑔𝑖. From this, the skew Θ-cyclic codes generated
by 𝑔1(𝑥), 𝑔2(𝑥), 𝑔3(𝑥) are Euclidean self-dual Θ-cyclic codes.

Wenow turn our attention to Euclidean self-dualΘ-cyclic
codes over F4 (cf. [29]). Suppose that Θ is the Frobenius
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automorphism and 𝛼 is a generator of F4. It is easy to see
that 𝑛 must be an even number. In fact, by Lemma 24, if 𝑛 is
odd, then there are no Euclidean self-dual codes. Therefore,
𝑛 = 2𝑟 for some 𝑟 ∈ Z+. Let 𝐶 be a self-dual code. Applying
Lemma 24, the coefficients of the generating polynomial 𝑔⊥
of 𝐶⊥ is expressed. Since 𝐶 = 𝐶

⊥, 𝑔⊥ and 𝑔 must differ
by a constant multiple and deg(𝑔) = deg(𝑔⊥). Now assume
that 𝑔 = ∑

𝑟−1

𝑖=0
𝑔𝑖𝑥
𝑖
+ 𝑥
𝑟 with 𝑔0 ̸= 0 is the generator

polynomial of the self-dual Θ-cyclic code 𝐶. Assume that
ℎ = 𝑥
𝑟
+∑
𝑟−1

𝑖=0
ℎ𝑖𝑥
𝑖 such that 𝑔ℎ = 𝑥

𝑛
−1. From Lemma 24, the

code 𝐶⊥ is generated by 𝑔⊥ = 1 + ∑
𝑟

𝑖=1
Θ
𝑖
(ℎ𝑟−𝑖)𝑥

𝑖. Since 𝑔⊥ is
a constant multiple of 𝑔, 𝑔⊥ = Θ

𝑟
(ℎ0)𝑔. This implies that if

the coefficients of both polynomials 𝑔 and 𝑔⊥ are compared,
then system (26) is built as follows:

1 = Θ
𝑟
(ℎ0) 𝑔0,

Θ
𝑖
(ℎ𝑟−𝑖) = Θ

𝑟
(ℎ0) 𝑔𝑖, 𝑖 = 0, 1, . . . , 𝑟 − 1.

(26)

SinceΘ2(𝛼) = 𝛼, it is easy to see thatΘ = Θ
−1. By assumption,

𝑔0 ̸= 0. This implies that 𝑔−1
0

= 𝑔
2

0
. Hence, system (26)

becomes

ℎ0 = Θ
𝑟
(𝑔
2

0
) ,

(ℎ𝑟−𝑖) = Θ
𝑖
(𝑔
2

0
⋅ 𝑔𝑖) , 𝑖 = 0, 1, . . . , 𝑟 − 1.

(27)

System (27) allows expressing the coefficients of ℎ as follows:

ℎ = Θ
2
(𝑔
2

0
) +

𝑟

∑

𝑖=1

Θ
𝑟−𝑖
(𝑔
2

0
)Θ
𝑟−𝑖
(𝑔𝑟−𝑖) 𝑥

𝑖
. (28)

From Θ
𝑖
(𝑎) = 𝑎

(2
𝑖 mod 3), (28) becomes

ℎ = 𝑔
(2
𝑟−1 mod 3)
0

+

𝑟

∑

𝑖=1

𝑔
(2
𝑟−𝑖+1 mod 3)
0

𝑔
(2
𝑟−𝑖 mod 3)
𝑟−𝑖

𝑥
𝑖
, (29)

where powers of 𝑔𝑖 are of degree less than 4. By using the
rule 𝑥

𝑖
𝑎 = 𝑎

(2
𝑖 mod 3)

𝑥
𝑖 and expanding the skew product

(𝑥
𝑛
− 1) − (ℎ ⋅ 𝑔) = 0, (2𝑟 + 1) polynomial equations in the

coefficients 𝑔𝑖 of degree less than 4 in each variable can be
determined. From 𝑔𝑖 ∈ F4, 𝑔

4

𝑖
− 𝑔𝑖 = 0 for any 𝑖 = 1, . . . , 𝑟.

Adding 𝑟 equations 𝑔4
𝑖
−𝑔𝑖 = 0 to 2𝑟+1 polynomial equations

in 𝑟 variables of degree less than 4 to have a system, then the
solutions of this system can be found by usingGroebner bases
in MAGMA system because the solution set must be finite.
This shows that all polynomials 𝑔 corresponding to a solution
will be listed and hence the linear code which it generates
and its minimumHamming distance can be computed.Then
all Euclidean self-dual Θ-cyclic codes of length 𝑛 ≤ 40 in
F4[𝑥; Θ] will be exhibited. In [29], Boucher and Ulmer gave
the table of Euclidean self-dual codes over F4 and 𝑛 ≤ 40. We
refer the readers to [29] for more details.

Recall that Hermitian inner product is denoted and
calculated by ⟨𝑢, V⟩𝐻 = ∑

𝑛−1

𝑖=0
𝑢𝑖Θ(V𝑖), for all 𝑢 = (𝑢0, . . . , 𝑢𝑛−1)

and V = (V0, . . . , V𝑛−1) in F𝑛
𝑝𝑚
. Then we give the definition of

the Hermitian dual code of a code 𝐶 as follows:

𝐶
⊥
𝐻 = {V ∈ F

𝑛

𝑝𝑚
| ⟨V, 𝑐⟩𝐻 = 0, ∀𝑐 ∈ 𝐶} . (30)

If 𝐶 = 𝐶
⊥
𝐻 , then 𝐶 is said to be a Hermitian self-dual code. It

is easy to check that if 𝑛 is odd, then there is no Hermitian
self-dual of Θ-cyclic codes. Therefore, 𝑛 must be an even
number. Suppose that the order 𝑚 of Θ divides 𝑛 = 2𝑟. Let
𝑔 = ∑

𝑟

𝑗=0
𝑔𝑗𝑥
𝑗 and ℎ = ∑

𝑟

𝑖=0
ℎ𝑖𝑥
𝑖 be elements of F𝑝𝑚[𝑥; Θ]

such that ℎ⋅𝑔 = 𝑥
2𝑟
−1.TheHermitian dual of aΘ-cyclic code

generated by 𝑔 in F𝑝𝑚[𝑥; Θ]/⟨𝑥
2𝑟
− 1⟩ is again Θ-cyclic code

and is generated by 𝑔𝐻 = Θ(ℎ𝑟)+Θ
2
(ℎ𝑟−1)𝑥+⋅ ⋅ ⋅+Θ

𝑟+1
(ℎ0)𝑥
𝑟

[29, Lemma 21]. Similar to the case of Euclidean self-dual
codes, all theHermitian self-dualΘ-cyclic codes of length 𝑛 ≤
40 in F4[𝑥; Θ] can be found. The polynomial ℎ of Hermitian
self-dual code in F4[𝑥; Θ] can be expressed as follows:

ℎ = 𝑥
𝑟
+

𝑟−1

∑

𝑖=1

(Θ
𝑟−𝑖+1

(𝑔
2

0
)Θ
𝑟−𝑖+1

(𝑔𝑟−𝑖) 𝑥
𝑖
)

+ Θ
𝑟+1

(𝑔
2

0
) .

(31)

In this case, the coefficient of (31) is shifted by Θ𝑚−1 = Θ.
Expanding the skew product 𝑥2𝑟 − 1 − ℎ ⋅ 𝑔 = 0 which
gives again a polynomial system of equations, the solutions
of this system can be also computed by using Groebner bases
in MAGMA because the solution set must be finite. Similar
to the case of Euclidean self-dual codes, in [29], Boucher and
Ulmer also gave the table of Hermitian self-dual codes over
F4 and 𝑛 ≤ 40. For more details we refer the readers to [29].

4. Decoding Skew Θ-Cyclic Codes over
Finite Fields

In coding theory, BCH codes were invented in 1959 by French
mathematician Alexis Hocquenghem and independently in
1960 byRaj Bose andD.K. Ray-Chanahuri. General decoding
procedure for decoding BCH codes with designed distance is
introduced in [31]. In this section, we first give the algorithm
for decoding with cyclic codes in F𝑝𝑚[𝑥]. After that, we will
modify the algorithm for decoding skew BCH codes.

Let 𝐶 be [𝑛, 𝑘, 𝑑] cyclic code over F𝑝𝑚 with generator
polynomial 𝑔(𝑥) of degree 𝑛 − 𝑘. Suppose that 𝑐(𝑥) ∈ 𝐶 is
transmitted and 𝑦(𝑥) = 𝑐(𝑥) + 𝑒(𝑥) is received, where 𝑒(𝑥) =
𝑒0 + 𝑒1𝑥 + ⋅ ⋅ ⋅ + 𝑒𝑛−1𝑥

𝑛−1 is the error vector with 𝑤𝑡(𝑒(𝑥)) ≤ 𝑡

and 𝑡 = (𝑑 − 1)/2. Let 𝑅𝑔(𝑥) be the unique remainder when
ℎ(𝑥) is divided by 𝑔(𝑥) according to the Division Algorithm;
that is, 𝑅𝑔(𝑥)(ℎ(𝑥)) = 𝑟(𝑥), where ℎ(𝑥) = 𝑔(𝑥)𝑓(𝑥) + 𝑟(𝑥),
with 𝑟(𝑥) = 0 or deg 𝑟(𝑥) < 𝑛 − 𝑘. Then the function 𝑅𝑔(𝑥)
satisfies the following properties.

