Rapid Sulfation of 3,3′,5′-Triiodothyronine in Native Xenopus laevis Oocytes

EDITH C. H. FRIESEMA, ROELOF DOCTER, ERIC P. KRENNING, MARIA E. EVERTS*, GEORG HENNEMANN, AND THEO J. VISSER

Departments of Internal Medicine III (E.C.H.F., R.D., E.P.K., M.E.E., G.H., T.J.V.) and Nuclear Medicine (E.P.K.), Erasmus University Medical School, Rotterdam, The Netherlands

ABSTRACT

Sulfation is an important metabolic pathway facilitating the degradation of thyroid hormone by the type I iodothyronine deiodinase. Different human and rat tissues contain cytoplasmic sulfotransferases that show a substrate preference for 3,3′-diiodothyronine (3,3′-T2) > T2 > rT3 > T3. During investigation of the expression of plasma membrane transporters for thyroid hormone by injection of rat liver RNA in Xenopus laevis oocytes, we found uptake and metabolism of iodothyronines by native oocytes. Groups of 10 oocytes were incubated for 20 h at 18 C in 0.1 ml medium containing 500,000 cpm (1–5 nM) [125I]T4, [125I]T3, [125I]rT3, or [125I]3,3′-T2. In addition, cytosol prepared from oocytes was tested for iodothyronine sulfotransferase activity by incubation of 1 mg cytosolic protein/ml for 30 min at 21 C with 1 μM [125I]T4, [125I]T3, [125I]rT3, or [125I]3,3′-T2 and 50 μM 3′-phosphoadenosine-5′-phosphosulfate. Incubation media, oocyte extracts, and assay mixtures were analyzed by Sephadex LH-20 chromatography for production of conjugates and iodide. After 20-h incubation, the percentage of added radioactivity present as conjugates in the media and oocytes amounted to 0.9 ± 0.2 and 1.0 ± 0.1 for T4, less than 0.1 and less than 0.1 for T3, 32.5 ± 0.4 and 29.3 ± 0.2 for rT3, and 3.8 ± 0.3 and 2.8 ± 0.2 for 3,3′-T2, respectively (mean ± SEM, n = 3). The conjugate produced from rT3 was identified as rT3 sulfate, as it was hydrolyzed by acid treatment. After injection of oocytes with copy RNA coding for rat type I iodothyronine deiodinase, we found an increase in iodide production from rT3 from 2.3% (water-injected oocytes) to 46.2% accompanied by a reciprocal decrease in T3 sulfate accumulation from 53.7% to 7.1%. After 30-min incubation with cytosol and 3′-phosphoadenosine-5′-phosphosulfate, sulfate formation amounted to 1.8% for T4, less than 0.1% for T3, 77.9% for rT3, and 29.9% for 3,3′-T2. These results show that rT3 is rapidly metabolized in native oocytes by sulfation. The substrate preference of the sulfotransferase activity in oocytes is rT3 >> 3,3′-T2 > T2 > T3. The physiological significance of the high activity for rT3 sulfation in X. laevis oocytes remains to be established. (Endocrinology 139: 596–600, 1998)
Na$_{125}$I (80 MBq/nmol) were purchased from Amersham (Aylesbury, UK). [3',5'-$^{125}$I]T$_3$ and 3,3'-$^{125}$I-T$_2$ were prepared from Na$_{125}$I and 3.3’-T$_2$, respectively, using the chloramine-T method, followed by purification on Sephadex LH-20 (12). Sephadex LH-20 was obtained from Pharmacia (Uppsala, Sweden). All other chemicals were of reagent grade.

Capped rat D1 copy RNA (cRNA) was prepared from the complementary DNA in pHlueScript (14) (provided by Dr. P. Reed Larsen), linearized with XhoI (Boehringer Mannheim, Mannheim, Germany), using the AmpliScribe T, transcription kit (Epigentech Technologies, Madison, WI) according to the protocol of the supplier. For capping, the m7G[5’ppp5’]G cap analog was used. cRNA pellets were dissolved in water (0.04 µg/µl) and stored at −80°C.

