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Abstract As petroleum exploration advances and as most

of the oil–gas reservoirs in shallow layers have been

explored, petroleum exploration starts to move toward deep

basins, which has become an inevitable choice. In this

paper, the petroleum geology features and research pro-

gress on oil–gas reservoirs in deep petroliferous basins

across the world are characterized by using the latest

results of worldwide deep petroleum exploration. Research

has demonstrated that the deep petroleum shows ten major

geological features. (1) While oil–gas reservoirs have been

discovered in many different types of deep petroliferous

basins, most have been discovered in low heat flux deep

basins. (2) Many types of petroliferous traps are developed

in deep basins, and tight oil–gas reservoirs in deep basin

traps are arousing increasing attention. (3) Deep petroleum

normally has more natural gas than liquid oil, and the

natural gas ratio increases with the burial depth. (4) The

residual organic matter in deep source rocks reduces but

the hydrocarbon expulsion rate and efficiency increase with

the burial depth. (5) There are many types of rocks in deep

hydrocarbon reservoirs, and most are clastic rocks and

carbonates. (6) The age of deep hydrocarbon reservoirs is

widely different, but those recently discovered are pre-

dominantly Paleogene and Upper Paleozoic. (7) The

porosity and permeability of deep hydrocarbon reservoirs

differ widely, but they vary in a regular way with lithology

and burial depth. (8) The temperatures of deep oil–gas

reservoirs are widely different, but they typically vary with

the burial depth and basin geothermal gradient. (9) The

pressures of deep oil–gas reservoirs differ significantly, but

they typically vary with burial depth, genesis, and evolu-

tion period. (10) Deep oil–gas reservoirs may exist with or

without a cap, and those without a cap are typically of

unconventional genesis. Over the past decade, six major

steps have been made in the understanding of deep

hydrocarbon reservoir formation. (1) Deep petroleum in

petroliferous basins has multiple sources and many dif-

ferent genetic mechanisms. (2) There are high-porosity,

high-permeability reservoirs in deep basins, the formation

of which is associated with tectonic events and subsurface

fluid movement. (3) Capillary pressure differences inside

and outside the target reservoir are the principal driving

force of hydrocarbon enrichment in deep basins. (4) There

are three dynamic boundaries for deep oil–gas reservoirs; a

buoyancy-controlled threshold, hydrocarbon accumulation

limits, and the upper limit of hydrocarbon generation. (5)

The formation and distribution of deep hydrocarbon res-

ervoirs are controlled by free, limited, and bound fluid

dynamic fields. And (6) tight conventional, tight deep, tight

superimposed, and related reconstructed hydrocarbon res-

ervoirs formed in deep-limited fluid dynamic fields have

great resource potential and vast scope for exploration.

Compared with middle–shallow strata, the petroleum

geology and accumulation in deep basins are more
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complex, which overlap the feature of basin evolution in

different stages. We recommend that further study should

pay more attention to four aspects: (1) identification of

deep petroleum sources and evaluation of their relative

contributions; (2) preservation conditions and genetic

mechanisms of deep high-quality reservoirs with high

permeability and high porosity; (3) facies feature and

transformation of deep petroleum and their potential dis-

tribution; and (4) economic feasibility evaluation of deep

tight petroleum exploration and development.

Keywords Petroliferous basin � Deep petroleum geology

features � Hydrocarbon accumulation � Petroleum

exploration � Petroleum resources

1 Introduction

As the world demands more petroleum and petroleum

exploration continues, deep petroleum exploration has

become an imperative trend. As it is nearly impractical to

expect any major breakthrough in middle or shallow basins

(Tuo 2002), petroleum exploration turning toward deep

basins has become inevitable. After half a century’s

exploitation in major oilfields across the world, shallow

petroleum discoveries tend to be falling sharply (Simmons

2002). Nor are things optimistic in China, where the rate of

increase of mid-and-shallow petroleum reserves is

increasingly slowing down (Wang et al. 2012). At the same

time, the world’s petroleum consumption continues to

increase. According to BP Statistical Review of World

Energy 2014, from 2002 to 2012, the world’s petroleum

consumption increase was virtually the same as its petro-

leum output increase, with annual average oil and natural

gas consumption increases of 1.35 % and 3.14 %, respec-

tively, compared to the annual average output increases of

1.47 % and 3.23 %. In China, however, the petroleum

consumption increase is far greater than its output increase.

According to National Bureau of Statistic of China statis-

tics in 2013, from 2000 to 2013, China’s average annual oil

and natural gas consumption increases were 6.1 % and

14.6 %, respectively, compared to the annual average

output increases of 1.93 % and 11.9 %. Deep petroleum, as

one of the strategic ‘‘three-new’’ fields for the global oil

industry (Zou 2011) as well as one of the most important

development areas for China’s oil industry, forms the most

important strategically realistic area for China’s oil

industry to lead future petroleum exploration and devel-

opment (Sun et al. 2013). All indicate that deep hydro-

carbon exploration is an inevitable choice toward ensuring

energy supply and meeting market demands.

After half a century’s effort, gratifying achievements

have been made in deep petroleum exploration throughout

the world, despite being faced with challenges and prob-

lems today. The Former Soviet Union discovered four

6,000 m or deeper industrial oil–gas reservoirs out of its 24

petroliferous basins (Tuo 2002). The oil discovered in deep

basins in Mexico, the USA, and Italy contributes more than

31 % of their present recoverable oil reserves (Kutcherov

et al. 2008) and the natural gas discovered there makes up

approximately 47 % of their total proved natural gas

reserves (Burruss 1993). China, too, has appreciable

achievements in deep petroleum exploration. Compared

with 2000, the deep reserves discovered in West China in

2013 increased an average of 3.5 times. The ratio of deep

petroleum reserves increased from 40 % in 2002 to 80 %

in 2013. Of the 156 well intervals in the Tarim Basin that

have been tested so far, 58 have gone deeper than 5,000 m.

The deep drillhole success rate in the Jizhong Depression is

as high as 21.4 %. A 5,190-m-deep ‘‘Qianmiqiao buried

hill hydrocarbon reservoir’’ was discovered in the Huang-

hua Depression (Tuo 2002). Despite these achievements,

however, a lot of problems have also emerged in deep

petroleum exploration. These include (a) the difficulty in

understanding the conditions of deep oil–gas reservoirs and

evolution due to the multiple tectonic events having taken

place in deep basins (Zhang et al. 2000; He et al. 2005),

(b) the difficulty in evaluating the resource potential and

relative contribution due to the complex sources and evo-

lution processes of deep petroleum (Barker 1990; Mango

1991; Dominé et al. 1998; Zhao et al. 2001; Jin et al. 2002;

Zhao et al. 2005; Darouich et al. 2006; Huang et al. 2012;

Pang et al. 2014a), (c) the difficulty in predicting and

evaluating favorable targets due to the complex genesis and

distribution of deep, relatively high-porosity and high-

permeability reservoirs (Surdam et al. 1984; Ezat 1997;

Dolbier 2001; Rossi et al. 2001; Moretti et al. 2002; Lin

et al. 2012), and (d) the difficulty in predicting and eval-

uating the petroleum possibility in deposition targets due to

the complex deposition mechanism and development pat-

tern of deep petroleum (Luo et al. 2003, 2007; Ma and Chu

2008; Ma et al. 2008; Pang et al. 2008). All these problems

provide a tremendous challenge to deep petroleum

exploration.

With abundant resource bases and low proved rates, deep

petroliferous basins are important for further reserve and

output increases (Tuo 2002; Zhao et al. 2005; Dai 2006, Pang

et al. 2007a; Zhu and Zhang 2009; Sun et al. 2010; Pang et al.

2014a). According to Dai (2006), the proved rate of the

exploration concessions of PetroChina is 17.6 % for deep oil

and 9.6 % for deep natural gas, far lower than their mid-and-

shallow counterparts of 39.6 % for oil and 14.6 % for natural

gas. Pang et al. (2007a, b) suggest that West China contains

around 45 % of the residual petroleum resources of China, and

80 % of these residual resources are buried in deep horizons

more than 4,500 m below the surface, yet the present proved
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rate is less than 20 %. As such, implementing deep petroleum

resource research, tapping deep petroleum and increasing

petroleum backup reserves are urgently needed if we ever

want to relieve the nation’s petroleum shortage and mitigate

energy risks. Many scholars have investigated deep petroleum

geologies and exploration (Perry 1997; Dyman et al. 2002;

Pang 2010; Ma et al. 2011; He et al. 2011; Wang et al. 2012;

Wu et al. 2012; Bai and Cao 2014). Our study in connection

with the national ‘‘973 Program’’ (2011CB201100) involves a

summary and description of the development and orientation

of research by scholars in China and elsewhere with respect to

petroleum geology and hydrocarbon accumulation in deep

petroliferous basins.

2 Concept and division criteria of deep basins

Deep basins are also called deep formations by some

scholars. The definition and criteria of deep petroliferous

basins differ from country to country, from institution to

institution and from scholar to scholar.

2.1 Concept and division criteria of deep basins

proposed by overseas scholars

So far, there are two sets of definition and criteria for deep

petroliferous basins outside China. One is according to the

formation depth, i.e., formations within a certain limit of

depth are called deep formations. However, the criteria for

classifying deep basins also differ from scholar to scholar.

Representative criteria include 4,000 m (Rodrenvskaya

2001), 4,500 m (Barker and Takach 1992), 5,000 m

(Samvelov 1997; Melienvski 2001), and 5,500 m (Man-

hadieph 2001; Bluokeny 2001). Another is according to the

formation age, i.e., for a given basin, formations older in

age and deeper are called deep formations (Sugisaki 1981).

Table 1 summarizes the criteria used by different institu-

tions and scholars for deep basins from which it is easy to

see that 4,000 and 4,500 m are the criteria accepted by

more institutions and scholars.

2.2 Concept and division criteria of deep basins

proposed by Chinese scholars

Chinese scholars use roughly the same criteria for deep

petroliferous basins as their overseas counterparts. Most of

them use three indicators: (1) formation depth (Wang et al.

1994; Li and Li 1994; Tuo et al. 1994; Zhou et al. 1999;

Hao et al. 2002; Shi et al. 2005; Dai et al. 2005); (2)

formation age (Kang 2003; Ma et al. 2007; Ma and Chu

2008); and (3) formation characteristics (Tuo et al. 1999a;

Wang et al. 2001; Wang 2002; Pang 2010). Table 2 sum-

marizes the criteria used for deep basins. Obviously, the

concept of deep basins does not only differ from scholar to

scholar, it also varies with the basin position and formation

characteristics.

2.3 Importance of using the same concept and criteria

in deep basins

No uniform concept or criteria have been agreed upon by

scholars either in or out of China with respect to deep

petroliferous basins, hence preventing further development

and mutual promotion on science research. For this reason,

we suggest using 4,500 m as the criterion for deep basins

on grounds of the following considerations:

First, this classification represents a succession to pre-

vious findings. The U.S. Geological Survey and some for-

mer Soviet Union scholars used 4,500 m as the criteria for

deep basins (Barker and Takach 1992). Chinese scholars,

represented by Shi, Dai, and Zhao et al., also used 4,500 m

to demarcate deep formations (Shi et al. 2005; Dai et al.

2005; Zhao et al. 2005). Chinese administrations like

Ministry of Land and Resources even issued public docu-

ments that define deep petroliferous basins in West China

to 4,500 m. Second, 4,500 m represents the general depth

at which the hydrocarbon entrapment mechanism of a

petroliferous basin transits from buoyancy accumulation to

non-buoyancy accumulation. Above this depth, the poros-

ities of the sand reservoirs are generally above 12 %; the

permeabilities are higher than 1 mD; and the pore throat

radii are larger than 2 lm. ‘‘High-point accumulation, high-

stand closure, high-porosity enrichment, high-pressure

accumulation’’ (Pang et al. 2014a) normal oil–gas reser-

voirs generally formed under the action of buoyant forces.

Below this depth, to the contrary, ‘‘low-depression accu-

mulation, low-stand inversion, low-porosity enrichment,

low-pressure stability’’ unconventional oil–gas reservoirs

generally formed. To make things easier, we divide a pet-

roliferous basin into four parts according to the buried

depth, using the criteria accepted by previous scholars:

shallow (\2,000 m), middle (2,000–4,500 m), deep

(4,500–6,000 m), and ultra-deep ([6,000 m). According to

the maximum depths of basins, we divide them into shallow

basins (\2,000 m), middle basins (2,000–4,500 m), deep

basins (4,500–6,000 m), and ultra-deep basins ([6,000 m).

Third, deep basins should be classified according to the

depth rather than incorporating the geological aspects that

constrain the depth distribution of hydrocarbon entrapment.