Theorem 26 (see [27, Theorem 4.6.1]). With the preceding
notation the following statements hold:

(i) 𝑅𝑔(𝑥)(𝑎ℎ(𝑥) + 𝑏ℎ
󸀠
(𝑥)) = 𝑎𝑅𝑔(𝑥)(ℎ(𝑥)) + 𝑏𝑅𝑔(𝑥)(ℎ

󸀠
(𝑥))

for all ℎ(𝑥); ℎ󸀠(𝑥) ∈ F𝑝𝑚[𝑥] and all 𝑎; 𝑏 ∈ F𝑝𝑚 ,

(ii) 𝑅𝑔(𝑥)(ℎ(𝑥) + 𝑎(𝑥)(𝑥
𝑛
− 1)) = 𝑅𝑔(𝑥)(ℎ(𝑥)),

(iii) 𝑅𝑔(𝑥)(ℎ(𝑥)) = 0 if and only if ℎ(𝑥) (mod (𝑥𝑛 − 1)) ∈ 𝐶,

(iv) If 𝑐(𝑥) ∈ 𝐶, then 𝑅𝑔(𝑥)(𝑐(𝑥) + 𝑒(𝑥)) = 𝑅𝑔(𝑥)(𝑒(𝑥)),
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Table 2

𝑒(𝑥) 𝑆(𝑒(𝑥)) 𝑒(𝑥) 𝑆(𝑒(𝑥))

𝑥
14

𝑥
7

𝑥
6
+ 𝑥
14

𝑥
3
+ 𝑥
5
+ 𝑥
6

𝑥
13
+ 𝑥
14

𝑥
6
+ 𝑥
7

𝑥
5
+ 𝑥
14

𝑥
2
+ 𝑥
4
+ 𝑥
5
+ 𝑥
6
+ 𝑥
7

𝑥
12
+ 𝑥
14

𝑥
5
+ 𝑥
7

𝑥
4
+ 𝑥
14

𝑥 + 𝑥
3
+ 𝑥
4
+ 𝑥
5
+ 𝑥
7

𝑥
11
+ 𝑥
14

𝑥
4
+ 𝑥
7

𝑥
3
+ 𝑥
14

1 + 𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
7

𝑥
10
+ 𝑥
14

𝑥
3
+ 𝑥
7

𝑥
2
+ 𝑥
14

𝑥 + 𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
7

𝑥
10
+ 𝑥
14

𝑥
3
+ 𝑥
7

𝑥
2
+ 𝑥
14

𝑥 + 𝑥
2
+ 𝑥
5
+ 𝑥
6

𝑥
9
+ 𝑥
14

𝑥
2
+ 𝑥
7

𝑥 + 𝑥
14

1 + 𝑥 + 𝑥
4
+ 𝑥
5
+ 𝑥
6
+ 𝑥
7

𝑥
8
+ 𝑥
14

𝑥 + 𝑥
7

1 + 𝑥
14

1 + 𝑥
4
+ 𝑥
6

𝑥
7
+ 𝑥
14

1 + 𝑥
7

(v) If𝑅𝑔(𝑥)(𝑒(𝑥)) = 𝑅𝑔(𝑥)(𝑒
󸀠
(𝑥)), where 𝑒(𝑥) and 𝑒󸀠(𝑥) each

have weight at most 𝑡, then 𝑒(𝑥) = 𝑒
󸀠
(𝑥),

(vi) 𝑅𝑔(𝑥)(ℎ(𝑥)) = ℎ(𝑥) if deg ℎ(𝑥) < 𝑛 − 𝑘.

Theorem 27 (see [27, Theorem 4.6.2]). Let 𝑔(𝑥) be a monic
divisor of 𝑥𝑛 − 1 of degree 𝑛 − 𝑘. If 𝑅𝑔(𝑥)(ℎ(𝑥)) = 𝑠(𝑥),
then 𝑅𝑔(𝑥)(𝑥ℎ(𝑥)(mod(𝑥𝑛 − 1)) = 𝑅𝑔(𝑥)(𝑥𝑠(𝑥)) = 𝑥𝑠(𝑥) −

𝑔(𝑥)𝑠𝑛−𝑘−1, where 𝑠𝑛−𝑘−1 is the coefficient of 𝑥𝑛−𝑘−1 in 𝑠(𝑥).

Define the syndrome polynomial 𝑆(ℎ(𝑥)) of any ℎ(𝑥) to
be

𝑆 (ℎ (𝑥)) = 𝑅𝑔(𝑥) (𝑥
𝑛−𝑘

ℎ (𝑥)) . (32)

We now describe the first version of the Meggitt Decoding
Algorithm and we provide an example to illustrate each step.

Step 1. Find the syndrome polynomial 𝑆(𝑒(𝑥)) of error pat-
terns 𝑒(𝑥) = ∑

𝑛−1

𝑖=0
𝑒𝑖𝑥
𝑖 such that 𝑤𝑡(𝑒(𝑥)) ≤ 𝑡 and 𝑒𝑛−1 ̸= 0.

Example 28 (see [27, Example 4.6.3]). Let 𝐶 be the [15, 7, 5]
binary cyclic code with a generating polynomial 𝑔(𝑥) = 1 +

𝑥
4
+𝑥
6
+𝑥
7
+𝑥
8 = (𝑥−𝜉)(𝑥−𝜉2)(𝑥−𝜉3)(𝑥−𝜉4)(𝑥−𝜉6)(𝑥−𝜉8)(𝑥−

𝜉
9
)(𝑥 − 𝜉

12
), where 𝜉 is a 15th root of unity in F16. Then the

syndrome polynomial of 𝑒(𝑥) is 𝑆(𝑒(𝑥)) = 𝑅𝑔(𝑥)(𝑥
8
𝑒(𝑥)). The

syndromepolynomial for polynomial 1+𝑥14 can be computed
as follows. First, it is easy to see that𝑅𝑔(𝑥)(𝑥

8
) = 1+𝑥

4
+𝑥
6
+𝑥
7.

Then 𝑆(1+𝑥14) = 𝑅𝑔(𝑥)(𝑥
8
(1+𝑥
14
)) = 𝑅𝑔(𝑥)(𝑥

8
)+𝑅𝑔(𝑥)(𝑥

7
) =

1 + 𝑥
4
+ 𝑥
6. Applying Theorem 26, 𝑅𝑔(𝑥)(𝑥

9
) = 𝑅𝑔(𝑥)(𝑥𝑥

8
) =

𝑅𝑔(𝑥)(𝑥+𝑥
5
+𝑥
7
) +𝑅𝑔(𝑥)(𝑥

8
) = 𝑥+𝑥5 +𝑥7 +1+𝑥4 +𝑥6 +𝑥7 =

1+𝑥+𝑥
4
+𝑥
5
+𝑥
6. Similarly, by applyingTheorems 26 and 27,

all syndrome polynomials will be determined. Table 2 shows
all syndrome polynomials.

Step 2. Assume that 𝑦(𝑥) is the received polynomial. Then
the syndrome polynomial 𝑆(𝑦(𝑥)) = 𝑅𝑔(𝑥)(𝑥

𝑛−𝑘
𝑦(𝑥)) can

be computed. Applying Theorem 26(iv), 𝑆(𝑦(𝑥)) = 𝑆(𝑒(𝑥)),
where 𝑦(𝑥) = 𝑐(𝑥) + 𝑒(𝑥) and 𝑐(𝑥) ∈ 𝐶.

Example 29 (see [27, Example 4.6.4]). We give an example for
Step 2.We continue Example 28. Suppose that 𝑦(𝑥) = 1+𝑥

4
+

𝑥
7
+ 𝑥
9
+ 𝑥
10
+ 𝑥
12 is a received polynomial. This implies that

𝑆(𝑦(𝑥)) = 𝑥 + 𝑥
2
+ 𝑥
6
+ 𝑥
7.

Step 3. If 𝑆(𝑦(𝑥)) is in list computed in Step 1, then the error
polynomial 𝑒(𝑥) can be computed and it can be subtracted
from 𝑦(𝑥) to the corrected codeword 𝑐(𝑥) = 𝑦(𝑥) − 𝑒(𝑥). If
𝑆(𝑦(𝑥)) is not appearing in the list computed in Step 1, then
the process will continue to Step 4.

Step 4. It is continuing to compute the syndrome polynomial
of 𝑥𝑦(𝑥), 𝑥2𝑦(𝑥), . . . until the syndrome polynomial is in
the list from Step 1. If 𝑆(𝑥𝑖𝑦(𝑥)) is in this list and it is
associated with the error polynomial 𝑒∗(𝑥), then the received
vector is decoded as 𝑦(𝑥) − 𝑥𝑛−𝑖𝑒∗(𝑥). By using Theorem 27,
𝑅𝑔(𝑥)(𝑥

𝑛−𝑘
𝑦(𝑥)) = 𝑆(𝑦(𝑥)) = ∑

𝑛−𝑘−1

𝑖=0
𝑠𝑖𝑥
𝑖 and 𝑆(𝑥𝑦(𝑥)) =

𝑅𝑔(𝑥)(𝑥
𝑛−𝑘

𝑥𝑦(𝑥)) = 𝑅𝑔(𝑥)(𝑥(𝑥
𝑛−𝑘

𝑦(𝑥))) = 𝑅𝑔(𝑥)(𝑥𝑆(𝑦(𝑥))) =
𝑥𝑆(𝑦(𝑥)) − 𝑠𝑛−𝑘−1𝑔(𝑥).

We finish this part by the following example.

