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Abstract Wegive a strict mathematical description for a refinement of theMarinatto–
Weber quantum game scheme. The model allows the players to choose projector
operators that determine the state on which they perform their local operators. The
game induced by the scheme generalizes finite strategic-form game. In particular, it
covers normal representations of extensive games, i.e., strategic games generated by
extensive ones. We illustrate our idea with an example of extensive game and prove
that rational choices in the classical game and its quantum counterpart may lead to
significantly different outcomes.

Keywords Normal-form game · Centipede game · Quantum game · Nash
equilibrium

1 Introduction

A 15-year-period research on quantum games results in many ideas of how a quantum
game might look like and how it might be played. Certainly, the quantum scheme
for 2 × 2 games introduced in [1] (the EWL scheme) has become one of the most
common models and it has already found application in more complex games (see, for
example, [2]).However, themore complex the classical game is, themore sophisticated
techniques are required to find optimal players’ strategies in the EWL-type scheme.
While in the scheme for 2 × 2 games the result of the game depends on six real
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parameters (each players’ strategy is a unitary operator from SU(2), and it is defined
by three real parameters), the EWL-type scheme for 3×3 gameswould already require
16 parameters to take into account [3,4]. One way to avoid cumbersome calculations
when studying a game in the quantum domain was presented in [5] (see also recent
papers [6–8] and [9] based on this scheme). The authors defined a model (the MW
scheme) for quantum game where the players’ unitary strategies were restricted to
the identity and bit-flip operator. Then, the game became quantum if the players’
local operators were performed on some fixed entangled state |Ψ 〉 (called the players’
joint strategy). The MW scheme appears to be much simpler than the EWL scheme.
The number of pure strategies of each player is the same as in the classical game
[10]. Thus, the complexity of finding a rational solution is similar in both a classical
game and the corresponding quantum counterpart. Unfortunately, that simple scheme
exhibits some undesirable properties that we pointed out in [11]. First, theMWscheme
implies non-classical game even if the players’ joint strategy is an unentangled state.
In particular, if a player’s qubit is in an equal superposition of computational basis
states, she cannot affect the game outcome in contrast to her strategic position in the
classical game. Moreover, the players have no impact on the form of the initial state.
In paper [11], we showed that the above-mentioned drawbacks vanish by allowing the
players to choose between the basis state that represents the classical game and the
state |Ψ 〉. In this paper, we continue that line of research. We give a formal description
for players’ strategies to include the choice of the initial state in the MW scheme. It
will allow us to move beyond bimatrix games examined in [11] and consider more
general normal-form games. Then, we study possible applications of the scheme.

Some knowledge of game theory is required to follow this paper. While theory
of bimatrix games is commonly used in quantum game theory, the notion of normal
representation of extensive gamesmaynot be known for readers that dealwith quantum
games. Therefore, we encourage the reader who is not familiar with extensive game
theory to see one of the textbooks [12,13].

2 Refinement of the Marinatto–Weber scheme

In paper [11], we introduced a new scheme for playing finite bimatrix games in the
quantum domain. The idea behind the scheme is that the players can choose whether
they play a classical game or its quantum counterpart defined by the MW scheme.
In the case of quantum model for 2 × 2 bimatrix games, this means that the players
choose their local operations: the identity 1 or the Pauli operator σx and, additionally,
they decide whether the chosen operators are performed on state |00k〉 or some fixed
state |Ψ 〉 ∈ C2 ⊗ C2. Now, we give a formal description for the scheme.

2.1 Quantum model for 2 × 2 bimatrix game

Let us consider a 2 × 2 game

(
(a00, b00) (a01, b01)
(a10, b10) (a11, b11)

)
, where (ai j , bi j ) ∈ R2. (1)
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A new quantum scheme for normal-form games 1811

The quantum scheme for game (1) is defined on an inner product space (C2)⊗4 by the
following components:

1. A positive operator H ,

H = (1 ⊗ 1 − |11〉〈11|) ⊗ |00〉〈00| + |11〉〈11| ⊗ |Ψ 〉〈Ψ |, (2)

where |Ψ 〉 ∈ C2 ⊗ C2 such that ‖|Ψ 〉‖ = 1,
2. Players’ pure strategies: P(1)

i ⊗U (3)
j for player 1, P(2)

k ⊗U (4)
l for player 2, where

i, j, k, l = 0, 1, and the upper indices identify the subspace C2 of (C2)⊗4 on
which the operators

P0 = |0〉〈0|, P1 = |1〉〈1|, U0 = 1, U1 = σx , (3)

are defined. That is, player 1 acts on the first and third qubit and player 2 acts on
the second and fourth one. The order of qubits is in line with the upper indices.

3. Measurement operators M1 and M2 are given by formula

M1(2) = 1 ⊗ 1 ⊗
⎛
⎝ ∑

x,y=0,1

axy(bxy)|xy〉〈xy|
⎞
⎠ , (4)

where axy and bxy are the payoffs from (1).

The scheme proceeds in the similar way as the MW scheme or the EWL scheme—the
players determine the final state by choosing their strategies and acting on operator H .
As a result, they determine the following density operator:

ρf =
(
P(1)
i ⊗ P(2)

k ⊗U (3)
j ⊗U (4)

l

)
H
(
P(1)
i ⊗ P(2)

k ⊗U (3)
j ⊗U (4)

l

)

=
⎧⎨
⎩

|11〉〈11| ⊗
(
U (3)

j ⊗U (4)
l |Ψ 〉〈Ψ |U (3)

j ⊗U (4)
l

)
if i = k = 1

|ik〉〈ik| ⊗
(
U (3)

j ⊗U (4)
l |00〉〈00|U (3)

j ⊗U (4)
l

)
if otherwise.