For example, the fact that oil–gas reservoirs in East China

basins are commonly shallow while those in West China

basins are commonly deep is attributable to their respective

unique basin evolution geologies such as the geothermal

gradient, reservoir rock type, formation age, and evolution

history. These should not form the basis for diverging the

criteria for basin depths.
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3 Exploration for deep oil–gas reservoirs

3.1 Exploration for deep oil–gas reservoirs

across the world

Following the discovery of the first deep hydrocarbon field

below 4,500 m in the USA in 1952, deep petroleum

exploration boomed in many countries. Seventy countries

tried deep exploration (Wu and Xian 2006). Echoing

breakthroughs in deep well drilling and completion tech-

niques, a succession of major breakthroughs have been

made in deep hydrocarbon reservoir exploration (Dyman

et al. 2002). First, major breakthroughs in drilling operation

led to the discovery of a number of oil–gas reservoirs

including a gas reservoir in the Cambrian–Ordovician

Arbuckle Group dolomites at 8,097 m depth in the Mills

Ranch gas field in the Anadarko Basin in 1977 (Jemison

1979). From 1980, deep petroleum exploration started to

extend from onshore to offshore. Examples include a gas

field discovered in Permian Khuff Formation limestones at

4,500 m in the Fateh gas reservoir in the Arabian-Iranian

Basin in 1980, and an oil reservoir at a depth of 6,400 m

was discovered in the Triassic dolomites of the Villifort-

una-Trecate oilfield in Italy in 1984. Recently, major

Table 1 Criteria for deep basins proposed by scholars outside China

Basis for deep basins Criteria for deep basins Targeted area Researcher and year

Formation depth [4,000 m In former Soviet Union Rodrenvskaya (2001)

[4,500 m Caspian Basin

[4,500 m In the USA

Gulf of Mexico, USA Barker and Takach (1992)

[5,000 m Samvelov (1997)

West Siberia Basin, East Siberia Basin Melienvski (2001)

[5,500 m South Caspian Basin Manhadieph (2001)

Timan-Pechora Basin Bluokeny (2001)

Formation age Stratigraphically old formations

with large buried depths

In the USA Sugisaki (1981)

Table 2 Criteria of deep basins proposed by Chinese scholars

Basis for deep

basins

Criteria for deep basins Targeted area or parameter features Researcher and year

Formation depth [2,500 m Bohai Bay Basin Qiao et al. (2002)

[2,800 m Songliao Basin Wang et al. (1994)

[3,500 m Liaohe Basin Li et al. (1999)

Bohai Bay Basin Tuo (1994)

Bohai Bay Basin Zhou et al. (1999)

Yinggehai Basin Hao et al. (2002)

[3,500 m East China basins Ministry of Land and Resources

(2005)

[4,500 m Junggar Basin Shi et al. (2005)

Tarim, Junggar, Sichuan basins Dai (2003)

Sichuan Basin Zhao et al. (2005)

[4,500 m West China basins Ministry of Land and Resources

(2005)

Formation age &

depth

Stratigraphically old with large buried

depths

Varies from basin to basin Kang (2003), Ma et al. (2007), Ma

and Chu (2008)

Formation

characteristics

Formation thermal evolution level Ro C 1.35 % Tuo et al. (1999b), Tuo (2002)

Formation thermal evolution level or

formation pressure

Ro C 1.35 % or formation depth

overpressure

Wang et al. (2001), Tuo et al.

(1999b), Wang et al. (2002)

Formation thermal evolution level and

tightness level

Ro C 1.35 % or sandstone formation

U B 12 %, K B 1 mD, Y B 2 lm

Pang (2010)
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breakthroughs in deep oil exploitation have been reported

in the deep and ultra-deep waters of the Gulf of Mexico,

East Brazil, and West Africa (Bai and Cao 2014).

According to IHS data as of 2010, 171 deep basins and 29

ultra-deep basins had been discovered out of the 1,186

petroliferous basins in the world. These deep basins are

predominantly situated in the former Soviet Union, Middle

East, Africa, Asia-Pacific, North America, and Central and

South America (Fig. 1). A total of 1,290 oil–gas reservoirs

have been discovered in deep basins and 187 oil–gas res-

ervoirs in ultra-deep basins across the world. Break-

throughs are continuously reported around the world in the

course of deep exploration. First, the drilling depth con-

tinues to increase, the maximum being deeper than

10,000 m, as exemplified by the deepest well with 12,200m

drilling depth, SG-3 exploratory well. The deepest oil

reservoir discovered so far is the Tiber clastic rock oil

reservoir (1,259 m underwater and 8,740 m underground).

The depth of gas wells continues to increase, and the

deepest gas reservoir discovered so far (8,309–8,322 m) is

a Silurian basin gas reservoir in the Anadarko Basin.

Second, the manageable formation temperature and for-

mation pressure in drilling operations are also continuously

increasing. So far, the highest temperature encountered is

370 �C and the highest pressure encountered is 172 MPa

(Table 3).

According to USGS and World Petroleum Investment

Environment Database, from 1945 to 2014, the world’s

normal petroleum resource has increased from 96 billion

ton in 1945 to 630 billion ton in 2014, the annual average

increase being as high as 8.06 % (Fig. 2a), and the natural

gas resource has also increased from 260 trillion m3 in

1986 to 460 trillion m3 in 2013, the annual average

increase being as high as 2.85 % (Fig. 2b). Over the past

years, the world has shown robust momentum for deep

petroleum exploration. The number of oil–gas reservoirs

discovered keeps growing fast (Fig. 3). According to data

provided by Kutcherov et al. (2008), more than 1,000

hydrocarbon fields have been developed at depths of

4,500–8,103 m, the original recoverable oil reserve of

which contributes 7 % of the world’s total amount and the

natural gas reserve makes up 25 %. According to IHS data,

as of 2010, for the 4,500–6,000 m deep hydrocarbon fields

in the world, the proved recoverable residual oil reserve is

83.8 billion ton or 35.5 % of the total recoverable oil

reserve, and the natural gas is 65.9 billion ton oil equivalent

or 44.4 % of the total productive natural gas reserve; for

the 6,000 m or deeper hydrocarbon fields in the world, the

proved recoverable residual oil reserve is 10.5 billion ton

or 4.45 % of the total productive oil reserve, and the nat-

ural gas is 7 billion ton oil equivalent or 4.7 % of the total

productive natural gas reserve (Fig. 4).
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3.2 Exploration of deep oil–gas reservoirs in China

China started deep petroleum exploration from the late

1970s, having discovered a number of large deep oil–gas

fields in the deep parts of some large sedimentary basins

including Tarim, Erdos, and Sichuan basins, and made

important progresses in the deep parts of the Daqing,

Zhongyuan, Dagang, and Shengli fields in East China’s

petroleum region (Feng 2006; Song et al. 2008; Wu and

Xian 2006). With the nation’s breakthroughs in deep and

ultra-deep well drilling techniques and equipment,

onshore petroleum exploration has continued to extend

toward deep and ultra-deep levels (Sun et al. 2010);

petroleum exploration has also undergone a transition

from shallow to deep and further to ultra-deep levels. On

July 28, 1966, China’s first deep well, Songji-6 of Daqing

(4,719-m well depth), was completed, marking the tran-

sition of China’s drilling operation from shallow wells to

middle and deep wells, and signaling that China’s petro-

leum exploration was turning from shallow toward deep

Table 3 Geological characteristics of world representative deep oil–gas reservoirs known so far

Feature Name Year Parameters Region

Deepest well SG-3 exploratory well 1992 Completion depth

12,200 m

Kola Peninsula,

Russia

Deepest oil reservoir Tiber clastic rock oil reservoir 2009 Buried depth

8,740 m

Gulf of Mexico

abyssal basin, USA

Deepest gas reservoir Mills Ranch gas reservoir 1977 Buried depth

7,663–8,083 m

Western Interior

Basin, USA

Deep hydrocarbon reservoir with

highest porosity

Gaenserndorf Ubertief oilfield Hauptdolomit

Formation gas reservoir

1977 Porosity 35 %–

38 %

Vienna Basin, Austria

Deep hydrocarbon reservoir with

lowest porosity

Mora hydrocarbon reservoir 1981 Porosity 2.6 %–

4 %

Sureste Basin,

Mexico

Deep hydrocarbon reservoir with

highest permeability

Platanal oilfield 4830–Cretaceous hydrocarbon

reservoir

1978 Permeability

7,800 mD

Sureste Basin,

Mexico

Deep hydrocarbon reservoir with

lowest permeability

Wolonghe Huanglong structural belt gas reservoir 1980 Permeability

0.01 mD

Sichuan Basin, China

Deep gas reservoir with highest

temperature

Satis hydrocarbon reservoir, Tineh Formation gas

reservoir

2008 Temperature

370 �C

Nile Delta Basin,

Egypt

Deep oil reservoir with lowest

temperature

Sarutayuskoye oilfield Starooskolskiy Group oil

reservoir

2008 Temperature 47 �C Pechola Basin, Russia

Deep gas reservoir with highest

pressure

Zistersdorf Ubertief 1 oilfield Basal Breccia gas

reservoir

1980 Pressure 172 MPa Vienna Basin, Austria

Deep hydrocarbon reservoir with

lowest pressure

Akzhar East oilfield Asselian VIII (PreCaspian)

Unit hydrocarbon reservoir

1988 Pressure 8.4 MPa Caspian Basin,

Kazakhstan
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levels. From 1976, China’s petroleum exploration mar-

ched toward ultra-deep levels. On April 30, 1976, China’s

first ultra-deep well, Nuji well in Sichuan (6,011 m well

depth), was completed, marking the entry of China’s

petroleum exploration into ultra-deep levels (Wang et al.

1998). So far, China has drilled deep wells in 15 large

basins with sedimentary thicknesses larger than 5 km

(Pang 2010). Of the 176 deep exploratory wells drilled in

the Jizhong Depression (the average well depth is

4,521 m), 37 have yielded industrial petroleum flows. The

exploratory well success rate has reached 21.4 % (Tuo

2002). Of the 156 pay zone well intervals tested in the

Tarim Basin, 58 have their bottom boundaries deeper than

5,000 m (Pang 2010). According to statistics, as of 2010,

of the 47 petroliferous basins in China, seven deep basins

have been discovered, out of which 210 deeper than

4,500 m oil–gas reservoirs have been identified. Shallow

basins at a depth of 2,000 m or shallower are predomi-

nantly found in China’s Inner Mongolia and Tibet;

2,000–4,500 m middle deep basins are typically located in

the seas of East China; 4,500–6,000 m deep basins are

distributed in Central China and Southern North China.

China also has a huge stock of ultra-deep petroleum

resources, having discovered some ultra-deep basins with

buried depths of more than 6,000 m, including the Tarim

Basin and Songliao Basin. These are mostly located in

Northwest and Northeast China (Fig. 5).

China is rich in deep petroleum resources with vast

room for further exploration. According to a 2005 statistics

of Shi et al., the deep oil resource within the mineral

concession of CNPC is approximately 51.5 9 108 t or

12 % of the total; the deep natural gas reserve is

4.25 9 1012 m3 or 19 % of the total. Zhu and Zhang (2009)

suggest that China’s deep petroleum resource reserves are

extremely non-uniform and mostly found in Xinjiang. In

the Junggar Basin, the middle–shallow and deep oil geo-

logical resources are 9.7 9 108 t or approximately 18 % of

the basin’s total amount; the deep natural gas resource is

2,081 9 108 m3 or approximately 32 % of the basin’s total

amount. Pang (2010) discovered after studies that the Ta-

rim Basin has the richest oil resources in the deep part at

33.7 9 108 t or 56 % of the basin’s total oil resource,

natural gas resources in the deep part at 29,244 9 108 m3

or 37 % of the basin’s total natural gas resource. Statistics

indicate that China’s deep petroleum resource is 30,408

million ton, which is 27.3 % of the nation’s total oil

resource (Fig. 6a); its deep natural gas resource is 29,120

billion m3, which is 49.2 % of the nation’s total natural gas

resource (Fig. 6b). Since 2000, China’s petroleum explo-

ration has continued to extend toward deep and ultra-deep

levels. In the Junggar Basin, the ratio of deep exploratory

wells increased from 3 % in 2000 to 15 % in 2013

(Fig. 7a). In the Tarim Basin, this ratio increased from

65 % in 2000 to 92 % in 2013 (Fig. 7b). The ratio of newly

increased petroleum reserves in deep formations has also

continued to rise. In the Tarim Basin, the ratio of deep oil

increased from 66 % in 2000 to 92 % in 2013 (Fig. 8a); the

ratio of deep natural gas also increased from 66 % in 2004

to 92 % in 2013 (Fig. 8b).
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4 Geological features of deep oil–gas reservoirs

Compared with middle or shallow petroliferous basins,

deep basins have large buried depths and the features of

high temperature, high pressure, low porosity, low

permeability, complex structural styles, and highly

variable sedimentary forms. These special properties

have been responsible for the unique characteristics of

deep basin oil–gas reservoirs compared with their

middle or shallow counterparts. Many scholars (Zap-

paterra 1994; Dyman and Cook 2001; Liu et al. 2007a,

b; Wang et al. 2012) have examined deep oil–gas res-

ervoirs. Table 4 lists some typical hydrocarbon fields

(reservoirs) discovered in deep petroliferous basins in

the world, from which we can observe their differences

and varieties in terms of formation age, lithology,

buried depth, porosity, pressure, petroleum phase, trap

type, and basin type.
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4.1 While oil–gas reservoirs have been discovered

in many types of deep petroliferous basins, most

have been discovered in low heat flux deep basins

Oil–gas reservoirs have been discovered in all types of deep

petroliferous basins (Fig. 9). Based on the basin classifica-

tion system of Ingersoll (1995), Bai and Cao (2014) classi-

fied 87 deep petroliferous basins into seven groups:

continental rift, passive continental marginal, foreland,

interior craton, fore-arc, back-arc, and strike-slip basins, of

which the passive continental marginal basins (25) and

foreland basins (41) are the richest in deep petroleum, fol-

lowed by the rift basins (12). These three types contribute

47.7, 46.4, and 5.6 % of the world’s deep proven and prob-

able (2P) recoverable petroleum reserves. The deep 2P

recoverable petroleum reserves in the back-arc basins (2),

strike-slip basins (3), and interior craton basin (1) contribute

merely 0.3 % of the world’s total (Fig. 10).