Example 30 (see [27, Example 4.6.6]). We can see that
𝑆(𝑦(𝑥)) = 𝑥 + 𝑥

2
+ 𝑥
6
+ 𝑥
7 is not in the list computed in

Step 1, then we continue to compute 𝑆(𝑥𝑦(𝑥)) = 𝑥(𝑥 + 𝑥
2
+

𝑥
6
+ 𝑥
7
) − 1 ⋅ 𝑔(𝑥) = 1 + 𝑥

2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
6, which is not

also appearing in the list in Step 1. It is easy to check that
𝑆(𝑥
2
𝑦(𝑥)) = 𝑥(1+𝑥

2
+𝑥
3
+𝑥
4
+𝑥
6
)−0⋅𝑔(𝑥) = 𝑥+𝑥

3
+𝑥
4
+𝑥
5
+𝑥
7

is in the list in Step 1. This implies that 𝑦(𝑥) is decoded as
𝑦(𝑥) − (𝑥

2
+ 𝑥
12
) = 1 + 𝑥

2
+ 𝑥
4
+ 𝑥
7
+ 𝑥
9
+ 𝑥
10.

Suppose that 𝛼 ∈ F𝑞 is a primitive (𝑞 − 1)th root of unity,
𝑛 is even, 𝑞 = 2

𝑚, and Θ is an automorphism of F𝑞 such that
Θ(𝛼) = 𝛼

2. We give two results in [3] and use them later.

Lemma 31 (see [3, Proposition 1]). For 𝑃 = ∑
𝑛−1

𝑘=0
𝑎𝑘𝑥
𝑘
∈

F𝑞[𝑥; Θ], 𝛽 ∈ F𝑞 and 𝑟 ∈ F𝑞 the remainder of the right division
of 𝑃 by 𝑥 − 𝛽, then 𝑟 = 𝑃 is a (classical) polynomial given by
𝑃 = ∑

𝑛−1

𝑘=0
𝑎𝑘𝑧
2
𝑘

−1
∈ F𝑞[𝑧].

Lemma 32 (see [3, Proposition 2]). Let 𝑛 be even, 𝑞 = 2
𝑛, and

𝛼 a primitive (𝑞 − 1)th root of unity. Let 𝐶 be a Θ-cyclic code
withΘ(𝛼) = 𝛼

2. Let 𝐺 ∈ F𝑞[𝑥; Θ] be its generating polynomial
such that 𝐺 is a right divisor of 𝑥𝑛 − 1 in F𝑞[𝑥; Θ] and 𝑥 − 𝛼𝑘
is a right factor of 𝐺 for 𝑘 ∈ {1, . . . , 𝑑 − 1}. The distance of the
code 𝐶 is equal to its designed distance 𝑑.

Wenow introduce the procedure for decoding skew BCH
codes. Assume that 𝑒 = 𝑒𝑖

1

𝑥
𝑖
1 + ⋅ ⋅ ⋅ + 𝑒𝑖

𝑟

𝑥
𝑖
𝑟 is the error

polynomial with 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑟, where 𝑟 ≤ (𝑑 − 1)/2.
The polynomial 𝑆𝑑(𝑧) = ∑

𝑑−1

𝑘=1
Rem(𝑒, 𝑥 − 𝛼

𝑘
)𝑧
𝑘−1

∈ F𝑝𝑚[𝑧]

is called a syndrome polynomial of 𝑒. Note that Rem(𝑒, 𝑥 −

𝛼
𝑘
) is to be computed in the skew polynomial F𝑝𝑚[𝑥; Θ].

Hence,

𝑆𝑑 (𝑧) =

𝑑−1

∑

𝑘=1

Rem (𝑒, 𝑥 − 𝛼
𝑘
) 𝑧
𝑘−1

=

𝑑−1

∑

𝑘=1

𝑒 (𝛼
𝑘
) 𝑧
𝑘−1

, (33)
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where 𝑒(𝑧) = ∑
𝑟

𝑘=1
𝑒𝑖
𝑘

𝑧
𝑗
𝑘 ∈ F𝑝𝑚[𝑧] and 𝑗𝑘 = 2

𝑖
𝑘 − 1. The

polynomials 𝜎(𝑧) = ∏
𝑟

𝑘=1
(1 − 𝛼

𝑗
𝑘𝑧) and 𝑤(𝑧) = ∑

𝑟

𝑙=1
𝑒𝑖
𝑙

𝛼
𝑗
𝑙−

∏𝑘 ̸=𝑙(1 − 𝛼
𝑗
𝑘𝑧) are called pseudolocator polynomial and

evaluator polynomial, respectively. Let

𝑆 (𝑧) =

∞

∑

𝑘=1

𝑒 (𝛼
𝑘
) (𝑧
𝑘−1

)

= 𝑆𝑑 (𝑧) + 𝑧
𝑑−1
∞

∑

𝑘=0

𝑒 (𝛼
𝑘+1+𝑑

) 𝑧
𝑘
.

(34)

This implies that 𝜎(𝑧)𝑆(𝑧) = 𝑤(𝑧). This equation can be
written to become 𝜎(𝑧) + 𝑆𝑑(𝑧) + V(𝑧)𝑧𝑑−1 = 𝑤(𝑧), where
V(𝑧) = 𝜎(𝑧)∑

∞

𝑘=1
𝑒(𝛼
𝑘+1+𝑑

)𝑧
𝑘.

Applying the Euclidean Algorithm to the polynomials
𝑆𝑑(𝑧) and 𝑧

𝑑−1 in F𝑝𝑚[𝑧], three sequences (𝑟𝑖(𝑧)), (𝑢𝑖(𝑧)), and
(V𝑖(𝑧)) are defined as follows:

𝑟−1 (𝑧) = 𝑧
𝑑−1

,

𝑟0 = 𝑆𝑑 (𝑧) ,

𝑢−1 (𝑧) = 0,

𝑢0 (𝑧) = 1,

V−1 (𝑧) = 1,

V0 (𝑧) = 0

(35)

and 𝑟𝑖(𝑧) = 𝑟𝑖−2(𝑧)−𝑞𝑖(𝑧)𝑟𝑖−1(𝑧),𝑢𝑖(𝑧) = 𝑢𝑖−2(𝑧)−𝑞𝑖(𝑧)𝑢𝑖−1(𝑧),
and V𝑖(𝑧) = V𝑖−2(𝑧) − 𝑞𝑖(𝑧)V𝑖−1(𝑧) with deg(𝑟𝑖(𝑧)) <

deg(𝑟𝑖−1)(𝑧). The process will stop whenever 𝑘 can be deter-
mined satisfying deg(𝑟𝑘−1) ≥ (𝑑−1)/2 and deg(𝑟𝑘) < (𝑑−1)/2.
From this, 𝑟𝑘(𝑧), 𝜎(𝑧), and 𝑤(𝑧) can be computed by three
equations as follows:

𝑢𝑘 (𝑧) 𝑆𝑑 (𝑧) + V𝑘 (𝑧) 𝑧
𝑑−1

= 𝑟𝑘 (𝑧) ;

𝜎 (𝑧) =
𝑢𝑘 (𝑧)

𝑢𝑘 (0)
;

𝑤 (𝑧) =
𝑟𝑘 (𝑧)

𝑟𝑘 (0)
.

(36)

From the roots of the pseudolocator polynomial 𝜎(𝑧), all 𝑗𝑙,
𝑙 ∈ {1, 2, . . . , 𝑟}, will be listed. This shows that

𝑒𝑖
𝑙

= 𝛼
−𝑗
𝑙𝑤(𝛼
−𝑗
𝑙)∏

𝑘 ̸=𝑙

(1 − 𝛼
𝑗
𝑘
−𝑗
𝑙) , 𝑙 ∈ {1, 2, . . . , 𝑟} . (37)

From the equation above, all coefficients of 𝑒 are also
determined. For each 𝑗𝑙, a finite number of possibilities 𝑖𝑙
solutions to the equation 𝑗𝑙 ≡ 2

𝑖
𝑙 − 1 (mod 𝑛) can be found.

Similarly to the procedure for decoding BCH codes, this
process will test until the skew polynomial 𝑒 is determined.
Since 𝑒 is unique, the decoded word can be exhibited, as
required.

We conclude this section by an example provided by
Boucher et al. in [3] to illustrate this process in detail.

Example 33 (see [3]). Let 𝛼 be such that 𝛼2
10

−1
= 1. Suppose

that 𝑚 = 𝑛 = 10. Then the polynomial 𝑔(𝑥) = 𝑥
6
+ 𝛼
345
𝑥
5
+

𝛼
643
𝑥
4
+𝛼
878
𝑥
3
+𝛼
670
𝑥
2
+𝛼
1020

𝑥+𝛼
777 is a divisor of 𝑥10+1 in

F210[𝑥; Θ]. This implies that 𝑔(𝑥) is the generator polynomial
of a Θ-cyclic code of length 10 over F210 . We can see that 𝑥 −
𝛼
𝑘 is a right factor of 𝑔(𝑥) for all 𝑘 ∈ {1, . . . , 6}. Hence, the

designed distance of the code 𝐶 is 𝑑 = 7. Now we consider
𝑓(𝑥) = 𝛼

654
𝑥
9
+ 𝛼
547
𝑥
8
+ 𝛼
650
𝑥
7
+ 𝛼
16
𝑥
6
+ 𝛼
567
𝑥
5
+ 𝛼
29
𝑥
4
+

𝛼
87
𝑥
3
+𝛼
696
𝑥
2
+𝛼
252
𝑥+𝛼
555 and an error 𝑒 = 𝛼

341
𝑥
9
+𝛼
682
𝑥
8
+

𝛼
682. The pertubed codeword ℎ is

𝑓 + 𝑒 = 𝛼
818
𝑥
9
+ 𝛼
775
𝑥
8
+ 𝛼
650
𝑥
7
+ 𝛼
16
𝑥
6
+ 𝛼
567
𝑥
5

+ 𝛼
29
𝑥
4
+ 𝛼
87
𝑥
3
+ 𝛼
696
𝑥
2
+ 𝛼
252
𝑥 + 𝛼
557
.