Animals

Two- to 3-yr-old adult X. laevis females were obtained from the Hubrecht Laboratory (Utrecht, The Netherlands). Frogs were maintained in a water-filled tank with three dark sides at a temperature of 18–22°C. A 12-h light, 12-h dark cycle was maintained to reduce seasonal variations in oocyte quality. Frogs were fed twice a week, and water was changed immediately after feeding.

Oocyte isolation and RNA injection

Oocytes were prepared as described previously (13). After isolation, the oocytes were sorted manually on morphological criteria, such as size, polarization, pigmentation, and absence of follicular layer debris. Healthy-looking stage V–VI oocytes (15) were transferred to six-well tissue culture plates and incubated in the dark at 18°C in modified Barth’s solution (88 mM NaCl, 1 mM KCl, 0.82 mM MgSO$_4$, 0.4 mM CaCl$_2$, 0.33 mM Ca(NO$_3$)$_2$, 2.4 mM NaHCO$_3$, and 10 mM HEPES (pH 7.4), containing 10 IU/ml penicillin and 10 µg/ml streptomycin). The next day, oocytes were injected with 23 nl water containing 0.92 ng D1 cRNA using the Nanoinject system (Drummond Scientific, Broomall, PA). Injected and un.injected oocytes were maintained for 3–4 days at 18°C in modified Barth’s solution, with daily change of medium.

Uptake and metabolism assays

Groups of 10 oocytes were transferred to a 96-well tissue culture plate and subsequently incubated in the dark at 18°C with 4 nm [125I]T$_4$, 5 nm [125I]T$_3$, 2 nm [125I]T$_2$, or 2 nm [125I]T$_3$, in 0.1 ml sodium-containing incubation medium (100 mM NaCl, 2 mM KCl, 1 mM CaCl$_2$, 1 mM MgCl$_2$, 10 mM HEPES, and 10 mM Tris, pH 7.5). After 20 h, incubation medium was collected, and the oocytes were transferred to tubes and washed four times with 2.5 ml ice-cold sodium buffer containing 0.1% BSA. Two groups of 5 oocytes from each group of 10 were transferred to new tubes, counted, and lysed with 0.1 ml 0.1 M NaOH. Lysates were cleared by centrifugation. Lysates (in duplicate) and incubation media were acidified with 0.1 M HCl and analyzed by Sephadex LH-20 chromatography (16). The products were separated by successive elutions with 1 ml 0.1 M HCl (iodide) twice, 1 ml water (conjugates) 6 times, and 1 ml 1% NH$_4$OH in ethanol (iodothyronines) three times.

rT$_3$ conjugate hydrolysis

Acid hydrolysis of rT$_3$ conjugate was tested by incubation for 1 h at 80°C in 1 M HCl (17). The reaction was stopped by placing the mixtures on ice, and the products were analyzed by Sephadex LH-20 chromatography as described above.

Sulfotransferase assay

Oocytes were homogenized on ice in 2.5–3 vol 0.1 M phosphate buffer (pH 7.2), 2 mM EDTA, and 1 mM dithiothreitol, and cytosol was isolated after centrifugation for 1 h at 100,000 × g. The protein concentration was determined by the method of Bradford (18), using BSA as the standard.

Iodothyronine sulfotransferase activities were measured by incubation of 1 µM T$_4$, T$_3$, rT$_3$, or 3,3'-T$_2$, and 100,000 cpm of the 125I-labeled compound for 30 min at 37°C (optimal temperature for warm-blooded animals) or 21°C (optimal temperature for cold-blooded animals) with 0.1 or 1 mg cytosolic protein/ml in the presence (in triplicate) or absence (blank) of 50 µM PAPS in 0.2 ml 0.1 M phosphate buffer (pH 7.2) and 2 mM EDTA, as described previously (11, 12). The reaction was started by the addition of diluted cytosol and was stopped by the addition of 0.8 ml 0.1 M HCl. Iodothyronine sulfate formation was analyzed by Sephadex LH-20 chromatography as described above.

Statistics

Uptake and metabolism studies were performed with groups of 10 oocytes. Data are expressed as the percent uptake of total radioactivity per 10 oocytes and are presented as the mean ± SEM. Statistical significance was evaluated by Student’s t test for unpaired observations.

