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INTRODUCTION 

Enabled by Lee de Forest's invention of the vacuum tube triode in 1906, power amplification of elec­
trical signals has played a key function in electronic systems ever since. Mundane devices we take for 
granted such as the telephone, the radio, or the television would not exist without this capability. Given 
such a wide application space, it is not surprising that early on electrical engineers have worked out the 
details of designing good power amplifiers (PAs), first with vacuum tubes, and then with discrete tran­
sistors [1]. They did such a fine job that by the second part of the twentieth century, the art of design­
ing PAs became a mature electrical engineering (EE) specialty, which seemed to have little room left 
for breakthroughs or major innovations. However, the late-century market explosion of mobile digital 
communication systems and devices, such as cellular phones and wireless local area networks (LANs), 
and the massive introduction of integrated circuit (Ie) technology in everyday life have changed the 
electronic landscape dramatically, opening new challenges and opportunities for PAs. 

In this chapter, the issues and appropriate techniques for modern PAs are discussed, focusing 
on Ie implementations for wireless communication systems. To familiarize the reader with the gen­
eral PA design approach, which is rather different from the regular analog circuit approach, a few 
important points are clarified, as a prerequisite for the following material. Then, the classical theory 
of PA design in the case of constant magnitude signals is reviewed and the trade-offs for different 
classes of transistor operation are pointed out. The important class AB case is discussed in more 
details. Next, the PA design problem from a unified, general point of view based on the internal PA 
signal harmonic content is revisited. This will give the reader a further insight into the PA design 
problem and high-level solution possibilities. The following section concerns the important topic of 
efficiency in the presence of back-off and briefly mentions other important design considerations. 
Finally, recent PA results are reviewed and conclusions drawn. 

REVIEW OF PREREQUISITE KNOWLEDGE 

RELATIVE SIGNAL BANDWIDTH FOR MOST MODERN PAs 

The main motivation for the renewed interest in PA technology comes from the technical challenges 
and the economics of modern digital communication systems. The very high production volumes 
of consumer wireless mobile devices have created a large market for high-quality, low-cost PAs 
operating in the medium output power range (0-30 dBm). The allocated radio frequency (RF) bands 
for such typical applications are shown in Table 13.1. A simple calculation of the relative bandwidth 
compared to the average RF frequency for each system clearly shows that the signals at the RF front­
end are narrow band-pass signals on the absolute frequency scale. This fact is not in conflict with 
the usual categorization of some of these systems as wideband because the latter refers to the base­
band signal bandwidth and not to the RF relative bandwidth. More precisely, wideband signals carry 
a substantially larger amount of information than traditional voice-band signals, but when placed at 
a high RF canier frequency, they become relatively narrow, as shown in Figure 13.1. 

The relevance of the previous discussion is the realization that on a relatively short time span, 
that is, over a small number of carrier frequency cycles, the PA signals are practically sinusoidal. At 
the RF timescale, the magnitude and phase of this sinusoidal signal slowly change only over many 
carrier cycles. This justifies the common practice in the PA literature to analyze the circuit under 



 

TABLE 13.1� 
Frequency Bands and Available Bandwidths for Common Wireless Systems� 

Licensed Bands 

US Cellular R-GSM DCS pes IMT2000 

Uplink (MHz) 824-849 876-915 1710-1785 1850-1910 1920-1980� 

Downlink (MHz) 869-894 921-960 1805-1880 1930-1990 2110-2170� 

Total BW (MHz) 25 39 75 60 60� 

Relative BW (%) -3.0 -4.4 -4.3 -3.2 -3.1� 

Unlicensed Bands 

ISM-2.4 UNII-5.2 UNII-5.8 
2400-2483.5 5150-5350 5725-5825 

Total BW (MHz) 83.5 200 100� 
Relative BW (%)� -3.4 -3.8 -1.7 
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FIGURE 13.1 A typical frequency diagram illustrating that even wideband wireless systems (e.g., wideband 
code division multiple access [WCDMAJ) have small signal bandwidths compared to the carrier frequency fRF' 

sinusoidal signal conditions. This adequately represents the PA behavior over short time durations, 
which is a necessary but not a sufficient criterion for a valid design. Later, in the section "PA Tech­
niques for Power Back-Off Applications," the PA performance over long time spans is discussed in 
detail, but until then, assuming sinusoidal signals for the PA input and output will be sufficient to 
explain many important PA properties. 

WHAT Is A POWER AMPLIFIER? 

Despite the deep-rooted terminology, PAs do not amplify power! Power is energy per unit of time, 
and as the first law of thermodynamics states, energy cannot be created. Then, what are PAs? And 
why are they given this name? 

A defining property of a PA is that its output signal power delivered to a load is larger than the input 
signal powerit absorbs from a driver. In this respect and outside any energy balance considerations, the PA 
produces the effect of a nonphysical power amplification device, hence the name. The way the PA accom­
plishes this effect is by converting the DC power supplied through the DC biasing lines into output 
signal power. Therefore, a PA is an energy conversion circuit very much like a DC-to-DC converter or 
an RF oscillator, which converts DC power into constant wave (CW) power. However, unlike DC-to-DC 
converters or oscillators, an ideal PA converts the DC power into output signal power under the linear 
control of an RF input. A wireless system PA is simply a DC-to-modulated-RF converter. 

The simple observation regarding power conversion in PAs is crucial to understanding the 
design and operation of this type of circuits, as will be explained later. Here, it suffices to notice 
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P De + PRF(in) = Ploss + PRF(out) 

FIGURE 13.2 Power flow and balance diagram in a typical PA. 

PE is the power conversion efficiency reflecting the percentage of the DC power drawn from the power 
supply, which has been converted into output signal power. This figure of merit is also called drain/ 
collector efficiency. Power-added efficiency (PAE) is calculated by subtracting the input power from 

Figure 13.3 shows the simplest classical nonswitched single-transistor PA configuration. DC bias 
is provided through a large inductor (choke) and the PA load is connected via an ideally lossless 
matching network. Two most important figures of merit of any PA are the following power effi­
ciency ratios using the notation from Figure 13.2: 

Related to the artificial power amplifier terminology are the concepts of power gains. Several output­
power-to-input-power ratios are commonly defined under various operating and power-accounting 
conditions [2]. The PA power gains lack any deep physical meaning but are useful in practice for 
the purpose of specifying the driving requirements of the circuit in relation to matching and stability 
conditions. 

transferred is lost through heat. The output modulation information is provided through a low-power 
pose of the PA is to transfer most of this power to the modulated-RF output. The portion that is not 
at DC is shown on the horizontal axis to emphasize the key role it plays in this circuit. The very pur­

of power into the load than regular amplifiers do and may need the capability for power control. 
Figure 13.2 illustrates the PA functionality in terms of a power flow diagram. The input power 

paramount in PA designs. In addition, very often the PAs are required to deliver much higher levels 
a regular voltage or current amplifier is not concerned with efficiency, this performance aspect is 
input. What sets the PA apart is the matter of power conversion efficiency. Although the design of 
amplifier since the latter may (or may not) generate a power-amplified output with respect to its 

As described so far, the PA concept is still nondistinguishable from a regular voltage or current 

that the very PA concept implies a nonlinear operation since linear networks cannot shift power 

(l3.la)

(l3.lb) 

from one frequency to another. 

RF input in a similar way as with regular analog amplifiers. 
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FIGURE 13.3 A classical single-transistor PA, often called linear PA or current PA. 

the output power to include the effect of the PA driver in the efficiency metric. Obviously, for large 
power gains, PAE approaches power efficiency (PE). 