(5)

Next, the payoffs for player 1 and 2 are

tr(ρfM1) and tr(ρfM2). (6)

Similar to the MW scheme, each player is allowed to use mixed strategies, i.e., to
choose her own strategies according to some probability distribution. Let (pi j )i j=0,1

be a probability distribution over the set
{
P(1)
i ⊗U (3)

j : i, j = 0, 1
}
and (qkl)k,l=0,1 be

a probability distribution over
{
P(2)
k ⊗U (4)

l : k, l = 0, 1
}
. Then, the resulting density

operator takes the form

ρf =
∑

i, j,k,l=0,1

pi j qkl
(
P(1)
i ⊗ P(2)

k ⊗U (3)
j ⊗U (4)

l

)
H
(
P(1)
i ⊗ P(2)

k ⊗U (3)
j ⊗U (4)

l

)
.

(7)
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Note that scheme (2)–(4) generalizes the classical way of playing the game. If the
players’ strategy profile takes the form

P(1)
0 ⊗ P(2)

0 ⊗U (3)
j ⊗U (4)

l , (8)

the players’ payoffs depend on U (3)
j and U (4)

l and are equal to

tr

⎛
⎝(U (3)

j ⊗U (4)
l |00〉〈00|U (3)

j ⊗U (4)
l

) ∑
x,y=0,1

axy(bxy)|xy〉〈xy|
⎞
⎠ = a jl(b jl). (9)

Obviously, if U (3)
j and U (4)

j are chosen according to some probability distributions
{p00, p01} and {q00, q01}, respectively, the resulting distribution over a jl(b jl) coin-
cides with one given by the corresponding mixed strategy profile in game (1). As a
result, scheme (2)–(4) determines a game that is a complete quantization of (1) (see
[14] for the definition of complete quantization).

Nash equilibrium In non-cooperative quantum game theory, Nash equilibrium is the
most used solution concept. It is defined as a profile of strategies of all players in
which each strategy is a best response to the other strategies. In view of scheme (2)–

(4), it is a mixed strategy profile
(
(p∗

i j )i, j=0,1, (q∗
kl)i, j=0,1

)
that solves the following

optimization problems:

(p∗
i j ) ∈ argmax

(pi j )
tr

⎛
⎝ ∑

i, j,k,l=0,1

pi j q
∗
kl Sik jl H Sik jl M1

⎞
⎠ , (10)

(q∗
kl) ∈ argmax

(qkl )
tr

⎛
⎝ ∑

i, j,k,l=0,1

p∗
i j qkl Sik jl H Sik jl M2

⎞
⎠ , (11)

where Sik jl = P(1)
i ⊗ P(2)

k ⊗ U (3)
j ⊗ U (4)

l . Like in the classical game theory, we
can simplify conditions (10) and (11) and only check whether (p∗

i j ) or (q∗
kl) yields

a payoff that is equal to a maximum payoff when choosing pure strategies. More
formally, condition (10) is equivalent to the following one

tr

⎛
⎝ ∑

i, j,k,l=0,1

p∗
i j q

∗
kl Sik jl H Sik jl M1

⎞
⎠ = max

i, j=0,1
tr

⎛
⎝ ∑

k,l=0,1

q∗
kl Sik jl H Sik jl M1

⎞
⎠. (12)

It follows from the fact that tr(ρfM1) for density operator ρf given by (7) is a convex
combination of elements

tr

⎛
⎝ ∑

k,l=0,1

q∗
kl Sik jl H Sik jl M1

⎞
⎠ for i, j = 0, 1 (13)
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with weights pi j . In similar way, we can simplify condition (11).

Bimatrix form The game given by scheme (2)–(4) can be expressed in terms of bima-
trix form. Each entry of the bimatrix is a pair (tr(ρfM1), tr(ρfM2)) of payoffs that
corresponds to a particular profile P(1)

i ⊗ P(2)
k ⊗U (3)

j ⊗U (4)
l . As a result, we obtain

⎛
⎜⎜⎜⎜⎝

P(2)
0 ⊗U (4)

0 P(2)
0 ⊗U (4)

1 P(2)
1 ⊗U (4)

0 P(2)
1 ⊗U (4)

1

P(1)
0 ⊗U (3)

0 (a00, b00) (a01, b01) (a00, b00) (a01, b01)

P(1)
0 ⊗U (3)

1 (a10, b10) (a11, b11) (a10, b10) (a11, b11)

P(1)
1 ⊗U (3)

0 (a00, b00) (a01, b01) (α00, β00) (α01, β01)

P(1)
1 ⊗U (3)

1 (a10, b10) (a11, b11) (α10, β10) (α11, β11)

⎞
⎟⎟⎟⎟⎠, (14)

where

(αi j , βi j ) = (tr(ρi j M1), tr(ρi j M2)
)
for ρi j = |11〉〈11|⊗(Ui ⊗Uj |Ψ 〉〈Ψ |Ui ⊗Uj

)
.

(15)
Bimatrix (14) is a very convenient way to study the game determined by scheme
(2)–(4). Once the entries (tr(ρfM1), tr(ρfM2)) are specified, we can leave quantum
formalism out and use (14). This is due to the linearity of trace that makes a density
operator (7) and the corresponding probability distribution over pure strategies equiv-
alent in a sense of generated outcomes. For example, in order to find Nash equilibria,
we can use the techniques for bimatrix games instead of conditions (10) and (11).