As a matter of fact, the distribution divergences of deep

oil–gas reservoirs in petroliferous basins are essentially

decided by the geothermal gradients of the sedimentary

basins. Compared with the higher geothermal gradient

counterparts, lower geothermal gradient sedimentary

basins contain far more deep petroleum resources since

when they reached the same buried depth, they had lower

pyrolysis temperatures, and source rocks were richer in

residual organic matter and hence had greater ability to

generate and preserve hydrocarbon. Figure 11 compares

the deep hydrocarbon potentials of source rocks in basins

with different geothermal gradients in China as a function

of depth, from which we can observed that ‘‘hot’’ basins

expelled less hydrocarbon indicating they make up a

smaller proportion of deep petroleum resources than their

‘‘cold’’ counterparts. As the geothermal gradient increases,

the ratio of deep petroleum resources reduces. According to

geothermal gradient records of 405 deep oil–gas reservoirs

across the world, 318 % or 78.5 % were discovered in deep

basins with geothermal gradients of 1–2 �C/100 m; 79 %

or 19.5 % were discovered in deep basins with geothermal

gradients of 2–3 �C/100 m; and 8 % or 2 % were discov-

ered in deep basins with geothermal gradients larger than

3 �C/100 m (Fig. 12). In China, the geothermal gradient

increases from the west toward the east. The number and

reserves of deep oil–gas reservoirs discovered in West

China basins is far larger than that discovered in East China

basins (Fig. 13).
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4.2 While many types of petroliferous traps are

developed in deep basins, oil–gas-bearing features

in deep basin traps are arousing increasing

attention

Like their middle–shallow counterparts, deep basins also

contain a variety of traps which, according to the con-

ventional trap classification, include tectonic traps, strati-

graphic traps, lithological traps, structural-lithological

traps, structural-stratigraphic traps, and lithological-strati-

graphic traps. Different types of traps differ significantly in

terms of their reserves. After a statistical analysis on 837

deep oil–gas reservoirs in the USA, Dyman et al. (1997)

discovered that structural traps and combination traps make

up as much as 66.9 %. Only in Anadarko and California

basins are there more lithological traps than structural ones

(Fig. 14). Bai and Cao (2014), after summarizing the trap

types and reserves of the world’s deep oil–gas reservoirs,

discovered that structural traps have 73.7 % of the world’s

deep recoverable 2P petroleum reserves, with structural-

lithological traps and stratigraphic traps contributing

21.9 % and 4.4 %, respectively (Fig. 15).

Recently, with the discovery of tight, continuous oil–gas

reservoirs in Canada’s Alberta Basin, the USA’s Red

Desert Basin and Green River Basin, and China’s Erdos,

Sichuan, and Songliao basins, people have become more

interested in these unconventional oil–gas reservoirs. First,

these reservoirs have completely different genesis com-

pared with conventional reservoirs, and their discovery has

brought on a novel petroleum exploration field. Second,

these reservoirs are widely and continuously distributed

with vast resource potentials and great scope for petroleum

exploration. Third, these reservoirs formed inside deep

basin traps between the buoyancy accumulation threshold

of a petroliferous basin and the basement of the basin.

Their buried depths were quite large, but can be very

shallow at present as a result of subsequent tectonic events

in the basin. Deep basin traps are a special type of

hydrocarbon trap in which the reservoir media have

porosities smaller than 12 %, permeabilities smaller than

1 9 10-3 lm2, and throat radii smaller than 2 lm.

Hydrocarbon was not subject to buoyancy in its accumu-

lation, thus making it possible to spread continuously. The

more developed the sources rocks were in a deep basin

trap, the more continuous the reservoirs were distributed

close to the source rocks and the richer the petroleum

resources they provide. Figure 16 gives a typical concep-

tual model and shows the difference about the development
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and distribution of a deep basin trap-controlled hydrocar-

bon reservoir in a petroliferous basin and conventional

traps.

4.3 The composition of deep petroleum is widely

different with more natural gas than liquid oil

and the natural gas ratio increases with the buried

depth

The composition of deep petroleum in petroliferous basins

varies and includes gaseous hydrocarbon, condensate gas,

condensate oil, liquid hydrocarbon, and oil–gas coexis-

tence. Phase statistics of 1,477 deep oil–gas reservoirs in

the world demonstrate that oil–gas miscible phases

contribute 54 % and gas phases contribute 40 %. The oil

phase makes up a very small proportion of 6 % (Fig. 17).

Generally, as the formation depth increases, natural gas

makes up a larger proportion in deep petroleum and

overtakes liquid hydrocarbon as the prevailing type of

petroleum resources. Figure 18 shows how the oil and

natural gas reserves discovered from different formations

of East China’s Bohai Bay Basin and West China’s Tarim

and Junggar basins vary as a function of depth. By and

large, the ratio of older deep basin gas reservoirs increases

due to pyrolysis of crude oil as a result of extended high

temperature exposure of the oil reservoir in deep basins, or

thermal cracking in the source rocks when they reached

high maturity (Dyman et al. 2001). The Hugoton gas field
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and Mills Ranch in the USA’s Anadarko Basin, for

example, are pure gas fields. Many deep gas reservoirs in

China’s petroliferous basins also originated from earlier oil

or oil–gas reservoirs that were cracked into gas under high

temperatures, as exemplified by the large Puguang car-

bonate gas field (Du et al. 2009), the large Kela-2 gas field

(Jia et al. 2002), and the Hetian gas field (Wang et al.

2000). Huge liquid or condensate oil reservoirs have also

been discovered in a number of deep basins such as the

USA’s Rocky Mountain Basin, where gas wells make up

only 34 % of the deep exploratory wells while most are oil

wells and no pyrolysis has taken place deeper than

6,000 m. This is often because the low subsurface tem-

perature or high pressure of the formation had prevented

the crude oil from coming to its threshold pyrolysis tem-

perature (Svetlakova 1987). A lot of factors can be related

to deep basin petroleum phases. These include (1) the type

of the original organic matter; (2) temperature and pres-

sure; and (3) subsequent adjustment or reformation.
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4.4 Residual organic matter in deep source rocks

reduces but the hydrocarbon expulsion rate

and efficiency continuously increase

with the buried depth

As far as deep source rocks are concerned, they have much

smaller measured residual hydrocarbon amount and

hydrocarbon potential than their middle–shallow counter-

parts, and both reduce with the increase of the buried depth.

They appear to have the following characteristics: (1) the

residual hydrocarbon amount per unit parent material in the

source rocks (total organic carbon, TOC) is represented by

S1/TOC or ‘‘A’’/TOC (Dickey 1975; Hao et al. 1996; Du-

rand 1988). The residual hydrocarbon amount in deep

source rocks first increases then reduces with the increase

of the depth or Ro and was already very small in deep

basins (Fig. 19); (2) the hydrocarbon potential is repre-

sented by the H/C atomic ratio, O/C atomic ratio, and

hydrogen index (Tissot et al. 1974; Tissot and Welte 1978;

Jones and Edison 1978; Baskin 1997; Zhang et al. 1999).

The H/C atomic ratio and O/C atomic ratio (Fig. 20) and

hydrocarbon index HI (Fig. 21) reduce with the increase of

the buried depth; and (3) the hydrocarbon potential index

of source rocks is represented by (S1 ? S2)/TOC (Zhou and

Pang 2002; Pang et al. 2004). When the TOC is more than

0.1 %, the hydrocarbon potential index of deep source

rocks shows a ‘‘big belly’’ profile of increasing followed by

reducing with the increase of the depth or Ro (Fig. 22). In a

word, as the buried depth increases and the hydrocarbon

potential of source rocks gradually reduces, the accumu-

lated oil–gas volume and hydrocarbon expulsion efficiency

of source rocks appear to increase gradually with the

increase of the buried depth (Fig. 23), reflecting the

increase in the contribution made by source rocks to oil–

gas reservoirs. This indicates that the quality and effec-

tiveness of source rocks should be judged by investigating

how much hydrocarbon was generated and expelled by

source rocks rather than by relying on how much hydro-

carbon or how much hydrocarbon potential is left of the

source rocks.

4.5 While there are many types of rocks in deep

hydrocarbon reservoirs, most of them are clastic

rocks and carbonate

Deep target formations in petroliferous basins contain a

variety of rocks, though clastic rocks and carbonate are the
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predominant types of deep hydrocarbon reservoirs dis-

covered so far, with certain amounts of volcanic and

metamorphic rocks too. Among clastic reservoirs, fractured

sandstone reservoirs are the most favorable. Carbonate

reservoirs include limestone and dolomite, with carbonate

reservoirs extensively found in brittle fractures and karst

caves taking the largest proportion. As of 2010, of the

1,477 deep oil–gas reservoirs discovered across the world,

1,035 % or 70.1 % were located in clastic reservoirs,

429 % or 29.0 % were in carbonate reservoirs, and 13 % or

0.88 % were in magmatic and metamorphic reservoirs

(Fig. 24).

According to the latest nationwide petroleum resource

evaluation made by the Ministry of Land and Resources

(2005), deep hydrocarbon reservoirs discovered in China

are predominantly carbonate and sandstone reservoirs

(Fig. 25). Widespread marine carbonate reservoirs occur

in Central West China basins and are responsible for a

series of large marine carbonate hydrocarbon fields rep-

resented by Central and North Tarim hydrocarbon fields
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in the Tarim Basin, East and Central Sichuan reef-flat

carbonate hydrocarbon fields. In the northwestern flank of

the Junggar Basin, the Kuqa Depression of the Tarim

Basin and the Xujiahe Formation of the Sichuan Basin,

sandstone oil–gas reservoirs in clastic rocks are the pre-

dominant type. Besides, a lot of deep volcanic oil–gas

reservoirs are also contained in the deep part of the

Junggar and Songliao basins. Deep oil–gas reservoirs in

bedrock metamorphic rocks have been discovered in

places like the Liaohe Depression of the Bohai Bay Basin.

4.6 The age of deep hydrocarbon reservoirs is widely

different, but those recently discovered are

predominantly Paleogene and Upper Paleozoic

Oil–gas reservoirs in deep petroliferous basins are similar

to their middle or shallow counterparts in terms of for-

mation distribution. The ages of the reservoirs cover a wide

range. Most of the deep oil–gas reservoirs discovered so

far, however, are in five formation systems: Neogene,

Paleogene, Cretaceous, Jurassic, and Upper Paleozoic, the

deep 2P recoverable petroleum reserves of which account

for 12.8 %, 22.3 %, 18.3 %, 12.8 %, and 22.2 % of the

world’s totals, respectively (Fig. 26). This suggests that the

deep petroleum is mainly in Neogene and Upper Paleozoic

formations. Also, as the reservoir ages become older, the

ratio of deep natural gas in the total deep petroleum reserve

tends to increase accordingly.

After summarizing the reservoir ages of oil–gas reser-

voirs in China’s deep petroliferous basins (Table 5), we

discovered that the reservoir ages of deep oil–gas reser-

voirs in Central and West China basins are predominantly

Paleozoic, meaning the reservoirs are quite old; those in

East China basins are predominantly Paleogene or Creta-

ceous, and reservoir ages of oil–gas reservoirs in the bed-

rock are predominantly Precambrian.

4.7 The porosity and permeability of deep hydrocarbon

reservoirs are widely different, but they vary

with the lithology and buried depth

The porosities and permeabilities of target formations for

deep oil–gas reservoirs in petroliferous basins vary widely,

ranging from high-porosity, high-permeability (with
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porosity of 38 % and permeability of 7,800 mD) high-

quality reservoirs to low-porosity, low-permeability (with

porosity lower than 5 % and permeability less than

0.1 mD) tight reservoirs. High-porosity, low-permeability

or low-porosity, high-permeability petroliferous reservoirs

have also been identified. Deep drilling records across the

world demonstrate that as the reservoir depth increases, the

compaction effect and consequently the diagenesis inten-

sify, so the porosity of deep rocks tends in general to

decrease. The porosities of the world’s deep petroliferous

basins are mostly in the 10 %–12 % range (Wang et al.

