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Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical
role in water supply and flood control, environmental processes, as well as biodiversity and life history
patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological
model was usually inadequate to well capture all the characteristics of observed flow regimes. In this
study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological
model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in
the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization
objectives, which could represent the major characteristics of flow regimes. Model performance was
compared with that of the single objective calibration. Results showed that most metrics were better sim-
ulated by the multi-objective approach than those of the single objective calibration, especially the low
and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating.
However, the model performance of middle flow magnitude was not significantly improved because this
metric was usually well captured by single objective calibration. The timing of minimum flow was poorly
predicted by both the multi-metric and single calibrations due to the uncertainties in model structure
and input data. The sensitive parameter values of the hydrological model changed remarkably and the
simulated hydrological processes by the multi-metric calibration became more reliable, because more
flow characteristics were considered. The study is expected to provide more detailed flow information
by hydrological simulation for the integrated water resources management, and to improve the simula-
tion performances of overall flow regimes.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Flow simulation has always been one of the hot topics in
applied hydrology for water resources management for over a
century. It plays a vital role in the design and operation of water
resource projects, water supply schemes, water resources
planning, flood mitigations and drought control, etc. (Ghumman
et al., 2011). Numerous water resource indicators (WRIs) were
proposed to depict flow components, such as average monthly,
seasonal and annual flows, magnitude and timing of peak or low
flows (Shrestha et al., 2013). Moreover, the prediction of extreme
events (floods and droughts) was taken more and more seriously
because of their disastrous damages to society, economy and
environment, especially in the arid and semi-arid regions
(Smakhtin, 2001; Coulibaly et al., 2001; Held et al., 2005; Kumar
et al., 2010). However, the simulation performances of WRIs were
still far from satisfactory, particularly for the low flow events
(Wenger et al., 2010; Staudinger et al., 2011; Pushpalatha et al.,
2012; Shrestha et al., 2013). The critical reasons were that the most
widely used goodness-of-fitness measures (e.g. mean squared
errors, correlation coefficient, coefficient of efficiency) are sensitive
to peak and low flows (Krause et al., 2005; Gupta et al., 2009;
Pushpalatha et al., 2012) and that certain uncertainties exist in
model inputs and structures (Beven, 2006; Staudinger et al.,
2011; Najafi et al., 2011).
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Along with the rapid development of water related sciences
(e.g. environmental hydrology, eco-hydrology), several flow
components have been detected to have close relationships with
physical, chemical, environmental and biological processes of
aquatic systems (Carlisle et al., 2010). For example, natural flow
paradigm has implications for several key processes and life his-
tory of aquatic organisms including growth, breeding, spawning,
migration, recruitment and mortality (Poff et al., 1997; Poff and
Zimmerman, 2010b; Bunn and Arthington, 2002; Arthington
et al., 2010). Similarly, the simulation performance of low flow
events significantly affects the prediction errors of water quality
concentrations (van Griensven et al., 2006). Thus, the term ‘‘flow
regime” was put forward (Langbein and Iseri, 1960), and the
ecologically relevant metrics (ERMs) system was gradually formed
to describe overall flow paradigm using magnitude, frequency,
variability, timing, duration and rating of flow events (Richter
et al., 1996; Olden and Poff, 2003; Poff et al., 1997, 2010a; Knight
et al., 2008, 2012; Kennard et al., 2010). It is necessary and urgent
to enrich WRIs to predict the entire flow regimes, which will pro-
vide hydrological foundations for the integrated water resources
management, particularly for flood control, river environment
improvement and restoration, and water project regulations.

Several existing studies on flow regime simulation have been
reported using statistical models or hydrological models. For the
statistical model approach, Rajurkar et al. (2002) applied the
ANN methodology to model daily flows during monsoon flood
events for a large catchment of the Narmada River in Madhya
Pradesh, India. Knight et al. (2012) identified several predictive
equations for 19 ecologically relevant streamflow characteristics
with independent variables (climate, landscape features, regional
indicators and land use) using step-backward regression. However,
all of the existing statistical models are specific to the study area,
and lack robust physical mechanisms to account for hydrological
changes induced by human interferences and climate change
(Wenger et al., 2010; Knight et al., 2012). Hydrological model is a
robust and widely-accepted alternative which can represent criti-
cal hydrological processes using physical mechanism equations
at different spatial and temporal scales (Wenger et al., 2010;
Shrestha et al., 2013). Kennen et al. (2008) integrated TOPMODEL
and multiple linear regression models to predict 78 flow variables
at 856 sites in New Jersey, U.S., but the results were limited to the
input of average daily discharges and withdrawals. Wenger et al.
(2010) and Shrestha et al. (2013) applied VIC model to simulate
seven ERMs in the Pacific Northwest United States, six WRIs and
32 ERMs in two headwater sub-basins in the Fraser River, Canada,
respectively. Zhang et al. (2012) derived 80 hydrological metrics
from monthly regulated and unregulated flow series simulated
by SWAT in the upper and middle stream of the Huai River Basin.
However, all the metric values in the existing studies were calcu-
lated from the well calibrated hydrographs using a single evalua-
tion criterion (e.g. mean squared errors, coefficient of efficiency).
Not all of the flow regime metrics were well captured, such as
low flow magnitude, duration and rating of flow pulses (Shrestha
et al., 2013), and frequency of high and low flows (Wenger et al.,
2010).