Note that bimatrix (14) clearly shows the role of components Pi of players’ strate-
gies. Namely, the operations U (3)

j ⊗ U (4)
l are performed on state |Ψ 〉 if and only if

both players form profile P(1)
1 ⊗ P(2)

1 ⊗U (3)
j ⊗U (4)

l .
The scheme can be generalized to include more than one joint strategy |Ψ 〉. Let us

define operator H on (Cn ⊗ Cn) ⊗ (C2 ⊗ C2
)
,

H =
(
1n2×n2 −

n∑
i=1

|i i〉〈i i |
)

⊗ |00〉〈00| +
n∑

i=1

|i i〉〈i i | ⊗ |Ψi 〉〈Ψi | (16)

and players’ pure strategies

P(1)
i ⊗U (3)

j , P(2)
k ⊗U (4)

l ∈ {|0〉〈0|, |1〉〈1|, . . . , |n〉〈n|} ⊗ {1, σx }. (17)

In this case, the local operators U (3)
j ⊗U (4)

l are performed on state |Ψi 〉 if and only if
the resulting stategy profile takes the form |i i〉〈i i | ⊗U (3)

j ⊗U (4)
l .

2.2 Quantum model for general bimatrix games

We showed in [10] how to construct the scheme for any finite bimatrix game according
to theMWmodel. The key elements of the scheme are appropriately defined operators
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for players. In the case of (n + 1) × (m + 1) bimatrix game,

⎛
⎜⎜⎜⎝

(a00, b00) (a01, b01) · · · (a0m, b0m)

(a10, b10) (a11, b11) · · · (a1m, b1m)
...

...
. . .

...

(an0, bn0) (an1, bn1) · · · (anm, bnm)

⎞
⎟⎟⎟⎠ , (ai j , bi j ) ∈ R2. (18)

where n,m ≥ 1, player 1 (player 2) has n+1 operatorsUi (m+1 operators Vj ) defined
on spaceCn+1 (Cm+1) that act on basis states {|0〉, |1〉, . . . , |n〉} ({|0〉, |1〉, . . . , |m〉})
as follows:

U0|i〉 = |i〉, U1|i〉 = |i + 1 mod n + 1〉, . . . Un|i〉 = |i + n mod n + 1〉; (19)

V0|i〉 = |i〉, V1|i〉 = |i + 1 mod m + 1〉, . . . Vm |i〉 = |i + m mod m + 1〉. (20)

In view of (19) and (20), scheme (2)–(4) can be generalized by the players’ strategies

{P0, P1} ⊗ {U0,U1, . . . ,Un} and {P0, P1} ⊗ {V0, V1, . . . , Vm}. (21)

and the positive operator having the same form as (2), but with the outer product
operators |00〉〈00|, |Ψ 〉〈Ψ | defined on Cn+1 ⊗ Cm+1.

3 Quantum approach to finite normal-form games

In the previous section, we formalized the refinement of the MW scheme that was
introduced in [11]. We obtained the scheme that can be applied to any finite bimatrix
game. In this section, we construct a framework for general normal-form games. The
term of normal-form game has two main meanings. One concerns a strategic game
given a priori. It is defined by triple (N , {Si }i∈N , {ui }i∈N ), where N is a set of players
and, for i ∈ N , components Si and ui are player i’s strategy set and payoff function,
respectively. The second meaning concerns a strategic game (N , {Si }i∈N , {ui }i∈N )

that is generated by a game in extensive form. The strategic game obtained in this way
is called the normal representation of the extensive game. In what follows, we extend
the scheme (2)–(4) to cover both cases.

3.1 Strategic-form game

The difference between bimatrix games and finite strategic games is that more than
two players (say n players) are allowed in the latter case. Therefore, operator (2) has
to be modified in such a way that it simply outputs a density operator after n players’
strategies act on it.

For simplicity of our analysis, we restrict our attention to n-person strategic games
with each Si having two elements. The extension of scheme (2)–(4) is defined now on
space (C2)⊗n ⊗ (C2)⊗n with the positive operator H ,
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A new quantum scheme for normal-form games 1815

H = (1⊗n − (|1〉〈1|)⊗n)⊗ (|0〉〈0|)⊗n + (|1〉〈1|)⊗n ⊗ |Ψ 〉〈Ψ |. (22)

where |Ψ 〉 ∈ (C2)⊗n , ‖|Ψ 〉‖ = 1. Each player i ∈ {1, . . . , n} has a strategy deter-
mined by (3) that acts on qubits i and n + i , i.e., it is on the form P(i)

ji
⊗ U (n+i)

jn+i
,

where ji , jn+i = 0, 1. As a result, a profile of players’ strategies forms operator(⊗n
i=1 P

(i)
ji

)
⊗
(⊗n

i=1U
(n+i)
jn+i

)
that results in the following density operator:

ρf =
[(

n⊗
i=1

P(i)
ji

)
⊗
(

n⊗
i=1

U (n+i)
jn+i

)]
H

[(
n⊗

i=1

P(i)
ji

)
⊗
(

n⊗
i=1

U (n+i)
jn+i

)]

=
⎧⎨
⎩

(|1〉〈1|)⊗n ⊗
[(⊗n

i=1U
(n+i)
jn+i

)
|Ψ 〉〈Ψ |

(⊗n
i=1U

(n+i)
jn+i

)]
if j1, . . . , jn = 1⊗n

i=1 | ji 〉〈 ji | ⊗
[(⊗n

i=1U
(n+i)
jn+i

)
(|0〉〈0|)⊗n

(⊗n
i=1U

(n+i)
jn+i

)]
if otherwise.

