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Abstract We investigate the helicity-dependent general-
ized parton distributions (GPDs) in momentum as well as
transverse position (impact) spaces for the u and d quarks
in a proton when the momentum transfer in both the trans-
verse and the longitudinal directions are nonzero. The GPDs
are evaluated using the light-front wave functions of a quark–
diquark model for nucleon where the wave functions are con-
structed by the soft-wall AdS/QCD correspondence. We also
express the GPDs in the boost-invariant longitudinal position
space.

1 Introduction

Generalized parton distributions (GPDs) play a crucial role
in our understanding of the structure of the hadron in terms
of the fundamental building blocks of QCD, the quarks and
gluons. The GPDs (see [1–3] for reviews on GPDs) encode
a wealth of information about the three dimensional spatial
structure of the hadron as well as the spin and orbital angular
momentum of the constituents. The GPDs are experimen-
tally accessible in the exclusive processes like deeply virtual
Compton scattering (DVCS) or vector meson productions.
At the parton level one can distinguish three kinds of parton
distributions functions (PFDs): the unpolarized, the helic-
ity distribution, and the transversity which are the functions
of longitudinal momentum faction carried by the parton (x)
only. The GPDs being functions of three variables x , square
of the total momentum transferred t , and the longitudinal
momentum transferred ζ so-called skewness in the process
contain more information than the ordinary PDFs. In the for-
ward limit, GPDs reduce to PDFs whereas the first moments
of GPDs give the form factors which are accessible in exclu-
sive processes. In parallel to three PDFs, one can define three
generalized distributions namely, the unpolarized, helicity,
and transversity distributions. The unpolarized and helicity
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GPDs are chiral-even and the transversity GPDs are chiral-
odd. At leading twist, four chiral-even GPDs occur. Two of
them are usually called unpolarized GPDs (H and E). The
other two are usually called helicity-dependent or polarized
GPDs which are labeled ˜H and ˜E . The first of them gives
in forward linit the polarized quark density, the second is a
spin-flip distribution which implies a change of the spin of
the target. At zero skewness (ζ = 0), via Fourier transform
with respect to the momentum transfer in the transverse direc-
tion �⊥, GPDs transform to the impact parameter-dependent
parton distributions. Unlike the GPDs themselves, impact
parameter-dependent parton distributions have the interpre-
tation of a density of partons with longitudinal momentum
fraction x and transverse distance b = |b⊥| from the pro-
tons center, where b⊥ is the conjugate variable to �⊥ and
satisfy the positivity condition [4–7]. The second moment
of the GPDs corresponds to the gravitational form factors
which are again related to the partonic contribution to the
angular momentum of nucleon at the t → 0 limit [8]. When
one considers transversely polarized nucleons, the impact
parameter-dependent PDFs get distorted and the transverse
distortion can also be connected with Ji’s angular momen-
tum relation. For transversely polarized state, an interesting
interpretation of Ji’s angular momentum sum rule [8] was
obtained in terms of the impact parameter-dependent PDFs
in [4]. Transverse distortion arises due to the GPD E for the
unpolarized quark, which is related to the anomalous mag-
netic moment of the quarks. But in the case of transversely
polarized quark, the linear combination of chiral-odd GPDs
(2 ˜HT +ET ) plays a role similar to the GPD E as for the unpo-
larized quark distributions. The helicity-dependent GPDs ˜H
in impact parameter space reflects the difference in the den-
sity of quarks with helicity equal or opposite to the proton
helicity [9–11]. For nonzero skewness, the GPDs can also
be represented in the longitudinal position space by taking
Fourier transform of the GPDs with respect to ζ [12–19].
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Unlike the PFDs and form factors, it is always very diffi-
cult to measure the GPDs which can be accessed in DVCS
scattering [20,21]. First experimental DVCS results in terms
of the beam spin asymmetry have been presented by HER-
MES at DESY [22] and CLAS at JLab [23]. Since then,
many more results have become available from the measure-
ments performed by the Hall A and Hall B/CLAS collabo-
rations at JLab [24–27] and the H1, ZEUS and HERMES
collaborations at DESY [28–34]. Exclusive production of ω

meson [35], and ρ0 mesons [36] by scattering muons off
transversely polarized proton has been measured in a very
recent COMPASS experiments. The target spin asymmetries
measured in these experiments agree well with GPD-based
model calculations. There has been proposals to get access to
the GPDs through diffractive double meson production [37–
39]. The role of the GPDs in hard exclusive electroproduction
of pseudo-scalar mesons [40] as well as in leptoproduction of
vector mesons [41] have been investigated within the frame-
work of the handbag approach.

