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First synthesis of achilleol A using titanium(III) chemistry
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Abstract—Described herein is a straightforward synthesis of the monocyclic triterpene achilleol A using as key step titanium(I1I)
chemistry. This synthesis confirms the previously described structure based on spectroscopic methods. © 2002 Elsevier Science

Ltd. All rights reserved.

Achilleol A (1), the first monocyclic triterpenoid found
in the nature, was originally isolated from Achillea
odorata, where it occurs together with achilleol B (2).2
Achilleol A and some esterified derivatives have subse-
quently been found in other plants belonging to differ-
ent families (Umbelliferae,> Theraceae,* Asteraceae®
and Gramineae®), suggesting that it may be a relatively
widespread metabolite within the plant kingdom. The
chemical structure of achilleol A (achillane skeleton)
points to a biosynthesis based on an unusual monocy-
clization of 2,3-oxidosqualene. This hypothesis is sup-
ported by the finding of 1 among the products formed
from 2,3-oxidosqualene via the action of a mutant
oxidosqualene cyclase.”® Nevertheless, achilleol A co-
occurs with the structurally related sesquiterpenoid ele-
gansidiol (3) in Santolina elegans,” and so other
biosynthetic pathways cannot be ruled out. Therefore,
doubts concerning the biosynthesis of 1 and its poten-
tial relationship with the mechanism of metabolic
cyclizations catalyzed by oxidosqualene cyclases remain
unanswered. In fact the coexistence of achilleol A
together with achilleol B, the bicyclic structure of which
is identical to that of the D and E rings of some
pentacyclic triterpenes (oleanane skeleton), may well
provide evidence for a non-concerted mechanism for
triterpene cyclases.>’

The structure and relative stereochemistry of achilleol
A were both established in 1989 by spectroscopy! but
since then the chemical synthesis of 1 has remained
unpublished despite biological interest in this com-
pound. We have carried out the stereoselective synthesis
of 1 to confirm the arrangement of the isoprene units in
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the side chain and the relative configuration of the
cyclohexanol moiety. The key step in this synthesis
relies upon the Cp,TiCl'® mediated carbocyclization of
epoxypolyprenes,'! discovered recently in our labora-
tory (Fig. 1).

Bearing in mind the co-occurrence of 1 and 3 in S.
elegans, the synthesis of 1 was planned on the basis of
a C,5+C,5 convergent strategy (Scheme 1). This strategy
could facilitate a further chemical correlation between 1
and (—)-elegansidiol, in order to establish the absolute
configuration of natural (-)-achilleol A.'2

The C,5 synton I (closely related to 3) has a cyclohex-
anol ring with an exocyclic double bond and a 1,3-cis
relationship between the hydroxyl group and the iso-
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Figure 1. Chemical structures of 1-3.
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Scheme 1. Retrosynthetic analysis of 1.

prenoid side chain. This kind of cyclohexanol has previ-
ously been prepared by the acid-catalyzed opening of
6,7-epoxygeranyl derivatives via carbocationic chem-
istry.'® Nevertheless, this procedure gives only moder-
ate yields of the desired exocyclic alkene.!* An
alternative to the more usual cationic opening is to use
the transition-metal-centered radical Cp,TiClL'> which
selectively leads to the 1,3-cis-cyclohexanol with the
exocyclic double bond.!' Thus, I could be obtained by

%

the free-radical-mediated cyclization of an epoxide such
as III, followed by the transformations required to
introduce an adequate X-leaving group. As far as the
second C,s synthon II is concerned, its close structural
relationship with farnesol is evident, and in fact nucle-
ophilic syntons such as II have been prepared in the
past from commercially available farnesyl chloride.!®

10,11-Epoxyfarnesol might be considered a priori to be
an adequate raw material for the synthesis of mono-
cyclic sesquiterpenoids such as I, but our previous work
has shown that the Ti(IIl)-promoted rearrangement of
10,11-epoxyfarnesyl derivatives actually leads to
bicyclic sesquiterpenoids with a drimane skeleton.'!
Neither did epoxygeranylacetone (III, R =CH,COCH,;)
prove to be a useful starting material because it also
gave bicyclic by-products. We finally obtained satisfac-
tory results with oxirane 6 prepared from geranylace-
tone (4) using the protection of the carbonyl group as
an ethylenketal (5) and subsequent treatment with
aqueous NBS and K,CO; (Scheme 2)."”