(23)

Finally, we define for each player i the payoff measurement Mi ,

Mi = 1⊗n ⊗
⎛
⎝ ∑

x1,...,xn=0,1

aix1,...,xn |x1 . . . xn〉〈x1 . . . xn|
⎞
⎠ , (24)

where aix1,...,xn is player i’s payoff in the classical game that corresponds to strategy
profile consisting of (x1 + 1)th strategy of player 1, (x2 + 1) strategy of player 2,
…, (xn + 1) strategy of player n. It is not difficult to check that scheme (22)–(24)
generalizes an n-person strategic game with two strategies for each player. If the joint

strategy |Ψ 〉 is not played, i.e., element
(⊗n

i=1 P
(i)
ji

)
of a strategy profile is not equal

to (|1〉〈1|)⊗n , then

tr

[(
n⊗

i=1

| ji 〉〈 ji |
)

⊗
[(

n⊗
i=1

U (n+i)
jn+i

)
(|0〉〈0|)⊗n

(
n⊗

i=1

U (n+i)
jn+i

)]
Mi

]

= tr

[(
n⊗

i=1

| ji 〉〈 ji |
)

⊗
(

n⊗
i=1

| jn+i 〉〈 jn+i |
)
Mi

]
= a jn+1,...,2n . (25)

Thus, for strategic-form game (N , {Si }i∈N , {ui }i∈N ),

N = {1, . . . , n}, Si =
{
s(i)
0 , s(i)

1

}
, ui

(
s(1)
k1

, . . . , s(n)
kn

)
= aik1,...,kn . (26)

The game generated by scheme (22)–(24) is equivalent to game (26) if strategies s(i)
0

and s(i)
1 are identified, respectively, with U (n+i)

0 and U (n+i)
1 for each i . s

Example 1 Let us consider the three-person Prisoner’s Dilemma that was studied in
the quantum domain (via the EWL scheme) by Du et al. [15]. In terms of matrices the
game is defined as follows:
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P 3
P 2 P 2

P 1

(
(3, 3, 3) (2, 5, 2)
(5, 2, 2) (4, 4, 0)

) (
(2, 2, 5) (0, 4, 4)
(4, 0, 4) (1, 1, 1)

) (27)

Here, players 1 and 2 choose between the rows and the columns, respectively, whereas
player 3 chooses between thematrices.We recall that the onlyNash equilibrium in (27)
is a profile consisting of the players’ second strategies. Thus, themost reasonable result
of the game is (1, 1, 1). Similar to the best-known 2-person Prisoner’s Dilemma, the
players would increase their payoffs if at least two of them played their first strategies.
However, the first strategy cannot be played by a rational player since for each profile
of the opponents’ strategies this strategy always yields a worse payoff than the second
strategy. In what follows, we apply scheme (22)–(24) to game (27). According to the
reasoning used immediately before Example 1, we identify each player’s strategies
in game (27) with local operators U0 and U1. Moreover, let us assume that player i ,
i = 1, 2, 3 acts on the system of i th and (i + 3)th qubit. As a result, scheme (22)–(24)
comes down to one defined on (C2)⊗3 ⊗ (C2)⊗3 with the positive operator

H =
(
1⊗3 − |111〉〈111|

)
⊗ |000〉〈000| + |111〉〈111| ⊗ |Ψ 〉〈Ψ |, (28)

the player i’s strategy set

{
P(i)
0 ⊗U (i+3)

0 , P(i)
0 ⊗U (i+3)

1 , P(i)
1 ⊗U (i+3)

0 , P(i)
1 ⊗U (i+3)

1

}
, (29)

and the triple of payoff operators

(M1, M2, M3) = 1⊗3 ⊗ [(3, 3, 3)|000〉〈000| + (2, 2, 5)|001〉〈001|
+(2, 5, 2)|010〉〈010| + (0, 4, 4)|011〉〈011| + (5, 2, 2)|100〉〈100|
+(4, 0, 4)|101〉〈101| + (4, 4, 0)|110〉〈110| + (1, 1, 1)|111〉〈111|].

(30)

Let us fix now the players’ joint strategy |Ψ 〉 as:

|Ψ 〉 = 1

2
(|001〉 + |010〉 + |100〉 + |111〉) (31)

and determine the resulting players’ payoffs that correspond to profiles

3⊗
k=1

P(k)
jk

⊗
6⊗

k=4

U (k)
jk

, jk ∈ {0, 1}. (32)
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A new quantum scheme for normal-form games 1817

Note that for fixed
⊗6

k=4U
(k)
jk
, the value

tr

[(
3⊗

k=1

P(k)
jk

⊗
6⊗

k=4

U (k)
jk

)
H

(
3⊗

k=1

P(k)
jk

⊗
6⊗

k=4

U (k)
jk

)
Mi

]
, i = 1, 2, 3 (33)

is the same for each
⊗3

k=1 P
(k)
jk

	= |111〉〈111|. Therefore, the problem of determining
all the 64 payoff profiles actually reduces to determining 64− 6 · 8 = 16 of them. For
example,

(
P(1)
1 ⊗ P(2)

0 ⊗ P(3)
0 ⊗U (4)

0 ⊗U (5)
0 ⊗U (6)

1

)

H
(
P(1)
1 ⊗ P(2)

0 ⊗ P(3)
0 ⊗U (4)

0 ⊗U (5)
0 ⊗U (6)

1

)

= |100〉〈100| ⊗
(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)
|000〉〈000|

(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)
= |100〉〈100| ⊗ |001〉〈001|. (34)

Then,

tr(|100〉〈100| ⊗ |001〉〈001|Mi ) =
{
2 if i ∈ {1, 2}
5 if i = 3.