Since the nonperturbative properties of hadrons are always
very difficult to evaluate from QCD first principles, there
have been numerous attempts to gain insight into the hadron
structure by studying QCD inspired models. Several the-
oretical predictions for the GPDs have been produced by
using different descriptions of hadron structure, such as bag
models [42,43], soliton models [3,44,45], light-front mod-
els [46–48], constituent quark models (CQM) [49–52], and
AdS/QCD models [53–55]. Recently, the GPDs for nonzero
skewness in AdS/QCD framework has been investigated in
[56,57]. In [58], the helicity-dependent GPDs for nonzero
skewness in a CQM have been studied considering the
Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP) region
whereas these GPDs in CQM with a kinematical range corre-
sponding to both the DGLAP and the Efremov–Radyushkin–
Brodsky–Lepage (ERBL) regions have been investigated in
[59]. The helicity-dependent twist-two and twist-three GPDs
in light-front Hamiltonian QCD for a massive dressed quark
target has been presented in [48]. The general properties of
GPDs in QED models have been studied in both momen-
tum and transverse position as well as longitudinal position
spaces [12,60]; the impact parameter representation of the
GPDs have been investigated in a QED model of a dressed
electron [13]. The moments of the GPDs have been calcu-
lated on lattice [61–65]. In this work, we consider a light-
front quark–diquark model recently proposed by Gutsche et
al. [66] where the light-front wave functions are modeled
from the two particle wave functions obtained in a soft-wall
model of AdS/QCD correspondence [67,68]. This model is
consistent with Drell–Yan–West relation and has been shown
to reproduce many interesting nucleon properties. So far
the quark–diquark model has been successfully applied to
describe various aspect of nucleon properties e.g., electro-
magnetic and gravitational form factor, GPDs, TMDs, charge

densities, longitudinal momentum densities etc. [18,19,69–
74]. More importantly, since the AdS/QCD formalism is a
semiclassical approach to solving nonperturbative QCD, one
can expect that the wave functions modeled by AdS/QCD
correspondence encode the nonperturbative information of
the nucleon and thus the wave functions are suitable to
study the nonperturbative properties like GPDs, TMDs. It
should be mentioned here that recently TMDs of pion have
been evaluated using a model inspired by AdS/QCD corre-
spondence [75]. Here, we investigate the skewed helicity-
dependent GPDs in both momentum and transverse and lon-
gitudinal position space in this light-front quark–diquark
model inspired by AdS/QCD. We also present the quark
transverse distributions for the u and d quarks in a longi-
tudinally polarized nucleon.

The paper is organized as follows. A brief introduction of
the nucleon light-front wave functions of the quark–diquark
model has been given in Sect. 2. In Sect. 3, we present the
overlap formalism of the helicity-dependent GPDs and show
the results for proton GPDs of u and d quarks in momentum
space. The GPDs in the transverse as well as the longitudinal
impact parameter space are shown in Sects. 4.1 and 4.2. The
quark transverse distributions in the nucleon with longitudi-
nal polarization Λ(= +1) are presented in Sect. 4.3. Finally
we provide a summary all the results in Sect. 5.

2 Light-front quark–diquark model constructed by
AdS/QCD

Here we adopt the generic ansatz for the light-front quark–
diquark model for the nucleons [66] where the light-front
wave functions are modeled from the solution of soft-wall
AdS/QCD. In this model, one contemplates the three valence
quarks of the nucleons as an effective system composed of
a fermion (quark) and a composite state of diquark (boson)
based on one loop quantum fluctuations. Then the 2-particle
Fock-state expansion for proton spin components, J z = + 1

2
and J z = − 1

2 in a frame where the transverse momentum of

proton vanishes i.e. P ≡ (

P+,
M2

n
P+ , 0⊥

)

, are written as

|P;+〉 =
∑

q

∫

dx d2k⊥
2(2π)3

√
x(1 − x)

×
[

ψ++q(x,k⊥)| + 1

2
, 0; x P+,k⊥〉

+ψ+−q(x,k⊥)| − 1

2
, 0; x P+,k⊥〉

]

, (1)

|P;−〉 =
∑

q

∫

dx d2k⊥
2(2π)3

√
x(1 − x)

123



Eur. Phys. J. C (2017) 77 :640 Page 3 of 14 640

×
[

ψ−+q(x,k⊥)| + 1

2
, 0; x P+,k⊥〉

+ψ−−q(x,k⊥)| − 1

2
, 0; x P+,k⊥〉

]

. (2)

However, for nonzero transverse momentum of proton, i.e.
P⊥ �= 0, the physical transverse momenta of quark and
diquark are pq⊥ = xP⊥ + k⊥ and pD⊥ = (1 − x)P⊥ − k⊥,
respectively, where k⊥ represents the relative transverse
momentum of the constituents. ψ

λN
λqq

(x,k⊥) are the light-
front wave functions with nucleon helicities λN = ± and
for the struck quark λq = ±; plus and minus correspond to
+ 1

2 and − 1
2 , respectively. The light-front wave functions are

given by [66]

ψ++q(x,k⊥) = ϕ(1)
q (x,k⊥),

ψ+−q(x,k⊥) = −k1 + ik2

xMn
ϕ(2)
q (x,k⊥),

ψ−+q(x,k⊥) = k1 − ik2

xMn
ϕ(2)
q (x,k⊥),

ψ−−q(x,k⊥) = ϕ(1)
q (x,k⊥). (3)