(38)

Since 𝑑 = 7 and polynomial ℎ, we have the syndrome poly-
nomial

𝑆7 (𝑧) = 𝛼
404
𝑧
5
+ 𝛼
403
𝑧
4
+ 𝛼
601
𝑧
3
+ 𝛼
645
𝑧
2
+ 𝛼
614
𝑧

+ 𝛼
406
.

(39)

Applying Euclid Algorithm to 𝑆7(𝑧) and 𝑧
6 in F210[𝑧]with (𝑑−

1)/2 = 3, we can get the pseudolocator polynomial 𝜎(𝑧) =
𝛼
766
𝑧
3
+𝛼
642
𝑧
2
+𝛼
241
𝑧+1 and the evaluator polynomial𝑤(𝑧) =

𝛼
84
𝑧
2
+ 𝛼
185
𝑧 + 𝛼

406. The roots of the polynomial 𝜎(𝑧) are
1, 𝛼512, and 𝛼

768. From this, we have 𝑟 = 3, 𝑗1 = 0, 𝑗2 =
511, and 𝑗3 = 255. By the polynomial 𝑤(𝑧), we can find 𝑒𝑖

1

=

𝛼
682, 𝑒𝑖

2

= 𝛼
341, and 𝑒𝑖

3

= 𝛼
682. Combining this result and the

equations 2𝑖𝑘 − 1 ≡ 𝑗𝑘 (mod 10), we have 𝑖1 = 0 (mod 10),
𝑖2 = 1, 5, 9 (mod10), and 𝑖3 = 4, 8 (mod10). Then we can
list all possible errors as follows:

𝛼
341
𝑥
9
+ 𝛼
682
𝑥
8
+ 𝛼
682
;

𝛼
682
𝑥
8
+ 𝛼
341
𝑥
5
+ 𝛼
682
;

𝛼
341
𝑥
5
+ 𝛼
682
𝑥
4
+ 𝛼
682
;

𝛼
682
𝑥
8
+ 𝛼
341
𝑥 + 𝛼
682
;

𝛼
341
𝑥
9
+ 𝛼
682
𝑥
4
+ 𝛼
682
;

𝛼
682
𝑥
4
+ 𝛼
341
𝑥 + 𝛼
682
.

(40)

It is easy to find that 𝑒 = 𝛼
341
𝑥
9
+ 𝛼
682
𝑥
8
+ 𝛼
682.

5. Skew Θ-𝜆-Constacyclic Codes over
Finite Chain Rings

Constacyclic codes have practical applications as they can
be efficiently encoded using simple shift registers. They have
rich algebraic structures for efficient error detection and
correction,which explains their preferred role in engineering.
Classically, the algebraic structures of constacyclic codes are
determined by ideals in the polynomial rings over finite fields,
Galois rings, and finite chain rings. In [3], Boucher et al.
generalized the notion of cyclic codes by using generator
polynomial in noncommutative skewpolynomial rings. Since
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there are much more skew cyclic codes, the new class of
codes allowed them to systematically search for codes. Later
on, the approach has been extended to codes over Galois
rings [29]. In 2012, Jitman et al. [26] studied skew Θ-𝜆-
constacyclic codes over finite chain rings. These codes have
been studied for a particular case when codes are generated
by monic right divisors of 𝑥𝑛 − 𝜆, where 𝜆 is a unit in the
finite chain rings fixed by a given automorphism. Similarly
to the case of skew Θ-𝜆-constacyclic codes over finite fields,
when Θ is the identity automorphism, they become classical
constacyclic codes over finite chain rings.Therefore, skewΘ-
𝜆-constacyclic codes over finite chain rings can be considered
as a generalization of classical constacyclic codes over finite
chain rings. This is the reason why the study of skew Θ-𝜆-
constacyclic codes over finite chain rings is important. In
this section, we overview the study of skew Θ-𝜆-constacyclic
codes over finite chain rings studied by Jitman et al. [26].

A finite commutative ring with identity is called a finite
chain ring if its ideals are linearly ordered by inclusion or,
equivalently, its ideals are principal and its maximal ideal is
unique. In [32], it is known that a finite chain ring is local and
its uniquemaximal ideal is principal. Constacyclic codes over
a finite commutative chain ring have been studied by many
authors (see, e.g., [23, 33–36]). The structure of constacyclic
codes is also introduced over a special family of finite chain
rings of the form F𝑝𝑚 + 𝑢F𝑝𝑚 . Recently, skew Θ-codes over
finite fields and Galois rings were studied by Boucher et al.
Motivated by these results, in [26], Jitman et al. generalized
the concept of skew Θ-𝜆-constacyclic codes over finite fields
and Galois rings to that over finite chain rings. The structure
of all skew Θ-𝜆-constacyclic codes over a finite chain ring is
determined. Moreover, Euclidean and Hermitian dual codes
of skew Θ-cyclic and negacyclic codes are considered. They
also studied skew Θ-𝜆-constacyclic codes over a special case
F𝑝𝑚 + 𝑢F𝑝𝑚 of a finite chain ring.

In this section, let R be a finite chain ring with unique
maximal ideal ⟨𝛾⟩. Then 𝛾 is a nilpotent ideal of R and we
denote its nilpotency index by 𝑡. Hence, the ideals ofR form
the following chain:

R = ⟨1⟩ ⊋ ⟨𝛾⟩ ⊋ ⋅ ⋅ ⋅ ⊋ ⟨𝛾
𝑡−1
⟩ ⊋ ⟨𝛾

𝑡
⟩ = ⟨0⟩ . (41)

Analogous to the case of finite fields, the set of automor-
phisms of R forms a group under composition, denoted by
Aut(R). Many classes of finite chain rings have nontrivial
automorphism groups. For examples, Aut(GR(𝑝𝑒, 𝑚)) is non-
trivial if and only if𝑚 ≥ 2 (cf. [16]) and Aut(F𝑝𝑚 +𝑢F𝑝𝑚 +⋅ ⋅ ⋅+
𝑢
𝑒−1F𝑝𝑚) is nontrivial if and only if𝑚 ≥ 2 or 𝑝 is odd or 𝑒 ≥ 3

(cf. [37, Proposition 1]).
We know that F𝑝𝑚[𝑥; Θ] is left and right Euclidean

ring whose left and right ideals are principal. Unlike the
ring F𝑝𝑚[𝑥; Θ], if R is a finite chain ring, then the skew
polynomial ring R[𝑥; Θ] is neither left nor right Euclidean
ring. Therefore, we need to define left and right divisions.
Suppose that 𝑓(𝑥) = ∑

𝑠

𝑖=0
𝑎𝑖𝑥
𝑖 and 𝑔(𝑥) = ∑

𝑡

𝑗=0
𝑏𝑗𝑥
𝑗, where

𝑏𝑡 is a unit in R and 𝑠 ⩾ 𝑡. We can see that the degree of
polynomial

𝑓 (𝑥) − 𝑎𝑠 ⋅ Θ
𝑠−𝑡

(𝑏
−1

𝑡
) 𝑥
𝑠−𝑡
𝑔 (𝑥) (42)

is less than the degree of 𝑓(𝑥). By the inductive method, we
can obtain skew polynomials 𝑞(𝑥) and 𝑟(𝑥) such that 𝑓(𝑥) =
𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) with deg(𝑟(𝑥)) < deg(𝑔(𝑥)) or 𝑟(𝑥) = 0. If
𝑟(𝑥) = 0, then we say that 𝑔(𝑥) is a right divisor of 𝑓(𝑥). The
skew polynomials 𝑞(𝑥) and 𝑟(𝑥) are unique. They are called
the right quotient and right remainder, respectively. Note that
if 𝑠 < 𝑡, then we put 𝑓(𝑥) = 0 ⋅ 𝑔(𝑥) + 𝑓(𝑥). This algorithm
is called the Right Division Algorithm in R[𝑥; Θ]. The Left
Division Algorithm inR[𝑥; Θ] can be defined similarly, using
the fact that the degree of

𝑓 (𝑥) − 𝑔 (𝑥)Θ
−𝑡
(𝑎𝑠𝑏
−1

𝑡
) 𝑥
𝑠−𝑡 (43)

is less than the degree of 𝑓(𝑥). Now we recall the definition
of skew Θ-𝜆-constacyclic codes in R[𝑥; Θ]. Given an auto-
morphism Θ of R and a unit in R, a linear code 𝐶 is said
to be skew Θ-𝜆-constacyclic if 𝐶 is closed under the Θ-𝜆-
constacyclic shift 𝜏Θ,𝜆 : R

𝑛
→ R𝑛 defined by

𝜏Θ,𝜆 (𝑐0, 𝑐1, . . . , 𝑐𝑛−1)

= (Θ (𝜆𝑐𝑛−1) , Θ (𝑐0) , . . . , Θ (𝑐𝑛−2)) .

(44)

5.1. SkewΘ-𝜆-Constacyclic Codes over Finite Chain Rings. For
a skewpolynomial𝑔(𝑥) inR[𝑥; Θ], then a left ideal generated
by𝑔(𝑥), denoted by ⟨𝑔(𝑥)⟩, is in general not a two-sided ideal.
However, if 𝑔(𝑥) = 𝑥

𝑡
ℎ(𝑥) (𝑡 ∈ N0) such that ℎ(𝑥) is central

(i.e., commutes with all elements ofR[𝑥; Θ]), then ⟨𝑓(𝑥)⟩ is
a principal two-sided ideal inR[𝑥; Θ]. From this remark, the
following corollary is a direct consequence.

Corollary 34 (see [26, Corollary 2.2]). If 𝑓(𝑥) is a monic
central skew polynomial of degree 𝑛, then the skew polynomials
of degree less than 𝑛 are canonical representatives of the
elements inR[𝑥; Θ]/⟨𝑓(𝑥)⟩.