Multi-Objective Optimization (MOO) is an efficient solution to
improve the accuracy of overall flow regime simulation by calibrat-
ing different flow metrics simultaneously. Note that the flow
regimes relate to many hydrological processes, such as flow yield
process which directly affects the whole flow regime characteris-
tics; flow routing and storage processes which probably involve
the variability, timing and duration of flow events. In term of
model calibration, considering the flow regime characteristics
rather than the single flow magnitude could relieve the problems
caused by parameter uncertainties and equifinality, because the
detailed information of an observed hydrograph is efficiently used.
As a result, more reliable hydrological processes would be captured
and the model performance would be improved by MOO. However,
for current hydrological model calibration, MMO usually focused
on the calibrations of different evaluation criteria (Duan et al.,
1992), peak and low flow magnitude (Madsen, 2000) or different
observed series from different gauges (Bekele and Nicklow,
2007). The major common algorithms were weighted sum
approaches (Madsen, 2000; van Griensven and Bauwens, 2003;
Kim and De Weck, 2006) and Pareto multi objective optimization
algorithms (Das and Dennis, 1998; Deb et al., 2002; Khu and
Madsen, 2005). Moreover, the existing studies about Pareto
multi-objective optimization algorithms were confined to two or
three conflicting objectives, because the current algorithms were
difficult to overcome the curse of dimensionality, and were
impossible to obtain the reasonable Pareto fronts in practice along
with the increasing of objective number (Madsen, 2000; van
Griensven and Bauwens, 2003). Therefore, the weighted sum
approach would be an effective alternative to implement the cur-
rent multi-metric calibration.

The objective of this study was to implement the hydrological
model coupling with the equally weighted MOO approach to well
capture the overall flow regime characteristics. Two headwater
watersheds in the arid Hexi Corridor were selected for the case
study. The reasonable agreements between observations and sim-
ulations of flow regime metrics were obtained simultaneously by
considering the multi-objective functions (including flow magni-
tude, frequency and variation, duration, timing and rating of
change). Moreover, model performances were validated by making
a comparison with the single evaluation criterion. The study would
provide more flow information by hydrological simulation for the
integrated water resources management, and promote the further
application of ERMs to capture more reliable hydrological pro-
cesses of mathematics models.
2. Material and methods

2.1. Study area

Hexi Corridor, as the most representative arid and semi-arid
region of the Northwest China, is selected as the study area
(Fig. 1). Hexi Corridor is located in the northwest of the Yellow
River Basin, and includes a long and narrow passage stretching
for over 1000 km from east (the steep Wushaoling hillside) to west
(the Yumen Pass), and 100–200 km from south (the Qilian Moun-
tain) to north (the North Mountain). The corridor is the most
important route from the North China to the Central Asia for tra-
ders and militaries, a critical part of the historic Silk Road, and a
famous granary in the Northwest China. The region has a
continental arid climate with drought weather, dramatic tempera-
ture variability and highly frequent sandstorm. The differences in
precipitation and dryness are quite remarkable from east to west.

There are three river basins (i.e., Shiyang River Basin, Hei River
Basin and Shule River Basin) in Hexi Corridor bounded by the Hei,
Kuantai and Dahuang Mountains, respectively. All of these rivers
originate from snowmelt and precipitation of the Qilian Moun-
tains, and provide continuous flows for downstream oases and
farmlands. However, most rivers disappear in the Gobi desert after
flowing out of mountains due to infiltration and irrigation con-
sumption, except in the mainstreams which reach to rump lakes,
i.e., Qingtu Lake for Shiyang River, Juyanhai Lake for Hei River
and Luobupo Lake for Shule River which is out of Hexi Corridor.

The current studies of hydrological simulation in the arid Hexi
Corridor always focused on small catchments in the upper and
middle regions because of data sparsity and complicated
hydrological mechanism in the downstream region (Wang et al.,



Fig. 1. The location of study area and two representative watersheds.

Table 1
The flow regime metrics selected to describe overall flow paradigm.

No Groups Flow regimes Hydrologic metrics Abbreviation Units Time scale

1 Magnitude Middle flow Middle flow (25th–75th percentile) MMDF m3/s Daily
2 Low flow Mean annual minimum flow MinF log-m3/s Annual
3 Low flow discharge (75th percentile) Low75 log-m3/s Daily
4 High flow Mean annual maximum flow MaxF m3/s Annual
5 High flow discharge(25th percentile) Hig25 m3/s Daily
6 Frequency and variation Average flow CV of daily flow CVDF – Annual
7 Low flow Low flow spell count (<75th percentile) LowC75 – Annual
8 High flow High flow spell count (>25th percentile) HigC25 – Annual
9 Duration Low flow Low flow spell duration (<75th percentile) LowS75 Days Annual

10 Low flow Number of zero-flow days ZeroN Days Annual
11 High flow High flow spell duration (>25th percentile) HigS25 Days Annual
12 Timing Low flow Julian day of annual minimum JMinF – Annual
13 High flow Julian day of annual maximum JMaxF – Annual
14 Rating Low flow Number of positive changes in flow from one day to the next RLF – Annual
15 High flow Number of negative changes in flow from one day to the next RHF – Annual
16 Reversals Number of negative and positive changes in flow from one day to the next NFLH Annual
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2008, 2012; Yang et al., 2015). Therefore, in this study, two head-
water watersheds in the Shiyang River Basin were also selected
as the case study areas. One was Xiamentai watershed in the
Huangyang River. The total drainage area was 273 km2 with the
dominant land covers of forest (47.3%) and unused land (33.2%).
The other was Jiutiaoling watershed in the Xiying River. Its
drainage area was 1120 km2 with the dominant land covers of
grassland (40.5%) and unused land (39.4%).