Here, ϕ(i=1,2)
q (x,k⊥) are the modified wave functions which

are constructed by soft-wall AdS/QCD, after introducing the
parameters a(i)

q and b(i)
q for quark q,

ϕ(i)
q (x,k⊥) = N (i)

q
4π

κ

√

log(1/x)

1 − x
xa

(i)
q (1 − x)b

(i)
q

× exp

[

− k2⊥
2κ2

log(1/x)

(1 − x)2

]

. (4)

ϕ
(i)
q (x,k⊥) reduces to the AdS/QCD solution when a(i)

q =
b(i)
q = 0 [68]. In this work, we take the AdS/QCD scale

parameter κ = 0.4 GeV, obtained by fitting the nucleon
form factors in the soft-wall model of AdS/QCD [55,76]. The
parameters a(i)

q and b(i)
q with the constants N (i)

q are obtained
by fitting the electromagnetic properties of the nucleons:
Fq

1 (0) = nq and Fq
2 (0) = κq where nu = 2 and nd = 1, the

number of valence u and d quarks in proton and the anoma-
lous magnetic moments for theu andd quarks are κu = 1.673
and κd = −2.033 [19]. The parameters are given by a(1)

u =
0.020, a(1)

d = 0.10, b(1)
u = 0.022, b(1)

d = 0.38, a(2)
u =

1.05, a(2)
d = 1.07, b(2)

u = −0.15, b(2)
d = −0.20, N (1)

u =
2.055, N (1)

d = 1.7618, N (2)
u = 1.322, N (2)

d = −2.4827.

3 Helicity-dependent generalized parton distributions

The helicity-dependent GPDs are defined as off-forward
matrix elements of the bilocal operator of light-front cor-
relation functions of the axial-vector current [1,2,8,77]

1

2

∫

dz−

2π
eix P

+z−

×〈p′, λ′| ψ̄(− 1
2 z) γ +γ5 ψ( 1

2 z) |p, λ〉
∣

∣

∣

z+=0, zT =0

= 1

2P+ ū(p′, λ′)
[

˜Hq γ +γ5 + ˜Eq γ5Δ
+

2M

]

u(p, λ), (5)

where p (p′) and λ (λ′) denote the proton momenta and the
helicity of the initial (final) state of proton, respectively. The
kinematical variables in the symmetric frame are

Pμ = (p + p′)μ

2
, Δμ = p′μ − pμ, ζ = −Δ+/2P+,

(6)

and t = Δ2. For ζ = 0, t = −�2⊥. We work in the light-front
gauge A+ = 0, so that the gauge link appearing in between
the quark fields in Eq. (5) is unity. The quark helicity con-
serving distributions can be related to the following matrix
elements [9,77]:

Aλ′+,λ+ =
∫

dz−

2π
ei x̄ P

+z−〈p′, λ′|O+,+(z) |p, λ〉
∣

∣

∣

z+=z⊥=0
,

Aλ′−,λ− =
∫

dz−

2π
ei x̄ P

+z−〈p′, λ′|O−,−(z) |p, λ〉
∣

∣

∣

z+=z⊥=0
,

(7)

where the operators O+,+ and O−,− occurring in the defini-
tions of the quark distributions are

O+,+ = 1

4
ψ̄ γ +(1 + γ5) ψ,

O−,− = 1

4
ψ̄ γ +(1 − γ5) ψ. (8)

One can explicitly derive the following relations in the ref-
erence frame where the momenta p and p ′ lie in the x − z
plane [77]:

A++,++ =
√

1 − ζ 2

(

Hq + ˜Hq

2
− ζ 2

1 − ζ 2

Eq + ˜Eq

2

)

,

A−+,−+ =
√

1 − ζ 2

(

Hq − ˜Hq

2
− ζ 2

1 − ζ 2

Eq − ˜Eq

2

)

,

A++,−+ = −ε

√
t0 − t

2m

Eq − ζ ˜Eq

2
,

A−+,++ = ε

√
t0 − t

2m

Eq + ζ ˜Eq

2
, (9)

where ε = sgn(D1), and D1 is the x-component of
Dα = P+Δα − Δ+Pα where D1 = 0 corresponds to
t = t0. For given ζ , the minimum value of −t is −t0 =
4m2ζ 2/(1 − ζ 2). Due to parity invariance, one has the rela-
tions A−λ′−μ′,−λ−μ = (−1)λ

′−μ′−λ+μ Aλ′μ′,λμ for definite
quark helicities μ and μ′. We can now compute the helicity-
dependent GPDs ˜Hq and ˜Eq using the relations in Eq. (9)
as
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˜Hq = 1
√

1 − ζ 2
T q

1 + 2Mζ√
t0 − t(1 − ζ 2)

T q
2 , (10)