The various power quantities can be calculated in the circuit from Figure 13.3 as follows: 

PDe =VDcIDc (13.2a) 

(13.2b) 

T 

.Ross = ~ fi(t)v(t)dt (l3.2c) 

o 

These relations can be used in Equations 13.1a and 13.lb to calculate the PA efficiencies. 

MATCHING FOR MAXIMUM OUTPUT POWER 

On the basis of linear system theory hastily applied to the circuit shown in Figure 13.3, one would 
tend to believe that conjugate matching between the transistor output impedance and the transistor­
load impedance ("seen" into the matching network input port) would transfer the maximum possible 
power to the PA load. This is not true because the transistor nonlinear behavior limits the voltage 
swing at the drain, shifting the maximum-power conditions far from the theoretical linear case. 
Laboratory experiments and theoretical investigations [2] show that constant-power closed curves 
exist on the transistor-load-impedance plane, usually shown as a Smith chart. These oval curves nest 
within each other like the classical constant-gain circles shrinking to a point of maximum power 
delivery under strong nonlinear operating conditions. The tuning of the transistor-load impedance 
performed with special equipment to identify the maximum-power case for various operating con­
ditions is called load pulling. RF PA designers regularly use load-pulling laboratory data to guide 
their work since modeling is rarely accurate enough. 

THE MEANING OF LINEAR PA 

It was mentioned earlier that the PA is a nonlinear circuit by necessity. Nevertheless, though power 
conversion is a nonlinear process, it is possible to design an approximately linear modulation trans­
fer characteristic from the RF input to the PA output. This is the second important design criterion 
in addition to getting high efficiency. 

The usual implications of the previous requirements are illustrated in Figure 13.4. The RF input 
and the PA output are clean band-pass signals carrying the same modulation information. The 
internal PA voltage is a rather dirty wideband signal with rich and large harmonic content. It will 
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FIGURE 13.4 A highly nonlinear PA with linear RF-in/RF-ollt characteristic. 

become clear later that it is precisely this internal harmonic content that is responsible for obtain­
ing good efficiency. This indicates that the design strategy for a PA is quite different from that for a 
regular linear amplifier. In the latter, since there are no efficiency concerns, it is not necessary and 
undesirable to introduce high internal nonlinear behavior, which would have to be transparent to the 
output. Efficient PAs must be highly nonlinear internally and still be input/output linear in terms of 
the RF modulation transfer. 

THE CLASSICAL APPROACH TO PA DESIGN 

TYPES OF PAs AND THE CONCEPT OF CONDUCTION ANGLE 

There are two main branches in the PA family tree shown in Figure 13.5. If the main PA transistor 
operates as a transconductance element converting the RF input signal into a current, the circuit is 
called a linear or current PA. If the main PA transistor is just a switch, the circuit is called a switch­
ing PA. This PA family branch will be discussed in the subsection "Switching PAs." 

Current PAs, whose general structure is similar to that shown in Figure 13.3, are further divided 
into classes of operation on the basis of conduction angle [2]. Figure 13.6 illustrates this concept for 
the case of an ideal transistor with piecewise linear flV characteristics. The conduction angle is a 
measure of the drain current generation process for a given biasing point and a given RF input signal 
magnitude. If the biasing point and the RF input signal magnitude are such that all input signal 
excursion is linearly converted into a drain current, the PA operates in class A with 2n conduction 
angle. Class B operation is defined for n conduction angle when exactly only one side of the RF 
input sinusoidal signal is converted into current. Lowering the conduction angle bellow n defines 
class C and increasing it toward 2rr defines class AB, not shown in Figure 13.6. Next, the merits of 
these possibilities are discussed. 

CLASS A, B, AND C OPERATIONS 

The maximum drain voltage and current waveforms for classes A, B, and C are shown in Figure 
13.7. Notice that in all cases, the drain voltage is the same and consists of a full sinusoidal (see 
the subsection "Relative Signal Bandwidth for Most Modern PAs"). The difference comes from 
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FIGURE 13.5 PA family tree. 
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Theoretically, though class A is limited to 50% maximum efficiency, class B attains 78.5% effi 
ciency and class C tends toward 100% efficiency. A crucial aspect is the loss of efficiency as the PA 

the transistor current, which varies from a full sinusoidal in class A to portions of a sinusoidal fc 
classes Band C. This determines major variations in PA efficiency calculated with Equations 13.1. 
through 13.2c and in other important performance parameters. Figures 13.8 through 13.10 illustratl 
these effects. 

FIGURE 13.6 Conduction angle definition of class A, B, and C operations. 
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FIGURE 13.7 Drain voltage and current waveforms for class A, B, and C operations.� 
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FIGU RE 13.8 Drain voltage and current under power back-off conditions for class A, B, and C operations. 
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FIGURE 13.10 Output power versus RF input power for class A, B, and C operations. 

output power is lowered or backed off from the peak value. Ideally, there should not be any ff'.' 

tion in efficiency but this is not the case. Figure 13.9 shows that class C is best in this res 
lowed by class B. This can be explained with the help of Figure 13.8. For class A operation 
value of the current signal does not change with the output power level, thus wasting effie: 
back-off, which drops a full decibel for every decibel reduction in output power. Classes] 
feature a fundamentally different and valuable behavior: the DC current components deere: 



 
  

 

  
 

FIGURE 13.12 Drain voltage and current under peak power and back-off conditions for ideal class AB PA. 

FIGURE 13.11 Class AB operation on (a) ideal transistor ltV characteristics and (b) real transistor ltv 
characteristics. 

Class AB is the workhorse of linear high-efficiency RF PA applications; yet the reasons for its 
success cannot be explained from the idealized model shown in Figure 13.1la. According to this 
model, class AB is very similar to class C, as shown in Figure 13.12: good back-off efficiency due 

a poor approximation in practice since real transistors have smooth turn-on characteristics. A more 
analysis would convince the reader of this theoretical fact. Unfortunately, the ideal class B case is 
efficiency and a small 6 dB gain reduction compared to class A, with no loss in linearity. A simple 

On the contrary, an ideal class B seems to be quite a good compromise between increased 

characteristic changes rapidly with the output power level creating severe nonlinear effects in the 
B for the same input drive, as shown in Figures 13.9 and 13.10. In addition, the input/output signal 
and low device utilization, the output power level is much reduced compared to that for classes A or 

Class C pays a particularly high price for excellent efficiency. Because of low conduction angle 

the output power. As a result, class B has only 0.5 dB loss in efficiency for every 1dB reduction in 

not true in any other operation classes, including 
monotonic, that is, in 

compared to class A are not without penalties. An 
output power, and so does class C. 

The efficiency benefits of classes Band C 
important property that only class A has is that its linearity performance is 
back-off the linearity always improves [2]. This is 
class AB, which will be discussed later. 

output signal. For these reasons, class C operation is rarely used. 

appropriate model is class AB operation. 

CLASS AB OPERATION 

Ideal transistor characteristic Practical transistor characteristic 
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to variable current DC component but unacceptable nonlinear behavior in the output due to signal­
dependent conduction angle. 

The main reason class AB works well in practice is the fact that real transistor characteristics 
are smooth, as illustrated in Figure 13.11b. As a result, the intermodulation components of the drain 
current in the real transistor are quite different from those generated by the ideal curve shown in 
Figure 13.11a [3]. More important, these components vary with the biasing point in such a way that 
an optimum biasing condition exists in terms of odd-order intermodulation distortion (IMD). Care 
must be taken here to stress that the optimum biasing is very sensitive and difficult to find and main­
tain over fabrication process and temperature variations. In addition, unlike class A, the linearity 
performance of class AB is not monotonic and the odd IMD may get worse in back-off [2,3]. 

