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Mao Fu6., Talin Haritunians7., Mary F. Feitosa8., Thor Aspelund 9,10, Gudny Eiriksdottir9, Melissa

Garcia5, Lenore J. Launer5, Albert V. Smith9, Braxton D. Mitchell6, Patrick F. McArdle6, Alan R.

Shuldiner6, Suzette J. Bielinski11, Eric Boerwinkle12, Fred Brancati13, Ellen W. Demerath14, James S.

Pankow14, Alice M. Arnold15, Yii-Der Ida Chen7, Nicole L. Glazer16, Barbara McKnight15, Bruce M.

Psaty17, Jerome I. Rotter7, Najaf Amin18, Harry Campbell19, Ulf Gyllensten4, Cristian Pattaro20, Peter P.

Pramstaller20,21,22, Igor Rudan19,23,24, Maksim Struchalin18, Veronique Vitart25, Xiaoyi Gao8, Aldi Kraja8,

Michael A. Province8, Qunyuan Zhang8, Larry D. Atwood1, Josée Dupuis26, Joel N. Hirschhorn27,

Cashell E. Jaquish28, Christopher J. O’Donnell29, Ramachandran S. Vasan30,31, Charles C. White26, Yurii S.

Aulchenko18, Karol Estrada2, Albert Hofman18, Fernando Rivadeneira 2,18, André G. Uitterlinden 2,18,
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Abstract

Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing
central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total,
three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies
confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3
(rs10146997, p = 6.461027)]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those
from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.361028 for combined analysis, n = 70,014).
Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass
index (BMI) [p = 7.461026, 0.024 z-score units (0.10 kg/m2) per copy of the G allele] and the risk of obesity (odds ratio 1.13,
95% CI 1.07–1.19; p = 3.261025 per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and
reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated
disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.
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Introduction

Body mass index (BMI) is a commonly used measure of overall

adiposity. However, specific fat depots may confer differential

metabolic risk. In particular, central abdominal fat, as measured

by waist circumference (WC), may be more strongly associated

with the development of metabolic risk factors and cardiovascular

disease as compared with BMI [1–4]. Therefore, understanding

the pathogenesis of central fat distribution may provide further

insight into the relationship between adiposity, cardiometabolic

risk, and cardiovascular disease.

Both genetic and environmental factors have been linked to

obesity [5]. Heritability estimates for BMI and WC range from 30

to 70% in family and twin studies [6], and multiple quantitative

trait loci and candidate genes have been mapped to genes for

central adiposity [5]. Despite strong evidence for an underlying

genetic component, genes for obesity-related traits, particularly

central obesity, have been difficult to identify and replicate.

Early genome-wide association studies (GWAS) identified both

FTO and MC4R as genes related to BMI and WC [7–10]. Many

new loci have been identified in recent obesity related GWAS

studies [11–13]. However, collectively these variants explain only a

small proportion of the variation in adiposity [7–13]. In addition,

no GWAS exist exclusively to identify genes for central fat. Thus,

to identify new variants, we carried out a large-scale meta-analysis

of GWAS from eight studies to detect variants associated with

central body fat distribution.

Methods

Study Samples
Participants for the current analysis were drawn from 8 cohort

studies, including the Age, Gene/Environment Susceptibility-

Reykjavik Study (AGES- Reykjavik Study), the Atherosclerosis

Risk in Communities Study (ARIC), the Cardiovascular Health

Study (CHS), the European Special Population Network consor-

tium (EUROSPAN), the Family Heart Study, the Framingham

Heart Study, Old Order Amish (OOA), and the Rotterdam Study

(RS). These groups comprise the CHARGE (Cohorts for Heart

and Aging Research in Genome Epidemiology) Consortium. All

Author Summary

Obesity is a major health concern worldwide. In the past
two years, genome-wide association studies of DNA
markers known as SNPs (single nucleotide polymorphisms)
have identified two novel genetic factors that may help
scientists better understand why some people may be
more susceptible to obesity. Similarly, this paper describes
results from a large scale genome-wide association
analysis for obesity susceptibility genes that includes
31,373 individuals from 8 separate studies. We uncovered
a new gene influencing waist circumference, the neurexin
3 gene (NRXN3), which has been previously implicated in
studies of addiction and reward behavior. These findings
lend further evidence that our genes may influence our
desire and consumption of food and, in turn, our
susceptibility to obesity.
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participants provided informed consent. Local ethical committees

at each institution approved the individual study protocols. Text

S1 contains details regarding all participating cohorts.