˜Eq = 2M

εζ
√
t0 − t

T q
2 , (11)

where the matrix elements T q
i , in terms of the quark helicity

basis, are given by

T q
1 = A++,++ − A−+,−+,

T q
2 = A++,−+ + A−+,++. (12)

3.1 Overlap formalism

We evaluate the helicity-dependent GPDs in light-front
quark–diquark model using the overlap representation of
light-front wave functions. We consider the DGLAP region
for our discussion. This kinematical domain, i.e., ζ < x < 1
where x is the light-front longitudinal momentum fraction
carried by the struck quark and ζ is the skewness, corresponds
to the situation where one removes a quark from the initial
proton with light-front longitudinal momentum (x + ζ )P+
and re-insert it into the final proton with longitudinal momen-
tum (x − ζ )P+. The particle number remain conserved in
this kinematical region which describes the diagonal n → n
overlaps. The matrix elements T q

i in the diagonal 2 → 2
overlap representation, in terms of light-front wave functions
in the quark–diquark model, are given by

T q
1 =

∫

d2k⊥
16π3

[

ψ+∗+q (x ′,k′⊥)ψ++q(x
′′,k′′⊥)

−ψ−∗+q (x ′,k′⊥)ψ−+q(x
′′,k′′⊥)

]

, (13)

T q
2 =

∫

d2k⊥
16π3

[

ψ+∗+q (x ′,k′⊥)ψ−+q(x
′′,k′′⊥)

+ψ−∗+q (x ′,k′⊥)ψ++q(x
′′,k′′⊥)

]

, (14)

where for the final struck quark

x ′ = x − ζ

1 − ζ
, k′⊥ = k⊥ + (1 − x ′)�⊥

2
, (15)

and for the initial struck quark

x ′′ = x + ζ

1 + ζ
, k′′⊥ = k⊥ − (1 − x ′′)�⊥

2
. (16)

Using the light-front wave functions of the quark–diquark
model given in Eq. (3), the explicit calculation of the matrix
elements T q

i gives

T q
1 (x, ζ, t) = Δq

T q
1 (x, ζ, t)

I(0)
,

T q
2 (x, ζ, t) = T q

2 (x, ζ, t), (17)

with I(0) = ∫ 1
0 dx T q

1 (x, 0, 0), and Δq is the axial charge
of quark q. The functions T q

i (x, ζ, t) are given by

T q
1 = 1

κ2

[ log x ′ log x ′′

(1 − x ′)(1 − x ′′)

]1/2
[

(N (1)
q )2(x ′x ′′)a

(1)
q

×{(1 − x ′)(1 − x ′′)}b(1)
q

1

A

−(N (2)
q )2 1

M2
n
(x ′x ′′)a

(2)
q −1

×{(1 − x ′)(1 − x ′′)}b(2)
q

×
{ 1

A2 +
( B2

4A2 − 1

4
(1 − x ′) × (1 − x ′′)

+ B

4A
(x ′′ − x ′)

)Q2

A

}

]

× exp
[

Q2
(

C + B2

4A

)]

, (18)

T q
2 = N (1)

q N (2)
q

κ2

[ log x ′ log x ′′

(1 − x ′)(1 − x ′′)

]1/2

× 1

Mn

[

(x ′)a
(1)
q × (1 − x ′)b

(1)
q (x ′′)a

(2)
q −1(1 − x ′′)b

(2)
q

×
( BQ

2A2 − Q

2A
(1 − x ′′)

)

+(x ′)a
(2)
q −1(1 − x ′)b

(2)
q (x ′′)a

(1)
q

×(1 − x ′′)b
(1)
q

( BQ

2A2 + Q

2A
(1 − x ′)

)

]

× exp
[

Q2
(

C + B2

4A

)]

, (19)

where Δ2⊥ = Q2 = −t (1 − ζ 2) − 4M2
n ζ 2. A, B and C are

functions of x ′ and x ′′,

A = A(x, x ′) = − log x ′

2κ2(1 − x)2 − log x ′′

2κ2(1 − x ′)2 ,

B = B(x, x ′) = log x ′

2κ2(1 − x)
− log x ′′

2κ2(1 − x ′)
,

C = C(x, x ′) = 1

4

[ log x ′

2κ2 + log x ′′

2κ2

]

. (20)

Using the matrix elements calculated in Eqs. (13) and (14) we
compute the helicity-dependent GPDs in Eq. (11). The GPD
˜Hq are suitably normalize by the axial charge Δq where
the experimental values of Δu = 0.82, and Δd = −0.45
[78,79].