2.2. Distributed water system model (HEQM)

HEQM is a semi-distributed and well-integrated model that
couples multi-scale water related processes including hydrology,
biogeochemistry, environment and ecology, as well as human
interferences at basin scale. The model provides a scientific tool
to solve severe water crises faced globally (Zhang et al., 2016).
Specifically, H indicates Hydrological submodel (i.e., hydrological
cycle module), E is used to indicate Ecological submodel (i.e., soil
biochemical module and crop growth module) and Q indicates
water Quality submodel (i.e., soil erosion module, overland and
instream water quality modules). Additionally, dam regulation
module and parameter analysis tool were developed for human
interferences evaluation and model calibration, respectively.

The Time Variant Gain Model (TVGM) was applied in HEQM to
calculate surface water yield (Xia, 1991). TVGM performance was
satisfactory especially in the arid and semi-arid regions (Xia
et al., 2005; Wang et al., 2009; Li et al., 2010). Potential evapotran-
spiration was calculated using Hargreaves method (Hargreaves



Table 2
The sensitive parameters of HEQM detected by LH-OAT.

Type Name Min Max Definition Relative importance (%)

Distributed parameters WM 0.45 0.75 Saturation moisture capacity of soil 24.12
WMc 0.20 0.45 Field capacity of soil layer 22.02
KETp 0.01 3.00 Adjustment factor of evapotranspiration 18.49
g2 0.01 3.00 Influence coefficient of soil moisture 17.17
g1 0.01 3.00 Basic surface flow coefficient 10.88
kr 0.00 1.00 Interflow yield coefficient 1.58
Tg 0 365 Delay time for aquifer recharge 0.84
fc 0 1000 Steady state infiltration rate 0.75
kfmx 1.00 2.00 Ratio of maximum saturated soil infiltration

Rate to steady infiltration rate
0.73

krg 0.00 1.00 Base flow yield coefficient 0.45

Lumped parameters SMFMX 0.00 100.00 Melt factor for snow on June 21 0.20
n 0.02 0.15 Coefficient of roughness in the riverbed 0.69
SMTB 0.46 2.00 Snow melt base temperature 0.47
SMFLF 0.00 1.00 Snow pack temperature lag factor 0.34

Total relative importance 98.73

Fig. 2. Convergence of objective function value by multi-metric calibration at the Xiamentai (a) and Jiutiaoling (b) stations.
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and Samani, 1982) and river flow routing used the Muskingum
method.

Two and nine sub-basins were divided in Xiamentai and Jiu-
tiaoling watersheds based on DEM and digital river systems,
respectively. The area of sub-basins ranged from 37 km2 to
198 km2. The daily series of precipitation, minimum and maximum
temperatures from 1990 to 2005 at nearby stations were interpo-
lated to each sub-basin using the inverse distance weighting
method. The parameter sensitivity analysis was performed in
advance by Latin Hypercube One factor At a Time technique (LH-
OAT) (van Griensven et al., 2006) in order to improve the efficiency
of auto-calibration. The observed daily streamflow series at Xia-
mentai and Jiutiaoling stations were used for flow regime calibra-
tion. The calibration and validation periods were from 1990 to
1999, and from 2000 to 2005, respectively. The daily streamflows
were simulated by the well-calibrated HEQM.

2.3. Flow regime metrics and evaluation criteria

The flow metrics were usually extracted from the daily or
monthly streamflows (Poff, 1996; Kennard et al., 2010; Zhang
et al., 2012, 2015a,b). In this study, the overall flow regime was
divided into high, middle and low flow events based on the daily
flow duration curve and was characterized by 16 flow metrics
including magnitude (5), frequency and variation (3), duration
(3), timing (2) and rating (3) of flow events (Richter et al., 1996;
Olden and Poff, 2003; Poff et al., 1997, 2010a; Knight et al., 2008,
2012; Kennard et al., 2010) (Table 1). All the 16 observed and
simulated metric values were extracted from the observed and
simulated daily streamflow series in the entire period
(1990–2005), respectively.
The root mean square error (RMSE) was selected as the primary
criterion to evaluate model performance and the equation was
given as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðOi � SiÞ2=N
vuut ð1Þ

where Oi and Si are the ith observed and simulated values, respec-
tively; N is the length of series. The RMSE value ranges from zero
to positive infinity. A smaller RMSE indicates a better simulation
performance, and the optimal RMSE value is zero. Moreover, in
order to overcome the insensitivity of low flow events, the RMSE
values of low flow metrics (MinF and Low75) were calculated after
a logarithmic transformation of Oi and Si (Staudinger et al., 2011;
Pushpalatha et al., 2012). Finally, RMSE values of 16 metrics were
calculated for multi-objective calibration, while RMSE values of
the flow magnitude was calculated for single objective calibration.