(35)

Hence, we obtain the same payoffs if P(1)
1 ⊗ P(2)

0 ⊗ P(3)
0 is replaced by P(1)

j1
⊗ P(2)

j2
⊗

P(3)
j3

	= |111〉〈111|. For case P(1)
1 ⊗ P(2)

1 ⊗ P(3)
1 , we have

(
P(1)
1 ⊗ P(2)

1 ⊗ P(3)
1 ⊗U (4)

0 ⊗U (5)
0 ⊗U (6)

1

)

H
(
P(1)
1 ⊗ P(2)

1 ⊗ P(3)
1 ⊗U (4)

0 ⊗U (5)
0 ⊗U (6)

1

)

= |111〉〈111| ⊗
(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)
|Ψ 〉〈Ψ |

(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)

= |111〉〈111| ⊗ (|Ψ ′〉〈Ψ ′|) (36)

where |Ψ ′〉 = (|000〉 + |011〉 + |101〉 + |110〉)/2. State (36) implies the payoff

tr
[
|111〉〈111| ⊗

(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)
|Ψ 〉〈Ψ |

(
U (4)
0 ⊗U (5)

0 ⊗U (6)
1

)
Mi

]
= 11

4
(37)

for each i = 1, 2, 3. Having determined the payoffs associated with each strategy
profile, we can describe the game given by scheme (28)–(30) with the use of four
matrices
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P(3)
0 ⊗U (6)

0

⎛
⎜⎜⎜⎜⎝

P(2)
0 ⊗U (5)

0 P(2)
0 ⊗U (5)

1 P(2)
1 ⊗U (5)

0 P(2)
1 ⊗U (5)

1

P(1)
0 ⊗U (4)

0 (3, 3, 3) (2, 5, 2) (3, 3, 3) (2, 5, 2)

P(1)
0 ⊗U (4)

1 (5, 2, 2) (4, 4, 0) (5, 2, 2) (4, 4, 0)

P(1)
1 ⊗U (4)

0 (3, 3, 3) (2, 5, 2) (3, 3, 3) (2, 5, 2)

P(1)
1 ⊗U (4)

1 (5, 2, 2) (4, 4, 0) (5, 2, 2) (4, 4, 0)

⎞
⎟⎟⎟⎟⎠

P(3)
0 ⊗U (6)

1

⎛
⎜⎜⎜⎜⎝

P(2)
0 ⊗U (5)

0 P(2)
0 ⊗U (5)

1 P(2)
1 ⊗U (5)

0 P(2)
1 ⊗U (5)

1

P(1)
0 ⊗U (4)

0 (2, 2, 5) (0, 4, 4) (2, 2, 5) (0, 4, 4)

P(1)
0 ⊗U (4)

1 (4, 0, 4) (1, 1, 1) (4, 0, 4) (1, 1, 1)

P(1)
1 ⊗U (4)

0 (2, 2, 5) (0, 4, 4) (2, 2, 5) (0, 4, 4)

P(1)
1 ⊗U (4)

1 (4, 0, 4) (1, 1, 1) (4, 0, 4) (1, 1, 1)

⎞
⎟⎟⎟⎟⎠

P(3)
1 ⊗U (6)

0

⎛
⎜⎜⎜⎜⎝

P(2)
0 ⊗U (5)

0 P(2)
0 ⊗U (5)

1 P(2)
1 ⊗U (5)

0 P(2)
1 ⊗U (5)

1

P(1)
0 ⊗U (4)

0 (3, 3, 3) (2, 5, 2) (3, 3, 3) (2, 5, 2)

P(1)
0 ⊗U (4)

1 (5, 2, 2) (4, 4, 0) (5, 2, 2) (4, 4, 0)

P(1)
1 ⊗U (4)

0 (3, 3, 3) (2, 5, 2) ( 52 ,
5
2 ,

5
2 ) ( 114 , 11

4 , 11
4 )

P(1)
1 ⊗U (4)

1 (5, 2, 2) (4, 4, 0) ( 114 , 11
4 , 11

4 ) ( 52 ,
5
2 ,

5
2 )

⎞
⎟⎟⎟⎟⎠

P(3)
1 ⊗U (6)

1

⎛
⎜⎜⎜⎜⎝

P(2)
0 ⊗U (5)

0 P(2)
0 ⊗U (5)

1 P(2)
1 ⊗U (5)

0 P(2)
1 ⊗U (5)

1

P(1)
0 ⊗U (4)

0 (2, 2, 5) (0, 4, 4) (2, 2, 5) (0, 4, 4)

P(1)
0 ⊗U (4)

1 (4, 0, 4) (1, 1, 1) (4, 0, 4) (1, 1, 1)

P(1)
1 ⊗U (4)

0 (2, 2, 5) (0, 4, 4) ( 114 , 11
4 , 11

4 ) ( 52 ,
5
2 ,

5
2 )