A circumstantial proof for the existence of the optimum biasing can be given with the help of 
Figures 13.13 and 13.14. Figure 13.13 shows the decomposition of a typical LDMOS RF-power FET 
I1V characteristics into even and odd components at the operating point. The 8 characteristic is m 
decomposed as well and the focus is on the even 8 component, which is directly responsible for m 
setting the IMD values. Figure 13.14 clearly shows how the even 8m component changes shape quite 
dramatically as a function of the biasing point. By inspection, notice that biasing at half the peak 8m 

value yields the minimum error ripple. In practice, the situation is complicated by many other prac­
tical factors such as transistor-parasitic capacitors, dynamic effects, etc., but the class AB nonlinear 
behavior remains qualitatively as described. 

Starting from peak power level downwards, the back-off efficiency in class AB is practically 
identical to that of ideal class B, that is, the PE drops 0.5 dB for each decibel of output power reduc­
tion. Eventually, however, as the input signal gets small enough, the amplifier approaches a class A 
behavior due to the smooth transistor f/V characteristic (Figure 13.11b). As a result, the efficiency 
degradation gradually shifts to "1 dB per dB" roll-off. This is detrimental in applications with large 
back-off requirements such as code division multiple access (CDMA) PAs, which will be discussed 
later. A common method for mitigating this effect is to decrease the transistor bias gate voltage 
dynamically for low input signals and thus maintain class AB behavior. Naturally, this must be done 
without introducing PA linearity problems. 

SWITCHING PAs 

The natural way in which a current PA becomes a switching PA is by overdriving the circuit shown in 
Figure 13.3 to the point of operating the transistor as a switch [2]. Figure 13.15a shows this possibility 
and Figure 13.15b expands this concept to a two-switch/transistor configuration by eliminating the 
biasing inductor. Now, the true nature of the PA as an energy converter comes in full view. The 
amplitude modulation can no longer be transmitted through the input port. Phase modulation is still 
transferred into the PA through the variable zero crossings defining the switching instances. There­
fore, a first important observation about switching PAs is that they can process correctly only input 
signals that are phase/frequency modulated and have no amplitude modulation. However, it is still 
possible to pass amplitude modulation information into the PA through the power supply voltage 
since the output power is proportional to its value. 

The main motivation for using a switching PA is the theoretical possibility of obtaining out­
standing efficiency. To this end, the traditional approach is to satisfy two conditions: (a) arranging 
the circuit such that the transistor voltage and current overlap as little as possible, thus minimizing 
the loss through heat and (b) designing the 10ssless two-port networks shown in Figure 13.15 such 
that only the fundamental frequencies are allowed to pass into the output, thus avoiding harmonic 
power loss. As the two conditions must be met simultaneously and all signals inside the PA are stwnr 
interrelated, a high degree of design skill and knowledge is necessary to obtain a valid solt 
Three possibilities, which have been proposed, are known as classes D, E, and F PAs [1,2]. 

Figure 13.16 shows typical voltage and current waveforms for traditional switching PAs [J]. . 
class D PA uses the two-transistor architecture and relies on very fast switching of the lossless twc 
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fiGURE 13.14 Simple demonstration of sweet spot biasing in real class AB operation. (From Banu, M., 
Prodanov, v., and Smith, K., Asia Pacific Microwave Conference, 2004. With permission. © IEEE 2004.) 
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fiGURE 13.15 Switching PA architectures: (a) single-transistor architecture and (b) double-transistor 
architecture. 
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fiGURE 13.16 Typical voltage and current signals in (a) class D PA, (b) class EPA, and (c) class F PA. 



 
  

In practice, the class 0 PA technology has been applied successfully at audio frequencies where 
less two-port is a band-pass filter rejecting all harmonics, 100% efficiency is obtained theoretically. 
voltage waveforms. For ideal switches, there is no power loss through heat, and assuming the loss­

ground. Figure 13.l6a shows the resulting square drain the power supply line input between and 

switching can be realized fast enough compared to the signal bandwidth. Any reasonable application of 
this technique at RF has not been demonstrated yet and is plagued by unrealistically high demands 
on the transistor switching speeds. In addition, the losses due to drain-parasitic capacitance charging/ 
discharging are difficult to avoid. 

An RF switching PA approach that has been demonstrated in practice in the gigahertz range 
with better than 70% efficiency is based on class E operation [2-5]. This single-transistor PA 
switches the current ideally only when the voltage and its derivative are zero, thus avoiding heat 
losses. This is a promising approach, but it produces inherently large voltage swings, requiring 
transistors capable of handling such conditions [2,6]. Nevertheless, the voltage waveform shown in 
Figure 13.16b is substantially less abrupt than in the case of class D, hence the suitability of class E 
for RF applications. 

The class F operation [7-10] employs a single-transistor architecture and voltage shaping improv­
ing the efficiency and the transistor utilization. Starting with class AB transistor biasing, the lossless 
two-port is designed to greatly enhance the third voltage harmonic to obtain an effective squaring 
of the voltage signal, as shown in Figure 13.16c. This increases the efficiency beyond class AB opera­
tion while maintaining the voltage swing within reasonable levels. Theoretically, fifth, seventh, and 
higher odd harmonics could be also enhanced for the benefit of even higher efficiency. Unfortunately, 
the design of the lossless two-port is quite challenging, and maintaining class F operation in back-off 
is problematic. 

A UNIFIED GENERAL APPROACH TO PA ANALYSIS AND DESIGN 

THE MATHEMATICS OF EFFICIENT DC-TO·RF CONVERSION 

An empirical observation clearly stands out from the discussion in the previous section: it seems 
that the only way to boost the efficiency from one PA scheme to another is by making its internal� 
nonlinear behavior more pronounced. Mathematically this is indeed the case shown in Figure 13.3 
by calculating the power flows at various frequencies in the PA and interpreting the results. The 
lossless two-port network is assumed AC coupled. Therefore, by construction, the DC voltage and 
current of the power supply are identical to those at the drain of the transistor. 

In steady state, under a sinusoidal excitation of angular frequency WRF applied on the transistor 
gate, the drain voltage and current are periodic functions represented by the following Fourier series: 

(13.3a)vCt) = VDC + Vi cos CWRFt + 4?v,) + L
00 

Vk COS(kWRFt+<PYk) 

k=2 

00 

j(t) = I DC + 11cos (WRFt + CPl,) + Lh cos (kWRFt + (Plk ) (l3.3b) 
k=2 

where Vk and Ik are the amplitudes and ¢Vk and ¢lk the phases of respective harmonics. The total 
loss at the drain is calculated by multiplying Equations 13.3a and 13.3b and integrating over a period 
according to Equation 13.2c. Since all orthogonal products (i.e., voltage harmonic different from 
current harmonic) integrate to zero, we have 

1 1 ~ 

~oss = VDcIDC + 2" VjII cos ((Pv, - CPl,) + 2" ~ Vkh cos ((Pv. - (Ph) (13.4) 

k=2 



Assuming zero harmonic power as per the methods discussed in the previous subsection, the power 
efficiency from Equation 13.4 is calculated with the last term eliminated: 

FUNDAMENTAL-TO-DC RATIOS 

Ignoring the theoretical but exotic possibility of shifting power between harmonics for a zero net game, 
four ways of making the last summation term in Equation 13.4 null are illustrated in Figure 13.17. 
The two signals shown for each case in the frequency domain can be voltage or current signals 
interchangeably. They are members of a set of four generic signals, each containing DC and fun­
damental terms. In addition, the first generic signal contains no harmonics, the second generic 
signal contains only odd harmonics, the third generic signal contains only even harmonics, and the 
fourth generic signal contains all harmonics. These generic signals will be called, no-harmonic, odd­
harmonic, even-harmonic, and all-harmonic, respectively. The four methods shown in Figure 13.17 
combine pairs of generic signals such that the products in the summation of Equation 13.4 are only 
of orthogonal signals, integrating to zero over the RF input signal period. 