The helicity-dependent GPDs for nonzero skewness (ζ �=
0) for u and d quarks are shown in Figs. 1, 2 and 3. In Fig.
1, the GPDs are shown as functions of x and −t and a fixed
value of ζ = 0.2 whereas in Fig. 2, we plot the GPDs for a
fixed value of −t = 0.7 GeV2 but different values of ζ . One
can notice that the height of the peaks of the distributions
increase and move to higher x with increasing ζ for fixed
−t . The GPDs fall to zero at x = ζ when ζ is very low or
the value of −t is high. The reason is that in our approach we
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Fig. 1 (Color online) Plots of helicity-dependent GPDs for the nonzero skewness as functions of x and −t , and for a fixed value of ζ = 0.2. a
˜Hu

v , b ˜Hd
v and c ˜Eu

v , d ˜Ed
v ; for ζ = 0.2 the minimum value of −t = −t0 = 0.147 GeV2
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Fig. 2 (Color online) Plots of helicity-dependent GPDs for the nonzero skewness vs. x and different values of ζ , for a fixed value of t = −0.7
GeV 2. a ˜Hq

v and b ˜Eq
v ; q stands for the u and d quark

consider the contribution only from the valence quarks. Since
the quark–diquark model itself depends only on the valence
quarks; we cannot evaluate the total (sea + valence) GPDs

in this model. A similar behavior of the helicity-dependent
GPDs has been found in the relativistic constituent quark
model calculated in [58]. Also, the ERBL region, i.e. x < ζ
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Fig. 3 (Color online) Plots of helicity-dependent GPDs for the nonzero skewness vs. ζ and different values of −t in GeV 2, for a fixed value of
x = 0.6. The left panel is for the u quark and the right panel is for the d quark

where quark–antiquark pair creation and annihilation are
involved is not included in this model. In Fig. 3, we show
the GPDs as functions of ζ for fixed x and different values
of −t . The GPDs rise smoothly as ζ increases for all t val-
ues and GPDs have different values at ζ = 0 for different
values of −t . Similar behaviors have also been observed for
the unpolarized and chiral-odd GPDs (except ˜ET ; it is odd
in ζ ) in the quark–diquark model [18,19], a phenomenolog-
ical QED model [12]. It can also be noticed that ˜Eu(x, ζ, t)
shows a markedly different behavior from the other GPDs.
˜Eu(x, ζ, t) rises smoothly as ζ increases but the magnitude at
ζmax = √

(−t)/(−t + 4M2
n ) decreases with increasing −t .

3.2 Mellin moments of helicity-dependent GPDs

The Mellin moments of the valence GPDs are defined as

˜Hq
n0(t) =

∫ 1

0
dxxn−1

˜Hq(x, 0, t), (21)

where the index n = 1, 2, 3 etc., and the second subscript
implies that the moments are evaluated at zero skewness.

0 1 2 3 4 5
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0.6

0.8

1
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Q2 [GeV2]

G
A
 (Q

2 )

Lattice data I

Lattice data II

experimental data

LF diquark model

Including masses

Fig. 4 (Color online) Plot of the axial-vector form factors GA(Q2) =
Gu−d

A (Q2). The black solid line represents the quark–diquark model in
AdS/QCD, the blue dashed line represents dipole fit of experimental
data [80] and the data are taken from lattice calculation [82]. The pink
dashed-dot line represents the result by including quark and diquark
masses in the wave functions (Eq. (23))
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Fig. 5 (Color online) Plots of first three moments of the helicity-dependent GPDs for zero skewness vs.
√−t in GeV. The left panel is for the u

quark and the right panel is for d quark

The moments of the other GPD, ˜Eq
n0(t), are defined in the

same way as (21). The first moments of ˜Hq
n0(x, 0, t) and

˜Eq
n0(x, 0, t) give the axial-vector form factor, Gq

A(t), and the
pseudo-scalar form factor, Gq

p(t), for quark q, respectively.
The forward value, t = 0, of the form factors gA = ˜H10(t =
0) can be identified as the axial-vector coupling constant
(axial charge) [63,80]. Similarly, gP = ˜E10(t = 0) is known
as the pseudo-scalar coupling constant. In Fig. 4, we compare
the result for the axial-vector form factors obtained in the
quark–diquark model in AdS/QCD with the corresponding
results from lattice [82] and the experimental data described
by the dipole formula [80]:

GA(Q2) = gA
(1 + Q2/M2

A)2
(22)

where the axial-vector coupling constant gA = 1.2673 and
the parameter MA = 1.069 GeV, the so-called axial mass
[80]. The plot shows that our result is more or less in agree-
ment with the dipole fit of the experimental data. In the same
plot, we also compare the result of axial form factor by intro-

ducing the mass terms in the wave functions ϕ
(i)
q (x,k⊥) (Eq.