As was foreseen in retrosynthetic Scheme 1, the
Cp,TiCl-mediated cyclization of oxirane 6 gave cyclo-
hexanol 7,'® with high degrees of regio- and stereoselec-
tivity (Scheme 3).

Ketone 8 was obtained by treating ketal 7 with CeCl;/
Nal in CH,CN" under neutral conditions to avoid any
isomerization of the exocyclic double bond. Protection
of the secondary alcohol 8 gave the silylether 9, which
was transformed into the elengasidiol derivative 11
(60% overall yield) via a three-step procedure previ-
ously developed in our laboratory.'*® During the sec-
ond of these steps a catalytic quantity of Pd(II) was
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HO OH \(/5( |
pTSOH 2.K,C03 ¢ o<
/

4 (93 %) (71 %)
Scheme 2. Synthesis of oxirane 6.
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Scheme 3. Stereoselective synthesis of elegansidiol derivative 11.
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used to rearrange the tertiary acetate 10 towards the
acetyl derivative of 11, which was subsequently
solvolyzed to the corresponding primary alcohol (11),
thus obtained as a mixture of 3F and 3Z isomers at a
significant ratio of 7:1 (Scheme 3).

Alcohol 11 was converted into allylic bromide 12
(Scheme 4), which was then used to alkylate the sulfone
13 described above,'® providing a 75% yield of the
polyene 14 (10:1 mixture of 3E/3Z stereoisomers). This
polyene already possesses all the carbon atoms and
stereogenic centers present in achilleol A. The desul-
fonation of 14 gave a mixture of polyprene 15 (55%
yield) and a regioisomer (22%) with a double bond at
A® instead of A7. Lastly, achilleol A was obtained from
15 by removing the protective silyl ether with TBAF.
MS, 'H and the '3C NMR spectra of synthetic 1
concurred with those of the natural metabolite. A revi-
sion of the '*C NMR spectrum of natural achilleol A
revealed a mistake in the hitherto reported spectrum:!
the methyl signal reported at 26.8 ppm in fact resonates
at 16.1 ppm.>°

In summary, we describe here for the first time the
synthesis of a monocyclic triterpenoid with an achillane
skeleton. This synthesis serves to confirm the structure
and relative stereochemistry of achilleol A, which seems
to be a relatively widespread metabolite in the plant
kingdom. The key step in the synthesis is a free-radical-
mediated cyclization of an epoxypolyprene, which pro-
vides a highly stereoselective methylencyclohexanol.
Our results suggest that this procedure may well prove
to be a generally useful method for the synthesis of
natural terpenoids and steroids. We are currently work-
ing on the enantiospecific synthesis of natural (-)-
achilleol A, in order to establish its absolute
configuration and also the chemical preparation of
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Scheme 4. Convergent C,5+C,5 synthesis of achilleol A.

achilleol B and other natural terpenoids using free
radical chemistry.
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Spectroscopic data for synthetic achilleol A: 'H NMR
(400 MHz, CDCly) ¢ 5.15-5.05 (m, 4H), 4.86 (bs, 1H),
4.59 (bs, 1H), 3.39 (dd, J=9.9, 4.3 Hz, 1H), 2.31 (dt,
J=13.1, 4.7, Hz, 1H), 2.10-1.80 (m, 16H), 1.75-1.40 (m,
4H), 1.66 (s, 3H), 1.59 (s, 12H), 1.01 (s, 3H), 0.70 (s, 3H);
13C NMR (75 MHz, CDCl;; DEPT) 6 147.33 (C), 135.53
(C), 135.22 (C), 135.01 (C), 131.35 (C), 124.50 (CH),
124.46 (CH), 124.39 (CH), 124.36 (CH), 108.48 (CH,),
77.43 (CH), 50.98 (CH), 40.64 (C), 39.86 (CH,), 39.82
(CH,), 38.70 (CH,), 33.19 (CH,), 32.31 (CH,), 28.39
(CH,), 28.34 (CH,), 26.86 (CH,), 26.77 (CH,), 25.96
(CH;), 25.79 (CH,), 23.81 (CH,), 17.77 (CH,), 16.15
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