ZERO HARMONIC POWER 

The generation of harmonic power represented by the last summing term in the right-hand side of 
Equation 13.4 must be eliminated for the following reasons. As discussed above in this section, any nega­
tive components in the sum would represent respective harmonic power flowing out of the transistor only 
to be dissipated in the PA load. This is not allowed by the PA linearity requirements (see Figure 13.4). On 
the contrary, any positive components in the sum would be dissipated in the transistor to the detriment of 
power efficiency. The only alternative left is to make the harmonic power summation zero. 

The second term in the right-hand side of Equation 13.4 is essential to the very function of the 
PA since it represents the fundamental RF power to be delivered to the PA load. This term should 
be negative with magnitude as large as possible. A necessary condition for this objective is to create 
fundamental voltage and current signals swinging in opposite directions (180 0 phase shift) to make 
the cosine factor equal to -1. This is automatically accomplished if the transistor pushes current 
into a real impedance. Therefore, the two-port 10ssless network terminated by the PA load resistor 
must be designed to have a real input impedance at the fundamental frequency. An equivalent way 
to state this is that the two-port lossless network terminated in the PA load resistor is a filter with a 
pass-band at the fundamental RF frequency. Naturally, the transistor-parasitic capacitances must be 
included in the network. 

13.4 positive. This term is clearly identified as the power delivered into the PA by the DC power sup­
ply. The energy conservation law tells us that Ploss must be smaller than the DC power flowing into 
the PA; therefore, the second and third terms in the right-hand side of Equation 13.4 must add to a 
negative number. The right-hand side of Equation 13.4 can be interpreted as the superposition of the 
DC power flowing into the transistor from the DC power supply and a portion of it flowing out of the 
transistor at RF fundamental and harmonics. Since the biasing choke blocks the RF fundamental 
and harmonics, the only place the outgoing power can go is the PA load resistor through the lossless 
two-port. Thus, the PA accomplishes energy conversion: it extracts power at DC from the power sup­
ply and delivers a portion of it to the load at RF fundamental and harmonics. Next, the possibilities 
are analyzed to make this process power efficient, Le., with as small Ploss as possible. 

Equation 13.4 gives important insights on how the PA converts energy from DC to RF. The total 
loss Ploss must be a positive quantity since the transistor considered as operating with full voltages 

in 
for 
and currents is a passive device (transistors do not generate power), unlike its customary model used 

small-signal analysis. Furthermore, the transistor physics forces the DC drain current as defined 
Figure 13.3 to be always positive, which makes the first term in the right-hand side of Equation 
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FIGURE 13.17 Pairs of internal PA signals with orthogonal harmonics: (a) two no-harmonic signals, 
(b) no-harmonic and all-harmonic signals, (c) odd-harmonic and even-harmonic signals, and (d) two quadrature 
all-harmonic signals. 
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FIGURE 13.18 Signals with optimum FDC ratios: (a) no-harmonic shifted sinusoidal with FDC = 1, (b) odd­
harmonic square wave with FDC =4/n, (c) even-harmonic half-wave rectified sinusoidal with FDC =n/2, and 
(d) all harmonic impulse with FDC = 2. 

Notice that the overall PA efficiency is the product of two fundamental-component-to-DC-component 
(FDC) signal ratios. This gives a very important clue of what needs to be done for maximum effi­
ciency, namely, maximizing the FDC ratios for the voltage and the current signals inside the PA. 
This is explicit evidence that the PA efficiency is directly linked to its internal signal harmonics, 
whose presence in proper amount and phasing can increase the FDC ratios. Next, this possibility 
under the condition of zero harmonic power is analyzed. 

The transistor drain voltage and current signals as defined in Figure 13.3 must be positive on the 
basis of proper operation of the device. The question is, which positive functions have the maximum 
FDC ratio and are of the form of the generic functions discussed in the subsection "Zero Harmonic 
Power?" The answer is given in Figure 13.18. The positive no-harmonic function is unique and 



 

TABLE 13.2 
Efficiencies and Resulting Classes 

(a) 	Maximum theoretical PA efficiency (b) PA operating classes corresponding 
for different waveform pairing. to waveform pairing in (a). 

voltage 	 voltage 

harmonics none odd even all harmonics none odd even all 
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50.0 63.6 78.5 100 	 "Inverse" 
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63.6 100odd 	 oddc: % % 	 1:
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has an FDC ratio of 1. The odd-harmonic function with maximum FDC ratio of 4hr is a square wave, 
the even-harmonic function with a maximum FDC ratio of rr/2 is a half-wave rectified sinusoidal, 
and the all-harmonic function with a maximum FDC ratio of 2 is an impulse train function. The 
iterative way in which these functions are constructed in the subsection" Finite Bandwidth Sig­
nals Internal to PA" ensures that they are optimum in terms of best FDC ratios for their respective 
class. 

PAIRING THE VOLTAGE AND CURRENT SIGNALS ApPROPRIATELY 

Equipped with Equation 13.5 and the functions of Figure 13.18, the PA schemes discussed in the 
section "The Classical Approach to PA Design" can be analyzed from a unified and general point 
of view. For example, a class A PA uses only nonharmonic internal voltage and current functions. 
Equation 13.5 gives 50% efficiency, which of course is as calculated before. For ideal class B PA, 
the internal voltage is a no-harmonic signal, but the internal current is a half-wave rectified sinusoi­
dal, the best even-harmonic signal. The efficiency increases to 78.5% in response to adding current 
harmonics. If proper odd harmonics are added to the voltage signal, e.g., use a square wave, the 
best even-harmonic signal, the efficiency reaches 100% and an ideal class D or F PA has been con­
structed. The same 100% efficiency may be obtained by using a no-harmonic signal for the internal 
voltage and an impulse train, the best all-harmonic signal for the internal current. This describes an 
ideal class CPA with infinitely smaIl conduction angle (and infinitely large input signal or infinitely 
large transistor 8m)' 

Table l3.2a shows the efficiencies of all possible pairs of best FDC ratio signals, according to 
the schemes shown in Figure 13.17. Table 13.2b shows the resulting classes of PA operation. Notice 
that not all possible pairs have known PA configurations. Also, notice that class E operation requires 
voltage and current harmonics in quadrature to ensure orthogonal conditions. 

FINITE BANDWIDTH SIGNALS INTERNAL TO PA 

The previous analysis of ideal PAs assumed that internal signals with infinite bandwidths could be 
used. In reality, of course, this is not the case. For this reason, it is important to determine the effect 
oflimited bandwidths inside the PA on efficiency. To be able to do this, the generic signals discussed 
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FIGURE 13.19 Series of functions with increasing number of harmonics and FDC ratios: (a) odd-harmonic 
functions converging to a square wave, (b) even-harmonic functions converging to a half-wave rectified sinusoidal, 
and (c) all-harmonic functions converging to an impulse. 

in the subsection "Zero Harmonic Power" are first constructed not as infinite but rather as limited 
bandwidth signals, i.e., allowing only a limited number of harmonics [6,8-11]. 