The bias (bias) was also used to measure the average deviation
between the observed and simulated series after calibration.

bias ¼
PðOi � SiÞP

Oi
ð2Þ

A positive value of bias indicates an underestimation, while a nega-
tive value represents an overestimation. The optimal value of bias is
also zero.

2.4. Optimization algorithm

The multi-objectives of selected flow regime metrics were
aggregated to a single objective by weighted average approach.
The equation was given as



Fig. 3. Convergence of objective function values of individual metrics by multi-metric calibration at Xiamentai Station.

Fig. 4. Convergence of objective function values of individual metrics by multi-metric calibration at Jiutiaoling Station.
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f multi�ob ¼ minðRMSE1;RMSE2; � � � ;RMSEMÞ

¼ min
XM
i¼1

ðxi � RMSEi=RMSEi;minÞ
ð3Þ

where fmulti-ob is the multi-objective function; M is the number of
objectives (i.e.,16 in this study); RMSEi and RMSEi,min are the root
mean square error of metric i and its minimum value, respectively;
xi is the weight of metric i. In this study, the weights of all the
metrics are equal with the values of 1/16.
In practice, a normalization should be performed because dif-
ferent RMSE values have different units in the flow metrics. In this
study, we preferred to divide the RMSE by the minimum value of
each objective function following van Griensven and Meixner
(2007). However, the minimum value of each objective function
was initially unknown. Hypothetical minimum values were deter-
mined by the previous shuffling step in an optimization algorithm,
and kept updating along with the iterations. The objective function
tended to the optimal value quickly along the hypothetical values



Table 3
The evaluation results of multi-metric calibration.

Metrics Stations

Xiamentai Jiutiaoling

Calibration RMSE fmulti-ob Validation RMSE Calibration RMSE fmulti-ob Validation RMSE

Minimum Optimum Minimum Optimum

Magnitude (m3/s) MMDF 0.82 1.76 2.15 1.53 3.42 7.60 2.22 9.21
MinF 0.08 0.21 2.63 0.22 1.42 1.84 1.30 2.44
Low75 0.13 0.29 2.23 0.32 0.31 0.48 1.55 0.41
MaxF 2.88 5.44 1.89 3.15 14.13 19.45 1.38 19.34
Hig25 1.08 4.04 3.74 3.52 12.74 16.37 1.28 17.27

Frequency and variation CVDF 0.11 0.14 1.27 0.24 0.12 0.12 1.00 0.22
LowC75 1.61 2.60 1.61 5.52 1.87 2.81 1.50 2.61
HigC25 2.10 3.54 1.69 3.22 3.06 4.27 1.40 5.32

Duration (days) LowS75 10.58 16.26 1.54 19.46 10.24 19.17 1.87 9.83
ZeroN 0.00 0.00 1.00 0.00 0.47 0.71 1.51 0.58
HigS25 1.57 2.63 1.68 3.43 2.78 3.20 1.15 5.65

Timing JMinF 35.4 121.24 3.42 92.26 24.86 44.31 1.78 59.57
JMaxF 32.26 47.28 1.47 56.77 22.72 31.59 1.39 51.85

Rating RLF 14.71 25.06 1.70 31.08 12.26 20.67 1.69 11.72
RHF 45.18 106.63 2.36 135.12 14.36 44.78 3.12 27.46
NFLH 9.30 12.18 1.31 15.30 10.75 21.39 1.99 11.88

Fig. 5. The observed and simulated annual metrics by multi-metric calibration at Xiamentai Station. The dashed vertical line of each figure separates the calibration period
from 1990 to 2000 (before) and validation period (behind) from 2001 to 2005.
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converged to the final minima. This normalization approach
enhanced the efficiency and effectiveness of the optimization
algorithm (van Griensven and Meixner, 2007).

Numerous optimization algorithms were available (Arsenault
et al., 2013), such as genetic algorithm (GA) (Holland, 1975),
shuffled complex evolution (SCE-UA) (Duan et al., 1992), adaptive
simulated annealing (ASA) (Ingber, 1993), particle swarm
optimization (PSO) (Kennedy and Eberhart, 1995), covariance
matrix adaptation evolution strategy (CMAES) (Hansen and
Ostermeier, 1996) and dynamically dimensioned search (DDS)
(Tolson and Shoemaker, 2007). A comparison of different
optimization algorithms was given in Arsenault et al. (2013).
SCE-UA is the most often-used algorithm due mostly to open
source and the fact that SCE-UA was the first algorithm aimed
expressly at calibrating hydrological models (Duan et al., 1992;
Sorooshian et al., 1993; Madsen, 2000; Eckhardt and Arnold,
2001; Ajami et al., 2004; Khakbaz et al., 2012). Several
multi-objective algorithms have also been developed based on
SCE-UA, such as MOCOM-UA (Yapo et al., 1998), MOSCEM-UA
(Vrugt et al., 2003) and weighted SCE-UA (van Griensven and
Meixner, 2007). In our study, the multi-metric calibration was
carried out according to the framework of the improved SCE-UA
(van Griensven and Bauwens, 2003; van Griensven and Meixner,
2007).