P(1)
1 ⊗U (4)

1 (4, 0, 4) (1, 1, 1) ( 52 ,
5
2 ,

5
2 ) ( 114 , 11

4 , 11
4 )

⎞
⎟⎟⎟⎟⎠

We see from the matrix representation that there are two types of pure Nash equilibria.
The first one corresponds to the unique equilibrium in game (27), and it is generated
by profiles

3⊗
k=1

P(k)
jk

⊗
6⊗

k=4

U (k)
1 where ( j1, j2, j3) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(38)
Each profile of (38) is a Nash equilibrium since each player’s unilateral deviation from
the equilibrium strategy yields the payoff 0 or 1. It also follows from the construction
of (22)–(24). Namely, if a player cannot cause the joint strategy |Ψ 〉 to be played
by changing her own strategy, the equilibrium analysis is restricted to studying the
local operations on state |000〉. That, in turn, coincides with the problem of finding
Nash equilibria in game (27), and

⊗6
k=4U

(k)
1 is just the counterpart of the profile of

the players’ second strategies that forms the unique equilibrium in (27). However, in
contrast to (27), the quantum game has another equilibrium given by profile

3⊗
k=1

P(k)
1 ⊗

6⊗
k=4

U (k)
1 . (39)
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Indeed, player 1 suffers a loss of at least 1/4 by unilateral deviation from strategy
P(1)
1 ⊗ U (4)

1 and the same occurs in the case of players 2 and 3. Profile (39) is more
profitable than (38) since it implies 11/4 for each player instead of 1. Thus, the players
gain by making use of the joint strategy |Ψ 〉, i.e., by playing

⊗3
k=1 P

(k)
1 .

3.2 Normal representation of extensive games

Given an extensive-form game, one can construct a representation of that game in the
strategic (normal) form. The resulting strategic game and the given extensive game
have the same set of players and the same set of strategies for each player. The payoff
functions are determined by the payoffs generated by the strategies in the extensive
game. The normal representation appears to be a very convenient way to study the
extensive game. In particular, while we lose the sequential structure, we obtain the
sufficient and easier form of the game to find all the Nash equilibria.

In our earlier paper [16], we introduced a quantum scheme for playing an extensive
game by using its normal representation. Based on the MW and EWL schemes, we
assigned an action at each information set in an extensive game to a local operation
on a particular qubit in the quantum game. As a result, a number of qubits on which
each player was allowed to specify local operations were equal to the number of their
information sets. In what follows, we extend our idea to the refinement of the MW
scheme. This means that in addition to multiple choice of 1 and σx , the players specify
the state on which they perform the local operators.

Let us modify (22) to cover the normal-form game determined by an extensive
game with the set of players {1, 2, . . . , k} and n information sets, n ≥ k. The positive
operator is now defined on (C2)⊗k ⊗ (C2)⊗n by formula

H =
(
1⊗k − (|1〉〈1|)⊗k

)
⊗ (|0〉〈0|)⊗n + (|1〉〈1|)⊗k ⊗ |Ψ 〉〈Ψ |, (40)

where |Ψ 〉 ∈ (C2)⊗n and ‖|Ψ 〉‖ = 1.Let ξ : {k+1, k+2, . . . , k+n} → {1, 2, . . . , k}
be a surjective map. We define player i’s set of strategies as follows

⎧⎨
⎩P(i)

ji
⊗
⊗

y∈ξ−1(i)

U (y)
jy

: ji , jy ∈ {0, 1}, i = 1, 2, . . . , k}
⎫⎬
⎭ , (41)

where P(i)
ji

and U (y)
jy

are defined by (3). As a possible application of (40)–(41), let us
consider the following example:

Example 2 (Four-stage centipede game) A centipede game is a 2-person extensive
game in which the players move one after another for finitely many rounds. In some
sense, it can be treated as an extensive counterpart of the Prisoner’s Dilemma. While
both players are able to obtain a high payoff, their rationality leads them to one of the
worst outcomes. An example of a four-stage centipede game is shown in Fig. 1. Each
player has two information sets (in this case, they are represented by the nodes of the
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Fig. 1 Extensive-form representation of a four-stage centipede game (left) and the corresponding payoff
polytope (right)

game tree) with two available actions at each of them. Each player can stop the game
(action S) or continue the game (action C), giving the opportunity to the other player to
make her choice. One way to learn how the game may end is by backward induction.
If player 2 is to choose at her second information set, she certainly plays action S since
she obtains 5 instead of 4—the result of playing action C . Since players’ rationality
is common knowledge, player 1 knows that by playing C at her second information,
she ends up with payoff 3. Thus, player 1 chooses S that yields 4. Similar analysis
shows that the players choose action S at their first information sets. Consequently,
the backward induction predicts outcome (2, 0). As we focus on normal-form games,
we construct the normal representation associated with the game in Fig. 1. Let us first
determine the players’ strategies. We recall that a player’s strategy in an extensive
game is a function that assigns an action to each information set of that player. Thus,
each player has four strategies in the case of a four-stage centipede game. They can be
written in the form SS, SC,CS, and CC , where, for example, CS means that a player
chooses C at her first information set and S at the second one. Once the strategies are
specified,we determine the payoffs that correspond to all possible strategy profiles. For
example, (SC,CC) determines outcome (2, 0) since player 1’s strategy SC specifies
action S at her first information set. On the other hand, profile (CC,CS) corresponds
to payoff (3, 5) as player 1 always plays C and player 2 chooses S at her second
information set. The players’ strategies together with the payoffs corresponding to the
strategy profiles define the following normal representation

⎛
⎜⎜⎝

SS SC CS CC

SS (2, 0) (2, 0) (2, 0) (2, 0)
SC (2, 0) (2, 0) (2, 0) (2, 0)
CS (1, 3) (1, 3) (4, 2) (4, 2)
CC (1, 3) (1, 3) (3, 5) (6, 4)

⎞
⎟⎟⎠. (42)

By using bimatrix (42), we can learn that rational players always choose action S
at their first information sets. More formally, there are four pure Nash equilibria:
(SS, SS), (SS, SC), (SC, SS), and (SC, SC), each resulting in outcome (2, 0).