Figure 13.19a shows graphically a series of odd-harmonic signals with increasingly larger num­
ber of harmonics. For each signal, the harmonic content is calculated so as to create zero derivatives 
at the midpoint in the fundamental cycle up to (N - l)th order derivative, where N is the number of 
harmonics. In this way, it is ensured that the function reaches a minimum at that point and it is as 
flat as possible. The fundamental component is increased to place the minimum point at zero value. 
As the number of harmonics increases, these functions resemble more and more a square wave, and 
in the limit (infinite number of harmonics), they become a square wave. 

The same construction can be done for even-harmonic functions; the result is shown in Figure 
13.19b. Here, in the limit, the half-wave rectified sinusoidal function is recovered. Finally, the all­
harmonic functions shown in Figure 13.19c synthesized in a similar manner converge toward an 
impulse function. In all three series, the FDC ratio increases with the number of harmonics. 

EFFICIENCY IN THE PRESENCE OF FINITE BANDWIDTH 

On the basis of the functions from Figure 13.19 and the same signal pairing as in Figure 13.17, PA 
efficiencies can be calculated for various internal PA bandwidths. Table 13.3a summarizes the 
results for the pairing case in Figure 13.17c up to the seventh harmonic. The good news is that the 
efficiency increases rapidly, reaching respectable numbers without an excessive number of harmon­
ics. For example, a class B PA (class AB practically the same) with up to sixth-order harmonics in 
the current has already 73.1% efficiency. Similarly, Table 13.3b representing the pairing from Figure 
13.17b shows that a class C PA with only fourth-order harmonics reaches 80% efficiency. On the 
contrary, it is also clear that trying to push efficiency to even higher levels would be very challeng­
ing for RF PAs due to very high bandwidth demands. 



TABLE 13.3 
Efficiency Tables 

(a) Harmonics in voltage and current waveforms. 

1 
A 
50.0% 
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A final observation is made by comparing the entries in Table 13.3a on a diagonal from top left 
to bottom right and those of Table 13.3b. The efficiency numbers are identical for identical number 
of total harmonics irrespective of which signals contain these harmonics. In other words, at this 
high-level explanation, the efficiency is independent of the actual PA configuration and depends 
only on the number of harmonics used internally. Given N internal PA harmonics, the following 
simple relation can be used to estimate efficiency: 

N
PE:=;-- (13.6) 

I+N 

PA TECHNIQUES FOR POWER BACK-OFF APPLICATIONS 

REASONS FOR BACK-OFF REQUIREMENTS AND EFFICIENCY PENALTIES 

The efficiency of PAs in back-off operation was considered previously. This aspect is crucial for RF 
applications using amplitude modulation. In the subsection "Relative Signal Bandwidth for Most 
Modern PAs," it is mentioned that the PA input RF signal looks sinusoidal for short durations. How­
ever, if amplitude modulation is present, the magnitude of this sinusoidal signal varies over long 
time, as shown in Figure 13.20. A traditional way to describe this magnitude variation is as the ratio 
between the peak power and the average power of the RF signal, known as peak-to-average ratio 
(PAR), usually expressed in decibels [1,2J. The typical statistics of real communication signals are 
such that peak power actually occurs infrequently. 

The PAs must be designed and operated to handle the input signal correctly at all times without 
ever entering compression. The simplest way to accomplish this is by designing the PA for proper 
operation at expected peak power. Naturally, most of the time, the PA will be underutilized delivering 
only average power and thus be effectively backed off by the PAR vaLue. The net resuLt is that the 
PA average efficiency is not as given at peak power value but rather at some effective back-off value, 
depending on the signal statistics. The larger the signal PAR, the more backed-off the PA will be 
and the more severe the penalty in average efficiency. 

The recent introduction of wideband digital wireless communication systems such as those 
based on CDMA or 802.lla/g standards has placed to center stage the PA efficiency problem in back­
off operation. Nevertheless, this is not a new problem. The commercial amplitude modulation (AM) 
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FIGURE 13.20 Peak and average power levels in an amplitude-modulated RF signal. 
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FIGURE 13.21 Conceptual PA subranging architecture. 

broadcast industry has encountered and solved this issue for high-power PAs with system-level 
techniques, albeit using conventional RF technology, which is too expensive and bulky for modern 
portable devices [12-15]. Recently, there has been a considerable renewed interest in these system 
techniques [3,16,17] with a focus on trying to apply them to modern low- and medium-power PAs 
using integrated circuit (IC) technology. The most important system concepts for increased effi­
ciency PAs in back-off is reviewed next. 

PA SUBRANGING 

A brute-force solution to the back-off efficiency problem is shown conceptually in Figure 13.21. 
Several PA segments of increasing output power are placed in parallel and switched on and off 
appropriately by the transmitter system such that the RF output signal is always processed by a 
PA segment operating close to its peak power and efficiency. This is possible in theory because the 
transmitter system knows in advance the information to be transmitted and can bring on line the 
appropriate PA segment at the right time. This strategy increases substantially the average efficiency 
of the overall PA. 

The challenge in implementing the scheme shown in Figure 13.21 comes from the input and 
output interfacing networks, which must provide "smooth" RF switching without major impedance 
changes and with low loss. A less demanding application of this architecture is power control, to be 
discussed in the section "Additional PA Considerations." 
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FIGURE 13.22 Envelope tracking and following PA concept. 

ENVELOPE TRACKING 

A more sophisticated technique is illustrated in Figure 13.22 and is based on the observation that the 
back-off efficiency of a class AB PA can be boosted by lowering the power supply voltage dynami­
cally when the signal magnitude decreases. The core PA consists of the transistor, the inductor, and 
the lossless matching network. The DC power supply is an agile DC-to-DC converter capable of 
delivering the necessary PA current for a discrete set of output voltages under the control of an input 
terminal. The purpose of this converter is to change the supply voltage dynamically according to 
the RF amplitude modulation so as to operate the class AB PA at or close to its peak efficiency for 
all input signal levels between average and peak power. In effect, the transistor drain voltage always 
swings close to the full power supply voltage, which is dynamically changed. The voltage FDC ratio 
remains near unity independent of signal magnitude for close to peak efficiency in back-off. 

Two conditions must be met for the proper operation of this scheme. First, the agility of the 
DC-to-DC converter must match or be better than the baseband signal bandwidth, which equals the 
amplitude modulation bandwidth. Second, the efficiency of the DC-to-DC converter must be good 
enough to make the overall system more efficient than a classical class AB PA. In the case of power 
control back-off, the bandwidth condition is relaxed. 

ENVELOPE FOLLOWING 

The envelope tracking concept requires that the power supply voltage generated by the DC-to-DC 
converter follows only roughly the signal magnitude for the sole purpose of increasing the average 
PA efficiency. Theoretically, one can imagine the power supply voltage following exactly the signal 
envelope, in which case the method is called envelope following [17]. 

When the circuit uses a current PA, the additional improvement in efficiency envelope following 
brings is minimal when compared to envelope tracking and does not justify the extra precision require­
ments for the DC-to-DC converter. Envelope following becomes an attractive option if instead of 
the current PA we use a switching design, such as a class E PA. In this case, the DC-to-DC converter 
provides the amplitude modulation information through the power supply line, and the switching 
PA generates the output power extremely efficiently [18]. 

ENVELOPE ELIMINATION AND RECONSTRUCTION 

A particular version of the envelope following concept, which was historically first proposed by 
Kahn, is envelope elimination and restoration (EER) [14]. Figure 13.23 illustrates this design, which 
predates baseband digital signal processors (DSPs). Here, the RF input is first processed by analog 
blocks, and the amplitude modulation information is separated from the RF signal and converted 
into a baseband signal. The remaining constant-envelope RF signal drives a switching RF PA with 
excellent efficiency and the amplitude modulation is reintroduced through the power supply voltage. 
The latter is driven by an efficient baseband PA. A critical and challenging issue in this technique is 
the correct synchronization between amplitude and phase. 
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FIGURE 13.23 Envelope elimination and restoration PA concept. 
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FIGURE 13.24 Out-phasing PA concept. 