(4)), following Ref. [81]

ϕ(i)
q (x,k⊥)

∼ exp

[

− k2⊥
2κ2

{ log(1/x)

(1 − x)2 + m2
q

x
+ m2

D

(1 − x)

}

]

. (23)

Here we use the quark and diquark masses mq = 0.35 GeV
and mD = 0.65 GeV, respectively. With the mass terms in
the wave functions, the result is in good agreement with the
experimental data at low Q2, however, it deviates at higher
Q2. The second moments of these GPDs correspond to the
gravitational form factors of longitudinally polarized quarks
in an unpolarized nucleon. The third moments of the GPDs
give form factors of a twist-two operator having two covariant
derivatives [1,2] and the higher order moments generate the
form factors of higher-twist operators. In Fig. 5, the first
three moments of the helicity-dependent GPDs |t | ˜Hq

n0(t),
|t |˜Eq

n0(t) as functions of
√−t have been shown for the u and

d quarks. We observe a strong decrease in the magnitudes
of the moments with increasing n. One can understand this
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Fig. 6 (Color online) Plots of helicity-dependent GPDs for the nonzero skewness in impact space vs. x and b = |b| for a fixed value of ζ = 0.2.
The left panel is for the u quark and the right panel is for the d quark

aspect from the behavior of the GPDs with x as shown in
Fig. 2. Since higher moments involve higher powers of x ,
the dominant contributions appear from the large x region
(x → 1). But the GPDs decrease rapidly as x increases, thus
the higher moments become smaller. One can also observe
that with increasing index n, the decrease of the moments
becomes slower as −t increases. This phenomenon again
can be described in terms of the decrease of the GPDs with
momentum fraction x , which shows a weaker t slope for the
higher moments. A similar behavior of the GPDs has been
found in other phenomenological models [19,83,84] and in
lattice QCD [61–63,85].

4 Impact parameter representation of
helicity-dependent GPDs

4.1 GPDs in transverse impact parameter space

The transverse impact parameter-dependent GPDs are defined
by a two-dimensional Fourier transform with respect to the
momentum transfer in the transverse direction [5–7,86]:

˜Hq(x, ζ, b) = 1

(2π)2

∫

d2�⊥e−i�⊥·b⊥
˜Hq(x, ζ, t), (24)

˜Eq(x, ζ, b) = 1

(2π)2

∫

d2�⊥e−i�⊥·b⊥
˜Eq(x, ζ, t), (25)

where b⊥ represents the transverse impact parameter con-
jugate to the transverse momentum transfer �⊥. For zero
skewness, b = |b⊥| corresponds a measure of the transverse
distance of the struck parton from the center of momentum of
the hadron and it follows the condition

∑

i xi bi = 0, where
the sum is over the number of partons. The relative distance
between the struck parton and the center of momentum of
the spectator system is given by |b⊥|

1−x , which provides us an
estimate of the size of the bound state [87]. For nonzero ζ ,
the transverse distance of partons from the proton center of
momentum differs in the initial and final state, but the rel-
ative distance in a hadron stays the same. The transverse
positions b⊥ with the initial and final state proton are shifted
relative to each other by an amount of order ζb⊥ [86]. In the
DGLAP region x > ζ , the impact parameterb⊥ describes the
location where the quark is pulled out and re-inserted to the
proton. In the ERBL domain x < ζ , b⊥ gives the transverse
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Fig. 7 (Color online) Plots of helicity-dependent GPDs for the nonzero skewness in impact space vs. ζ and b = |b| for a fixed value of x = 0.6.
The left panel is for the u quark and the right panel is for the d quark

distance of the quark–antiquark pair inside the proton. For
zero skewness, the helicity-dependent GPDs also have a den-
sity interpretation in transverse impact parameter space like
other GPDs corresponding to the density for longitudinally
polarized partons. ˜Hq(x, b) reflects the density of quarks
with helicity equal or opposite to the proton helicity [9–11].
Note that the density interpretation is possible only in the
limit ζ = 0, but it is natural to ask what this situation looks
like at nonzero ζ , which is applicable for most processes
where GPDs can be accessed. Thus, it is interesting to study
the helicity-dependent GPDs in the impact parameter space
when ζ is nonzero.

In Fig. 6, we show the skewness-dependent GPDs
˜H(x, ζ, b) and ˜E(x, ζ, b) for u and d quark in transverse
impact parameter space for fixed ζ = 0.2 as functions of b
and x . Similarly, the GPDs as functions of ζ and b for a fixed
value of x = 0.6 are shown in Fig. 7. The peak of the dis-
tribution ˜H(x, ζ, b) for fixed ζ appears at higher x for the u
quark whereas it shifts to lower x for the d quark. ˜E(x, ζ, b)
shows the peaks at lower x for both u and d quarks and
one can also observe an oscillatory behavior for the GPDs,