Analogous to classical constacyclic codes, we study skew
Θ-𝜆-constacyclic codes as left ideals in R[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩.

Note that R[𝑥; Θ] is a noncommutative ring. So we need to
have the conditions of Θ and 𝜆 which ensure that ⟨𝑥𝑛 − 𝜆⟩ is
a two-sided ideal.

Lemma 35 (see [26, Proposition 2.2]). Let 𝑛 be a positive
integer and 𝜆 a unit in R. Then the following statements are
equivalent:

(i) 𝑥𝑛 − 𝜆 is central inR[𝑥; Θ].
(ii) ⟨𝑥𝑛 − 𝜆⟩ is a two-sided ideal.
(iii) 𝑛 is a multiple of the order of Θ and 𝜆 is fixed by Θ.

For Θ-𝜆-constacyclic codes over finite fields, a code 𝐶 is
a skew Θ-𝜆-constacyclic code if and only if 𝐶 is a left ideal
⟨𝑔(𝑥)⟩ ⊆ F𝑝𝑚[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩, where 𝑔(𝑥) is right divisor of

𝑥
𝑛
− 𝜆. In the case finite chain rings, the following theorem is

analogous to that forΘ-𝜆-constacyclic codes over finite fields.

Theorem 36 (see [26, Theorem 2.2]). Let Θ be an automor-
phism of R, 𝑛 an integer divisible by the order of Θ, and 𝜆

a unit in R which is fixed by Θ. Then the code 𝐶 is a skew
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Θ-𝜆-constacyclic code if and only if 𝐶 is a left ideal ⟨𝑔(𝑥)⟩ ⊆
R[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩, where 𝑔(𝑥) is a right divisor of 𝑥𝑛 − 𝜆.

From this theorem, we can find a skew Θ-𝜆-constacyclic
code as a left ideal ⟨𝑔(𝑥)⟩ ⊆ R[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩, where

𝑔(𝑥) is a right divisor of 𝑥𝑛 − 𝜆. However, it is not easy to
list all skew Θ-𝜆-constacyclic codes because R[𝑥; Θ] is not
unique factorization ring. Therefore, there are many more
right factors than in the commutative case, which in turn
produces many more skew Θ-𝜆-constacyclic codes.

Example 37. Let R = F3 + 𝑢F3 be a finite chain ring. We
consider the automorphismΘ𝑖𝑑,2 of F3 + 𝑢F3, whereΘ𝑖𝑑,2(𝑎 +
𝑢𝑏) = 𝑎+ 2𝑏𝑢. Then we have two irreducible factorizations of
𝑥
6
− 1 in (F3 + 𝑢F3)[𝑥; Θ𝑖𝑑,2]:

𝑥
6
− 1 = (𝑥 + 1)

3
(𝑥 + 2)

3
= (𝑥
2
+ 𝑢𝑥 + 2)

3

. (45)

Given a monic right divisor of degree 𝑛 − 𝑘 of 𝑥𝑛 − 𝜆 :

𝑔(𝑥) = ∑
𝑛−𝑘−1

𝑖=0
𝑔𝑖(𝑥) + 𝑥

𝑛−𝑘, then a generator matrix of the
Θ-𝜆-constacyclic code 𝐶 generated by 𝑔(𝑥) is given by

𝐺 fl
(
(
(
(

(

𝑔0 ⋅ ⋅ ⋅ 𝑔𝑛−𝑘−1 1 0 ⋅ ⋅ ⋅ 0

0 Θ (𝑔0) ⋅ ⋅ ⋅ Θ (𝑔𝑛−𝑘−1) 1 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Θ
2
(𝑔𝑛−𝑘−1) ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 ⋅ ⋅ ⋅ 0 Θ
𝑘−1

(𝑔0) ⋅ ⋅ ⋅ Θ
𝑘−1

(𝑔𝑛−𝑘−1) 1

)
)
)
)

)

. (46)

The rows of 𝐺 are linearly independent. Then we have the
following result.

Proposition 38 (see [26, Proposition 3.1]). Let𝑔(𝑥) be a right
divisor of 𝑥𝑛 − 𝜆. Then the Θ-𝜆-constacyclic code 𝐶 generated
by 𝑔(𝑥) is a freeR-module with |𝐶| = |R|

𝑛−deg(𝑔(𝑥)).

Similarly, in the case of finite fields, we denote RΘ, the
subring ofR fixed by Θ. Then we have the following result.

Proposition 39 (see [26, Proposition 3.2]). Let 𝑔(𝑥) be
a monic right divisor of 𝑥𝑛 − 𝜆 in R[𝑥; Θ]. The skew

Θ-𝜆-constacyclic code generated by𝑔(𝑥) is𝜆-constacyclic if and
only if 𝑔(𝑥) ∈ RΘ[𝑥; Θ].

Let𝐶 be aΘ-𝜆-constacyclic code. In the following lemma,
the parity-check matrix for 𝐶 is introduced.

Lemma 40 (see [26, Proposition 3.3]). Let 𝐶 be the Θ-𝜆-
constacyclic code generated by a monic right divisor 𝑔(𝑥) of
𝑥
𝑛
−𝜆 and ℎ(𝑥) fl (𝑥

𝑛
−𝜆)/𝑔(𝑥).Then the following statements

hold:

(i) For 𝑐(𝑥) ∈ R[𝑥; Θ], 𝑐(𝑥) ∈ 𝐶 if and only if 𝑐(𝑥)ℎ(𝑥) =
0 inR[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩.

(ii) If ℎ(𝑥) = ∑
𝑘−1

𝑖=0
ℎ𝑖𝑥
𝑖
+ 𝑥
𝑘, then the matrix

𝐻 fl
(
(
(
(
(

(

1 Θ(ℎ𝑘−1) ⋅ ⋅ ⋅ Θ
𝑘
(ℎ0) 0 ⋅ ⋅ ⋅ 0

0 1 Θ
2
(ℎ𝑘−1) ⋅ ⋅ ⋅ Θ

𝑘+1
(ℎ0) ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 ⋅ ⋅ ⋅ 1 Θ
𝑛−𝑘

(ℎ𝑘−1) ⋅ ⋅ ⋅ Θ
𝑛−1

(ℎ0)

)
)
)
)
)

)

(47)

is a parity-check matrix for 𝐶.

In the next part, we study the Euclidean and Hermitian
dual codes of skew Θ-𝜆-constacyclic codes over finite chain
rings. Suppose that the length 𝑛 of codes is divisible by the
order ofΘ, and 𝜆 is a unit inRwhich is fixed byΘ. Euclidean
inner product is defined by ⟨𝑢, V⟩ = ∑

𝑛−1

𝑖=0
𝑢𝑖V𝑖, for 𝑢 =

(𝑢0, 𝑢1, . . . , 𝑢𝑛−1) and V = (V0, V1, . . . , V𝑛−1) in R𝑛. In special
case, if the order ofΘ is 2, thenwe can also give theHermitian

inner product, denoted by ⟨𝑢, V⟩𝐻 = ∑
𝑛−1

𝑖=0
𝑢𝑖Θ(V𝑖). If ⟨𝑢, V⟩ =

0 (resp., ⟨𝑢, V⟩𝐻 = 0), then 𝑢 and V are called Euclidean
orthogonal (resp., Hermitian orthogonal).The Euclidean and
Hermitian dual code of a code 𝐶 are defined to be

𝐶
⊥
= {V ∈ R

𝑛
| ⟨V, 𝑐⟩ = 0, ∀𝑐 ∈ 𝐶} , (48)

𝐶
⊥
𝐻 = {V ∈ R

𝑛
| ⟨V, 𝑐⟩𝐻 = 0, ∀𝑐 ∈ 𝐶} , (49)
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respectively. If 𝐶 = 𝐶
⊥ (𝐶 = 𝐶

⊥
𝐻), then 𝐶 is said to

be Euclidean (Hermitian) self-dual code. We get a main
result which describes the relationship between a skew Θ-𝜆-
constacyclic code and its dual.

Lemma 41 (see [26, Lemma 3.1]). Let 𝐶 be a code of length
𝑛 over R. Then 𝐶 is skew Θ-𝜆-constacyclic if and only if 𝐶⊥
is Θ-𝜆−1-constacyclic. In particular, if 𝜆2 = 1, then 𝐶 is Θ-𝜆-
constacyclic if and only if 𝐶⊥ is Θ-𝜆-constacyclic.

5.2. Euclidean Dual Codes. We denote that R[𝑥; Θ]𝑆
−1 is

the right localization ofR[𝑥; Θ]. The following theorem will
discuss the necessary and sufficient conditions forR[𝑥; Θ] to
have the right localization.

Theorem 42 (see [26, Theorem 2.1]). Let 𝑆 = {𝑥
𝑖
| 𝑖 ∈ N}.

ThenR[𝑥; Θ] has the right localization at 𝑆 if and only if both
the following conditions hold:

(i) For all 𝑥𝑖 ∈ 𝑆 and 𝑎(𝑥) ∈ R[𝑥; Θ], there exist 𝑥𝑗 ∈ 𝑆

and 𝑏(𝑥) ∈ R[𝑥; Θ] such that 𝑎(𝑥)𝑥𝑖 = 𝑥
𝑗
𝑏(𝑥).

(ii) Given 𝑎(𝑥) ∈ R[𝑥; Θ] and 𝑥𝑖 ∈ 𝑆, if 𝑥𝑖𝑎(𝑥) = 0, then
there exists 𝑥𝑗 ∈ 𝑆 such that 𝑎(𝑥)𝑥𝑗 = 0.