Kahn's EER scheme is less attractive when digital baseband processing is available. In this case, 
it makes more sense to generate the amplitude and phase signals directly from the DSP rather than 
decomposing an analog RF signal, whose phase and amplitude components were originally created 
by the DSP in the first place. The EER structure without the signal decomposition part is known as 
a polar transmitter [19]. 

THE OUT-PHASING PA 

This concept is explained in Figure 1;3.24a where the RF signal is represented as a rotating vector 
with time-variable magnitude and angular velocity. From simple geometrical considerations, clearly 
it is possible to decompose this vector into two new rotating vectors with constant magnitudes, as 
shown in the figure. Therefore, all information contained in a modulated RF signal can be also 
represented in a pair of constant-envelope signals. This is a convenient representation for efficient 
power conversion of the two components based on switching PAs. 

Figure 13.24b shows the Chireix first implementation of this concept [12], before the availability 
of DSPs. First, two constant-envelope components are derived from decomposition of the RF signal. 
Today, this would be done by the DSP [20] like in the polar transmitter case [19]. Then, these compo­
nents are passed through two efficient switching PAs. Finally, an output power-combining network 
recreates the original RF vector. The design of the combining network is quite critical and is the 
potential Achilles' heel of this technique. This is discussed next. 

A simple analysis would convince the reader that the process of combining two constant-envelope 
vectors through a simple vector addition, i.e., by conventional power combining, is fundamentally 
inefficient if the two signals are not in phase. Any vector components canceling each other dissipate 
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power. For example, in the worst case when the two constant-envelope vectors are in opposite 
phases, all their power gets dissipated and no power is produced at the output for 0% efficiency. 
Chireix recognized that traditional power combining is not an acceptable solution and proposed a 
fully differential load connection as shown in the Figure 13.24 inset. This configuration solves the 
efficiency problem but introduces a major PA-loading problem. The effective loads seen by each PA 
are not purely resistive as assumed in the standard design of the PAs but rather contain large reactive 
components. Even more troublesome is the fact that these reactive components depend on the angle 
separating the two vectors, which is constantly changing with the modulation. A compensation of 
these reactive components is possible, as shown in the figure inset, with the addition of a capacitor 
and an inductor, but this compensation is valid only around a unique separation angle. Chireix made 
this technique work with substantially better back-off efficiency than the class AB case for the AM 
broadcasting application. 

THE DOHERTY PA 

The Doherty concept [13] is shown in Figure 13.25 and in some respects may be viewed as a very 
ingenious analog version of the PA subranging idea. It contains a main amplifier, which is always on, 
and a secondary or peaking amplifier, which turns on only when the input signal power exceeds a 
predetermined threshold, e.g., 6 dB below maximum PA power if the two transistors are identical. 
The classical implementation uses a class AB main amplifier and a class C peaking amplifier with 
identical transistors [2,3]. A single inductor is sufficient to bias the drain of both transistors at the 
power supply voltage. 

The key Doherty innovation is combining the two transistor drain currents via a quarter-wave 
transformer, as shown in Figure 13.25. The quarter-wave transformer, which in practice is a piece of 
transmission line, converts the input current of one port into a voltage output at the other port. The 
same action is achieved using a symmetric LC Tr network. For input power levels, when only the 
main transistor is on, its drain current is converted linearly into a voltage applied to the load, just as 
in a regular PA. When the peaking transistor turns on and pushes RF current into the quarter-wave 
transformer, a differential RF voltage is generated at the drain of the main transistor. Phasing the 
drain RF current of the peaking transistor correctly, e.g., shifting the input RF signal by a quarter­
wavelength before applying it to the peaking transistor gate, has the effect of lowering the RF 
voltage swing at the main transistor drain. This creates voltage headroom for the main transistor, 
which now can push higher RF currents before reaching current saturation. The system is adjusted 
such that the drain RF voltage swing of the main transistor remains constant after the input power 
increases beyond the triggering level of the peaking transistor. In this way, the main transistor keeps 
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FIGURE 13.25 Doherty PA concept. 



pumping higher power into the load but at lower rate since only its RF CUlTent increases. The peak­
ing transistor naturally supplies exactly the amount of additional power necessary to have a linear 
power-in/power-out overall characteristic. 

The advantage of the Doherty configuration is in terms of the PA efficiency. For low power levels, 
one quarter of the maximum power or less, when only the main transistor is on, the PA performance 
equals that of a class AB case. The maximum efficiency is reached when the drain voltage swings 
approximately as much as the power supply voltage for half of the total current the main transistor 
can deliver. This happens just before the peaking transistor turns on at a quarter of the PA total 
power capability, i.e., at 6 dB back-off. At this point, the drain of the peaking transistor, which is 
still off, swings approximately half the power supply voltage, driven by the main transistor. By 
increasing the input signal further, the peaking transistor turns on and starts delivering power with 
good efficiency from the start due to the presence of a substantial RF voltage at its drain. The peak­
ing transistor efficiency increases with the input signal reaching the maximum value when the PA 
delivers maximum power. The overall PA efficiency is shown in Figure 13.23, a major improvement 
compared to conventional class AB. 

ADDITIONAL PA CONSIDERATIONS 

POWER CONTROL 

An important practical issue related to the PA efficiency is power control. 'lYpical wireless standards 
prescribe various transmitter output power levels for various operation modes and some require dynamic 
power changes. RF PAs are usually designed for specific applications and support appropriate power 
control capabilities. Naturally, having good efficiency in all power modes is highly desirable [16]. 

Many of the efficiency enhancement techniques discussed in the previous section inherently 
support power control, since the latter is a form of back-off operation from maximum possible PA 
power. Nevertheless, power control may require orders of magnitude higher range than in the usual 
signal-induced back-off operation, but the system response agility to power control changes is not 
particularly demanding. Some practical details of this PA aspect will be addressed via examples in 
the section "Current PA Technology and Recent Developments." 

LINEARITY 

The important topic of PA linearity and methods for improving it is a vast area of knowledge beyond 
the scope of this treatment (see, for example, Refs. 1-3). The discussion here is limited to the obser­
vation that two general wireless transmitter specifications address the PA linearity performance: 
(a) the output spectral mask and (b) the error vector magnitude (EVM) of the output signal. 

The spectral mask specification is concerned with protecting the communication channels in 
the system from excessive noise generated by transmitting devices not using the respective channels. 
The EVM specification is concerned with the communication link signal-to-noise ratio (SNR) budget 
and allocates a maximum SNR loss in the transmitter including the PA. Depending on the wireless 
standard, the actual PA design is limited either by the spectral mask specifications as in the global 
system for mobile communication (GSM) or by the EVM specifications as in 802. lIb/g. As a gen­
eral rule, the higher the data rate supported by a communication system per unit of bandwidth, the 
more important EVM is since deeper modulation formats must be used with less room for errors. 