Results

Uptake and metabolism of iodothyronines in oocytes

The percentage of added radioactivity present in the media and, after washing, in the oocytes after 20-h incubation amounted to 31.8 ± 7.0 for T$_4$, 3.3 ± 0.3 and 51.5 ± 0.7 for T$_3$, 50.9 ± 1.4 and 35.0 ± 1.4 for rT$_3$, and 24.2 ± 0.5 and 68.1 ± 0.7 for 3,3'-T$_2$ (Fig. 1). The incomplete recovery of radioactivity, in particular with [125I]T$_3$, is primarily due to adsorption of label to the tube as the incubation medium did not contain protein. For T$_4$, T$_3$, and 3,3'-T$_2$, almost all radioactivity present in the oocytes was in the form of the added iodothyronine. However, only 15.4 ± 0.5% and 4.9 ± 0.1% of the added [125I]rT$_3$ was recovered as intact iodothyronine from the medium and oocytes, respectively. After incubation with [125I]rT$_3$, most of the added radioactivity was
recovered as conjugate, i.e. 32.3 ± 0.4% in the medium and 29.3 ± 0.2% in the oocytes, indicating active conjugation of \( rT_3 \) in the oocytes. With none of the iodothyronines was significant iodide production observed in the oocytes.

Native iodothyronines are regenerated from their sulfate conjugates by acid-catalyzed hydrolysis (17). The conjugate formed after incubation of \( rT_3 \) with oocytes was completely hydrolyzed after treatment for 1 h at 80°C with 1 M HCl (Fig. 2), indicating that \( rT_3 \) was indeed sulfated by the oocytes.

Injection of cRNA coding for rat D1 resulted, after incubation of the oocytes for 20 h with \( [125\text{I}]rT_3 \), in a large increase in iodide formation from 2.3% to 46.2% of the added radioactivity, which was accompanied by a reciprocal decrease in \( rT_3 \) sulfate (\( rT_3S \)) accumulation from 53.7% to 7.1% compared with that in water-injected oocytes (Figs. 1C and 3). Water-injected oocytes showed the same rate of \( rT_3 \) sulfation as native (uninjected) oocytes (Figs. 1C and 3). Figure 3 also shows that the amount of iodide in the D1 cRNA-injected oocytes incubated with \( [125\text{I}]rT_3 \) was 3 times higher than that in the medium.

**Sulfotransferase assay**

Iodothyronine sulfotransferase activities were measured in cytosol from native oocytes at incubation temperatures of 37 and 21°C, producing the same results (not shown). Figure 4 presents the results of the experiments performed at 21°C. Although sulfation rates were higher at 1 than at 0.1 mg cytosolic protein/ml, the pattern of sulfation of the different iodothyronines was independent of the protein concentration. The sulfotransferase activity in oocyte cytosol showed a preference for \( rT_3 \gg 3,3'-T_2 \gg T_4 \gg T_3 \).

**Discussion**

In experiments using \( X. laevis \) oocytes to express rat liver cell membrane transporters for thyroid hormones (13), we found that native \( X. laevis \) oocytes transport iodothyronines and sulfate \( rT_3 \). We also found that transport and sulfation of \( rT_3 \) in oocytes injected with rat liver messenger RNA (mRNA) were similar to those in uninjected oocytes (data not shown). Thus, the possible induction of an exogenous transport protein for \( rT_3 \) by the injection of rat liver mRNA was completely masked by the endogenous transport system for \( rT_3 \) in the oocytes. This is in contrast to previous findings concerning the expression of hepatic cell membrane transporters for \( T_3 \) and \( T_4 \) (13), showing that injection of rat liver mRNA or partially purified fractions thereof induces a significant 2- to 3-fold increase in \( T_3 \) and \( T_4 \) transport into oocytes.