Before determining the structure of dual codes, we get the
following result.

Lemma 43 (see [26, Proposition 2.4]). Let 𝜑 : R[𝑥; Θ] →

R[𝑥; Θ]𝑆
−1 defined by

𝜑(

𝑘

∑

𝑖=0

𝑎𝑖𝑥
𝑖
) =

𝑘

∑

𝑖=0

𝑥
−𝑖
𝑎𝑖. (50)

Then 𝜑 is a ring antimonomorphism.

From Lemma 41, it is easy to verify that the Euclidean
dual of a skew Θ-𝜆-constacyclic code 𝐶 is again a skew Θ-
𝜆-constacyclic code. We introduce a result about Euclidean
dual codes. To do that, we need the following lemma.

Lemma 44 (see [26, Lemma 3.2]). Assume that 𝜆2 = 1. Let
𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝑥

𝑛−1 and 𝑏(𝑥) = 𝑏0 + 𝑏1𝑥 +

⋅ ⋅ ⋅ + 𝑏𝑛−1𝑥
𝑛−1 be polynomials in R[𝑥; Θ]. Then the following

statements are equivalent:

(i) The coefficient vector of 𝑎(𝑥) is Euclidean orthogonal
to the coefficient vector of 𝑥𝑖(𝑥𝑛−1𝜑(𝑏(𝑥))) for all 𝑖 ∈
{0, 1, . . . , 𝑛 − 1}, where 𝜑 : R[𝑥; Θ] → R[𝑥; Θ]𝑆

−1 is
a ring antimonomorphism defined in Lemma 43.

(ii) (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) is Euclidean orthogonal to (𝑏𝑛−1,

Θ(𝑏𝑛−2), . . . , Θ
𝑛−1

(𝑏0)) and all its Θ-𝜆-constacyclic
shifts.

(iii) 𝑎(𝑥)𝑏(𝑥) = 0 inR[𝑥; Θ]/⟨𝑥
𝑛
− 𝜆⟩.

Theorem 45 (see [26, Theorem 3.3]). Assume that 𝜆2 = 1.
Let 𝑔(𝑥) be a right divisor of 𝑥𝑛 −𝜆 and ℎ(𝑥) fl (𝑥

𝑛
−𝜆)/𝑔(𝑥).

Let𝐶 be theΘ-𝜆-constacyclic code generated by 𝑔(𝑥). Then the
following statements hold:

(i) The skew polynomial 𝑥deg(ℎ(𝑥))𝜑(ℎ(𝑥)) is a right divisor
of 𝑥𝑛 − 𝜆.

(ii) The Euclidean dual 𝐶⊥ is a Θ-𝜆-constacyclic code
generated by 𝑥deg(ℎ(𝑥))𝜑(ℎ(𝑥)).

Theorem46 (see [26,Theorem 3.4]). Assume that 𝜆2 = 1 and
𝑛 is even, denoted by 𝑛 = 2𝑘. Let 𝑔(𝑥) = ∑

𝑘−1

𝑖=0
𝑔𝑖𝑥
𝑖
+ 𝑥
𝑘 be a

right divisor of𝑥𝑛−𝜆.Then theΘ-𝜆-constacyclic code generated
by 𝑔(𝑥) is Euclidean self-dual if and only if

(

𝑘−1

∑

𝑖=0

𝑔𝑖𝑥
𝑖
+ 𝑥
𝑘
)

⋅ (Θ
−𝑘
(𝑔
−1

0
) +

𝑘−1

∑

𝑖=0

Θ
𝑖−𝑘

(𝑔
−1

0
𝑔𝑘−𝑖) 𝑥

𝑖
+ 𝑥
𝑘
) = 𝑥

𝑛

− 𝜆.

(51)

Theorem 46 provided the necessary and sufficient condi-
tions for a skew Θ-𝜆-constacyclic code to be Euclidean self-
dual code. By applying Theorem 46, we can see that if the
order of Θ divides 𝑘 and 𝜆 ̸= −1, then there are no Euclidean
self-dual skew constacyclic codes of length 2𝑘. Moreover, ifΘ
is the identity automorphism and 𝜆 ̸= −1, then there are no
Euclidean self-dual codes.

5.3. Hermitian Dual Codes. The Hermitian inner product is
defined only when the order of Θ is 2. Therefore, in this
subsection, we always suppose that the order of Θ is 2. We
first have some characterizations of Hermitian duality.

Lemma 47 (see [26, Lemma 3.5]). Let 𝐶 be a code of length
𝑛 over R. Then 𝐶 is skew Θ-𝜆-constacyclic if and only if 𝐶⊥𝐻
is Θ-𝜆−1-constacyclic. In particular, if 𝜆2 = 1, then 𝐶 is Θ-𝜆-
constacyclic if and only if 𝐶⊥𝐻 is Θ-𝜆-constacyclic.

Let 𝜙 be a ring automorphism of R[𝑥; Θ] defined by
𝜙(∑
𝑠

𝑖=0
𝑎𝑖𝑥
𝑖
) = ∑

𝑠

𝑖=0
Θ(𝑎𝑖)𝑥

𝑖. Then we have the following
result.

Lemma 48 (see [26, Lemma 3.6]). Assume that 𝜆2 = 1. Let
𝑎(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ + 𝑎𝑛−1𝑥

𝑛−1 and 𝑏(𝑥) = 𝑏0 + 𝑏1𝑥 +

⋅ ⋅ ⋅ + 𝑏𝑛−1𝑥
𝑛−1 be polynomials in R[𝑥; Θ]. Then the following

statements are equivalent:

(i) The coefficient vector of 𝑎(𝑥) is Euclidean orthogonal
to the coefficient vector of 𝑥𝑖𝜙(𝑥𝑛−1𝜑(𝑏(𝑥))) for all 𝑖 ∈
{0, 1, . . . , 𝑛 − 1}, where 𝜑 : R[𝑥; Θ] → R[𝑥; Θ]𝑆

−1 is
a ring antimonomorphism defined in Lemma 43.

(ii) (𝑎0, 𝑎1, . . . , 𝑎𝑛−1) is Hermitian orthogonal to
(Θ
−1
(𝑏𝑛−1), (𝑏𝑛−2), . . . , Θ

𝑛−2
(𝑏0)) and all its Θ-𝜆-

constacyclic shifts.
(iii) 𝑎(𝑥)𝑏(𝑥) = 0 inR[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩.

Theorem 49 (see [26, Theorem 3.7]). Assume that 𝜆2 = 1.
Let 𝑔(𝑥) be a right divisor of 𝑥𝑛 −𝜆 and ℎ(𝑥) fl (𝑥

𝑛
−𝜆)/𝑔(𝑥).

Let𝐶 be theΘ-𝜆-constacyclic code generated by 𝑔(𝑥). Then the
following statements hold:
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(i) The skew polynomial 𝜙(𝑥deg(ℎ(𝑥))𝜑(ℎ(𝑥))) is a right
divisor of 𝑥𝑛 − 𝜆.

(ii) The Hermitian dual 𝐶⊥𝐻 is a Θ-𝜆-constacyclic code
generated by 𝜙(𝑥deg(ℎ(𝑥))𝜑(ℎ(𝑥))).

Similar to the case of the Euclidean self-dual code, we
have the necessary and sufficient conditions for a Θ-𝜆-
constacyclic code to be Hermitian self-dual.

Theorem 50 (see [26,Theorem 3.8]). Assume that 𝜆2 = 1 and
𝑛 is even, denoted by 𝑛 = 2𝑘. Let 𝑔(𝑥) = ∑

𝑘−1

𝑖=0
𝑔𝑖𝑥
𝑖
+ 𝑥
𝑘 be a

right divisor of𝑥𝑛−𝜆.Then theΘ-𝜆-constacyclic code generated
by 𝑔(𝑥) is Hermitian self-dual if and only if

(

𝑘−1

∑

𝑖=0

𝑔𝑖𝑥
𝑖
+ 𝑥
𝑘
)

⋅ (Θ
−𝑘−1

(𝑔
−1

0
) +

𝑘−1

∑

𝑖=0

Θ
𝑖−𝑘−1

(𝑔
−1

0
𝑔𝑘−𝑖) 𝑥

𝑖
+ 𝑥
𝑘
)

= 𝑥
𝑛
− 𝜆.

(52)

From this theorem, if 𝑘 is odd and 𝜆 ̸= −1, then there are
no Hermitian self-dual Θ-𝜆-constacyclic codes of length 2𝑘.

5.4. Skew Constacyclic Codes over F𝑝𝑚 + 𝑢F𝑝𝑚 . The class of
finite chain rings of the form F𝑝𝑚 +𝑢F𝑝𝑚 has been used widely
as alphabets in certain constacyclic codes. It has been studied
bymany researchers (see, formore details, [23–25, 33, 35, 38]).
In recent years, we have studied constacyclic codes of length
𝑝
𝑠 over F𝑝𝑚 + 𝑢F𝑝𝑚 . All constacyclic codes of length 𝑝

𝑠 over
the ring F𝑝𝑚 + 𝑢F𝑝𝑚 are considered. The purpose of this
subsection is to investigate the structure of all skew Θ-𝜆-
constacyclic codes over F𝑝𝑚 +𝑢F𝑝𝑚 , where 𝜆 is fixed byΘ and
the length 𝑛 of codes is a multiple of the order of Θ. Note
that the set of automorphisms of F𝑝𝑚 + 𝑢F𝑝𝑚 forms a group
under composition, denoted by Aut(F𝑝𝑚 + 𝑢F𝑝𝑚). The group
Aut(F𝑝𝑚 + 𝑢F𝑝𝑚) is completely characterized by Alkhamees
[37] as follows.