Let us consider the four-stage centipede game in terms of (40)–(41).We have k = 2
and n = 4. Thus, operator (40) comes down to

H = (1 ⊗ 1 − |11〉〈11|) ⊗ |0000〉〈0000| + |11〉〈11| ⊗ |Ψ 〉〈Ψ |. (43)
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Let us assume that player 1 (player 2) performs her local operations on third and
fifth (fourth and sixth) qubit, i.e., we define a map ξ : {3, 4, 5, 6} → {1, 2} by setting
ξ({3, 5}) = {1} and ξ({4, 6}) = {2}. According to (41), player 1 and player 2’s
strategies take the form, respectively,

P(1)
j1

⊗U (3)
j3

⊗U (5)
j5

and P(2)
j2

⊗U (4)
j4

⊗U (6)
j6

for jk ∈ {0, 1}. (44)

In order to generalize game (42), we specify payoff operators (24) as follows

(M1, M2) = 1 ⊗ 1 ⊗
(

(2, 0)
∑

x2,x3,x4∈{0,1}
|0x2x3x4〉〈0x2x3x4| + (1, 3)

∑
x3,x4∈{0,1}

|10x3x4〉〈10x3x4|

+(4, 2)
∑

x4∈{0,1}
|110x4〉〈110x4|+(3, 5)|1110〉〈1110|+(6, 4)|1111〉〈1111|

)
.

Setting |Ψ 〉 = (|1010〉 + |1011〉)/√2 and determining

tr

[(
P(1)
j1

⊗ P(2)
j2

⊗
6⊗

k=3

U (k)
jk

)
H

(
P(1)
j1

⊗ P(2)
j2

⊗
6⊗

k=3

U (k)
jk

)
Mi

]
(45)

for player i ∈ {1, 2} and j1, . . . , j6 ∈ {0, 1}, we obtain the following normal-form
game:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B000 B001 B010 B011 B100 B101 B110 B111

A000 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
A001 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
A010 (1, 3) (1, 3) (4, 2) (4, 2) (1, 3) (1, 3) (4, 2) (4, 2)
A011 (1, 3) (1, 3) (3, 5) (6, 4) (1, 3) (1, 3) (3, 5) (6, 4)
A100 (2, 0) (2, 0) (2, 0) (2, 0) (1, 3) (1, 3) ( 92 ,

9
2 ) ( 92 ,

9
2 )

A101 (2, 0) (2, 0) (2, 0) (2, 0) (1, 3) (1, 3) (4, 2) (4, 2)
A110 (1, 3) (1, 3) (4, 2) (4, 2) (2, 0) (2, 0) (2, 0) (2, 0)
A111 (1, 3) (1, 3) (3, 5) (6, 4) (2, 0) (2, 0) (2, 0) (2, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (46)

where A j1 j3 j5 = P(1)
j1

⊗U (3)
j3

⊗U (5)
j5

and Bj2 j4 j6 = P(2)
j2

⊗U (4)
j4

⊗U (6)
j6
. The game given

by (46) extends (42) to local operations on |Ψ 〉〈Ψ |. If players 1 and 2 restrict their
strategies, for example, to P(1)

0 ⊗ U (3)
j3

⊗ U (5)
j5

and P(2)
0 ⊗ U (4)

j4
⊗ U (6)

j6
, j3, . . . , j6 ∈

{0, 1}, bimatrix (46) boils down to (42) (with the unique equilibrium outcome (2, 0)).
In general, game (46) has another Nash equilibrium

(A100, B110) = P(1)
1 ⊗ P(2)

1 ⊗U (3)
0 ⊗U (4)

1 ⊗U (5)
0 ⊗U (6)

0 (47)

that is not available in the classical game.Moreover, profile (47) implies pair of payoffs
(9/2, 9/2), that is the best possible symmetric outcome in (42) (see, the payoff polytope
in Fig. 1).
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Fig. 2 N -stage centipede game

The main advantage of model (40)–(41) or equivalently (22)–(24) is that a classical
normal-form game and its quantum counterpart have similar complexity. In particular,
given any 2-person finite extensive game with k strategies for each player, the normal-
form game implied by scheme (40)–(41) is just a bimatrix 2k × 2k game. As a result,
there is no significant difference in the problem of determining Nash equilibria in both
games.