2012). A summary of the porosities and permeabilities of

20,717 oil–gas reservoirs across the world as a function of

depth revealed that the porosities and permeabilities of

these reservoirs tend to decrease with the increase of depth

overall (Fig. 27), though this rule varies from one lithology

to another in different areas. Clastic reservoirs, for exam-

ple, show obvious porosity and permeability decreases in

some reservoirs, but the porosity of other reservoirs varies

little in deep or ultra-deep formations (Fig. 28), while

carbonate reservoirs do not show obvious decreases in their

reservoir properties as the depth increases (Fig. 29) due to

their high rock brittleness, high compaction stability, and

good solubility. The porosities of volcanic reservoirs do not

vary much with depth (Fig. 30). The various petroliferous

basins in China do not present the same characteristics.

Figure 31 compares the reservoir porosity variations of

different petroliferous basins in China as a function of
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depth. It shows that the porosity of sandstone reservoirs

decrease with an increase in buried depth, while the

porosity is in general retained in carbonate and volcanic

rocks until below 6,500 m.

4.8 The temperatures of deep oil–gas reservoirs differ

widely, but they typically vary with the buried

depth and geothermal gradient

The temperature range of oil reservoirs in deep petrolif-

erous basins has exceeded that of liquid hydrocarbon

(windows) supposed by traditional kerogen theory

(60–120 �C, Ro = 0.6 %–1.35 %): the highest oil reser-

voir temperature discovered in the world so far is more

than 200 �C. Compared with their middle–shallow coun-

terparts, deep oil–gas reservoirs have even higher tem-

peratures which vary even more widely. Statistics of the

temperatures and pressures of 428 deeper-than-4,500 m

oil–gas reservoirs in the world (Fig. 32) show that the

temperatures of deep oil–gas reservoirs can be 200 �C

maximum and those of a couple of gas reservoirs are

more than 370 �C, compared with the lowest hydrocarbon

reservoir temperature of 47 �C. Even at the same depth,

the temperatures of deep oil–gas reservoirs vary from one

type to another, such as the petroliferous basins in China,

those in the east are mostly extensional basins that are

typically hot basins with an average geothermal gradient

of approximately 4 �C/100 m and oil reservoirs deeper

than 4,500 m being hotter than 180 �C; the extrusion

basins in the west and the craton basins in the center, to

the contrary, have lower geothermal gradients and are

typical cold basins (Liu et al. 2012) with an average

geothermal gradient of approximately 2.5 �C/100 m. At

the same depth of 4,500 m, the temperature in the center

and west is less than 120 �C. The temperature difference

is approximately 60 �C. Figure 33 compares the geo-

thermal gradients of some of the representative basins in

China as a function of time, from which we can observe

that, at the same depth, the formation temperature tends to

increase from west toward east, reflecting the eastward

increase of the geothermal gradient or heat flux.
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4.9 The pressure of deep oil–gas reservoirs typically

varies with the buried depth, genesis, and evolution

period

Oil–gas reservoirs formed under high porosities and high

permeabilities in middle–shallow petroliferous basins are

typically buoyancy controlled, thereby generally displaying

high pressures. Oil–gas reservoirs discovered in deep

basins, however, have complex genesis, thereby displaying

diverse pressures (Fig. 34). Statistics of the pressure

records of 16,552 oil–gas reservoirs in the world revealed

significant pressure differences among deep oil–gas reser-

voirs. The highest of the majority is 130 MPa, with a few

outliers as high as 172 MPa, while the lowest is merely

8.4 MPa (Fig. 35).

Abnormal high pressures are generally contained in

deep tight structural gas reservoirs and tight lithological

gas reservoirs, like the Sichuan Xiaoquan gas reservoir

which has abnormally high pressures with a pressure

coefficient of 1.6–2.0 (Guan and Niu 1995), and the Fuy-

ang tight oil reservoir in Songliao which also displays

abnormally high pressures with a pressure coefficient larger

than 1.6. Deep oil–gas reservoirs with normal pressures

also exist, like the 13 Lunnan buried hill oil reservoirs in

the Tarim Basin that have the pressure coefficients between

1.03 and 1.14; and the Lunnan-17 well, Lunnan-30 well,

Lunnan-44 well, and Jiefang-123 well oil reservoirs that

have coefficients of 1.137, 1.130, 1.143, and 1.148, defin-

ing them as normal pressure oil reservoirs (Gu et al. 2001).

Low-pressure oil–gas reservoirs are typically found in tight

syncline sandstone gas reservoirs, like the tight sandstone

hydrocarbon reservoirs discovered in Canada’s Alberta

Basin (Masters 1979), the tight sandstone hydrocarbon

reservoirs discovered in the USA’s Red Desert (Spencer

1989), and the tight sandstone hydrocarbon reservoirs in

the USA’s Green River Basin. The same occurs in the

upper Paleozoic tight sandstone reservoirs in China’s Erdos

Basin and the tight sandstone gas reservoirs discovered in

the Jurassic of the Tuha Basin (Fig. 36). In the main, deep

oil–gas reservoirs have complex pressures; abnormally

high, normal, and abnormally low-pressure hydrocarbon

reservoirs can all be found in deep oil–gas reservoirs. So

far, the complex hydrocarbon accumulation areas formed

by coexistence of the three pressure categories are

increasingly found in basins. Research (Pang et al. 2014a)

shows that the pressure of deep oil–gas reservoirs is deci-

ded by their genesis mechanism and genesis process.

Normal oil–gas reservoirs formed in free fluid dynamic

fields in high-porosity, high-permeability media generally

have high pressure, while unconventional oil–gas reser-

voirs formed in limited fluid dynamic fields in low-poros-

ity, low-permeability media generally end up with negative

pressure, though they appeared to show high pressure

during hydrocarbon accumulation into reservoirs. Normal

oil–gas reservoirs formed in the early years in petroliferous

basins, as the depth increased, superimposed or com-

pounded with the unconventional oil–gas reservoirs origi-

nated from the deep part before, eventually giving rise to
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Table 5 Chronological distribution of deep hydrocarbon reservoir strata in China’s petroliferous basins

Basin Oil/gas field name Target

formation

depth, m

Formation

lithology

Proved oil

reserve,

104 t

Proved natural

gas

reserve, 108 m3

Target

formation age

Tarim Basin Central Tarim gas field 4,500–6,200 Carbonate 38,600 1,020 Ordovician

Halahatang oilfield 5,900–7,100 Carbonate 20,812 – Ordovician

Donghetang oilfield [6,000 Clastic rock 3,323 – Carboniferous

Kuche deep gas region 5,000–8,000 Clastic rock – 6,448 Cretaceous

Junggar Basin Xiazijie oilfield 4,800 Volcanic rock 1,548 34 Permian

Sichuan Basin Longgang gas field 2,800–7,100 Carbonate – 730 Permian

Moxi Longwangmiao gas

field

4,500–5,500 Dolomite – 4,404 Sinian,

Cambrian

Bohai Bay

Basin

Qishan gas field 4,500–5,500 Clastic rock – 95 Paleogene

Xinglongtai gas field 4,500–5,500 Metamorphic

rock

0.75 – Archaeozoic

Songliao Basin Changling gas field 4,500–5,000 Volcanic rock – 640 Cretaceous
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superimposing or compounded, continuous oil–gas reser-

voirs, among which there can be high-pressure petrolifer-

ous reservoirs coexisting with low-pressure petroliferous

reservoirs.

4.10 Deep oil–gas reservoirs may exist

with or without a cap, and those without a cap are

typically of unconventional genesis

Forming a hydrocarbon reservoir without relying on a cap

is the unique geological feature of deep hydrocarbon

entrapment. Conventional petroleum geological theory

assumes that a cap is an indispensable geological element

for the formation and preservation of any hydrocarbon

reservoir; without a cap, it would be impossible for

hydrocarbon to gather into a reservoir in any high-porosity,

high-permeability media, since buoyancy would cause the

hydrocarbon to percolate upward to the basin surface. For

deep hydrocarbon entrapment, however, as far as the res-

ervoir media were commonly tight, a cap is not indis-

pensable (Fig. 37). The realities underlying this

phenomenon are the particular fluid dynamic fields and

material equilibrium conditions of deep oil–gas reservoirs:

(1) deep reservoirs, if commonly tight, had poor porosities

and permeabilities and limited pore throat radii, so

hydrocarbon had to overcome great capillary pressures and

the hydrostatic pressures of the overlying water columns

when it tried to charge into the reservoir; (2) for deep oil–

gas reservoirs, buoyancy was no longer the primary drive

for hydrocarbon migration; they expelled pore water and

expanded their own area by relying on the hydrocarbon

volume increase and finally became continuous oil–gas

reservoirs; and (3) the sources of tight continuous oil–gas

reservoirs formed from deep basins were close to the
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reservoir, keeping the hydrocarbon under constant diffu-

sion-accumulation equilibrium, thus enabling them to be

preserved for a long time under structural stability.

Deep oil–gas reservoirs can be developed without a cap,

but oil–gas reservoirs without a cap are generally found in

areas with tight reservoirs and stable tectonism, like deep

depressions and slope areas of the basin.

5 Major progress in deep hydrocarbon reservoir

research

Deep hydrocarbon reservoirs are attracting the attention of

more and more companies and scholars at home and abroad

and a series of research achievements have been made in

the past ten years. The major research achievements and

progresses are described as follows:

5.1 Multiple deep hydrocarbon sources in petroliferous

basins and the formation mechanisms

Traditionally, hydrocarbon researchers believed that

hydrocarbon was formed from thermal degradation of

organic matter under appropriate temperatures (60–135 �C)

and pressure (burial depth 1,500–4,500 m) in sedimentary

basins (Hunt 1979; Tissot and Welte 1978). But the for-

mation mechanism of deep hydrocarbons in a high-
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temperature and high-pressure environment is far more

complicated than it was thought to be. So far, four

hydrocarbon generation modes have been proposed by

scholars.

5.1.1 Successive generation of gas from deep organic

matter

The theory of successive generation of gas from organic

matter solved the problem of generation and expulsion of

natural gas from highly and over-mature source rocks deep

down in hydrocarbon basins (Zhao et al. 2005). The

‘‘successive generation of gas’’ mechanism means the

conversion of gas-generating matrix and succession of gas-

generating time and contribution in the gas-generating

process (Fig. 38), including two aspects: 1) the generation

of gas from thermal degradation of kerogen and cracking of

liquid hydrocarbon and soluble organic matter in coal,

which occurs successively in terms of gas generation and

contribution; and 2) part of the liquid hydrocarbon gener-

ated in the thermal degradation of kerogen is expelled from

source rocks to form oil reservoirs, but most of the liquid

hydrocarbon remains dispersed in the source rocks, where

it is thermally cracked in the highly to over-mature areas so

that the source rocks still have great gas-generating

potential.
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5.1.2 Hydrocarbon generation from hydrogenation of deep

organic matter

The generation of hydrocarbons from thermal evolution of

organic matter not only needs heat but also hydrogen. The

injection of hydrogen-rich fluids into a sedimentary basin

will definitely have a great impact on the generation of

hydrocarbon. Jin et al. conducted a simulation test with

olivine, zeolite, and source rocks, finding that the methane

yield increased by 2–3 times after the source rocks inter-

acted with the zeolite and olivine. According to analysis of

hydrocarbon generated in low-maturity source rocks in the

Dongying Sag and the Central Tarim region by Jin et al.

(2002) by means of hydrogenation thermal simulation, the

effect of hydrogenation on hydrocarbon generation for

Type II2 kerogen is distinct after the peak hydrocarbon-

generating period, while the effect on humic-type kerogen

is distinct in all periods. The effect of hydrogenation on

source rocks with poor hydrogen kerogen is more distinct

(Fig. 39).

5.1.3 Hydrocarbon generation and expulsion from deep

asphalt cracking

Paleo-reservoirs, if damaged, may produce asphalt, and

asphalt may be cracked under high temperature to generate

lighter hydrocarbons.