Imputation and Statistical Analysis
Common to all analyses were use of the raw WC measures

and the assumption of an additive model; study specific details

follow. Each study reported an effect allele which was meta-

analyzed consistently across all studies. Results are currently

presented relative to the minor G allele for the NRXN3 SNP.

In all studies except CHS, MACH (version 1.0.15 in Family

Heart, Framingham, EUROSPAN and RS; version 1.0.16 in

ARIC, AGES, and OOA) was used to impute all autosomal

SNPs on the HapMap, using the publicly available phased

haplotypes (release 22, build 36, CEU population) as a

reference panel. In CHS, the program BIMBAM was used

[14]. Details are provided in Table S1 regarding covariates

and trait creation.

In ARIC, Framingham, and RS, sex- and either cohort-specific

or study center-specific residuals were created after adjustment for

age, age-squared, and smoking status. In CHS and Family Heart,

linear regression models were used to adjust for age, age-squared,

sex, smoking, and study center. In AGES, linear regression models

using PLINK v1.04 [15] were used to adjust for age, age-squared,

sex, and smoking. In the OOA the measured genotype mixed

effects model was used adjusting for age, age-squared, sex and

family structure based on the complete 14-generation pedigree as

implemented in ITSNBN [16]. Framingham employed the linear

mixed effect model for continuous traits and the generalized

estimating equations for dichotomous traits in R [17] to account

for family relatedness. In RS, linear regression models were run

using MACH2QTL [18]. In ARIC and EUROSPAN, all

regression models were run using the ProbABEL package from

the ABEL set of programs [19] and in EUROSPAN genomic

control [20] was used to correct standard errors of the effect

estimates for relatedness among individuals. The Family Heart

Study determined the effect of each SNP using linear mixed effects

models to account for the siblings present in the data using SAS.

Principal components calculated using EIGENSTRAT [21]

were adjusted for in the individual studies when significant in

order to account for population substructure.

Meta-Analysis
A weighted z-score approach was used to conduct meta-analyses

with METAL (www.sph.umich.edu/csg/abecasis/metal/). Geno-

mic control correction was applied to each study prior to the full

meta-analysis. P-values less than 4.461027 were considered

genome-wide significant [22].

In Silico Exchange with the GIANT Consortium
In stage 2 of our study, we conducted an in silico exchange of the

results of 48 SNPs with the GIANT consortium. To create our list

of SNPs to exchange, we first selected the top 34 SNPs from

independent loci (defined as SNPs with R2,0.2) from our meta-

analysis of WC, excluding SNPs in known loci for adiposity. An

additional 14 SNPs of independent loci with a p-value,1.061025

from a secondary list that focused on SNPs for WC with

corresponding BMI p-values.0.01 were also included in an

attempt to isolate genes that might be specifically associated with

central fat deposition. Our a priori threshold for replication was a p-

value,0.001 (0.05/48 SNPs) and/or reaching genome-wide

significance in a combined meta-analysis. CHARGE and GIANT

results were then meta-analyzed using METAL.

Results

Table 1 presents descriptive statistics across the 8 cohorts

providing data for the meta-analysis. We had a total sample size of

31,373 individuals of Caucasian descent. Participants were mostly

middle-aged with ages ranging from a mean of 45 to 76 years of

age.

