
Magnetite biomineralization and ancient life on Mars 
Richard B Frankel* and Peter R Buseckt 

Certain chemical and mineral features of the Martian meteorite 
ALH84001 were reported in 1996 to be probable evidence of 
ancient life on Mars. In spite of new observations and 
interpretations, the question of ancient life on Mars remains 
unresolved. Putative biogenic, nanometer magnetite has now 
become a leading focus in the debate. 
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Abbreviations 
BCM biologically controlled mineralization 
BIM biologically induced mineralization 
BSO bacterium-shaped object 
PAH polycyclic aromatic hydrocarbon 

Introduction 
A 2 kg carbonaceous stony meteorite, designated 
ALH84001, was discovered in a glacial flow in the Allan 
Hills region of Antarctica in 1984 [1°]. It was identified as 
a Martian meteorite by oxygen isotopic analysis in 1994. 
The bulk rock matrix, which constitutes -98% of the mass 
of ALH84001, crystallized 4.5 billion years ago (4.5 Ga), 
comparable to the age of lunar rocks. It is the oldest of the 
14 known Martian meteorites and the only one from the 
extant ancient crust in the southern highlands of Mars. 
This is the region where evidence for former liquid water 
was obtained by the Mars Pathfinder mission [2]. 
Following multiple shock events that produced fractures 
in the Martian surface [1°], ALH84001 was ejected from 
the surface of Mars by an impact event about 16 million 
years ago and landed in Antarctica about 13,000 years ago. 

In addition to orthopyroxene (a silicate chain mineral com­
mon in igneous rocks and present in some stony meteorites), 
the meteorite contains glassy plagioclase, chromite (Cr, Mg 
and Fe spinel), and iron pyrite, which together constitute 
about 1% of the meteorite mass. It also contains lenticular 
globules of chemically zoned Ca, Mg, and Fe carbonate 
minerals (-1 % of meteorite mass) up to 250 /lm in diameter 
in the rock matrix fractures. These globules formed about 
3.9 Ga [3°] and were subjected to several shock events after 
formation but prior to the ejection event [1°]. 

In 1996, McKay et al. [4] reported four features associated 
with the carbonate globules that together comprised possible 
evidence for ancient life on Mars: firstly, non-equilibrium 
distributions of Fe, Mn, Mg, and Ca within the carbonate 
globules; secondly, polycyclic aromatic hydrocarbons (PAHs) 

with a mass distribution unlike terrestrial PAHs or those from 
other meteorites; thirdly, bacterium-shaped objects (BSOs) 
up to several hundred nanometers long that resemble fos­
silized terrestrial microorganisms; and lastly, 10-100 nm 
magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) 
crystals. These minerals were cited as evidence because of 
their similarity to biogenic magnetic minerals in terrestrial 
magnetotactic bacteria. 

The ancient life on Mars hypothesis has been extensively 
challenged, and alternative non-biological processes have 
been proposed for each of the four features cited by 
McKay et al. [4]. In this paper we review the current situa­
tion regarding their proposed evidence, focusing on the 
putative biogenic magnetite crystals. 

Evidence for and against ancient Martian life 
PAHs and BSOs 
Reports of contamination by terrestrial organic materials 
[5°,6°] and the similarity of ALH84001 PAHs to non-bio­
genic PAHs in carbonaceous chondrites [7,8] make it 
difficult to positively identify PAHs of non-terrestrial, bio­
genic origin. On the other hand, ice from the Allan Hills 
glacier contains no PAHs, other Allan Hills meteorites con­
tain no PAH contaminants, and the PAH distribution in 
ALH84001 is inconsistent with contamination [9°°]. 
However, non-biogenic synthesis of PAHs on Mars is also 
possible [10°]. Similarly, possible sample-preparation arti­
facts [11,12], terrestrial weathering, and similarity to 
mineral features produced in crystal-growth experiments 
and in lunar meteorites [13°,14°] make the BSOs uncon­
vincing biomarkers. We believe that although sufficient 
evidence has not been found to exclude a Martian biogenic 
origin for all the PAHs and BSOs, these features do not pro­
vide compelling evidence for the ancient life hypothesis. 