Gong et al. (2004) collected asphaltic sand formed by

bio-degradation in the Silurian from the Tarim Basin, and

used a high-pressure reaction vessel to investigate the

effects of heat on the compositions, isotopes, and physical

properties of the sand (Fig. 40). The results indicated that

heat had an effect on the compositions and structure of the

Silurian asphaltic sand during later-stage burial in the Ta-

rim Basin. The asphaltic sand produces gas at high tem-

perature, and the cracked gas has lighter carbon isotopes:

there are less compositions of C6? and above, and it is

dominated by light oil; the gas yield is low at low tem-

perature but increases substantially after 400 �C and

reaches its peak at 550 �C.
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Huang et al. (2012) obtained the yield curves of the

asphalt degradation products (oil and gas) under different

temperatures and further evolution process by using arti-

ficial and geological samples (Fig. 41). The hydrocarbon-

generating process of asphaltic sandstone was divided into

three stages: (1) evaporative fractionation stage

(Ro\0.9 %), during which the light components of crude

oil escaped from damaged paleo-reservoirs to form heavy

oil (or asphalt), which could not provide sufficient supply

to new hydrocarbon reservoirs; (2) Cracking stage 1

(Ro = 0.9 %–1.8 %), during which oil precipitation

increased abruptly and reached a peak, and the yield of

hydrocarbon gas increased. It was an important hydrocar-

bon supply stage in the burial process of asphaltic sand-

stone (heavy oil); (3) Cracking stage 2 (Ro[1.8 %), during

which large amounts of large molecule hydrocarbons were

decomposed and hydrocarbon gas was given off. With the

rise of temperature, the amount of liquid hydrocarbon in

the expelled hydrocarbon components decreased substan-

tially and large amounts of hydrocarbon gas was generated,

followed by a substantial decrease of the residual hydro-

carbon, and the generation of large amounts of methane. It

was an important gas supply stage.

5.1.4 Hydrocarbon generation and expulsion from deep

source rocks with low TOC

Pang et al. (2014b) believed that deep-buried poor source

rocks with low total organic carbon (TOC) concentration

can be regarded as effective source rocks. They generate

mass hydrocarbons in the long evolution of geological

history, which makes a great contribution to hydrocarbon

accumulation. Pang et al. (2014b) obtained the evolution-

ary charts of TOC of carbonate source rocks based on the

hydrocarbon expulsion threshold theory through simulation

by using the material balance method (Fig. 42). As shown

in the charts, a) the original TOC of source rocks decreases

with an increase of Ro. The TOC has a minor increase first

and then decreases substantially until a balance is reached.

The sharp decrease occurs when Ro = 0.5 %–2.0 %, and

the TOC of Type I, II, and III source rocks decreases by

62 %, 48 %, and 25 %, respectively. This is consistent

with the period of generation and expulsion of large

amounts of hydrocarbon during the thermal evolution of

organic matter. b) The abrupt TOC decrease of different

types of source rocks occurs at different times. For source

rocks of Type I, II, and III organic matter, the abrupt TOC

decrease occurs when Ro = 0.5 %, 0.7 %, and 0.9 %,

respectively. This may be related to the increasing hydro-

carbon expulsion threshold depth of the sources rocks.

Many scholars studied the hydrocarbon yield of poor

hydrocarbon carbonate source rocks through thermal

experiments (Qin et al. 2005; Hao et al. 1993; Cheng et al.

1996; Fan et al. 1997; Xie et al. 2002; Hu et al. 2005; Liu

et al. 2010b). According to the test results, the source rocks

yielded large amounts of hydrocarbon. The maximum oil

and gas yield was 40.4–482.6 kg/t TOC and 115–4,226 m3/

t TOC, respectively. This indicates the source rocks in the

deep basins with low TOC concentration are the result of

the mass generation and expulsion of hydrocarbons and can

be taken as effective source rocks under certain conditions.

Pang et al. (2014b) pointed out, for deep source rocks that

have yielded large amounts of hydrocarbon in basins, if the

regional hydrocarbon prospects are identified and evalu-

ated by using residual organic abundance indices (TOC), it

will lead to errors; for highly to over-matured source rocks

buried deep in basins, more source rocks are poor in

hydrocarbon and the errors will be more obvious. There-

fore, residual hydrocarbon indices cannot be used directly

to identify and evaluate deep-buried effective source rocks.

If TOC is used as a basic index to identify and evaluate

source rocks, comparisons should be made in the same

geological conditions (Pang et al. 2014b). Figure 43 shows

the charts of TOC recovery coefficient under different

geological conditions in accordance with the material

balance theory, we can conclude that the TOC recovery

coefficient of argillaceous source rocks (Ro [ 2.0 %) var-

ies with different parent material types; the TOC recovery

coefficient of parent material I, II, III type reaches 2.6,

1.75, 1.25 respectively; while for carbonate source rocks

the TOC recovery coefficient can reach 2.65, 7.80, 1.30

respectively. The chart allows comparison of TOC of

source rocks under different geological conditions on an

equal footing. The criteria for evaluation of effective

source rocks based on hydrocarbon expulsion thresholds of
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deep source rocks in basins are listed in Table 6. With the

criteria, Pang et al. (2014b) identified and evaluated an

effective Cambrian–Ordovician source rock in the Central

Tarim region. According to the results, the thickness of the

effective source rocks is 47 to 129 meters more than that

evaluated using the TOC = 0.5 % criterion, and the scope

of distribution is increased by 7 km2, total oil yield

increased by 182,500 million tons, and total reserves

increased by 9,300 million tons, accounting for 38.1 % of

the total resource. This reflects the importance of research

on effective source rocks with low TOC.

5.2 Deep-buried high-porosity and high-permeability

reservoirs, the formation and distribution of which

are related to structural changes and underground

fluid activities

The porosity and permeability of deep hydrocarbon reser-

voirs in basins are usually low. The deeper the reservoirs

are, the smaller the porosity and permeability will be. In

actual geological conditions, the porosity and permeability

of deep effective reservoirs vary significantly. Research

results indicate that the formation of deep-buried high-

porosity and high-permeability reservoirs is closely related

to structural changes and evolution as well as fluid activi-

ties. In general, more faults and disconformities are

developed in regions with stronger structural activities.

Faults not only serve as pathways for hydrocarbon migra-

tion, but also improve the reservoir quality. Fault devel-

oped regions generally have favorable porosity and

permeability. As shown in Fig. 44, most hydrocarbon res-

ervoirs so far discovered in the Tarim region are distributed

in fault regions. This is particularly true for carbonate

reservoirs, which are developed near faults (Fig. 44a).

Disconformities also serve as pathways for hydrocarbon

migration, and improve the geological conditions of res-

ervoirs by weathering and leaching. As shown in Fig. 45,

reservoirs near disconformities have high porosity and

permeability. High-quality carbonate reservoirs are usually

distributed within 200–300 m from an unconformity.

Sedimentary fluids have decisive effects on the granular
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structure and composition of reservoirs, and influence the

strain response and the formation of fractures and cavities

in the rock-forming process. Surface fluids may change the

physical properties of surface rocks, enabling the rocks to

accept external fluids and providing conditions for solu-

tion-pore type reservoirs reconstructed by external fluids

after being buried. Underground hot fluids are favorable for

secondary pore formation in deep reservoirs and the

accumulation of gas and oil may take place in the disso-

lution pores and cavities, fractures, and cracks.

The formation of deep effective reservoirs is usually

affected by a range of factors. For example, organic matter

generates organic acids in the process of thermal evolution.

The organic acids dissolve some minerals in the sur-

rounding rocks to form secondary pores and improve the

porosity of deep reservoirs. In the fast subsidence–sedi-

mentation of sedimentary basins, overpressure systems

may develop in shallow and high-porosity strata to reduce

the effective stress, and thus reducing the compaction and

restraining the pressure dissolution. At the same time, the

fluids in the overpressure systems have poor fluidity, which

retards the formation and cementation of rocks. That is

why deep-buried overpressure reservoirs usually have high

porosities. In summary, the high porosities of deep-buried

overpressure reservoirs in basins are the result of the fol-

lowing combined effects: reduced compaction under low

effective stress, retarded cementation due to low-fluidity

fluids, and dissolution of minerals by organic acids.

Therefore, multi-factor integrated research is required for

the evaluation of deep-buried effective reservoirs.

Deep-buried high-quality clastic reservoirs developed

over different periods in basins in China are related to such

factors as abnormally high pressure, early hydrocarbon

charging, thermal convection, gypsum-salt effects, and

sandstone and mudstone interbeds (Li and Li 1994; Gu

et al. 1998; Zhong and Zhu 2003). Dissolution, early long-

term shallow burial and late short-term deep burial,

abnormally high pressure, and early hydrocarbon charging

are key factors influencing the formation of deep-buried

high-quality clastic reservoirs in China (Shi and Wang

1995; Yang et al. 1998; Li et al. 2001; Zhong et al. 2008).

Many researchers realized that the formation and evolution

of high-porosity and high-permeability carbonate reser-

voirs are related to the epidiagenesis, dissolution of organic

acids, dolomitization, abnormally high pressure, modifi-

cation of thermal fluids, and hydrocarbon charging (Sur-

dam et al. 1989; Davies and Smith 2006; Fan 2005; Li et al.

2006; Zhu et al. 2006).

As research on deep-buried marine facies carbonate

reservoirs goes on and exploration breakthroughs are

continuously made in China, geologists have achieved a

better understanding of the formation mechanisms of sec-

ondary pores in carbonate reservoirs. Previous researchers
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insisted that secondary pores in deep-buried carbonate

reservoirs were formed as a result of the dissolution of the

carbonate rock exposed to the air, and many scholars

focused on paleo-dissolution reservoirs, ignoring the role

of karstification (dissolution) in improving the permeability

and storage properties of deep-buried carbonate reservoirs

(Zhu et al. 2006). In recent years, the fluid-rock interaction

in deep-buried hydrocarbon-bearing carbonate reservoirs

has attracted the attention of more and more scholars (Land

and MacPherson 1992; Fisher and Boles 1990; Williams

et al. 2001; Zhang et al. 2005b). As deep-buried karst is not

controlled by the base level of erosion on the surface, many

substances could induce water–rock reactions, such as

acidic water and gases produced in the process of thermal

evolution of organic matter; hot water produced by mag-

matic activities, compaction or diagenesis; acidic gases

from deep strata in basins; and hydrogen sulfide gas pro-

duced in thermochemical or microbe reduction of sulfate-

bearing carbonate rocks (Luo 2003). Pan et al. (2009)

believed, based on samples from outcrops and drilling in

the Central Tarim region, that hydrothermal karst

reservoirs may be an important type of reservoir, which has

been ignored in the exploration for Lower Paleozoic car-

bonate hydrocarbon reservoirs in the Tarim Basin, and that

there might be high-quality reservoirs along the faults, the

main pathways for the migration of hydrothermal fluids,

and fault-associated dissolution fractures and cavities. Li

et al. (2010) studied the Mid-Lower Ordovician carbonate

reservoirs in the Tahe region in the Tarim Basin. Accord-

ing to the research results, carbonate reservoirs might have

experienced strong cementation in the normal process of

deep burial diagenesis, but there were hardly any signs of

dissolution. The modification of the reservoirs might be

related to late epikarstification and structural-thermal fluid

processes (Fig. 46). Generally, the epikarstification was

followed by the structural-thermal fluid processes. The

development and distribution of the latter might be related

to the fault-fissure system and early epikarst system.

According to the research results on the Ordovician car-

bonate reservoirs in the Tarim Basin by Lin et al. (2012),

four dynamic mechanisms were involved in the structural

modification of the reservoirs and the formation of fissures
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Table 6 Revised TOC

thresholds criterion for

evaluation of effective source

rocks

Evolutionary period Muddy source rock Carbonate source rock

I II III I II III

Immature (Ro \ 0.5 %) 0.50 0.50 0.50 0.50 0.50 0.50

Mature (Ro = 0.5 %–1.2 %) 0.35 0.45 0.47 0.30 0.40 0.45

Highly mature (Ro = 1.2 %–2.0 %) 0.25 0.35 0.45 0.20 0.30 0.40

Over-mature (Ro [ 2.0 %) 0.20 0.30 0.40 0.15 0.25 0.35
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and cavities: (1) penecontemporaneous surface water

karstification of carbonate rocks to form dissolution cavi-

ties, (2) raised surface fresh water karstification of the

reservoir to form dissolution cavities, (3) deep hydrother-

mal fluid karstification of reservoir to form dissolution

cavities, and (4) stress-induced faulting to form fissures

(Fig. 47). Zhu et al. (2006) discovered in studying the

deep-buried high-quality carbonate reservoirs in the Sich-

uan Basin that, besides the dolomitization and deep dis-

solution that controlled the formation of the porous oolitic

dolomite in the Feixianguan Formation, strongly corrosive

materials produced in the TSR (thermochemical sulfate

reduction) boosted the dissolution of dolomite, leading to

the formation of porous permeable spongy oolitic dolomite

dissolution bodies, which played a constructive role in the

formation of the reservoirs. The above research achieve-

ments indicated that the deep fluids in basins might be

closely associated with the formation of high-quality car-

bonate reservoirs.