CURRENT PA TECHNOLOGY AND RECENT DEVElOPMENTS 

WIRELESS SYSTEM PAs IN THE REAL WORLD 

The theory presented thus far can be used to understand the commercially deployed RF PAs and the 
recent PA research results. Each real PA targets a specific wireless application among many wireless 



 

TABLE 13.4 
PAR, Bandwidth, and Power Control Specifications 

PAR (dB) Signal Bandwidth (MHz) Power Control (dB) 

AMPS, GSM, GPRS, EDGE Low (~O, -3.2) Small (,;; 0.2) Moderate (S 30) 

CDMA, CDMA2000, WCDMA Moderate (3-5) Large (1.23, 3.84) Very large (70-80) 

IEEE 802. I Ia, IEEE 802.11 g Large (> 7) Very large (-17) N/A 

systems and standards. Nevertheless, some systems have enough commonality in their specifications 
to prompt very similar PA solutions. The key specifications determining the PA design approach are 
the RF signal PAR and bandwidth, and the requirements for power control. Table 13.4 shows how 
popular wireless systems compare in terms ofthese specifications. The PAs we discuss next can be 
grouped into similar design and performance categories. 

PAs FOR AMPS, GSM, AND GPRS 

Advanced mobile phone system (AMPS) uses old-fashioned frequency modulation, whereas GSM 
and general packet radio service (GPRS) employ Gaussian minimum shift keying (GMSK) [18]. 
Since in all three cases, the RF signal PAR is near OdB, the PAs are operated in high-efficiency 
switching/saturation mode at high power levels. The power control strategies include lowering the 
drain DC voltage [21] or reducing the input RF signal allowing the PA to enter current mode operation 
at lower power levels. 

Most present 824-849MHz AMPS PAs are designed as dual-mode CDMA/AMPS solutions 
implemented with gallium arsenide (GaAs) or gallium indium phosphide (GaInP) transistors. These 
circuits support CDMA in optimized preferred mode as current PAs and are used for AMPS in leg­
acy mode as switching PAs. The AMPS operation delivers respectable performance such as 31 dBm 
output power with 50% PAE from a 3.4 V power supply [22]. The 25 dB power control required by 
AMPS is a subset of the much tougher 73 dB of CDMA [18] to be discussed later. 

The typical GSM/GPRS PAs are quad-band multichip modules (MCMs) containing two circuits, 
each covering adjacent bands: 824-849/880-9l5MHz and 1710-1785/1850-1910 MHz. GaAs or 
InGaP transistors are used and the RF input/output are prematched to 50 n. At nominal 3.5 V bat­
tery voltage and 25°C, these amplifiers deliver 35 dBm power in the U.S. Cellular/enhanced GSM 
(EGSM) bands and 33 dBm power in the digital cellular communication system (DCS)lpersonal 
communication services (PCS) bands with average PAE (over different products) better than 55 and 
52%, respectively [21]. 

The GSM/GPRS MCMs include a CMOS power control circuit accepting an analog voltage and 
producing PA internal control signals. The typical power control range is in excess of 50 dB [21], the 
system requirement being 30 dB [18]. 

In the last 10 years a substantial research effort has targeted the demonstration of class E CMOS 
PAs for GSM with 40% or better PAE, motivated by lowering the cost of present solutions [23-25]. 
Ref. 23 reports a 0.35 Ilm CMOS differential two-stage design delivering 1W at 1.9 GHz with 48% 
PAE from a 2 V supply. A board microstrip balun is used for differential to single-ended conversion. 
The PAE including the balun is 41%. 

The two-stage 0.251lm CMOS PA reported in Ref. 24 has an output cascode transistor used to avoid 
the device voltage overstress. Powered from a 1.8V DC supply, the circuit delivers 0.9W of power at 
900MHz with 41% PAE. The output drain efficiency is larger than 45% and remains above 40% for 
supply voltages as low as 0.6V, demonstrating the excellent power control capability of class E PAs. 

Ref. 25 demonstrates a 0.131lm CMOS class E PA for 1.4-2.0 GHz operation. Similar to the one 
used in Ref. 24, a cascode device is used in the output stage. The circuit operates from 1.3 V supply 
and delivers 23 dBm with 67% PAE at 1.7 GHz. The PAE is better than 60% over the entire band. 



PAs FOR EDGE 

Enhanced data for GSM evolution (EDGE), a GSM upgrade, uses the same 200kHz channeliza­
tion but introduces 8 phase shift keying (8PSK) modulation for a 3X increase in raw data rate. This 
comes at the expense of 3.2 dB signal PAR, which dictates a different approach to the PA design. To 
meet the spectral mask and EVM requirements, it is customary to use class AB cun-ent/linear PAs 
operated 2.5-3 dB below 1 dB compression. The resulting PAE penalty compared to GSM PAs is 
significant. Typically, an EDGE PA with 3.5V supply providing 29 dBm power in the U.S. Cellular! 
EGSM bands and 28dBm power in the DCSIPCS bands has only 25% PAE [26]. 

Because of moderate PAR and narrow signal bandwidth, EDGE is an excellent system candidate 
for polar PA application [18,19,27]. Research efforts in this direction [28,29] have focused on using 
supply-modulated class E PAs. 

The 0.18 flm CMOS circuit discussed in Ref. 28 is a three-stage design, the last stage powered 
by a linear regulator for amplitude modulation insertion. In addition, the last stage and the linear 
regulator use tick-oxide transistors operating from 3.3 V supply unlike the rest of the circuit using 
1.8 V supply. A peak CW output power of 27 dBm was measured at 34% PAE. The design met the 
EDGE EVM and spectral mask requirements in the DCS band at 23.8 dBm power with 22% PAE. 

The class EPA discussed in Ref. 29 is integrated in 0.18 flm BiCMOS SiGe technology, has a 
single stage, and operates at 881 MHz. All necessary passive components except the choke coil are 
included on-chip. At the peak 22.5 dBm output power, the CW PE and PAE are 72.5 and 65.6%, 
respectively, operating from a 3.3 V supply. This PA does not contain the amplitude modulation driver, 
which is an external, discrete switching converter with 5 MHz bandwidth and 82.6% efficiency. The 
overall configuration meets the EVM and the spectral mask requirements for EDGE at 20.4dBm 
power with better than 44% PAE. 

PAs FOR CDMA AND WCDMA 

CDMA and WCDMA use MHz signal bandwidths and a coding scheme generating RF signals with 
high PAR. For example, the downlink signal composed of many superimposed CDMA channels 
addressing all active mobile units regularly exceeds lOdB PAR [30]. This makes the design of effi­
cient base station CDMA PAs extremely challenging. The PAR of the uplink signal containing a 
single channel is smaller and the handset PA design seems easier by comparison, but is no small 
feat in absolute terms. It is not surprising that the CDMA PA design problem has generated a large 
amount of activities and ideas [33-40]. The most successful CDMA PA approach to date is class AB 
with efficiency enhancements, but other techniques are also considered. 

Table 13.5 shows typical specifications of commercial CDMA and WCDMA handset PAs. Some­
what surprisingly to a reader unfamiliar to the CDMA systems, the PA vendors quote PAE at 28 dBm 
and 16dBm power. The 28dBm figure is good but almost irrelevant since handsets rarely transmit 
at this level, the most likely transmit power being 5-6 dBm. The CDMA system's proper operation 
relies on very wide mobile unit power control, as shown in Table 13.4. This complicates the efficient 
handset PA design by a large degree. 