Carbonate globules 
The age of the carbonates shows that they originated on 
Mars. In the original hypothesis, McKay et al. [4] proposed 
that the carbonate globules precipitated from aqueous solu­
tions that infiltrated fractures in the ALH84001 matrix, 
with subsequent deposition of the carbonate minerals mod­
ulated by microorganisms. There has been considerable 
debate about the origin of these carbonates, however, and 
evidence for both high-temperature and low-temperature 
formation has been presented [15,16°-18°,19-22]. As 
chemical zoning could also result from non biological depo­
sition from aqueous solution, zoning may not be a reliable 
indicator of biological activity. Complications can also arise 
from the possible effects of subsequent impacts, including 
shock melting of the carbonates [1 r,23,24]. On the other 
hand, it has been argued that the chemical zoning and 
oxygen isotope non-equilibrium are evidence against pro­
longed heating of the carbonates [21]. 
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Nanometer magnetite crystals isolated from ALH84001 carbonates 
with whisker (1), quasi-rectangular (2), and irregular projected shapes 
(KL Thomas-Keptra, personal communication). 

Nanometer iron sulfides in carbonate globules 
Pyrrhotite and greigite crystals occur within two distinct 
regions of the carbonate rims [4]. Isotopic analysis of sulfur 
in the pyrrhotite shows no 32S enrichment relative to that 
in the pyrite in the pyroxene matrix [25]. Because light-
isotope enrichment is a hallmark of terrestrial sulfur 
metabolism, it has been argued [25] that the pyrrhotite is 
non-biogenic, possibly derived from pyrite. In any case, 
pyrrhotite has not been confirmed as a biogenic product in 
terrestrial organisms [26•,27•]. Although greigite is a 
known product of some marine magnetotactic bacteria 
[26•,27•], its presence in the ALH84001 carbonates has not 
been confirmed. 

Nanometer magnetite in carbonate globules 
The magnetite crystals are also primarily located in the car­
bonate rims. Transmission electron microscope studies of 
the crystals in situ and removed from the carbonate matrix 
have revealed a number of projected shapes 
[4,28,29,30•,31,32,33••,34••] described as ribbon, whisker, 
quasi-rectangular, and irregular [33••,34••] (Figure 1). The 
irregular crystals have aluminium and titanium impurities 
[33••], some of the ribbons and whiskers have screw dislo­
cations [29,33••], and some of the whiskers are epitaxially 
associated with carbonate [34••]. These features suggest 

nonbiological, possibly high-temperature, origins. 
However, the quasi-rectangular crystals, which constitute 
about 25% of the total number of magnetite crystals, are 
reportedly chemically pure, elongated along a [111] axis 
(see later for an explanation of this nomenclature), and 
have projected hexagonal shapes when viewed along the 
elongation axis [32,33••]. It has been suggested that these 
crystals are virtually identical to magnetite in terrestrial 
magnetotactic bacteria and, moreover, crystals with these 
features are not known to be formed in any nonbiological 
process [33••]. 

Other magnetite sources 
Magnetite from other meteorites 
Although no magnetite occurs in lunar rocks, it does occur 
in many ordinary and carbonaceous chondrites including 
some Martian meteorites in addition to ALH84001. In 
some cases magnetite occurs as individual spherules from 
several micrometers up to 30 µm in diameter, clusters of 
spheroids, barrel-shaped stacks of discs and other mor­
phologies [35]. Whereas aggregates of magnetite, iron 
sulfides, and Fe–Ni metal apparently formed at high-tem­
peratures in the Allende meteorite (a stony meteorite that 
fell in Allende, Mexico), hydrothermal alteration on the 
parent body is thought to be the source of magnetite in 
other meteorites [36,37]. Although magnetite occurs in 
other meteorites, there is no indication that any is bio­
genic. Moreover, in no case have magnetite crystals like 
those in ALH84001 been found; however, no other mete­
orites have been studied as intensively as ALH84001. 