5.3 Capillary pressure difference

between inside and outside the target formation is

the main force resulting in hydrocarbon

accumulation in deep reservoirs

Forces involved in the formation of hydrocarbon reservoirs

in hydrocarbon basins mainly include buoyancy, fluid

pressure and dynamic force, expansive force of molecular

volume, capillary force, molecule adsorption force, and

intermolecular binding force (Pang et al. 2000). Under the

action of buoyancy, natural gas migrates along migration

pathways into traps in the upper part of a structure (White

1885). Under the action of the expansive force of gaseous

molecules, natural gas migrates in a piston-type and

accumulates in the lower part of a structure, with gas
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topped by water (Pang et al. 2003). Due to the capillary

pressure difference between sandstone and mudstone, nat-

ural gas migrates into lens-type sandstones with larger

pores, and accumulates at the top of the lens under the

action of buoyancy to form a reservoir (Chen et al. 2004).

The temperature and pressure in the shallow strata of

sedimentary basins are low and the rock porosity and

permeability are relatively high, so the accumulation and

migration of hydrocarbon are primarily controlled by

buoyancy. But in the deep strata, the temperature and

pressure are high and the rocks are relatively tight, so the

accumulation and migration of hydrocarbon are con-

trolled by a combination of forces. There are a variety of

hydrocarbon reservoirs in the deep strata of sedimentary

basins. In addition to conventional reservoirs in high-

porosity and high-permeability strata, there are a large

number of unconventional reservoirs in tight strata. Many

hydrocarbon reservoirs have been discovered in the low-

porosity carbonate and sandstone strata of the Junggar

Basin and Tarim Basin (Fig. 48). With the ongoing

research, geologists are gaining a better understanding of

the formation mechanisms of deep hydrocarbon reser-

voirs. Capillary pressure that causes surface potentials

has been considered to resist the flow of underground

fluids. But since Magara (1978) puts forward the idea

that capillary pressure is the primary power for hydro-

carbon migration from source rocks to reservoirs, more

and more scholars have realized that capillary pressure

difference between mudstone and sandstone is an

important factor in the formation of hydrocarbon reser-

voirs (Barker 1980; Magara 1978; Pang et al. 2000; Chen

et al. 2004; Zhao et al. 2007; Li et al. 2007), and par-

ticularly that lithological traps such as sandstone lenses

and pinch-outs are in a direct contact with deep mud-

stones in the part of basins. Therefore, capillary pressure

difference might be one of the key forces for the for-

mation of lithological hydrocarbon reservoirs included in

sources rocks or in contact with source rocks. Surface

potential is more significant to the formation of deep-

buried lithological hydrocarbon reservoirs (Huo et al.

2014a). In the sand–mud contact zone, there is capillary

pressure difference between sandstone and mudstone as
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former has bigger pores than the latter. Pang et al. (2006)

and Wang et al. (2013) through the physical experiments

concluded that the greater the capillary pressure differ-

ence is between the inner sandstone and outer mudstone

in a trap, the better hydrocarbon accumulation conditions

will be in the sandstone (Fig. 49). Under strata condi-

tions, as the wall rock is compacted, the pore throat

radius of the wall rock is much smaller than that of

isolated sand bodies. Due to the capillary pressure dif-

ference between them, hydrocarbon migrates inwards. So,

capillary pressure difference might be one of the key

factors that led to the migration of hydrocarbon from the

wall rock into the isolated sand bodies. A large number

of tight reservoirs were developed in the deep strata of

basins. The research of Pang et al. (2006) showed that

hydrocarbon was not affected or less affected by buoy-

ancy in tight media. The surface potential or capillary

pressure difference between reservoir and external strata

is a key factor affecting the accumulation of hydrocarbon

in tight media (Fig. 50). The pressure difference has the

following effects: (1) hydrocarbon migrates from the

source rock into the reservoir due to capillary pressure

difference. The greater the difference between the inner

and outer capillary pressure or between the inner and

outer surface potential, the higher the saturation of

hydrocarbon in the reservoir, and the better the gas-

bearing properties. (2) Due to capillary pressure differ-

ence, hydrocarbon in the tight reservoir migrates from a

low-porosity and low-permeability rock to a high-poros-

ity and high-permeability rock to form hydrocarbon-rich

‘‘sweet spots’’. (3) When faulting or fissuring occurs in a

tight reservoir, the capillary force will decrease and the

surface potential will drop, causing capillary pressure

difference and the accumulation of hydrocarbon to fault

zones and formation of ‘‘sweet spots’’. Exploration

practice has proved that there are large numbers of

hydrocarbon-rich ‘‘sweet spots’’ in the extensive, con-

tinuous tight sandstone reservoirs in the deep strata of
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basins, and most of them were formed due to faulting

and fissuring in late periods.

5.4 Three dynamic boundaries of deep hydrocarbon

reservoirs

The accumulation and migration of gas and oil are con-

trolled by many geological conditions, including tempera-

ture, pressure, source of oil and gas, migration path, traps,

etc. The formation and distribution of deep oil–gas reser-

voirs are mainly constrained by three force balance

boundaries in terms of the dynamic mechanics. The first

dynamic boundary is buoyancy-controlled threshold. It is

the upper boundary of formation and distribution of

unconventional tight reservoirs. The buoyancy-controlled

threshold is the maximum depth of non-buoyancy-driven

hydrocarbon migration in a hydrocarbon basin. The for-

mation and distribution of hydrocarbon reservoirs in

hydrocarbon basins are controlled by the dynamic bound-

ary formed by different thresholds (Pang 2010; Pang et al.

2014a). The buoyancy-driven hydrocarbon accumulation

threshold is a new geological concept in relation to buoy-

ancy-driven hydrocarbon accumulation (White 1885). Pang

et al. (2014a) maintained that the buoyancy-driven hydro-

carbon accumulation threshold is the threshold beyond

which buoyancy will have less effect on the accumulation

of hydrocarbon in highly compacted strata as the burial

depth increases. Generally, it is characterized by porosity,

pore throat radius, and permeability geological parameters

of strata at certain burial depths (Fig. 51).

With respect to the causes of the buoyancy-controlled

threshold, scholars have different views. Masters held that

buoyancy-controlled threshold is caused by the relative

variation of permeability of strata (Masters 1979); other

scholars argued that geological conditions such as diage-

netic difference (Cant 1986), fault seals (Cluff and Cluff

2004) and force equilibrium mechanisms (Berkenpas 1991)

are the causes. These views may be used to explain the

phenomena of non-buoyancy-controlled hydrocarbon

accumulation in some basin areas, but cannot explain it in a
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broader sense. Through physical simulation experiments

(Fig. 52), Pang et al. (2013, 2014a) believed that there

exists an equilibrium of forces affecting the migration of

natural gas at the buoyancy-controlled threshold. Charge

pressure is the dynamic force and capillary force and

overlying water pressure are the resistances. The equilib-

rium between the driving force for upward migration of

hydrocarbon (Pe) and capillary force in tight media (Pc)

and overlying static water pressure (Pw) is the dynamic

mechanism of buoyancy-driven hydrocarbon accumulation

thresholds. Figure 52 shows the physical simulation

experiment results of buoyancy-controlled threshold in a

tapered glass tube; it can be quantified by the dynamic

equilibrium equation Pe = Pw ? Pc. Similar results have

been obtained based on the physical simulation experiment

using a thick tube filled with sandstone of different sizes

(Pang et al. 2014a).

The fundamental reason why hydrocarbon in deep tight

strata of hydrocarbon basins is not controlled by buoyancy

is that the sum of rock capillary force and overlying static

water pressure is greater than the pressure in the hydro-

carbon reservoir. When the pressure in the hydrocarbon

reservoir is greater than the sum of the two forces, buoy-

ancy will cause hydrocarbons to migrate upwards to the

surface or scatter. The equilibrium of forces is the dynamic

mechanism of buoyancy-controlled threshold, which can

be expressed in Eqs. (1)–(3):

Pe ¼ Pw þ Pc; ð1Þ

where Pe is oil reservoir pressure, which can be expressed

as follows:

Peg ¼
z� qg

Mg

� R� T � 1:01� 102; ð2Þ
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Peo ¼
RT

V � b
� a

V2
¼ qoRT

Mo � qob
� q2

o � a

M2
o

; ð3Þ

where Peg is the gas reservoir pressure, MPa; z is the gas

deviation coefficient (compressibility factor), dimension-

less; R is the universal gas constant, 0.008314 MPa m3/

(kmol K); T is the absolute temperature of natural gas, K;

Mg is natural gas molar mass, kg/kmol; qg is the natural gas

density under strata conditions, kg/m3; Peo is the oil res-

ervoir pressure, MPa; qo is the oil density under strata

conditions, kg/m3; Mo is the molar mass of oil, kg/kmol;

and a, b are van der Waals constants.

The change of any geological parameter in the force

equilibrium equations of the buoyancy-controlled threshold

will lead to changes of the critical conditions of the

buoyancy-controlled threshold. Factors include different

driving forces, fluid physical and chemical properties,

strata conditions, and the structural environment of basins.

Driving forces include hydrocarbon reservoir pressure (Pe),

overlying static water pressure (Pw), and reservoir media

capillary forces (Pc). The change of any force will lead to

change of the buoyancy-driven hydrocarbon accumulation

threshold; fluid physical and chemical properties include

hydrocarbon-water interface tension, contact angle, den-

sity, and temperature; strata media conditions include

porosity, permeability, and pore throat radius; the structural

environment of basins refers to structural changes of a

basin that affect the distribution scope of the buoyancy-

driven hydrocarbon accumulation threshold.

Under actual geological conditions, the buoyancy-con-

trolled threshold is affected by a combination of the above

factors. Research results indicate that the depth of the

buoyancy-controlled threshold increases and the corre-

sponding porosity, permeability, or pore throat radius

decreases as the sand grain size increases under the

circumstances that all the conditions are favorable, and that

the corresponding burial depth, porosity, permeability, or

pore throat radius of the buoyancy-controlled threshold

force equilibrium decreases as the sand grain sorting dif-

ficulty increases. According to statistics, generally, the

buoyancy-controlled threshold of hydrocarbon basins is as

follows: porosity \12 %, permeability \1 mD, and pore

throat radius\2 lm. Although porosity is often considered

a characteristic parameter of buoyancy-controlled thresh-

old, in fact, whether hydrocarbon is controlled by buoy-

ancy in a reservoir or not is mostly decided by the pore

throat radius, because it has a direct effect on the capillary

force affecting the migration of hydrocarbon. For carbonate

reservoirs with smaller porosities, the migration of hydro-

carbon is also affected by buoyancy in fissure developed

areas. The general relations between porosity, permeabil-

ity, and pore throat radius are shown in Fig. 53.

Buoyancy-controlled threshold distribution under actual

geological conditions can be predicted based on the equi-

librium equation (Eqs. (1)–(3)). Figure 54 shows the pre-

dicted buoyancy-controlled threshold of tight sandstone

reservoirs of the Upper Paleozoic in the Ordos Basin in

China based on the force equilibrium equations. The results

indicated that they correspond to geological conditions of

porosity \10 % and permeability \1 mD. Below the

dynamic boundary, gas is filled in the tight reservoirs of

adjacent source rocks; above the boundary, natural gas

accumulates only in the upper part of the structure. Fig-

ure 55 shows the comparison of predicted buoyancy-driven

oil accumulation thresholds with drilling results in the

Putaohua reservoir in the Songliao Basin. As shown in

Fig. 55, liquid oil also has a buoyancy-controlled thresh-

old, and the force equilibrium boundary corresponds to the

burial depth with a porosity between 10 % and 11 %.

Above this boundary, liquid oil reservoirs have the features
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of high-point accumulation, high-porosity enrichment,

high-point sealing, and high pressure; below the boundary,

liquid oil reservoirs have the features of low-depression

accumulation, low-stand inversion, low-porosity enrich-

ment, and low-pressure stability. The consistency of the

theoretic prediction results with the actual drilling results

reflects the existence of a buoyancy-controlled threshold

and the practicality and reliability of the prediction model

for both natural gas and liquid oil. Their difference is small

(Pang et al. 2013, 2014a).

The second dynamic boundary is the hydrocarbon

accumulation limit. It is the maximum depth for hydro-

carbon accumulation under geological conditions. The

enrichment and accumulation of hydrocarbons require

certain temperature and pressure conditions. Theoretically,

each hydrocarbon basin may have a hydrocarbon accu-

mulation threshold at a certain depth, below which

hydrocarbon accumulations do not exist. The dynamic

boundary corresponding to the lower limit of hydrocarbon

accumulation is regarded as the hydrocarbon accumulation

threshold. According to Pang et al. (2014a), the hydrocar-

bon accumulation limit is the maximum burial depth or

corresponding critical geological condition for hydrocar-

bon accumulation in hydrocarbon basins, which can be

characterized by the porosity, permeability, or pore throat

radius of a reservoir (Fig. 56). Pang et al. (2014a) recog-

nized through analysis that the corresponding critical

values of the hydrocarbon accumulation limit in clastic

petroliferous basins are generally as follows: porosity is

less than 2 %–2.4 %, permeability is less than 0.01 mD,

pore throat radius is less than 0.01 lm, and burial depth is

5,000–8,000 m.