After 20-h incubation with \( [125\text{I}] \)-labeled \( T_4, T_3, rT_3, 3,3'-T_2 \), most radioactivity was associated with the oocytes as unmetabolized iodothyronines. As after incubation the oocytes were extensively washed in BSA-containing medium, cell-associated radioactivity most likely represents internalized iodothyronine. This conclusion is supported by the observation that uptake of iodothyronines by \( X. laevis \) oocytes is a \( Na^+ \)-dependent process (13). On the contrary, after 20-h incubation with \( [125\text{I}]rT_3 \), most radioactivity was recovered from the medium, largely as \( rT_3S \). Taking medium and oocytes together, more than 50% of added \( rT_3 \) was sulfated.

### FIG. 2. Acid-catalyzed hydrolysis of \( rT_3 \) conjugate produced after incubation of \( [125\text{I}]rT_3 \) for 20 h at 18°C with 10 oocytes. The percentages of iodide (■), conjugate (□), and \( rT_3 \) (■) in the incubation medium and oocytes before and after the acid-catalyzed hydrolysis were determined by Sephadex LH-20 chromatography. Results are derived from a duplicate incubation in a representative experiment.

### FIG. 3. Metabolism of \( rT_3 \) in D1 cRNA-injected and water-injected oocytes during incubation of \( [125\text{I}]rT_3 \) for 20 h at 18°C with 10 oocytes. Percentages of iodide (■), conjugates (□), and \( rT_3 \) (■) in the incubation medium and oocytes were determined by Sephadex LH-20 chromatography. Bars represent the mean ± SEM (n = 3).

### FIG. 4. Sulfation of 1 mM iodothyronines during incubation for 30 min at 21°C with oocyte cytosol in the presence of 50 μM PAPS. The cytosolic protein concentration amounted to 0.1 mg/ml (■) and 1.0 mg/ml (■). Results are the means of two closely agreeing experiments.
in intracellularly. Subsequently, (part of) the \( \text{rT}_3 \)S formed is transported back to the medium. The finding that after 20-h incubation of oocytes with \( \text{rT}_3 \) and other iodothyronines almost no iodide is formed indicates that \( X. \text{laevis} \) oocytes possess little or no endogenous D1 activity, in agreement with the findings of St. Germain et al. (19). In fact, D1 activity is not expressed at any stage of development in amphibians (20). On the other hand, injection of cRNA coding for rat D1 leads to a large increase in iodide production from \( \text{rT}_3 \) at the expense of \( \text{rT}_3 \)S accumulation. As, like native D1 in mammalian cells, exogenous D1 in oocytes is probably located intracellularly (1–3), these results again strongly support the presence of an endogenous transporter(s) for iodothyronines in \( X. \text{laevis} \) oocytes.

D1 is a nonselective enzyme capable of both ORD and IRD of iodothyronines (1–3). The enzyme is most effective in the ORD of \( \text{rT}_3 \), but the deiodination of different iodothyronines is dramatically affected by the sulfation of these compounds (5, 6). Thus, IRD of both \( \text{T}_4 \) and \( \text{T}_3 \) by rat D1 is accelerated 40–200 times after their sulfation, suggesting that sulfation is an important step, leading to the irreversible inactivation of thyroid hormone (5, 6). In contrast, ORD of \( \text{T}_4 \) is completely blocked by sulfation. This is not a general phenomenon, as ORD of \( \text{rT}_3 \) by rat D1 is not affected by sulfation of this substrate, whereas ORD of \( 3,3'\text{-T}_2 \) is facilitated 50-fold by sulfation (5, 6). In contrast to the facilitated deiodination of iodothyronine sulfates by D1, deiodination of iodothyronines by the type II (D2) and type III (D3) iodothyronine deiodinases is inhibited by sulfation (21) (Visser, T. J., unpublished observations). As \( \text{rT}_3 \) and \( \text{rT}_3 \)S are deiodinated equally well by rat D1, it is uncertain to what extent iodide production from \( \text{rT}_3 \) in rat D1 cRNA-injected oocytes proceeds via \( \text{rT}_3 \)S or represents direct ORD of \( \text{rT}_3 \). The iodide formed remains trapped inside the oocytes, indicating the absence of transporters for both influx and efflux of iodide in native oocytes, in accordance with the studies of Dai et al. (22).