Figure S1 shows the genome-wide association results for WC in

the stage 1 CHARGE-only analysis. The top SNPs for WC were

in the FTO and MC4R genes (Table S3). Figure S2 shows the QQ

plot for our results excluding SNPs in FTO and MC4R. For FTO,

the top SNP was rs1558902 (p = 4.6610219). For MC4R, the top

SNP was rs489693 (p = 3.561027). The top results excluding

SNPs in FTO and MC4R from our stage 1 meta-analysis are shown

in Table 2 along with the stage 2 in silico replication results from

the GIANT consortium; additional meta-analysis results from

CHARGE are presented in Table S3. The lowest p-value on our

list, for SNP rs10146997 in the NRXN3 gene, had a stage 1 meta-

analysis p-value of 6.461027 and was confirmed in 38,641

participants from the GIANT consortium with a p-value of 0.009

and a combined p-value of 5.361028. The NRXN3 SNP was

derived from the list of SNPs associated with WC irrespective of

association with BMI. None of the other SNPs that were

exchanged were confirmed in GIANT. We do note that while

rs10857809 (proxy for rs10857810) in the FAM40A gene had a p-

value of 0.003 in GIANT, the results were not direction-consistent

with CHARGE and therefore did not replicate in the combined

analysis.

Figure 1 presents the genomic region for SNP rs10146997

(intronic) in NRXN3. Table 3 shows detailed results of

rs10146997 in the NRXN3 gene by contributing CHARGE

study and corresponding results appear in the forest plot in

Figure S3; there was no evidence for heterogeneity across the

stage 1 studies (p = 0.64). The minor allele (G) frequency

(MAF) for rs10146997 in our sample ranged from 0.14 in the

OOA to 0.24 in the Croatians; the frequency of the NRXN3

SNP G allele is 0.275, 1.0, 1.0, and 0.35, in Hapmap CEPH,

Han Chinese, Japanese, and Yoruba populations, respectively.

This SNP was genotyped in AGES, CHS, Family Heart

Study, Rotterdam and all EUROSPAN studies, and imputa-

tion scores for the other studies indicated very high quality.

Overall, per copy of the G allele, mean WC was increased

0.0498 z-score units (0.65 cm). Beta coefficients (in z-score

units) were consistently positive in all samples except the ERF

study (b= 20.0098; p = 0.86), which is most likely due to

chance. Due to overlap in participants from the Framingham

Heart Study and ARIC with those from the Family Heart

Study, the CHARGE meta-analysis was re-run for the NRXN3

SNP without the Family Heart Study; results were essentially

unchanged (p = 6.661027). Individual study-specific results for

rs10146997 from the studies comprising the GIANT consor-

tium can be found in Table S2.

Within CHARGE we also observed an association of

rs10146997 with BMI (p = 7.461026). Overall, mean BMI was

increased 0.024 z-score units per G allele (0.10 kg/m2). When WC

was additionally adjusted for BMI, the signal was completely

attenuated (0.0065 z-score units per G allele; p = 0.32). The

association of rs10146997 with WC was similar in women and

men and in older and younger individuals (Table 4). After

excluding smoking from the covariate adjustment list, results were

essentially similar. Per copy of the G allele, the odds ratio of having

high WC ($88 cm in women; $102 cm in men) was 1.07 (95%

CI 1.02–1.11; Table 4). Similarly, the odds ratio of obesity was

1.13 (95% CI 1.07–1.19).

NRXN3 and Waist Circumference
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We calculated a risk score of FTO (rs9939609), MC4R

(rs17782313), and NRXN3 with possible scores ranging from 0–6

risk alleles (Figure 2). Across this range, mean WC increased from

92.4 cm among those with 0 risk alleles, to 95.7 cm among those

with 4 or more risk alleles. To put our findings in perspective, per

copy of the effect allele, the NRXN3 SNP resulted in a WC

difference of 0.65 cm; FTO 0.73 cm, and MC4R 0.37 cm.

CHARGE consortium meta-analysis results for BMI can be

found in Table S4; Manhattan and QQ plots for BMI can be

found in Figure S4 and Figure S5, respectively.

Discussion

In a discovery sample of more than 30,000 individuals from

several cohort studies, we identified a novel locus in the NRXN3

gene associated with WC. In combination with data from the

GIANT consortium, the p-value for this finding exceeded our pre-

defined threshold for genome-wide statistical significance. This

SNP was also significantly associated with BMI and obesity. This

gene has previously been associated with addiction and reward

behavior, and is a compelling biologic candidate for obesity. We

also confirmed the significant associations with FTO and MC4R

that have previously been reported.