Nanometer magnetite from terrestrial sources 
Nanometer magnetite occurs in lava flows but usually con­
tains substantial amounts of titanium. It has also been 
recovered from soils and sediments [38,39], including deep 
sea sediments. Some of these crystals were identified as 
biogenic on the basis of their shape and size similarity to 
known biogenic magnetite in magnetotactic bacteria. In 
some cases, a biogenic origin was supported by the organi­
zation of the magnetite crystals in chains. However, 
authigenic (nonbiological) nanometer magnetite can also 
be produced in sediments [38]. 

Terrestrial biogenic magnetite 
Two modes of magnetite formation, biologically induced 
mineralization (BIM) and biologically controlled mineraliza­
tion (BCM), are associated with dissimilatory iron-reducing 
bacteria and magnetotactic bacteria, respectively [38]. 
Dissimilatory iron-reducing bacteria export ferrous ions into 
their surroundings and thereby induce the formation of a 
number of extracellular iron minerals, including magnetite. 
Although biogenic, these BIM minerals are morphologically 
indistinguishable from those formed inorganically and are 
therefore not reliable biomarkers. However, fractionation of 
iron isotopes in soluble ferrous iron produced in culture by 
a dissimilatory iron-reducing bacterium has recently been 
reported [40•]. Whether this fractionation is reflected in 
magnetite formed by iron-reducing bacteria remains to be 
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Figure 2 

Electron micrographs of magnetosomes in 
cultured magnetotactic bacteria. 
(a) Equidimensional (cuboctahedral) crystals 
in Magnetospirillum magnetotacticum. Small 
arrows indicate twinned crystals, large arrows 
indicate clusters of small crystals. 
(b) Elongated crystals in strain MV-1. 
(c) Elongated crystals in strain MV-4. Arrows 
indicate twinned crystals. (d) Elongated 
crystals with thickness fringes in strain MC-1. 
Adapted from [43••] with permission. 

seen, but could provide a biomarker for BIM magnetite. In 
contrast to iron-reducing bacteria, no detectable fractiona­
tion of iron isotopes has been found for magnetite in 
magnetotactic bacteria [41•]. 

In contrast to BIM magnetite, BCM magnetite crystals in 
magnetotactic bacteria are contained within intracellular 
membrane vesicles [38,42•]; the vesicle and enclosed crys­
tal is known as a magnetosome. Electron micrographs of 
magnetosomes within a number of magnetotactic bacteria 
are shown in Figure 2. The crystal projections are consis­
tent within a given species and have equidimensional, 
elongated, or bullet or arrowhead shapes. The idealized 
habits (crystal planes that comprise the facets) of equidi­
mensional crystals in Magnetospirillum sp. are 
cuboctahedral. The habits of elongated crystals are combi­
nations of {100}, {111}, and {110} forms with a [111] 
elongation in which the six, eight, and twelve symmetry-
related faces of the respective forms expected for the 
face-centered (Fd3m) spinel structure are not equally 
developed [43••] (Figure 3). In this nomenclature, square 
brackets (e.g. [111]) indicate a particular crystal direction. 
Curly brackets (e.g. {111}) indicate equivalent crystal 
planes related by symmetry. A structure composed of sym­
metry related planes is known as a ‘form’; for example, a 
{111} form (octahedron) or a {100} form (cube). Crystals of 
some cultured magnetotactic bacteria have elongated 
habits with hexagonal projections when viewed along the 
[111] elongation axis and a quasi-rectangular projection 
when viewed perpendicular to that axis. 