Fig. 6. The observed and simulated annual metrics by multi-metric calibration at Jiutiaoling Station. The dashed vertical line of each figure separates the calibration period
from 1990 to 2000 (before) and validation period (behind) from 2001 to 2005.

Table 4
The evaluation results of single objective calibration.

Stations Calibration period (1990–1999) Validation period (2000–2005)

RMSE (m3/s) bias RMSE (m3/s) bias

Xiamentai 1.73 0.01 1.15 �0.07
Jiutiaoling 6.60 �0.04 6.52 0.03
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3. Results

3.1. Parameter sensitivity analysis

Fourteen sensitive parameters were detected and shown in
Table 2. All of these parameters represented 98.73% of flow regime
variation, and were categorized into 10 distributed parameters
(97.03% of variation) for sub-basins and four lumped parameters
(1.70% of variation) for the whole basin.

In the distributed parameters, the soil related parameters (WM,
WMc, kr, fc, kfmx) were the most important parameter set explaining
49.20% of flow regime variation, followed by surface flow
parameters (g1 and g2: 28.05% of variation). The adjustment factor
of evapotranspiration (KETp: 18.49% of variation) and baseflow
parameters (krg and Tg: 1.29% of variation) were at the third and
last ranks, respectively. In the lumped parameters, the first rank
was snowmelt related parameters (1.01% of variation) including
SMFMX, SMTB and SMFLF, and the second rank was runoff routing
parameter (n: 0.69% of variation).

The explanations were that the soil water processes and
evapotranspiration determined the main hydrological processes
including surface flow, interflow and baseflow (Zhai et al., 2014).
The surface flow usually occupied a large proportion of the total
runoff, even in the arid and semi-arid regions (Yang et al., 2015).
Moreover, the snowmelt and freezing were the dominant
hydrological processes in the winter and early spring in our study
area, which played important roles to recharge surface water in the
channels and groundwater (Chen et al., 2003).
3.2. Multi-metric calibration

The values of fmulti-ob were convergent after nearly 2500 itera-
tions at both Xiamentai and Jiutiaoling stations (Fig. 2). For the
individual metrics, both actual and minimum RMSE values of all
the 16 metrics were also convergent after iterations at Xiamentai
and Jiutiaoling stations (Figs. 3 and 4). However, the actual RMSE
values of all the flow metrics were still difficult to converge to
the minimum values (Table 3). The convergence patterns were also
slightly different between these two stations. The RMSE values of
MMDF, Hig25, RLF and RHF increased gradually from the minimum
values to certain values after iterations, while the others converged
to their minimum values. Therefore, the equally weighted method
also captured the performance tradeoffs among different metrics.
The slight degradation of model performances of MMDF, Hig25,
RLF and RHF improved the model performances of other metrics.
The convergence speeds of most metrics did not have great
differences, except LowC75 and JMaxF at Jiutiaoling Station, and
NFLH at Xiamentai Station. The probable reason was that the
applied hydrological model was still disadvantageous to simulate
the frequency of low flow events, the timing of maximum flow
and the changes of flow events.

At Xiamentai Station, the simulated MaxF (magnitude), CVDF
(frequency and variation), ZeroN (duration) and NFLF (rating)
showed better agreements with the observations (Fig. 5). The sim-
ulated MinF (magnitude), JMinF (timing) and RHF (rating) poorly
matched with the observations, as well as the daily series of
MMDF, Low75 and Hig25. At Jiutiaoling Station, the simulated



Fig. 7. The observed and simulated hydrographs by single objective calibration at the Xiamentai (a) and Jiutiaoling (b) stations.

Table 5
The comparisons between the single objective and multi-metric calibration.

Metrics Stations

Xiamentai Jiutiaoling

Single-objective Multi-metric Change (%) Single-objective Multi-metric Change (%)

bias (%) RMSE bias (%) RMSE bias RMSE bias (%) RMSE bias (%) RMSE bias RMSE

Magnitude (m3/s) MMDF �13.7 1.02 �23.8 1.70 10.10 66.67 �28.0 4.39 �42.3 8.13 14.30 85.19
MinF 97.8 0.45 43.9 0.17 �53.90 �62.22 120.5 2.23 113.3 2.15 �7.20 �3.59
Low75 114.3 0.34 98.4 0.26 �15.90 �23.53 �305.0 0.45 �318.6 0.47 13.60 4.44
MaxF 36.7 6.94 �2.8 5.03 �33.90 �27.52 50.5 40.12 19.9 24.13 �30.60 �39.86
Hig25 15.8 2.66 1.8 4.04 �14.00 51.88 23.1 12.42 8.0 17.59 �15.10 41.63

Frequency and variation CVDF 18.2 0.20 �9.5 0.18 �8.70 �10.00 23.1 0.28 �0.6 0.17 �22.50 �39.29
LowC75 �25.4 2.75 �71.2 4.03 45.80 46.55 17.5 2.96 �11.2 2.72 �6.30 �8.11
HigC25 47.9 6.43 21.2 3.42 �26.70 �46.81 49.3 7.42 19.1 4.45 �30.20 �40.03