Our experiments have not directly addressed the possible IRD of the different iodothyronines in the oocytes. However, St. Germain et al. (23) have shown that native \( X. \text{laevis} \) oocytes kept in Barth’s medium do not express D3. Moreover, we did not find conjugate formation after incubation of \( \text{T}_3 \) with oocytes, which would have been expected if \( \text{T}_4 \) underwent IRD to \( \text{rT}_3 \). Therefore, it is also unlikely that \( \text{T}_3 \) was metabolized by IRD in the oocytes.

Sulfate conjugation of iodothyronines is catalyzed by phenol sulfotransferases located in the cytosolic fraction of different tissues (7). In both rats and humans, iodothyronine sulfotransferase activities show a substrate preference for \( 3,3'\text{-T}_2 \gg \text{T}_3 > \text{rT}_3 > \text{T}_4 \), with \( \text{rT}_3 \) being a relatively poor substrate (8–12). Our results show that sulfotransferase activity in \( X. \text{laevis} \) oocyte cytosol has a clear substrate preference for \( \text{rT}_3 \)S whereas \( 3,3'\text{-T}_2 \), \( \text{T}_3 \), and \( \text{T}_4 \) are hardly sulfated at all. The physiological importance of thyroid hormone sulfation is still unknown. As discussed above, sulfation is an irreversible pathway of thyroid hormone metabolism when D1 activity is high, as sulfated iodothyronines are rapidly degraded by this enzyme (5, 6). However, sulfation is a reversible pathway of thyroid hormone inactivation when D1 activity is low because of the regeneration of free iodothyronines by sulfatases produced in different tissues and by intestinal bacteria (5, 6). It has been speculated that due to the low D1 activity during fetal development in mammals, sulfation/desulfation of \( \text{T}_3 \) is an important mechanism for the tissue-specific and time-dependent regulation of thyroid hormone bioactivity (6, 21). Indeed, high concentrations not only of \( \text{T}_3 \)S but also of \( \text{T}_4 \)S, \( \text{rT}_3 \)S, and \( 3,3'\text{-T}_2 \)S have been detected in fetal sheep serum and human cord serum (24, 25).

It is remarkable that during embryonic and fetal development in different organisms, two active pathways exist for the inactivation of thyroid hormone: IRD of \( \text{T}_4 \) to \( \text{rT}_3 \) and of \( \text{T}_3 \) to \( 3,3'\text{-T}_2 \) by D3, and sulfation (1–3, 24, 25). That these are true inactivation pathways is suggested by the findings that \( \text{rT}_3 \), \( 3,3'\text{-T}_2 \), and \( \text{T}_3 \)S have little or no affinity for the \( \text{T}_3 \) receptor (26, 27). Thyroid hormone plays an important role not only in the embryonic development of tadpoles, but also in the metamorphosis of the tadpole to the frog. This requires the tissue-specific and development stage-dependent regulation of the balance between thyroid hormone activation by D2 and inactivation by D3 (20). We hypothesize that sulfation/desulfation contributes to the regulation of thyroid hormone bioactivity during embryonic development and metamorphosis in frogs. Although direct evidence is lacking, this hypothesis is supported by the absence of D1 in frogs (20). Why, then, the sulfotransferase(s) involved shows a profound substrate preference for \( \text{rT}_3 \) remains unknown. The possibility that \( \text{rT}_3 \)S exerts a biological function by binding to a transcription factor other than the \( \text{T}_3 \) receptor deserves investigation.

Acknowledgments

We thank Prof. P. Reed Larsen, Brigham and Womens Hospital, Harvard Medical School (Boston, MA) for his generous gift of D1 complementary DNA. Furthermore, we are grateful to Ms. E. P. C. M. Moerings and Ms. E. Kaptein for their effort in helping with the experiments.

References

5. Visser TJ, van Buuren JJC, Rutgers M, Eelkman Roorda SJ, de Herder WW 1990 The role of sulfation in thyroid hormone metabolism. Trends Endocrinol Metab 1:211–218
TJ, Hennemann G 1997 Expression of rat liver cell membrane transporters for thyroid hormone in Xenopus laevis oocytes. Endocrinology 138:1841–1846
20. Galton VA 1992 The role of thyroid hormone in amphibian metamorphosis. Trends Endocrinol Metab 3:96–100