The process of magnetite deposition within the magneto-
some membrane is not well understood, although it is 
thought that the membrane controls nucleation and 
growth of the crystals. Fe(III) is taken up by cells via an 
oxygen-dependent transport system, deposited in the 

membrane, and rapidly converted to magnetite [44]. 
Elongated magnetosome habits in some species could 
result from an anisotropic flux of ions through the mem­
brane, or from anisotropic interactions of the membrane 
with the growing crystal. 

Magnetosome magnetite crystals are typically 35–120 nm 
long, within the permanent, single-magnetic-domain size 

Figure 3 

Idealized magnetite crystal habits based on combinations of {100}, {110} 
and {111} forms. (a) Equidimensional habit (cuboctahedron). 
(b–d) Habits with [111] elongation. Adapted from [43••] with permission. 
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range [38,43••]. They are typically organized into one or 
more chains and comprise a permanent magnetic dipole in 
each cell [45•] that functions in a magneto-aerotactic sensory 
system [46]. Statistical analyses of crystal-size distributions in 
cultured strains are narrow, asymmetric, and have consistent 
width to length ratios within each strain [43••]. Whereas the 
size distributions of inorganic magnetite and BIM magnetite 
are typically lognormal (i.e. the logarithms of the particle 
sizes have a normal [Gaussian] distribution), the shapes of 
the magnetosome size distributions are asymmetric, with a 
sharp high-end cutoff comparable to distributions produced 
by Ostwald ripening [47]. 

Magnetite crystals as biomarkers 
The idealized characteristics of BCM magnetite crystals 
within magnetotactic bacteria may be summarized as fol­
lows: enveloping membranes; organization of crystals into 
chains; consistent habits, commonly with a [111] elongation; 
consistent width to length ratios; chemical purity; structural 
perfection (no defects or dislocations); a fraction (~10%) of 
twinned crystals characterized by the spinel twin law; and an 
asymmetric size distribution within the single-magnetic­
domain size range (< ~120 nm), skewed to larger sizes. 

The most compelling evidence for BCM nanometer mag­
netite in terrestrial or extraterrestrial materials is the presence 
of enveloping membranes and organization into chains. The 
other features by themselves are less compelling because 
they could conceivably be properties of inorganic magnetite. 
Impurities, defects or dislocations, inconsistent habits, and 
lognormal size distribution would exclude BCM magnetite. 

If the elongated magnetite crystals in the carbonate rims in 
ALH84001 have the last six of the characteristics summarized 
above, they would constitute plausible but not compelling 
support for the ancient-life hypothesis. Their significance 
would be greater if it could be established that the crystals 
formed at a temperature less than 373K and have a size dis­
tribution different from the remaining 75% of the magnetite 
crystals. Other issues that need to be resolved are the forma­
tion temperature of the carbonates and petrologic evidence 
(or lack of it) for liquid-water alteration of the meteorite. 

Conclusions 
We believe that it will not be possible to reach a consensus 
for the ancient-life hypothesis without additional com­
pelling biomarkers in ALH84001. The absence of such 
additional biomarkers may tend to produce a negative con­
sensus. Resolution might have to await future samples 
returned from the ancient crust of Mars. In any case, 
McKay et al. [4] have set a new nanometer standard for 
investigation of extraterrestrial materials that includes min­
erals as potential biomarkers. 

Update 
Two notable abstracts from the 31st Lunar and Planetery 
Science conference are now available online [48•,49•]. The 
first [48•] gives evidence that the carbonate assemblages in 

ALH84001 were formed inorganically; the second [49•] 
suggests that carbonate globules in the meterorite were 
formed at low temperature. 

Useful internet resources 
Web sites with general information about Martian meteorites: 

http://sn-charon.jsc.nasa.gov/alh84001/sample 
http://mars.jpl.nasa.gov/snc 
http://cass.jsc.nasa.gov/lpi/meteorites/mars_meteorite.html 
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