Although our genome-wide scan was performed for WC, the

NRXN3 SNP was also significantly associated with BMI. In

secondary analyses, the signal for WC was attenuated after

additionally adjusting for BMI, suggesting that this locus is most

likely involved in overall adiposity and not specific to central fat

deposition. Similar observations have been made for FTO [10] and

MC4R [7], highlighting the inter-dependence between different

measures of adiposity and the importance of performing GWAS

on multiple adiposity-related traits.

The small magnitude of the effect size of the NRXN3 variant on

WC is consistent with what has previously been reported for FTO

and MC4R. These findings highlight the need for large sample

sizes in order to facilitate continued gene discovery for obesity-

related traits. In particular, genes that emerge for waist

circumference will most likely be genes for overall adiposity

because of the strong correlation between the two measurements

[22]. More specific measures of visceral abdominal fat depots may

make it possible to isolate genes involved in regional body

composition.

NRXN3 is part of a family of central nervous adhesion molecules

and is highly expressed in the central nervous system. Prior studies

of NRNX3 point towards an important role in alcohol dependence,

cocaine addiction, and illegal substance abuse [23–26]. In

addition, opioid dependence has been linked to the chromosome

14q region [23]. In mice, NRXN3 beta expression was observed in

the globus pallidus when exposed to cocaine [24]. Many of the

neuronal pathways in these sub-cortical regions of the brain in

which NRXN3 is expressed are involved with learning and reward

training [25].

Obesity and addiction may share common neurologic under-

pinnings [26]. Other well-replicated obesity loci, including MC4R,

have also been shown to be associated with centrally-mediated

phenomena including binge eating behavior [11,12,27]. Studies in

mice indicate that FTO expression is particularly pronounced in

regions of the brain known to regulate energy balance [28], and

recent data suggest that variants in the FTO gene may regulate

food intake and selection [29].

Additional research is needed to understand the association of

rs10146997 with the NRXN3 gene and to identify a causal variant.

Since there are no other genes within a distance of more than

several hundred kilobases of this SNP, it is unlikely that a different

gene accounts for this finding. A search of publically available

databases [30–32] did not identify an association between SNPs in

NRXN3 and gene expression.

A relationship between WC and causal variants in the NRXN3

gene may have clinical implications. Obesity is a multifactorial

trait that results from a complex interaction between genes and

environment. The identification of an association between obesity

and variants in a gene that has been associated with substance

abuse suggests that further exploration of the role of this gene in

vulnerability to addiction to food substances should be undertaken.

The strengths of this work include the large discovery sample

size. The effect size was small, and achieving conventional levels of

genome-wide significance required combining data from more

than 70,000 participants in two large consortia. Although the

confirmation with the GIANT consortium is promising, the joint

p-value based on more than 70,000 participants achieved only

borderline genome-wide significance. Our findings warrant the

need for further replication in other ethnic groups.

We identified a SNP at a novel locus in the NRXN3 gene

associated with WC. This gene has previously been implicated in

Table 1. Descriptive statistics across the eight cohorts.

Cohort N Age (years) % Women Current smokers (%) Waist Circ (cm) BMI (kg/m2)

AGES 3172 76.4 (5.4) 58.0 (1840) 12.7 (402) 100.7 (12.1)* 27.1 (4.4)

ARIC 8097 54.3 (5.7) 52.8 (4276) 25.2 (2036) 96.2 (13.4) 27.0 (4.9)

CHS 3213 72.3 (5.4) 60.0 (1942) 11.0 (354) 93.6 (12.6) 26.4 (4.3)

Family Heart Study 855 55.6 (11.0) 51.5 (440) 11.9 (101) 98.6 (13.6) 27.8 (5.1)

Framingham Heart Study 7115 45.2 (10.9) 52.7 (3750) 18.8 (1338) 91.4 (15.0) 26.0 (5.1)

Old Order Amish 1134 49.6 (16.8) 48.4 (549) 9.4 (106) 88.5 (11.4) 27.0 (4.7)

Rotterdam Study 5471 69.0 (8.8) 58.6 (3205) 23.0 (1258) 90.6 (11.2) 26.3 (3.7)

EUROSPAN Consortium

ERF (Dutch) 1239 48.3 (14.7) 60.1 (744) 43.6 (540) 87.0 (13.7) 26.7 (4.7)