Duration (days) LowS75 21.8 21.34 45.9 17.61 24.10 �17.48 16.5 15.75 33.9 15.80 17.40 0.32
ZeroN 0.0 0.00 0.0 0.00 0.00 0.00 100.0 0.67 100.0 0.67 0.00 0.00
HigS25 �132.7 16.07 �23.0 2.98 �109.70 �81.46 �107.2 12.61 �16.1 4.06 �91.10 �67.80

Timing JMinF �60.7 106.61 �68.0 110.56 7.30 3.71 �1.3 83.18 0.2 50.73 �1.10 �39.01
JMaxF �6.1 45.19 �9.1 51.29 3.00 13.50 42.2 33.49 �40.0 38.59 �2.20 15.23

Rating RLF 25.9 34.99 �13.0 27.62 �12.90 �21.06 39.2 57.54 0.9 16.99 �38.30 �70.47
RHF �102.2 152.96 �77.5 118.85 �24.70 �22.30 �48.5 92.83 �19.6 39.97 �28.90 �56.94
NFLH �12.8 35.89 �3.4 13.52 �9.40 �62.33 �17.0 41.75 �3.8 21.85 �13.20 �47.66

Note: the bias change was the absolute change of bias values between multi-metric and single-objective calibrations; the RMSE change was the relative changes between
multi-metric and single-objective calibrations, i.e., the difference of RMSE values and divided by the RMSE of single-objective calibration.
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Fig. 8. Simulation versus observation of low, middle and high daily flow regimes in the calibration (left) and validation (right) period at the Xiamentai (upper) and Jiutiaoling
(lower) stations. The results of different calibration methods are indicated by symbol colors: red dots for the simulation using single objective calibration, grey dots for the
simulation using multi-metric calibration. The 1:1 line is shown as a solid line. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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MaxF (magnitude), CVDF (frequency and variation), HigS25
(duration), JMaxF (timing) at annual scale, and the simulated
Hig25 (magnitude) at daily scale well matched with the observa-
tions (Fig. 6). The poorly simulated metrics were MMDF and MinF
in the magnitude group and RHF in the rating group.
3.3. Single objective calibration

At Xiamentai Station, the optimal value of RMSE was 1.73 m3/s,
and flow magnitude was slightly underestimated (bias = 0.01) in
the calibration period, while RMSE was 1.15 m3/s and flow
magnitude was overestimated (bias = �0.07) in the validation
period. At Jiutiaoling Station, the optimal values of RMSE were
6.60 m3/s and 6.52 m3/s in the calibration and validation periods,
respectively. The flow magnitude was slightly negative biased
(bias = �0.04) in the calibration period, and slightly positive biased
(bias = 0.03) in the validation period (Table 4). However, both the
low and high flow events obviously disagreed with the observa-
tions (Fig. 7). The low flow events were overestimated while the
high flow events were underestimated, particularly for peak flow
(see Table 5).
3.4. Improvement of flow regime simulation by multi-metric
calibration

Compared with the traditional single objective calibration, the
simulation performances for both the low and high flow events
were improved by the multi-metric calibration, particularly for
the peak flows, but the simulation performance for the middle flow
was slightly worsened. The aggregated scatter plot between
simulated and observed series tended to the 1:1 line for both the
low and high flow events (Fig. 8). However, the deviation of the
middle flow (MMDF) was more obvious by the multi-metric
calibration than that of the single objective calibration.

Furthermore, in comparison with the single objective
calibration, at Xiamentai Station, the RMSE values in 11 out of 16
(68.8%) metrics were decreased by the multi-metric calibration
with the relative reductions from 0.00 (ZeroN) to 81.46% (HigS25);



Fig. 9. Observations, simulated metrics by single objective and multi-metric calibration for Xiamentai Station. Each box plot illustrates the 25th, 50th and 75th percentile
values, and the vertical bars (whiskers) define the 10th and 90th percentile value.
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the bias values in 11 out of 16 (68.8%) metrics were also improved
with the absolute reductions from 0.00 (ZeroN) to 109.70%
(HigS25). At Jiutiaoling Station, the RMSE values in 10 out of 16
(62.5%) metrics decreased with the relative reductions from 0.00
(ZeroN) to 70.47% (RLF); the bias values in 13 out of 16 (81.3%)
metrics were improved with the absolute reductions from 0.00
(ZeroN) to 91.10% (HigS25). In summary, the simulation
performances for most metrics were improved by the
multi-metric calibration and the most improved metrics for both
RMSE and bias were the low and high flow magnitude, frequency
and variation, duration and rating. However, the simulation perfor-
mances of the other metrics (only 18.7–37.5% of all the metrics)
were worsened at the Xiamentai and Jiutiaoling stations. The main
metrics were MMDF and Hig25 at daily scale, both of which were
usually well captured by the traditional single objective
calibration. The prediction performances of these metrics were
slightly degraded by the multi-metric calibration in order to get
a better simulation of the overall flow regimes.