Many scholars discovered through research using dif-

ferent methods that there is a physical threshold for sedi-

mentary basin oil–gas-bearing reservoirs, below which

hydrocarbon does not accumulate or has no exploration

significance (Wan et al. 1999; Guo 2004; Shao et al. 2008).

Through analysis of actual mass exploration results, four

different methods have been used to determine hydrocar-

bon accumulation limits in the deep part of hydrocarbon

basins by Pang et al. (2014a): (1) As the burial depth

increases, the bound water saturation in the reservoir will

reach 100 %, resulting in the termination of hydrocarbon

accumulation. When the bound water saturation reaches

100 % in the Fuyang sandstone reservoir in the Songliao

Basin, the hydrocarbon accumulation limit porosity is

2.4 %–4 %; when the bound water saturation reaches

100 % in the hydrocarbon-bearing sandstone in the Kuqa

Depression in the Tarim Basin, the hydrocarbon accumu-

lation limit porosity is about 2.4 %. Figure 56 shows an

example of this. (2) The hydrocarbon accumulation limit

can be determined when the porosity and permeability as a

function of buried depth do not allow the migration of oil

and gas normally. As the burial depth increases, the
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reservoir permeability under actual geological condition

decreases as a result of compaction strengthening. Fig-

ure 57 shows an example. (3) The hydrocarbon accumu-

lation limit can be determined when capillary pressure

difference between inside and outside the reservoir or the

potential difference tends to disappear as a function of

buried depth. As the burial depth under actual geological

conditions increases, the potential difference between

inside and outside the reservoir will disappear, resulting in

the termination of hydrocarbon accumulation. Figure 58

shows the hydrocarbon accumulation limits in terms of

inner and outer potential difference of major target reser-

voirs in the Jiyang Depression in the Bohai Bay Basin in

eastern China and the Kuqa Depression in the Tarim Basin

in western China are at burial depths of 6,000 and 8,500 m,

respectively (Fig. 58). (4) The hydrocarbon accumulation

limit can be determined based on the exploration well data

from a 100 % dry bed. When a 100 % dry bed was met in

the exploration well during drilling for the purpose of

understanding the hydrocarbon and water distribution in

the Central Tarim Basin region, the reservoir porosity was

less than 2 %, so it is taken as the hydrocarbon accumu-

lation limit (Fig. 59).

We highlight here that the hydrocarbon accumulation

limit is not a threshold indicating the existence of hydro-

carbon. When hydrocarbon exists in reservoirs below this

limit, it was probably accumulated before entering the

threshold, below which there may be exploration risks

because the strata porosity is low and accumulation has

terminated. There may be hydrocarbon (liquid oil) reser-

voirs of industrial value in strata with a burial depth of

6,000 m, and even with a burial depth exceeding 8,000 m

in some basins in the world. The threshold of deep

hydrocarbon accumulation in hydrocarbon basins is in a

wide range and changes according to certain rules. As the

sand grain size increases or the sand grain sorting difficulty

decreases, the hydrocarbon accumulation limit becomes

deeper.
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The third dynamic boundary is the lower limit of

hydrocarbon generation of source rocks. It usually refers to

the critical geological condition that hydrocarbon output of

organic-rich source rocks is less than 1 % of the total.

Methods used to determine the lower limit of hydrocarbon

generation mainly include the amount of residual hydro-

carbon, organic element variation, hydrocarbon generation

potential, and efficiency of hydrocarbon expulsion. The

residual hydrocarbon capacity of source rocks is expressed

by the amount of residual hydrocarbon in organic carbon

(S1/TOC) or chloroform asphalt (‘‘A’’/TOC). The residual

hydrocarbon S1/TOC or ‘‘A’’/TOC of the source rocks

increases at first followed by a gradual decrease as the depth

or Ro increases, generating a ‘‘belly-shaped’’ curve. When

S1/TOC or ‘‘A’’/TOC reaches a minimal value which is so

small that change is hardly visible, it means that hydrocar-

bon is no longer generated and expelled from the organic

matter, and the Ro value at such minimal value is the lower

limit of hydrocarbon generation (Fig. 60a). The organic

element variation method is described as follows: When

H/C and O/C in the source bed reaches a minimal value

which is so small that change is hardly visible, the source

rock will no longer yield hydrogen-rich hydrocarbons. That

is the lower limit of hydrocarbon generation. Theoretically,

when hydrocarbon generation terminates, H/C will no

longer change when reaching a minimal value. Huo et al.

(2014b) determined the lower limit of hydrocarbon gener-

ation of carbonate rocks in the basin-platform region of the

Tarim Basin, by supposing that the minimal value

H/C = 0.1 and the H/C value at Ro = 0.5 % as the maxi-

mum value (Fig. 60b). In the diagram of hydrocarbon gen-

eration potential changes of source rocks, (S1 ? S2)/TOC is

the current hydrocarbon generation potential index of the

source rocks. Due to hydrocarbon generation and expulsion

from the source rocks, (S1 ? S2)/TOC increases first fol-

lowed by a gradual decrease as the depth or Ro increases,

generating a ‘‘belly-shaped’’ curve. When the hydrocarbon

generation potential reaches a certain minimal value, the

hydrocarbon generation potential stops changing. This

means that the source rock stops generating hydrocarbon

and the lower limit of hydrocarbon generation of the source

rock is reached (Fig. 60c). The amount of hydrocarbon

expelled from source rock increases at first followed by a

gradual decrease as the depth or Ro increases. When the

amount of expelled hydrocarbon drops to zero or a minimal

value, it means that hydrocarbon expulsion stops, and

hydrocarbon generation may also have stopped. The Ro

value when the amount of expelled hydrocarbon is zero or

reaches a minimal value is the lower limit of hydrocarbon

generation. When the amount of expelled hydrocarbon is

zero, the hydrocarbon expulsion rate is also zero, but the

hydrocarbon expulsion efficiency increases to the maximum

of nearly 100 %. The lower limit of hydrocarbon generation

can be determined according to the hydrocarbon expulsion

rate and efficiency instead of the amount of expelled

hydrocarbon. According to the lower limit of hydrocarbon

generation concept, the Ro value when Fe = 99 % is the

lower limit of hydrocarbon generation (Fig. 60d).
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5.5 The formation and distribution of deep

hydrocarbon reservoirs are controlled by three fluid

dynamic fields

Research on fluid dynamic fields originated from fluid

dynamics research in the domain of geodynamics. In 1953,

Hubbert (1953) proposed the fluid potential concept in

order to describe energy changes and migration rules of

underground fluids. Ye et al. (1999) made a detailed

description of the concept, pointing out that a fluid

dynamic field is an integration of temperature, pressure,

fluid potential, and structural stress fields in a sedimentary

basin and their relations. Based on the above analysis that

there is a buoyancy-controlled threshold and a hydrocarbon

accumulation limit in the deep part of each hydrocarbon

basin, Pang et al. (2014a) suggested that a hydrocarbon

basin may be divided into three dynamic fields according to

buoyancy-controlled threshold and hydrocarbon
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accumulation limit. Strata above the buoyancy-controlled

threshold are called the free fluid dynamic field; strata

between the buoyancy-controlled threshold and hydrocar-

bon accumulation limit are in the limited fluid dynamic

field; and strata below the hydrocarbon accumulation limit

are in the bound fluid dynamic field (Fig. 61). The fluid

dynamic field is referred to the strata field where the

hydrocarbon has identical or similar media, migration–

accumulation force and reservoir-forming rule.

The research conducted by Pang et al. (2014a) shows

that deep hydrocarbon reservoirs are controlled by free and

limited fluid dynamic fields. The free fluid dynamic field is

where conventional hydrocarbon reservoirs develop, and

where buoyancy has a dominant effect on the migration

and accumulation of hydrocarbons, with the hydrocarbon

distribution features of high-point sealing and accumula-

tion, high-porosity enrichment, and high-pressure stability.

The limited fluid dynamic field is where tight hydrocarbon

reservoirs develop, and where buoyancy has less effect on

the migration and accumulation of hydrocarbons. The

sandstone porosity in this field is generally 2.4 %–12 %,

permeability is 0.01–1 mD, and pore throat radius is

0.01–2 lm. In this formation area, three major tight

hydrocarbon reservoirs are formed. (1) the conventional

tight hydrocarbon reservoirs are developed from pre-

existing conventional reservoirs under compaction, i.e.,

first forming reservoirs and then being compacted, such

reservoirs are characterized by the features of high-point

accumulation, high-stand sealing, and high-pressure sta-

bility; (2) the tight deep basin gas reservoirs underwent the

process of first compaction and then reservoir forming.

They show the features of low-depression accumulation,

low-stand inversion, low-porosity enrichment, and low-

pressure stability. They are mainly formed by the expan-

sion of the petroleum area caused by the volume expansion

of hydrocarbon when migrating into the tight reservoirs;

(3) the tight superimposed hydrocarbon reservoirs are

formed by the combination of the two hydrocarbon reser-

voir types mentioned above, which are formed by com-

paction and molecule volume expansion. They underwent

three stages, i.e., reservoir forming—compaction—reser-

voir forming. They generally show the features as follows:

the coexistence of oil and gas of high and low points; the

coexistence of oil and gas of high and low porosity; the

coexistence of oil–gas-bearing zone of high and low

pressure; the coexistence of oil–gas reservoirs of high and

low production. A superimposed continuous hydrocarbon

reservoir is formed by the superimposition of the tight

hydrocarbon reservoirs mentioned above (Pang et al.

2014a). The bound fluid dynamic field is at the bottom of

the basin, and the oil and gas in it were accumulated at an

early stage and retained from that earlier time. The risk of

exploration and development is huge in this field, as the

target formation is characterized by deep-buried depth, low
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porosity and permeability, and lack of formation energy

(Fig. 62). Later tectonism may damage and reconstruct the

hydrocarbon reservoirs and develop fracture type, cave-

type, or fracture-cave complex-type hydrocarbon reser-

voirs. They are tight reservoirs, but the porosity and per-

meability may be good in some parts of the area, which

then show the geological features of conventional hydro-

carbon reservoirs.

The distribution of fluid dynamic fields varies in dif-

ferent basins. It is affected by the following three factors in

the deep strata of hydrocarbon basins: (1) The changing

rate of porosity and permeability with the burial depth. The

depth of a fluid dynamic field decreases as the changing

rate increases, and vice versa; (2) The uplifting of deep

strata as a result of erosion of overlying strata leads to the

uplifting of tight strata as a whole and the limited and

bound fluid dynamic fields in the basins uplift to a shallow

formation or even to the surface; (3) Faults caused by

structural changes may damage the fluid dynamic field

boundary in hydrocarbon basins. Faults may change a

limited fluid dynamic field into a free fluid dynamic field

near the faults and damage some reservoirs. Overall

faulting may change the deep part into a free fluid dynamic

field to form conventional hydrocarbon reservoirs under the

effect of buoyancy.

5.6 Tight hydrocarbon resources in limited deep fluid

dynamic fields and exploration prospects

Tight hydrocarbon reservoirs in limited deep fluid dynamic

fields can be divided into three types by the development

mode: conventional reservoirs, deep basin reservoirs, and

composite reservoirs, and each has its own unique forma-

tion process. Conventional tight reservoirs were deep-bur-

ied conventional reservoirs formed under the action of

buoyancy after long years of compaction and diagenesis,

characterized by an ‘‘accumulation followed by tighten-

ing’’ process; deep basin tight reservoirs were formed by

hydrocarbons expelled from source rocks and accumulated

in adjacent tight rocks without being controlled by buoy-

ancy forces. These reservoirs are characterized by a

‘‘tightening followed by accumulation’’ process; composite

tight reservoirs are a combination of conventional tight

reservoirs and deep basin tight reservoirs, characterized by
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an ‘‘accumulation-tightening-accumulation’’ process. Fig-

ure 63 shows the migration–accumulation force, source-

reservoir matching, major controlling factors, and reservoir

forming modes in the three tight hydrocarbon reservoirs.

Deep reservoirs in hydrocarbon basins have better

forming and preserving conditions than shallow ones in the

following aspects: (1) Reservoir tightness. Buoyancy has

less effect on the migration and accumulation of hydro-

carbons. This means that all hydrocarbons from source

rocks during this period are not easily dispersed, and the

preservation conditions are much better than those in the

free fluid dynamic field. (2) Thermal maturity of source

rocks. The geotemperature is high, between 100 and

200 �C, and Ro is 1.2 %–2.5 %. The hydrocarbon yield of

per unit weight of parent matter is 1.0–2.2 t/tc, and

hydrocarbon expulsion efficiency is 25 %–99 %, equiva-

lent to 2 and 5 times those in the free fluid dynamic field,

respectively. (3) Hydrocarbon migration and accumulation

efficiency. Hydrocarbons from source rocks accumulate in

adjacent rocks to form reservoir resources. The migration

and accumulation efficiency is 3–10 times that in the free

fluid dynamic field. (4) The hydrocarbon targets in limited

deep fluid dynamic fields have experienced the evolution

period of free fluid dynamic fields, and the conventional

reservoirs formed in early periods accumulated in limited

fluid dynamic fields, where they were compacted and

changed into conventional tight reservoirs as part of the

hydrocarbon resources of limited fluid dynamic fields. The

oil and gas resource evaluating results of limited fluid

dynamic fields in several China major basins evaluated by

Pang et al. (2014a) indicate the oil and gas resource

accumulated in the field accounts for more than 84 % of

the total basin resource.