CROATIAN 784 56.5 (15.3) 58.6 (459) 27.7 (217) 95.9 (11.8) 27.3 (4.3)

MICROS (South Tyrolean) 293 46.3 (15.6) 59.7 (175) 45.3 (125) 88.5 (13.3) 25.4 (5.4)

Data provided as mean (standard deviation) for continuous and % (n) for dichotomous data.
*N = 3167 for WC by tape measure; mean (SD) of WC measured by computed tomography is 125.9(14.0) cm.
doi:10.1371/journal.pgen.1000539.t001
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Table 2. Top 48 SNPs exchanged with the GIANT Consortium, GIANT p-values, and the combined results.

Marker Chromosome Position CHARGE pvalue GIANT pvalue* COMBINED pvalue Nearest Gene**

rs10146997 14 79014915 6.4E-07 0.009 5.3E-08 NRXN3

rs981113 5 75556684 9.8E-07 0.55 3.4E-03 SV2C

rs7338657 13 62299289 1.1E-06 0.75 4.4E-04 PCDH20

rs6714750 2 136499639 1.9E-06 0.48 2.9E-03 DARS

rs1555967 6 51267954 1.9E-06 0.07 3.3E-06 PKHD1

rs4701252 5 21814911 2.5E-06 0.45 2.3E-06 CDH12

rs4420638 19 50114786 3.6E-06 0.80 3.8E-04 APOC1

rs2365642 1 199501709 4.1E-06 0.79 3.4E-03 PKP1

rs17008958 3 71838178 4.5E-06 0.18 5.7E-05 EIF4E3

rs7932813 11 7664857 4.6E-06 0.09 5.0E-06 OVCH2

rs569406 9 77219165 4.7E-06 0.54 3.7E-04 OSTF1

rs6837818 4 168112 5.2E-06 0.81 1.1E-03 ZNF718

rs17537900 13 42593449 7.3E-06 0.07 2.9E-03 DNAJC15

rs17476669 2 50579975 7.9E-06 0.27 1.1E-04 NRXN1

rs11857639 15 71424825 8.0E-06 0.94 3.8E-04 HCN4

rs3758063 8 87754664 1.2E-05 0.76 5.4E-03 CNGB3

rs804569 20 22099652 1.4E-05 0.29 1.7E-04 FOXA2

rs13002346 2 133761936 1.6E-05 0.78 1.9E-03 NAP5

rs7138803 12 48533735 1.6E-05 0.01 8.0E-07 BCDIN3D

rs17201502 12 48571829 1.7E-05 0.02 4.2E-06 FAIM2

rs154168 5 107078981 1.7E-05 0.86 2.0E-03 EFNA5

rs1324618 9 121107783 1.8E-05 0.62 0.01 DBC1

rs1553754 17 43918706 2.0E-05 0.05 1.2E-05 HOXB1

rs12971184 18 32134683 2.1E-05 0.43 0.03 FHOD3

rs253414 5 74992273 2.3E-05 0.47 8.0E-04 C5orf37

rs309193 19 52317155 2.4E-05 0.20 1.8E-04 C19orf7

rs12457723 18 27981438 2.4E-05 0.14 0.08 RNF138

rs8006194 14 88980606 2.5E-05 0.63 0.01 FOXN3

rs10172766 2 205587746 3.0E-05 0.30 0.01 PARD3B

rs11096633 2 20067535 3.1E-05 0.47 5.2E-04 MATN3

rs8049894 16 75371885 3.1E-05 0.67 1.9E-03 CNTNAP4

rs12148445 15 34703950 3.1E-05 0.60 0.01 C15orf41

rs9829637 3 135638752 3.5E-05 0.10 4.9E-05 ANAPC13

rs7666149 4 41017949 3.7E-05 0.06 2.1E-05 LIMCH1

rs13421140 2 1753016 4.2E-05 0.97 6.1E-03 MYT1L

rs4238692 16 82149934 5.8E-05 0.14 1.4E-04 CDH13

rs17833967 12 13846345 6.0E-05 0.46 1.2E-03 GRIN2B

rs1532206 3 99153367 6.2E-05 0.89 9.2E-03 MINA

rs6723108 2 135196450 6.2E-05 0.27 4.4E-04 TMEM163

rs12704232 7 85640166 7.4E-05 0.61 0.05 GRM3

rs12377679 9 128437576 8.0E-05 0.12 1.1E-04 LMX1B

rs1017643 6 156835825 9.5E-05 0.04 2.6E-05 ARID1B

rs6485438 11 43643194 1.3E-04 0.09 9.7E-05 HSD17B12

rs7116632 11 129452949 1.9E-04 0.74 0.04 APLP2

rs422988 1 4718977 2.4E-04 0.62 3.5E-03 AJAP1

rs5771623 22 47415000 2.9E-04 0.07 0.28 FAM19A5