Figs. 9 and 10 showed the statistical distributions of all the
metric values calculated from the observations, the simulations
by the single objective and multi-metric calibrations, respectively.
At Xiamentai Station, the values of 12 metrics by the multi-metric
calibration distributed more closely to the observations than those
by the single objective calibration, except Hig25 (magnitude),
LowC75 (frequency and variation), JMinF (timing) and RLF (rating).
The well-predicted metrics by the multi-metric calibration were
MaxF (magnitude), CVDF (frequency and variation), ZeroN and
HigS25 (duration), and NFLH (rating). At Jiutiaoling Station, 14
metric values distributed more closely to the observations, except
LowS75 (duration) and JMinF (timing), and the well predicted met-
rics were MaxF (magnitude), CVDF (frequency and variation),
HigS25 (duration), RLF and NFLH (rating).

3.5. Parameter comparisons

For the selected parameters, the calibrated values by the
multi-metric calibration were also compared with those by the
single objective calibration (Fig. 11). In Xiamentai watershed, eight
parameters values increased (fc, krg, SMTB, n, WM, SMFLF, Tg and
WMc), while the other six parameter values decreased (KETp, kfmx,
SMFMX, g2, g1 and kr). In Jiutiaoling watershed, the increasing
parameters were fc, krg, g1, WM, SMTB, Tg, SMFMX, n and SMFLF, while
the decreasing parameters were KETp, g2, kr, kfmx and WMc. The
most significantly increasing parameter was fc with the relative
change of 88.8% and 79.2% in the Xiamentai and Jiutiaoling
watersheds, respectively. The most obviously decreasing
parameter was kr with the relative change of �39.7% and �42.5%,
respectively.

As showed in Table 6, the soil related parameters
(WM, WMc, fc, kr and kfmx) directly controlled the soil moisture pro-
cesses and interflow. Specifically, WM, kr and fc determined the
redistribution of high and low flow magnitudes. WMc mainly
controlled the frequency and variation, duration, timing and rating
of flow events, and kfmx influenced the overland flow routing



Fig. 10. Observations, simulated metrics by single objective and multi-metric calibration for Jiutiaoling Station. Each box plot illustrates the 25th, 50th and 75th percentile
values, and the vertical bars (whiskers) define the 10th and 90th percentile value.

Fig. 11. The parameter variations comparing the multi-metric calibration with the
single objective calibration for the Xiamentai (a) and Jiutiaoling (b) watersheds.
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process. The surface water parameters (g1 and g2) and the evapo-
transpiration parameter (KETp) directly affected the magnitude
and duration of flow events. The baseflow parameters (krg and Tg)
were closely related with the magnitude, variation, duration and
timing of flow events by controlling baseflow. The snowmelt
related parameters (SMFMX, SMTB and SMFLF) determined the mag-
nitude, frequency and timing of flow events during winter and
spring, although they had no significant impacts on the entire flow
regime. The runoff routing parameter (n) slightly influenced the
flow magnitude.

Therefore, the increase of parameter values (WM, fc, krg, SMTB,
n, SMFLF and Tg) raised the magnitude of low flow events
(MinF and Low75), the frequency of flow events (LowC75 and
HigC25) and the rating of positive changes of flow events
(RLF), but reduced the flow variation (CVDF) and delayed the
timing of high flow events (JMaxF). However, KETp, g2, kr and
kfmx had the opposite effects on these flow metrics. The varia-
tions of both flow metrics and parameters indicated the
improvements of model performance by the multi-metric cali-
bration. Moreover, the middle and high flow magnitudes
(MMDF, MaxF and High25) were negatively correlated with six
parameters (WM, KETp, g2, kr, Tg and fc). The values of parame-
ters (WM, Tg and fc) increased while the values of parameters
(KETp, g2 and kr) decreased for both Xiamentai and Jiutiaoling
watersheds. These flow magnitudes still increased because the
decreased parameters (37.24% of variation) were more sensitive
to the runoff simulation than the increased parameters (25.71%
of variation).



Table 6
The relationship between sensitive parameters and flow regime metrics and their variations in the Xiamentai and Jiutiaoling watersheds.

No. Metrics Parameters

WM WMc KETp g2 g1 kr Tg fc kfmx krg SMFMX n SMTB SMFLF

1 Magnitude MMDF ; ; ; ; " ; ; " " " ; ; " ;
2 MinF " ; ; ; ; " " " " ; ; ;
3 Low75 " ; ; ; " " " " ; ; ;
4 MaxF ; " ; ; ; ; " " "
5 Hig25 ; ; " ; ; ; " " " "
6 Frequency and Variation CVDF ; " " " " ; ; ; " " " "
7 LowC75 "
8 HigC25 "
9 Duration LowS75
10 ZeroN " " " " ; ; ; ; " " "
11 HigS25 ; ;
12 Timing JMinF ; ;
13 JMaxF " ;
14 Rating RLF "
15 RHF "
16 NFLH "
Stations Overall flow regime Xiamentai + + � � � � + + � + � + + +

Jiutiaoling + � � � + � + + � + + + + +

Note: ‘‘"” means that the flow metric value increases with the parameter, while the ‘‘;” means that the flow metric value decreases with the parameter. ‘‘+” means the
parameter value by the multi-metric calibration increases compared with that by the single objective calibration, while ‘‘�” means the corresponding parameter value
decreases.
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4. Discussion and conclusions

4.1. Multi-objective calibration approaches

The multi-objective calibration of hydrological model was more
effective to capture the entire flow regime characteristics than the
existing studies that derived flow metrics from well simulated
hydrographs based on a single criterion. In the theory, the Pareto
algorithm would be the best approach to solve the multi-metric
calibration. However, it is quite difficult to obtain the reasonable
Pareto fronts by the current generations of Pareto optimization
algorithms if the number of objectives was great (van Griensven
and Bauwens, 2003), particularly 16 objectives in this study
(Yapo et al., 1998; Vrugt et al., 2003; Vrugt and Robinson, 2007;
Bekele and Nicklow, 2007).