The hydrocarbon resource potential is different in dif-

ferent types of tight reservoirs in deep petroliferous basins.
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affected and controlled by single factor (Fig. 64). (1) under

the control of terrestrial heat flow or geothermal gradient in

the basin, ‘‘cold basins’’ characterized by low geothermal

gradient and terrestrial heat flow values are favorable for

deep oil and gas exploration. They can develop both free

fluid dynamic fields and limited or bound fluid dynamic

fields below a depth of 4,500 m with an extensive forma-

tion area for favorable exploration. Their resource potential

is huge and a variety of hydrocarbon reservoir types are

found in the basins with promising exploration prospects.

‘‘Hot basins’’ characterized by a high geothermal gradient

and terrestrial heat flow values are unfavorable for deep oil

and gas exploration, only developing a limited fluid

dynamic field below the depth of 4,500 m with limited

formation area favorable for exploration. Their resource

potential and reservoir types are limited, with huge

exploration risk. ‘‘Warm basins’’ whose geothermal gra-

dient and terrestrial heat flow values are between ‘‘cold

basins’’ and ‘‘hot basins’’ have an extensive formation area

favorable for exploration and the resource potential and

exploration prospects are between the two extremes. (2)

When hydrocarbon source rocks are widely developed and

hydrocarbon generation and expulsion amounts are large,

the exploration potential is favorable. When a source-res-

ervoir-cap rock combination is completed and the cap rock

condition is good, the exploration potential is also favor-

able. (3) When intense tectonic movements occurred with

fractures dominating, deep oil and gas reservoirs are sus-

ceptible to damage leading to low exploration potential.

When a deep fluid dynamic field is uplifted to middle–

shallow formation due to the denudation of overlying

strata, the oil and gas exploration potential is weakened

below a depth of 4,500 m. For example, the limited fluid

dynamic field is currently above a depth of 4,500 m in the

Chu-Saleisu Basin, Kazakhstan, resulting from the overall

uplifting caused by the denudation of overlying strata. So

the bound fluid dynamic field, which is unfavorable for oil

and gas exploration, is currently developed below a depth

of 4,500 m.

6 Geological research directions for hydrocarbons

in deep petroliferous basins

6.1 Identification of deep hydrocarbon sources

and relative contribution evaluation

The sources of deep hydrocarbons are complex. Some have

single source and some have mixed sources. The hydro-

carbon can originate from degradation of organic matter,

from thermal cracking of asphalt sand or dispersed organic

matter, or from the catalytic action of deep hydrothermal

activity so it is very important to understand the origin of

deep hydrocarbon and evaluate relative contributions. This

will play a leading role in determining the hydrocarbon

resource potential and favorable exploration directions.

Scholars have done a lot of research into the identification

of hydrocarbon sources and quantitative evaluation of

hydrocarbon contributions using a variety of methods,

laying a solid foundation for further work.

Methods for hydrocarbon source identification mainly

include total hydrocarbon gas chromatographic
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fingerprints, n- and iso-alkane hydrocarbon ratios, steroids/

terpenoids, aromatics, non-aromatics, as well as family

composition and carbon isotope studies (Gormly et al.

1994; Telnæs and Cooper 1991; Stahl 1978; Seifert 1978;

Hirner et al. 1981); index comparison using aromatics and

thiophene compounds (Michael et al. 1989; Mukhopadhy-

ay et al. 1995; Jing 2005) and comprehensive crude oil

light hydrocarbon analysis for multi-period and multi-

source reservoirs (Chen et al. 2006; Philippi 1981; Odden

et al. 1998; Chen et al. 2003).

Methods for quantitative evaluation of the relative

contribution of mixed hydrocarbon sources mainly include

special compound absolute concentration quantification

(Zhang et al. 2005a), biomarker parameters (Li et al. 2002),

carbon isotope ratios (Song et al. 2004), and chart matching

(Wang et al. 1999, 2004).

In deep strata, there are multiple sets and multiple

varieties of hydrocarbon sources (including shale, carbon-

ate, paleo-reservoir asphalt, and inorganic hydrocarbons)

and multiple hydrocarbon-generating points, which expe-

rienced a number of periods of hydrocarbon generation and

expulsion and multiple hydrocarbon migration pathways

(faults, unconformities, carrier systems, and combinations).

For source rocks that experienced many periods of evolu-

tion, the results of comparison using a single biomarker

will be seriously affected by the degree of maturity. For

multiple sets of source rocks, the results of analysis using

the carbon isotope method will be affected by the sedi-

mentary environment and climate conditions. Therefore,

integrated analysis is required for the determination of deep

hydrocarbon sources, including geological (altitude, log

response, color, and mud content) and geochemical (bio-

marker, carbon isotope) analysis. The determination of

deep hydrocarbon sources and evaluation of relative

contributions are important to the evaluation of deep

hydrocarbon resources and determination of hydrocarbon

exploration fields.

6.2 Genetic mechanisms and preservation conditions

of deep-buried high-quality reservoirs

Deep reservoirs include clastic, carbonate, volcanic, and

metamorphic reservoirs. Research on the genesis and preser-

vation of high-quality, high-porosity, and high-permeability

reservoirs has drawn the attention of many geologists, but

there is hardly any research done on the physical thresholds of

deep-buried reservoirs. Although the limited fluid dynamic

field mainly forms tight hydrocarbon and unconventional

reservoirs, what concerns people is still ‘‘sweet point’’ for-

mation in high-porosity and high-permeability reservoirs. The

most important part of deep oil and gas exploration is to find

these reservoirs under current conditions.

The genesis of deep-buried high-quality reservoirs

mainly includes dissolution by organic acids (Surdam et al.

1984), effects of hydrocarbon charging and deep thermal

fluids (Navon et al. 1988), clay mineral membranes (Eh-

renberg 1993; Dolbier 2001), temperature and depth (Ezat

1997), faulting (Moretti et al. 2002), abnormal pressure

(Wilkinson et al. 1997; Osborne and Swarbrick 1999),

effects of fractures (Harris and Bustin 2002), sedimentary

environment (Amthor and Okkerman 1998; Khidir and

Catuneanu 2003; Pape et al. 2005; Rossi et al. 2001), and

tectonics (Watkinson and Ward 2006). Preservation

mechanisms mainly include early hydrocarbon charging

(Gluyas et al. 1990; Robinson and Gluyas 1992; Rothwell

et al. 1993), grain coating (Heald and Larese 1974; Ramm

et al. 1997), and overpressure (Ramm et al. 1997; Osborne

and Swarbrick 1999).
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There is little research on physical thresholds of deep

reservoirs. Deep clastic reservoirs are extensively distrib-

uted, ranging from 3,000 to 6,000 m, but most are dis-

tributed between 3,500 and 4,000 m (Wood and Hewett

1984; Surdam et al. 1984; Gaupp et al. 1993; Ehrenberg

1993; Gu 1996; Gu et al. 1998, 2001; Aase et al. 1996;

Wilkinson et al. 1997). Deep carbonate reservoirs have

developed secondary pores (such as leaching pores and

dissolution pores), cracks, and fissures, which greatly

improve the physical properties of the reservoirs even at

considerable depths (Shi et al. 2005; Xie et al. 2009). Deep

volcanic reservoirs are buried deep, with complicated

geological conditions, which add to the particularity and

uncertainty of the reservoirs (Zhang and Wu 1994; Liu

et al. 2010a). The physical properties of deep metamorphic

reservoirs are decided by the development of fractures and

are affected by structural movements and faulting activities

(Nelson 1985; Waples 1990; Walker and James 1992;

Nelson 2000).

Due to the burial depth, long evolutional history, mul-

tiple formation mechanisms, and complicated distribution,

geological and geophysical exploration for deep reservoirs

is difficult, and limited by technical conditions. The

accuracy of geophysical data is low, the number of deep

wells and ultra-deep wells are limited, and the availability

of original data cannot be guaranteed. Besides, there are

intense diagenesis and structural volcanic activities and

abnormal pressures. All of these add to the difficulty in

understanding the genesis of deep-buried high-porosity and

high-permeability reservoirs. Traditional petroleum and

geological theories can neither explain why there are

porosities of 20 % or more at such depths nor guide the

exploration and development of deep reservoirs. Therefore,

understanding the genesis and preservation mechanisms of

deep-buried high-quality reservoirs and studying the

physical thresholds of different reservoirs are of great

significance to improving the success rate of deep effective

reservoir exploration and reducing exploration risks.

6.3 Phase behavior and conversion mechanisms

of deep hydrocarbon and its distribution prediction

Deep hydrocarbons are subject to complicated temperature

and pressure conditions and are affected by multiple fluid

compositions. Understanding the phase behavior of oil and

gas accumulation in deep basins plays a leading role in

revealing its genetic mechanism and distribution regularity.

The temperature and pressure environment of deep

hydrocarbon reservoirs mainly include high tempera-

ture ? high pressure, high temperature ? low pressure,

low temperature ? high pressure, and low tempera-

ture ? low pressure (Miao et al. 2000; Gu et al. 2001; Jiao

et al. 2002; Ma et al. 2005; Meng et al. 2006; Zhang et al.

2008). Deep hydrocarbon reservoirs are primarily com-

posed of gaseous hydrocarbons, oil gas mixtures, oil, water

vapor, and water (Zhang 2006). Due to the unique tem-

perature and pressure environment, deep hydrocarbons

exist in three forms: free, dissolved, and adsorbed, and

three phases: oil, gas, and mixed (Tuo 2002; Shi et al.

2005; Wu and Xian 2006; Huang et al. 2007).

The migration of deep hydrocarbons is affected by a

variety of forces, such as buoyancy, (oil) gas molecular

expansive force, capillary force, molecular adsorption, and

binding forces, which jointly act on the accumulation and

entrapment of hydrocarbons (Pang et al. 2007b). For deep

conventional reservoirs, buoyancy is the main force on the

migration of hydrocarbons; for deep unconventional res-

ervoirs, gas molecular expansion is the main force (Gies

1984; Pang et al. 2003; Xiao et al. 2008; Ma et al. 2009;

Jiang et al. 2010; Zhu et al. 2010).

Affected by the widely different temperature and pres-

sure conditions and complicated fluid compositions, deep

hydrocarbon reservoirs occur in different forms, which are

difficult to predict. Besides, due to the unique porosity and

permeability conditions, the fluid moving forces are so

complicated that it is impossible to characterize the

dynamic mechanism that controls the hydrocarbons. In

addition, the hydrocarbon driving forces are related to the

conditions in a complicated manner. Different hydrocarbon

phases have different forces, and the forces are affected by

the hydrocarbon phases. Therefore, the formation of deep

hydrocarbon reservoirs is not only related to fluid compo-

sition and occurrence conditions, but also is jointly con-

trolled by a range of forces including buoyancy. Prediction

of the occurrence conditions of deep fluids and character-

ization of their dynamic mechanism are important to the

scientific prediction of deep hydrocarbon resources and the

determination of favorable exploration directions.

6.4 Economic feasibility evaluation for deep-buried

tight hydrocarbon exploration and development

The exploration and development of deep hydrocarbons is

difficult, and the investment return is low. It not only relies

on the further understanding of related theories, but also is

affected by technical (well drilling and completion tech-

niques) and economic feasibilities.

Economic feasibility is a key to the development of deep

hydrocarbon exploration and can decide the exploration

direction. It is related to development costs and profits.

Profits are affected by the international oil price. Oil

exploration is a system, in which drilling costs account for

about 50 %–70 % of the total production costs and drilling

costs increase considerably as the drilling depth increases

(Du and Yao 2001). According to research by some

scholars, drilling costs increase exponentially, instead of
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linearly, as the depth increases (Guan et al. 2012). Profits

are mainly affected by oil price and output. The higher the

oil price is, the more output there will be, and the more

profit it will bring. Output is controlled by the market as

well as geological and engineering factors. The higher the

international oil price is, the more output there will be.

Rapid increase of output will in turn restrain the price rise.

According to the 2014 International Energy Agency, the

United States will close 2 % of its shale wells if the

international oil price drops below $80/bbl; it will close

18 % of its shale wells if the international oil price drops

below $60/bbl. This suggests that production profits are the

motive force of hydrocarbon exploration. Cost and break-

even analysis and economic feasibility research are

important factors for the prediction of deep hydrocarbon

exploration prospects.
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