rs6728666 2 216894986 5.3E-04 0.76 0.02 MARCH4

rs10857810*** 1 110403320 1.8E-04 .003 0.97 FAM40A

*GIANT sample size is 38,641.
**Nearest reference is bolded if SNP is within the reference gene.
***GIANT SNP is proxy rs10857809 (r2 = 0.92).
doi:10.1371/journal.pgen.1000539.t002
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Figure 1. Regional Association Plot for rs10146997 on chromosome 14 in the stage 1 CHARGE-only analysis. The color scheme is red
for strong linkage disequilibrium (LD; r2$0.8), orange for moderate LD (r2$0.5 and ,0.8), yellow for weak LD (r2$0.2 and ,0.5) and white for limited
or no LD (r2,0.2).
doi:10.1371/journal.pgen.1000539.g001

Table 3. Results per copy of the G allele for rs10146997 by contributing study; beta coefficients expressed as z-scores.

Cohort N MAF (G)
Imputation Quality
Score Beta Coefficient SE p-value

AGES 3170 0.21 Genotyped 0.058 0.031 0.06

ARIC 8097 0.22 0.98 0.032 0.019 0.12

CHS 3213 0.21 Genotyped 0.103 0.030 0.00048

Family Heart Study 855 0.21 Genotyped 0.003 0.055 0.65

Framingham Heart Study 7115 0.20 1.00 0.068 0.022 0.0019

Old Order Amish 1097* 0.14 0.87 0.049 0.073 0.33

Rotterdam Study 5471 0.21 Genotyped 0.042 0.024 0.08

EUROSPAN Consortium

ERF (Dutch) 1241 0.20 Genotyped 20.010 0.052 0.86

Croatia 784 0.24 Genotyped 0.039 0.059 0.52

MICROS (South Tyrolean) 293 0.17 Genotyped 0.057 0.101 0.60

Meta-analysis results 31373 0.21 N/A 0.0498 0.010 6.461027

SE = standard error; MAF = minor allele frequency.
*Sample size reduced from 1134 because smokers excluded due to the low smoking prevalence.
doi:10.1371/journal.pgen.1000539.t003
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Table 4. CHARGE consortium secondary analysis results per copy of the G allele for rs10146997 in 31373 individuals; beta
coefficients expressed as z-scores.

Beta Coefficient SE p-value

Overall 0.0498 0.010 6.461027

Overall without adjusting for smoking 0.0460 0.010 5.661026

Sex stratification

Women 0.0500 0.014 4.761024

Men 0.0427 0.013 0.001

Age stratification

,55 years 0.0520 0.017 0.002

55+ years 0.0560 0.013 7.461026

Odds Ratio 95% CI p-value

WC category*

High WC (women $88 cm, men $102 cm) 1.07 1.02–1.11 0.003

BMI categories**

Overweight (BMI 25 to ,30) 1.03 0.98–1.07 0.250

Obese (BMI$30) 1.13 1.07–1.19 3.261025

*Referent = normal WC category (women ,88 cm; men ,102 cm).
**Referent = normal weight category (BMI 18.5-,25 kg/m2).
doi:10.1371/journal.pgen.1000539.t004

Figure 2. Mean waist circumference by number of risk alleles for FTO, MC4R, and NRXN3. Bars represent standard errors. The panel on the
left represents the distribution of risk alleles in the overall sample.
doi:10.1371/journal.pgen.1000539.g002
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addiction and reward behavior, lending further support to the

concept that obesity, in part, is a centrally-mediated disorder.
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