Example 3 (N-stage centipede game) Let us consider a centipede game where this
time the number of stages is any even integer n for n ≥ 2. The extensive form for
this game is given in Fig. 2. Similar to the four-stage centipede game, the n-stage
case has also the unique equilibrium outcome (2, 0). Rational players choose action
S at their own information sets even though the game enables the players to obtain
the payoffs approximate to the number of stages. We have learned from the preceding
example that there is a unique, symmetric, and pareto-optimal Nash equilibrium if
(42) is extended to (46). It turns out that the result is valid in the general case. That is,
there is a Nash equilibrium that implies the payoff n + 1/2 for both players (pair of
payoffs (n+1/2, n+1/2) is indeed a pareto-optimal outcome since it is the midpoint
of the segment whose endpoints are (n − 1, n + 1) and (n + 2, n)). In order to prove
the existence of that equilibrium, let us generalize (43) and (44) to an arbitrary n-stage
centipede game. Since there are two players and n information sets in the game, the
positive operator H and the players’ strategies are given by (40) and (41) for k = 2.
We assume that players 1 and 2 perform their local operators on qubits with odd and
even indices, respectively. Thus, the map ξ : {3, 4, . . . , n + 2} → {1, 2} is given by
formula

ξ(x) =
{
1 if x is odd

2 if x is even.
(48)

The appropriately generalized payoff operators take the form

(M1, M2) = 1 ⊗ 1 ⊗
(

(2, 0)
∑

x2...xn∈{0,1}
|0x2 . . . xn〉〈0x2 . . . xn|

+ (1, 3)
∑

x3...xn∈{0,1}
|10x3 . . . xn〉〈10x3 . . . xn|

+ (4, 2)
∑

x4...xn∈{0,1}
|110x4 . . . xn〉〈110x4 . . . xn| + . . .

+ (n, n − 2)
∑

xn∈{0,1}
|11 . . . 10xn〉〈11 . . . 10xn|
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+ (n − 1, n + 1)|11 . . . 10〉〈11 . . . 10|
+ (n + 2, n)|11 . . . 11〉〈11 . . . 11|

)
. (49)

Let us consider the state |Ψ 〉 ∈ (C2)⊗n ,

|Ψ 〉 = |1010 . . . 1010〉 + |1010 . . . 1011〉√
2

(50)

and a strategy profile U∗ ⊗ V ∗ such that

U∗ = P(1)
1 ⊗

⊗
y∈ξ−1(1)

U (y)
0 and V ∗ =

⎛
⎝P(2)

1 ⊗
⊗

y∈ξ−1(2),y 	=n+2

U (y)
1

⎞
⎠⊗U (n+2)

0 . (51)

First note that strategy profile U∗ ⊗ V ∗,

U∗⊗V ∗ = |11〉〈11|⊗1(3)⊗σ (4)
x ⊗1(5)⊗σ (6)

x ⊗· · ·⊗1(n−1)⊗σ (n)
x ⊗1(n+1)⊗1(n+2)

(52)
implies the payoffs

tr
[(
U∗ ⊗ V ∗) H (U∗ ⊗ V ∗)Mi

] = n + 1

2
for i = 1, 2. (53)

Let U = P(1)
j1

⊗⊗y∈ξ−1(1) U
(y)
jy

be an arbitrary player 1’s strategy. If j1 = 0, then

(
U ⊗ V ∗) H (U ⊗ V ∗)
= |01〉〈01| ⊗

(
U (3)

j3
⊗ · · · ⊗U (n+1)

jn+1

)
|01 . . . 0100〉〈01 . . . 0100|

×
(
U (3)

j3
⊗ · · · ⊗U (n+1)

jn+1

)
.

Since player 1 cannot affect the system of (n + 2)th qubit, we have

max⊗
y∈ξ−1(1) U

(y)
jy

tr
[(
U ⊗ V ∗) H (U ⊗ V ∗)M1

] = n < n + 1

2
. (54)

In the case of j1 = 1,

(
U ⊗ V ∗) H (U ⊗ V ∗)
= |11〉〈11| ⊗

(
U (3)

j3
⊗ · · · ⊗U (n+1)

jn+1

)
|ϕ〉〈ϕ|

(
U (3)

j3
⊗ · · · ⊗U (n+1)

jn+1

)
, (55)

where |ϕ〉 = (1/
√
2)(|11 . . . 10〉 + |11 . . . 1〉). From (53), we know that player 1 gets

n + 1/2 if U = U∗. Thus, the form of (49) implies that U 	= U∗ would increase the
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player 1’s payoff only if U made the magnitude of the amplitude of |11 . . . 1〉 higher
than 1/

√
2. However, it is not possible because of the form ofU . As a result, we have

proved that U∗ is a player 1’s best response to V ∗ over all her pure strategies. Using
a similar argument to one concerning the equivalence of (10) and (12), we conclude
thatU∗ is a player 1’s best response to V ∗ over all her (pure and mixed) strategies. In
similar way, we can show that player 2’s strategy V ∗ is a best response to U∗.

4 Conclusions

The aim of our research was to formalize our idea about the MW-type schemes.
As a result, we have showed that the players’ strategies do not have to be unitary
operators or even superoperators in the quantum game. Apart from unitary operators,
they may include projectors that determine the state on which the unitary operations
are performed. Thus, the initial state does not have to be a density operator. Certainly,
the scheme is in accordance with the laws of quantum mechanics. The resulting state
is given by a density operator, and therefore, the payoff measurement is well defined.
A positive point of the scheme is the way it can be considered. Given a bimatrix game,
the scheme outputs a bimatrix game. Consequently, it implies similar complexity in
finding optimal strategies for the players. In addition, our model enables us to consider
extensive games via the normal representation. Moreover, the example of the general
centipede game has proved that the analysis does not have to be limited to simple
games. We suppose that this argument may attract the attention of researchers to the
refinement of the MW scheme.
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