The equally weighted approach was advantageous and widely
accepted to handle numerous objectives because it was not
confined to the number of objectives and the correlations among
different objectives, although the weight assignment was usually
questioned (Efstratiadis and Koutsoyiannis, 2010). The results
showed that most of the flow regime characteristics were well cap-
tured compared with the single objective calibration, including the
low and high flow magnitudes, frequency and variation, duration,
and rating. For the optimization algorithm, except for the widely-
used SCE-UA, more efficient and more versatile algorithms (e.g.,
ASA, DDS and CMAES), should be adopted to calibrate hydrological
models, particularly for the nonlinear or high parameter dimension
models (Arsenault et al., 2013).
4.2. Simulation performance of flow regime metrics

The flow magnitude metrics were overestimated by the multi-
metric calibration compared with the single objective calibration,
and their corresponding RMSE values also had distinct discrepan-
cies with the minimum optimal values, particularly the daily flow
hydrographs. On the one hand, the model still had disadvantages to
reproduce the low and middle flow magnitudes at daily scale like
most existing models such as VIC (Wenger et al., 2010; Shrestha
et al., 2013), landscape stratification models (Carlisle et al., 2010)
and regional statistical models (Knight et al., 2012). On the other
hand, it was a remarkable tradeoff among the high, middle and
low flow magnitude simulations. Specifically, the traditional single
objective calibration usually focused on the average flow magni-
tude (Wenger et al., 2010; Pushpalatha et al., 2012; Shrestha
et al., 2013). Thus, the slight loss of daily middle flow magnitude
simulation performance improved the accuracy of annual high
and low flow magnitudes.

The estimates of frequency, variation, and duration metrics
showed a ‘‘goodness of fitness” with the observations by the
multi-metric calibration, except LowC75 at Xiamentai Station and
LowS75 at Jiutiaoling Station. For the timing metrics, JMaxF was
well simulated, but JMinF was not. The explanation might be the
poor simulation performance of low flow events, particularly at
the headwater streams with frequent interchanges between sur-
face water and groundwater, and violent transformations among
glaciers, snow and water (Wang et al., 2008; Yang et al., 2015).
For the rating metrics, RLF and NFLH were accurately predicted.
Although the model predictions of RHF tended to be systematically
higher than the observations, the inter-annual variability was cap-
tured. It might be reasonable to use HEQM to predict trends in neg-
ative changes in flow events (RHF). By the multi-metric calibration,
the simulation accuracies of all these rating metrics were signifi-
cantly improved, and the variations in flow events were well
captured.
4.3. Flow regimes and water resources management

It is widely accepted that flow regimes play a critical role in
flood control, domestic and production water supply (Bauwens
and Vandewiele, 1989; Lehner et al., 2006), migration and transfor-
mation processes of nutrients (Poff et al., 1997; Ahmet et al., 2006;
van Griensven and Meixner, 2007), variation of species habitat, as
well as biodiversity and life history patterns in aquatic ecosystems
(Poff et al., 1997; Bunn and Arthington, 2002; Knight et al., 2008;
Arthington et al., 2010). Except for the traditional resource attri-
bute of flow regimes, their environmental and ecological attributes
were gradually paid more attention. The magnitude-oriented
management of water resources was being transferred to the flow
regime management (Poff et al., 1997; Arthington et al., 2010) and
risk management of extreme events (Lehner et al., 2006).

It should also be more urgent to implement flow regime man-
agement in our study area due to the severe water related issues
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(e.g., water shortage, ecological vulnerability, downstream oasis
degradation). The prediction of flow magnitude would be
determinant to investigate the quantity of water resources, while
the predictions of flow variation, frequency, duration, timing and
rating would be helpful to reasonably allocate the intra-annual
distribution of limited water resources and increase water use effi-
ciency. Moreover, the duration and timing of flow events would be
beneficial to improve the ecological conditions along the rivers,
inhibit the invasion of desert, as well as guarantee the agricultural
productions for residents in the downstream oasis.

In summary, hydrological model coupling with multi-metric
calibration algorithm can capture overall flow regime characteris-
tics for the integrated river basin management. The overall flow
regime simulation is expected to provide scientific foundations
and critical linkages for the studies of environmental hydrology,
eco-hydrology and so on. Nonetheless, further investigation of
hydrological mechanism, model structure improvements and
uncertainty analysis should be prioritized to enhance the
simulation performance of the magnitude, timing and rating of
flow events, especially for the low flow events (Smakhtin, 2001;
Staudinger et al., 2011; Pushpalatha et al., 2012).
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