˜E(x, ζ, b). This is due to the fact that the GPD in momentum
space, ˜E(x, ζ, t) has a slight oscillatory behavior as can be
seen in Fig. 2b. The width of all the distributions in trans-
verse impact parameter space decreases with increasing x .
This implies that the distributions are more localized near
the center of momentum for higher values of x . We observe
a similar behavior for the u and d quark in ˜H(x, ζ, b) and
˜E(x, ζ, b) when they are plotted against ζ and b for a fixed
values of x in Fig. 7. Another interesting behavior of the
GPDs is that, for a fixed value of x , as ζ increases the peaks
of all the distributions become broader. This means that as
the momentum transfer in the longitudinal direction increases
the transverse distance of the longitudinally polarized active
quark increases. This is due to the fact that, for nonzero ζ , the
relative transverse distance b is shifted by an amount of order
ζb [86]. A similar behavior has also been observed in other
phenomenological model [16]. We should mention here that
the unpolarized, as well as the chiral-odd GPDs also exhibit
a similar behavior [18,19]; thus one can conclude that this
phenomenon of the GPDs is independent of quark polariza-
tion.
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Fig. 8 (Color online) Plots of the helicity-dependent GPDs in longitudinal impact space vs. σ and different values of −t in GeV2, for a fixed value
of x = 0.3. The left panel is for u quark and the right panel is for the d quark

4.2 GPDs in longitudinal impact parameter space

The Fourier transform of GPDs with respect to the skew-
ness variable ζ provides a unique way to visualize the struc-
ture of the hadron in the boost-invariant longitudinal coordi-
nate space. The boost-invariant longitudinal impact parame-
ter is defined as σ = 1

2b
−P+, which was first introduced in

[14,15]. It has been shown that the DVCS amplitude in a QED
model of a dressed electron exhibits an interesting diffraction
pattern in the longitudinal impact parameter space in analo-
gous to diffractive scattering of a wave in optics [14,15]. The
finite size of the ζ is responsible for producing the diffraction
pattern and this can be interpreted as a slit of finite width in
equivalent with optics. We should mentioned here that the
Fourier transform with a finite range of ζ of any arbitrary
function does not provide the diffraction pattern [16]. This
pattern depends on the nature of the function. The helicity-
dependent GPDs for a photon evaluated in a phenomenolog-
ical model [60] show similar diffraction patterns in the longi-
tudinal impact parameter space. A certain phenomenological
model for proton GPDs exhibits a similar diffraction pattern

[16] whereas the GPDs calculated for a simple relativistic
spin half system of an electron dressed with a photon display
a same pattern in the longitudinal position space [12,17].
A similar phenomenon is also observed for the unpolarized
GPDs as well as chiral-odd GPDs in this light-front quark–
diquark model [18,19]. In longitudinal position space, the
GPDs are defined as

˜H(x, σ, t) = 1

2π

∫ ζ f

0
dζeiζ P

+b−/2
˜H(x, ζ, t),

= 1

2π

∫ ζ f

0
dζeiζσ

˜H(x, ζ, t), (26)

˜E(x, σ, t) = 1

2π

∫ ζ f

0
dζeiζ P

+b−/2
˜E(x, ζ, t),

= 1

2π

∫ ζ f

0
dζeiζσ

˜E(x, ζ, t). (27)

Since the region of our discussion is ζ < x < 1, the upper
limit of the ζ integration, ζ f , is given by ζmax if x is larger
than ζmax; otherwise by x if x is smaller than ζmax where the
maximum value of ζ for a fixed −t is given by
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Fig. 9 (Color online) Plots of the chiral-odd GPDs in longitudinal impact space vs. σ and different values of x , for a fixed value of −t = 0.4
GeV2. The left panel is for the u quark and the right panel is for the d quark. For −t = 0.4 GeV2, ζmax ≈ 0.307

ζmax =
√

(−t)

(−t + 4M2
n )

. (28)

The Fourier spectrum of the helicity-dependent GPDs for u
and d quarks in longitudinal position space as a function of σ

for different values of −t and fixed x = 0.3 are shown in Fig.
8. ˜H for both u and d quarks displays a diffraction pattern
in the σ space as observed for the DVCS amplitude [14,15].
We also observe that ˜E(x, σ, t) for the d quark exhibits the
same pattern, but for all values of −t , it does not show the
prominent pattern for the u quark. This is due to the fact of
the distinctly different nature of ˜Eu(x, ζ, t) with ζ compared
to the other GPDs, which again implies that the diffraction
pattern is not solely due to the finite size of the ζ integration,
and the functional forms of the GPDs are also important for
this phenomenon. The first minima appear at the same values
of σ for all the diffraction patterns. In Fig. 9, we also show the
GPDs in σ space for different values of x and fixed −t = 0.4
GeV2. Here ζ f plays the role of the slit width, equivalent to
the single slit optical diffraction pattern. Since the positions
of the minima are inversely proportional to the slit width,

as the slit width ζ f increases, the minima shift towards the
center of the diffraction pattern.