Theorem 51. For 𝛼 ∈ Aut(F𝑝𝑚) and 𝛽 ∈ F∗
𝑝𝑚
, let

Θ𝛼,𝛽 : F𝑝𝑚 + 𝑢F𝑝𝑚 󳨀→ F𝑝𝑚 + 𝑢F𝑝𝑚 (53)

be defined by

Θ𝛼,𝛽 (𝑎 + 𝑏𝑢) = 𝛼 (𝑎) + 𝛽𝛼 (𝑏) 𝑢. (54)

Then Aut(F𝑝𝑚 + 𝑢F𝑝𝑚) = {Θ𝛼,𝛽 | 𝛼 ∈ Aut(F𝑝𝑚), 𝛽 ∈ F∗
𝑝𝑚
}.

In the next part, the structure of skew Θ-cyclic and
negacyclic codes over F𝑝𝑚 + 𝑢F𝑝𝑚 is studied. We refer the
readers to [26, 38] for more details.

Assume that 𝐶 is a nonzero left ideal in (F𝑝𝑚 +

𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥
𝑛
− 𝜆⟩. Let 𝐴 be the set of all nonzero skew

polynomials of minimal degree in 𝐶. Then the classifications
ofΘ-𝜆-constacyclic codes are given in terms of generators of
left ideals in (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥

𝑛
− 𝜆⟩.

Theorem52 (see [26,Theorem 4.1]). Let𝐶 and𝐴 be as above.
Then consider the following:

(i) If there exists a monic skew polynomial in 𝐴, then it is
unique in 𝐴. In this case, 𝐶 = ⟨𝑔(𝑥)⟩, where 𝑔(𝑥) is
such unique skew polynomial.

(ii) If there are no monic skew polynomials in𝐶, then there
exists a unique skew polynomial 𝑔(𝑥) = 𝑢𝑔1(𝑥) in 𝐴
with leading coefficient 𝑢. In this case, 𝐶 = ⟨𝑔(𝑥)⟩.

(iii) If there are no monic skew polynomials in 𝐴 but
there exists a monic skew polynomial in 𝐶, then there
exists a unique skew polynomial 𝑔(𝑥) = 𝑢𝑔1(𝑥) in 𝐴
with leading coefficient 𝑢 and a unique monic skew
polynomial 𝑓(𝑥) = 𝑓0(𝑥) + 𝑢𝑓1(𝑥) of minimal degree
in 𝐶 such that deg(𝑓1(𝑥)) < deg(𝑔1(𝑥)). In this case,
𝐶 = ⟨𝑔(𝑥), 𝑓(𝑥)⟩.

We categorize the left ideals of (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥
𝑛
−

𝜆⟩ into three types: Type LI-1 refers to the trivial ideal
(⟨0⟩, ⟨1⟩) or a left ideal satisfying part (i) of the theorem
above. Similarly, LI-2 and LI-3 refer to a left ideal satisfying
Theorem 52 ((ii) and (iii)), respectively. Next, we provide
some properties of left ideals of each type LI-𝑖 (𝑖 = 1, 2, 3.)
First, we consider type LI-𝑖 by the following lemmas.

Lemma 53 (see [26, Proposition 4.1]). A left ideal of type LI-1
is principal and generated by amonic right divisor𝑔(𝑥) of𝑥𝑛−𝜆
in (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]. Moreover, if we view 𝑔(𝑥) = 𝑔0(𝑥) +

𝑢𝑔1(𝑥), where 𝑔0(𝑥), 𝑔1(𝑥) ∈ F𝑝𝑚[𝑥; Θ], then deg(𝑔1(𝑥)) <

deg(𝑔0(𝑥)) and 𝑔0(𝑥) is a monic right divisor of 𝑥𝑛 − 𝜆 in
F𝑝𝑚[𝑥; Θ].

Lemma 54 (see [26, Proposition 4.2]). A left ideal of type
LI-2 is principal and generated by 𝑔(𝑥) = 𝑢𝑔1(𝑥), where
𝑔1(𝑥) is a monic right divisor of 𝑥𝑛 − 𝜆 in F𝑝𝑚[𝑥; Θ] such that
deg(𝑔1(𝑥)) < 𝑛.

We write
←󳨀󳨀󳨀
𝑓(𝑥) to indicate that

←󳨀󳨀󳨀
𝑓(𝑥) is the skew polyno-

mial such that 𝑓(𝑥)𝑢 = 𝑢
←󳨀󳨀󳨀
𝑓(𝑥).

Lemma 55 (see [26, Proposition 4.3]). A left ideal of type LI-
3 is generated by {𝑔(𝑥) = 𝑢𝑔1(𝑥), 𝑓(𝑥) = 𝑓0(𝑥) + 𝑢𝑓1(𝑥)},
where 𝑓0(𝑥), 𝑓1(𝑥), 𝑔1(𝑥) ∈ F𝑝𝑚[𝑥; Θ] satisfy the following
properties:

(i) 𝑔1(𝑥), 𝑓0(𝑥) are monic,
(ii) deg(𝑓1(𝑥)) < deg(𝑔1(𝑥)) < deg(𝑓0(𝑥)) < 𝑛,
(iii) 𝑔1(𝑥) is a right divisor of 𝑓0(𝑥) in F𝑝𝑚[𝑥; Θ],

(iv) 𝑓0(𝑥) is a right divisor of 𝑥
𝑛
− 𝜆 in F𝑝𝑚[𝑥; Θ].

Moreover, if 𝜆 ∈ F𝑝𝑚 , then 𝑔1(𝑥) is a right divisor of
←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀
((𝑥
𝑛
− 𝜆)/𝑓0(𝑥))𝑓1(𝑥) in F𝑝𝑚[𝑥; Θ].

Example 56. Let R = F3 + 𝑢F3 be a finite chain ring. We
consider the automorphismΘ𝑖𝑑,2 of F3 + 𝑢F3, whereΘ𝑖𝑑,2(𝑎 +
𝑢𝑏) = 𝑎 + 2𝑏𝑢 for all 𝑎, 𝑏 ∈ F3. We list all left ideals in three
types LI-𝑖 (𝑖 = 1, 2, 3) in (F3 + 𝑢F3)[𝑥; Θ𝑖𝑑,2]/⟨𝑥

2
− 1⟩. All left

ideals in type LI-1 are ⟨0⟩, ⟨1⟩, ⟨𝑥+1⟩, ⟨𝑥+2⟩, ⟨𝑥+1+𝑢⟩, ⟨𝑥+
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1 + 2𝑢⟩, ⟨𝑥 + 2 + 𝑢⟩, ⟨𝑥 + 2 + 2𝑢⟩. All left ideals in type LI-2
are ⟨𝑢⟩, ⟨𝑢(𝑥 + 1)⟩, ⟨𝑢(𝑥 + 2)⟩, and all left ideals in type LI-3
are ⟨𝑢, 𝑥 + 1⟩, ⟨𝑢, 𝑥 + 2⟩.

Applying Theorem 52, the structure of skew Θ-𝜆-consta-
cyclic codes over F𝑝𝑚 + 𝑢F𝑝𝑚 is introduced. We have three
types of the left ideals in the ring (F𝑝𝑚 +𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥

𝑛
−𝜆⟩.

From this, we study the structure of the Euclidean dual codes
of skew Θ-cyclic and negacyclic codes over F𝑝𝑚 + 𝑢F𝑝𝑚 .

Theorem57 (see [26,Theorem 4.2]). Let𝜆 ∈ {−1, 1}.Then the
Euclidean dual code of a left ideal in (F𝑝𝑚+𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥𝑛−𝜆⟩
is also a left ideal in (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥𝑛 − 𝜆⟩ determined
as follows:

(LI-1⊥) If 𝐶 = ⟨𝑔0(𝑥) + 𝑢𝑔1(𝑥)⟩, then 𝐶
⊥

=

⟨𝑥
𝑛−deg(𝑔

0
(𝑥))

𝜑((𝑥
𝑛
− 𝜆)/(𝑔0(𝑥) + 𝑢𝑔1(𝑥)))⟩.

(LI-2⊥) If 𝐶 = ⟨𝑢𝑔1(𝑥)⟩, then 𝐶⊥ = ⟨𝑢, 𝑥
𝑛−deg(𝑔

1
(𝑥))

𝜑((𝑥
𝑛
−𝜆)/

𝑔1(𝑥))⟩.
(LI-3⊥) If 𝐶 = ⟨𝑢𝑔1(𝑥), 𝑓0(𝑥) + 𝑢𝑓1(𝑥)⟩, then there

exists 𝑚(𝑥) ∈ F𝑝𝑚[𝑥; Θ] such that 𝑚(𝑥)𝑔1(𝑥) =

←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀
((𝑥
𝑛
− 𝜆)/𝑓0(𝑥))𝑓1(𝑥) and

𝐶
⊥
= ⟨𝑥
𝑛−deg(𝑓

0
(𝑥))𝜑(((𝑥

𝑛

−𝜆)/𝑓
0
(𝑥))𝑢)

,

𝑥
𝑛−deg(𝑔

1
(𝑥))

𝜑(
𝑥
𝑛
− 𝜆

𝑔1 (𝑥)
− 𝑢𝑚 (𝑥))⟩ ,

(55)

where 𝜑 : R[𝑥; Θ] → R[𝑥; Θ]𝑆
−1 defined by

𝜑(∑
𝑘

𝑖=0
𝑎𝑖𝑥
𝑖
) = ∑
𝑘

𝑖=0
𝑥
−𝑖
𝑎𝑖.

For Hermitian dual codes, we assume that the order of Θ
is 2. We have the structure of Hermitian dual codes of skew
Θ-cyclic and negacyclic codes over F𝑝𝑚 + 𝑢F𝑝𝑚 as follows.