4.3 Quark transverse distributions

One can access the probability ρq(b, λ,Λ) to find a quark
with transverse position b and light-cone helicity λ (= ±1)
in the nucleon with longitudinal polarization Λ (= ±1) via
the Fourier transform of the combination of the Dirac and
axial form factors of the quark as [11,52,88]

ρq(b, λ,Λ) = 1

2

∫

d2�⊥
[

Fq
1 (Q2) + λΛGq

A(Q2)
]

ei�⊥·b⊥

= 1

4π

∫

dQ QJ0(Qb)
[

Fq
1 (Q2) + λΛGq

A(Q2)
]

≡ 1

2

[

ρq(b) + λΛΔq(b)
]

, (29)

whereρq(b) andΔq(b) are the Fourier transforms of Fq
1 (Q2)

and Gq
A(Q2), respectively, and J0 is a cylindrical Bessel

function. ρq(b) corresponds to d(b), the charge density
for the d quark and 2u(b), twice charge density for u
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Fig. 10 (Color online) Plots of the transverse distribution of u and d
quarks in a longitudinally polarized proton as a function of the impact
parameter b. The total contribution for a the u quark, and b the d quark
when quarks are polarized in the longitudinal direction, either parallel
(solid red lines) or anti-parallel (dashed blue lines) with respect to the

proton helicity. c The axial contributions Δu and Δd for the u and d
quarks. d The axial distribution ρA(b) = Δu(b) − Δd(b) (solid black
line) in comparison with the distribution from the dipole fit of experi-
mental data for axial form factor (red dashed dot)

quark [18,88]. The normalizations of ρq(b) and Δq(b) are
∫

d2b ρq(b) = nq , where nu = 2, nd = 1 in a proton and
∫

d2b Δq(b) = Δq, where Δq is the axial charge of quark
q. We show the resulting probability for the u and d quarks
considering a positive proton helicity (Λ = 1) in Fig. 10a, b,
respectively. The axial contributions Δu(b) and Δd(b) for
the u and d quarks having opposite signs are shown in Fig.
10c, whereas the transverse distribution ρq(b), which is posi-
tive for both u and d, in this light-front quark–diquark model
can be found in [18]. The difference between Δu(b) and
Δd(b) is compared with the distribution obtained from the
dipole fit of axial form factor in Fig. 10d. One can notice that
though there is a mismatch at b = 0, at larger b, the light-
front quark–diquark model agrees well the result obtained
from the dipole fit. Since Δu(b) is positive but Δd(b) is neg-
ative, the probability to find a u quark with positive helicity
is maximal when it is aligned with the proton helicity, while
the opposite occurs for the d quarks.

5 Summary

In the present work, we have studied the helicity-dependent
GPDs for u and d quark in proton for nonzero skewness in
the light-front quark–diquark model predicted by the soft-
wall AdS/QCD. We have obtained the GPDs in terms of the
overlaps of the light-front wave functions considering the
DGLAP region i.e., for (x > ζ ). We have observed that
for fixed ζ . The peaks of the distributions move to higher
values of x with increasing of −t ; again the heights of the
peaks increase and also shift to higher values of x as ζ

increases for fixed −t . We also observed markedly differ-
ent behavior for ˜E for the u quark from the other GPDs
in this model when we plot the GPDs against ζ for dif-
ferent −t and fixed x . It shows that with increasing ζ , ˜Eu

started to increase smoothly from different values at ζ = 0
for different values of −t but the magnitude at ζmax decreases
with increasing −t whereas for the other GPDs, the magni-
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tude at ζmax increases with increasing −t . The axial form
factor has been evaluated in this quark–diquark model and
compared with the dipole fit of experimental data as well
as lattice data. It shows that our result is more or less in
agreement with the experimental data and better compared to
lattice.

We have also presented all the helicity-dependent GPDs
in the transverse impact parameter (b) as well as longitu-
dinal position(σ ) spaces by taking the Fourier transform of
the GPDs with respect to momentum transfer in the trans-
verse direction (�⊥), and skewness (ζ ), respectively. For
zero skewness, the impact parameter b gives a measure of
the transverse distance between the struck parton and the
center of momentum of the hadron. In this model, the GPD
˜H shows a quite different behavior in the transverse impact
parameter space for the u and d quarks when plotted in x
and b but for ˜E , the behaviors for both u and d quark are
almost same. Again, the nature of ˜H is more or less the same
when plotted against ζ and b, but ˜E shows a different behav-
ior for the u and d quark. With increasing ζ or decreasing
x , the widths of all distributions increase. It has been found
that the GPDs in σ space show diffraction patterns analo-
gous to diffractive scattering of a wave in optics. A similar
diffraction pattern also has been observed in several other
models. The diffraction patterns for both u and d quarks are
of the same qualitative nature. The general features of this
phenomenon are mainly depending on the finiteness of the
ζ integration but the dependence of GPDs on x , ζ and t is
also crucial. Like other GPDs, ˜E for the u quark does not
show the diffraction pattern for all values of −t . This is due
to a different behavior of ˜Eu with ζ from the other GPDs
which also indicates that the diffraction pattern is not solely
due to finiteness of ζ integration and the functional behav-
iors of the GPDs are important to have the phenomenon. In
this model, we have also studied the transverse distributions
of quark with light-cone helicities λ(= ±1) in the nucleon
with longitudinal polarization Λ(= +1). We observed that
when the helicity of the u quark is aligned with the proton
helicity, the probability to find it is maximal but the situation
is opposite for the d quark.
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