Theorem 58 (see [26, Theorem 4.3]). Let 𝜆 ∈ {−1, 1} and let
Θ be an automorphism of order 2. Then the Hermitian dual
code of a left ideal in (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥𝑛 − 𝜆⟩ is also a left
ideal in (F𝑝𝑚 + 𝑢F𝑝𝑚)[𝑥; Θ]/⟨𝑥𝑛 − 𝜆⟩ determined as follows:

(LI-1⊥) If 𝐶 = ⟨𝑔0(𝑥) + 𝑢𝑔1(𝑥)⟩, then 𝐶
⊥
𝐻 =

⟨𝜙(𝑥
𝑛−deg(𝑔

0
(𝑥))

𝜑((𝑥
𝑛
− 𝜆)/(𝑔0(𝑥) + 𝑢𝑔1(𝑥))))⟩.

(LI-2⊥) If 𝐶 = ⟨𝑢𝑔1(𝑥)⟩, then 𝐶⊥𝐻 = ⟨𝑢, 𝜙(𝑥
𝑛−deg(𝑔

1
(𝑥))

𝜑((𝑥
𝑛
−

𝜆)/𝑔1(𝑥)))⟩.
(LI-3⊥) If 𝐶 = ⟨𝑢𝑔1(𝑥), 𝑓0(𝑥) + 𝑢𝑓1(𝑥)⟩, then there

exists 𝑚(𝑥) ∈ F𝑝𝑚[𝑥; Θ] such that 𝑚(𝑥)𝑔1(𝑥) =

←󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀󳨀
((𝑥
𝑛
− 𝜆)/𝑓0(𝑥))𝑓1(𝑥) and

𝐶
⊥
= ⟨𝑥
𝑛−deg(𝑓

0
(𝑥))

𝜑(
𝑥
𝑛
− 𝜆

𝑓0 (𝑥)
𝑢) ,

𝑥
𝑛−deg(𝑔

1
(𝑥))

𝜑(
𝑥
𝑛
− 𝜆

𝑔1 (𝑥)
− 𝑢 ⋅ 𝑚 (𝑥))⟩ ,

(56)

where 𝜑 : R[𝑥; Θ] → R[𝑥; Θ]𝑆
−1 defined by

𝜑(∑
𝑘

𝑖=0
𝑎𝑖𝑥
𝑖
) = ∑
𝑘

𝑖=0
𝑥
−𝑖
𝑎𝑖.

Table 3

𝐶 𝐶
⊥

𝐶
⊥
𝐻

⟨0⟩1 ⟨1⟩1 ⟨1⟩1

⟨1⟩1 ⟨0⟩1 ⟨0⟩1

⟨𝑥 + 1⟩1 ⟨𝑥 + 2⟩1 ⟨𝑥 + 2⟩1

⟨𝑥 + 2⟩1 ⟨𝑥 + 1⟩1 ⟨𝑥 + 1⟩1

⟨𝑥 + 1 + 𝑢⟩1 ⟨𝑥 + 2 + 𝑢⟩1 ⟨𝑥 + 2 + 2𝑢⟩1

⟨𝑥 + 1 + 2𝑢⟩1 ⟨𝑥 + 2 + 2𝑢⟩1 ⟨𝑥 + 2 + 𝑢⟩1

⟨𝑥 + 2 + 𝑢⟩1 ⟨𝑥 + 1 + 𝑢⟩1 ⟨𝑥 + 1 + 2𝑢⟩1

⟨𝑥 + 2 + 2𝑢⟩1 ⟨𝑥 + 1 + 2𝑢⟩1 ⟨𝑥 + 1 + 𝑢⟩1

⟨𝑢⟩2 ⟨𝑢⟩2 ⟨𝑢⟩2

⟨𝑢(𝑥 + 1)⟩2 ⟨𝑢(𝑥 + 2)⟩3 ⟨𝑢(𝑥 + 2)⟩3

⟨𝑢(𝑥 + 2)⟩2 ⟨𝑢(𝑥 + 1)⟩3 ⟨𝑢(𝑥 + 1)⟩3

⟨𝑢, 𝑥 + 1⟩3 ⟨𝑢(𝑥 + 2)⟩2 ⟨𝑢(𝑥 + 2)⟩2

⟨𝑢, 𝑥 + 2⟩3 ⟨𝑢(𝑥 + 1)⟩2 ⟨𝑢(𝑥 + 1)⟩2

Note that the subscripts 1, 2, and 3 indicate the types of ideals LI-1, LI-2, and
LI-3, respectively.

Finally, we give an example for Euclidean and Hermitian
dual codes.

Example 59. We knew in previous example that all left ideals
of type LI-1 in (F3 + 𝑢F3)[𝑥; Θ𝑖𝑑,2]/⟨𝑥

2
− 1⟩ are ⟨0⟩, ⟨1⟩, ⟨𝑥 +

1⟩, ⟨𝑥+2⟩, ⟨𝑥+1+𝑢⟩, ⟨𝑥+2+𝑢⟩, ⟨𝑥+1+2𝑢⟩, ⟨𝑥+2+2𝑢⟩.Then
their Euclidean dual codes are ⟨1⟩, ⟨0⟩, ⟨𝑥+2⟩, ⟨𝑥+1⟩, ⟨𝑥+2+
𝑢⟩, ⟨𝑥+1+𝑢⟩, ⟨𝑥+2+2𝑢⟩, ⟨𝑥+1+2𝑢⟩, respectively. Similarly,
Hermitian dual codes are ⟨1⟩, ⟨0⟩, ⟨𝑥 + 2⟩, ⟨𝑥 + 1⟩, ⟨𝑥 + 2 +
2𝑢⟩, ⟨𝑥+2+𝑢⟩, ⟨𝑥+1+2𝑢⟩, ⟨𝑥+1+𝑢⟩.All left ideals in type
LI-2 are ⟨𝑢⟩, ⟨𝑢(𝑥 + 1)⟩, ⟨𝑢(𝑥 + 2)⟩. The Euclidean dual codes
coincided with the Hermitian dual codes of all left ideals in
type LI-2.They are ⟨𝑢⟩, ⟨𝑢, 𝑥+2⟩, and ⟨𝑢, 𝑥+1⟩, respectively.
Similarly, the Euclidean dual codes also coincided with the
Hermitian dual codes of all left ideals in type LI-3. They are
⟨𝑢(𝑥 + 1)⟩, ⟨𝑢(𝑥 + 2)⟩. We summarize discussion above in
Table 3.
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Endnotes

1. Claude Elwood Shannon (April 30, 1916–February 24,
2001) was an American mathematician, electronic engi-
neer, and cryptographer, who is refered to as “the father
of information theory” [39]. Shannon is also known
as the founder of both digital computer and digital
circuit design theory, when, as a 21-year-oldM.S. student
at MIT in 1937, he wrote a thesis establishing that
electrical application of Boolean algebra could construct
and resolve any logical, numerical relationship [40].
It has been claimed that this was the most important
M.S. thesis of all time. Shannon contributed to the field
of cryptanalysis during World War II and afterwards,
including basic work on code breaking.

2. Turbo codes were first introduced and developed in
1993 by Berrou et al. [41]. Turbo codes are a class
of high-performance forward error correction codes,
which were the first practical codes to closely approach
the channel capacity, a theoreticalmaximum for the code
rate at which reliable communication is still possible
given a specific noise level. Turbo codes are widely
used in deep space communications and other appli-
cations where designers seek to achieve reliable infor-
mation transfer over bandwidth-constrained or latency-
constrained communication links in the presence of
data-corrupting noise. The first class of turbo code was
the parallel concatenated convolutional code. Since the
introduction of the original parallel turbo codes in 1993,
many other classes of turbo code have been discovered,
including serial versions and repeat-accumulate codes.
Iterative turbo decodingmethods have also been applied
to more conventional forward error correction systems,
including Reed-Solomon corrected convolutional codes.

3. LDPC (low-density parity-check) codes were first intro-
duced in 1963 by Gallager in his doctoral dissertation at
MIT [42]. At that time, it was impractical to implement
and LDPC codes were forgotten, but they were redis-
covered in 1996. LDPC code is a linear error correcting
code, a method of transmitting a message over a noisy
transmission channel, and is constructed using a sparse
bipartite graph. LDPC codes are capacity-approaching
codes, which means that practical constructions exist
that allow the noise threshold to be set arbitrarily close
on the binary erasure channel to the Shannon limit for
a symmetric memoryless channel. The noise threshold
defines an upper bound for the channel noise, up to
which the probability of lost information can be made
as small as desired. Using iterative belief propagation
techniques, LDPC codes can be decoded in time linear
to their block length.

4. Richard Wesley Hamming (February 11, 1915–January 7,
1998) was an American mathematician whose work had
many implications for computer science and telecom-
munications. His contributions include the Hamming
code (which makes use of a Hamming matrix), the
Hamming window, Hamming numbers, sphere-packing
(or Hamming bound), and the Hamming distance.

5. During the late 1940s at Bell laboratories, Richard
Hamming decided that a better system was needed. As
folklore has it, Richard Hamming was working for Bell
Labs. He was allowed to use the computer for research
over the weekends. He would put together his punch
cards during the week and submit them to be run over
the weekend.This would work great as long as his punch
cards were completely error-free; however, a single error
would cause the computer to pass the job over andmove
on to the next. He would have to make corrections and
resubmit his program at a later time. Richard Hamming
thought that if the computer was smart enough to know
that there was a mistake, why not have the computer
find the mistake, correct it, and continue running the
program. He then created the first error correction code,
the Hamming Code. This not only solved an important
problem in telecommunications and computer science,
it opened up a whole new field of study.
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