TABLE 13.5 
Typical Power/Gain/PAE Performance for Commercial CDMA and WCDMA PAs 

824-849 MHz 1350-1910MHz 1920-1910MHz 

CDMA� 28dBll1/28dB/37% at 3.4V 28dBm!27 dB/39% at 3.4V 

16dBm/2SdB/8% at 3.4V 16dBm/21 dB/8% at 3.4 V 

WCDMA� 28dBm/27dB/43% at 3.4V 28dBm127 dB/37% at 3.4V 28 dBm!27 dB/42% at 3.4V 

16 dBm!l6 dB/19% at 3.4 V 16dBm!2SdB/210/0 at3.4V 16dBm/21 dB/1S% at 3.4V 

7dBm/1SdBI14% at 1.5V 7 dB m/24 dB!20 % at 1.5 V 



A common method used in CDMA PAs to mitigate the efficiency problem due to large power 
control is quiescent operation adaptation [16] as discussed in the subsection "Class AB Opera­
tion." Another method is the power supply adaptation according to the envelope tracking technique 
[16,17]. Agile DC-to-DC converters with over 90% efficiency capable of adjusting the PA output 
power by 1dB every 1.2 ms as required in CDMA are readily available [31,32]. Further activities 
are reported in stand-alone agile DC-to-DC converters [33-35] as well as DC-to-DC converters 
cointegrated with class AB PAs [36]. 

PA subranging is also effective for power control without excessive efficiency degradation as adopted 
in Refs. 37 and 38 using two PA segments. A three-segment PA is described in Ref. 39 and transformer­
based subranging in Ref. 40. We also mention a 3-bit binary subranging PA reported in Ref. 41. 

Finally, the CDMA efficiency problem has motivated a serious reconsideration of the classical 
Doherty and Chireix concepts [20,42-44]. In Ref. 42, a 0.5 W extended Doherty (peak efficiency 
at 12 dB back-off) has been implemented using discrete indium gallium phosphide (InGaP)/GaAs 
HBTs and microstrip quarter-wave transformers. The circuit operates at 950MHz, delivering 
27.5 dBm power at 1dB compression with 46% PAE. PAE of better than 39% is maintained over the 
entire 0-12 dB back-off region and 15% is measured at 20 dB back-off. Design considerations and 
board-level implementations of three-stage WCDMA (l920-1980MHz) Doherty amplifiers using 
lOY GaAs field effect transistors (FETs) can be found in Ref. 43. The amplifier meets WCDMA lin­
earity requirements up to 33 dBm with 48.5% PAE. The measured PAE at 27 dBm (6 dB back-off) 
and 21 dBm (12dB back-off) are 42 and 27%, respectively. The 3 dB bandwidth of these amplifiers 
is broad enough to accommodate the WCDMA uplink reliably. 

Similarly, a Chireix out-phasing PA for WCDMA 2llO-2170MHz downlink is discussed in Ref. 20. 
The circuit uses a pair of saturated class B amplifiers implemented with two 0.25 11m p-channel 
high electron mobility transistors (pHEMPTs), which are bare-die bonded on a printed circuit board 
(PCB). These circuits deliver 34.5 dBm from 5 V supply with PE and PAE of 75 and 54%, respectively. 
The Chireix combiner and matching circuits are implemented using on-board microstrip lines. 

PAs FOR IEEE 802.11a/b/g 

The typical performance of commercial IEEE 802.11 PAs operating from a 3.3 V power supply 
[45,46] is summarized in Table 13.6. The 6.5-8 dB difference between the 1 dB compression point 
p IdB and the orthogonal frequency division multiplexing (OFDM) signal power POFDM(max) is consis­
tent with the large PAR of 64-QAM OFDM. Despite using identical signaling, the 802.11a PA effi­
ciency is approximately 2X smaller than that of the 802.l1g PA. This is a consequence of operation 
at much higher frequencies. The 802.11g parts support IEEE 802.11b CCK signaling with lower 
PAR. In CCK mode, the PAs can be operated with less back-off and much improved PAE. Typi­
cally, an 802.1 1big PA with 26.5 dBm P 1dB delivers approximately 23dBm CCK power with 30% 
PAE [45]. 

Current research efforts target the implementation of 802.11 PAs with acceptable PAE in Si 
technologies [47], the development of methods for reducing EVM and improving efficiency by 
reduction of AM-PM distortion, and the introduction of previously discussed power-efficient PA 
schemes [48,49]. 

TABLE 13.6 
Typical Performance for Commercial 802.11 PAs 

POFDM(max) (64 QAM with PAE@ 

Gain (dB) PldB (dBm) EVM -3%) (dBm) POFDM<max) (%) 

IEEE 802.1g 25.5 26.5 19 25 

IEEE 802.11a 21 26 18 3 



 
 

CLASS AB gm RATIO BIASING 

This section is concluded with a description of a recent contribution on a promising new biasing 
technique for the class AB PA [50,51]. The class AB stage is one of the most important PA build­
ing blocks either as a stand-alone linear stage or as part of a more sophisticated scheme such as 
the Doherty PA. The motivation for this work is the fact that maintaining proper class AB biasing 
under all fabrication and temperature conditions is a challenging circuit design task due to the high 
sensitivity of the PA linearity to the biasing conditions. During the investigation on this matter, a 
new circuit design concept was discovered, which not only seems to solve the current PA biasing 
problem very efficiently but also gives a new insight into the transistor class AB operation. 

The standard biasing technique for current/linear PAs is known as constant I DQ biasing, where I OQ 

is the transistor quiescent drain current. As the name suggests, the main objective of the biasing cir­
cuits is to maintain a constant IOQ over all operating conditions. The types of practical circuits trying 
to accomplish this objective are either open-loop, developing the right quiescent gate voltage through 
an independent circuit, or closed-loop via an analog or digital control system measuring I DQ and keep­
ing it constant through negative feedback. Both types of techniques have important shortcomings. The 
open-loop methods are not precise enough for the high PA sensitivity and the closed-loop methods can 
guarantee the right IOQ only when the RF signal is not present and are not able to correct for biasing 
drift during the PA operation. Regarding the open-loop methods, it is stressed that the use of a con­
ventional current mirror is quite challenging due to RF coupling from the PA transistor into the mirror 
transistor, which can shift the quiescent gate voltage enough to create biasing errors. 

The reasons why PA designers use constant IOQ biasing are mostly pragmatic rather than based 
on any solid theoretical justification. Laboratory tests simply show that a good linearity compromise 
over temperature variations is obtained for constant IOQ . It is also known that fabrication process 
variations require slightly different IDQ values for different process corners for best linearity perfor­
mance. For manufacturing cost reasons, I DQ is rarely tuned for individual PA during production, so 
the actual shipped PA is usually not operating at its best. 

The new principle called constant-gm-ratio biasing is shown in Figure 13.26 and effectively 
implements a differential current mirror [50]. Instead of copying a current as in conventional current 
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FIGURE 13.26 Circuit concept for gm-ratio biasing. 
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FIGURE 13.27 Simulated and measured drain current curves versus temperature under constant gm-ratio 
conditions, demonstrating approximately constant [DQ behavior. (From Banu, M., Prodanov, v., and Smith, K., 
Asia Pacific Microwave Conference, 2004. With pennission. © IEEE 2004.) 

mirrors, the difference between two slightly dissimilar currents is copied, which is a measure of the 
transistor transconductance 8m, The master gmis set and tracks the peak transistor 8mvalue as shown 
in Figure 13.14. This is not difficult to accomplish even in open-loop fashion due to zero sensitivity of 
gm as a function of the drain current at that point. The slave 8mis automatically set through high-gain 
negative feedback such that under all temperature and fabrication variations, the ratio between the 
peak gm and the slave 8mis kept constant. The resulting gate voltage on the slave gm transistors is 
lIsed as the quiescent gate voltage of the PA main RF transistor. Naturally, the transistors realizing 
the two gm values are assumed to be matched to the main PA transistor. 

Constant-gm-ratio biasing is justified mathematically by the fact that the maximum error in the 
transistor even gm component compared to an ideally flat characteristic is detennined by the 8mratio 
to a high-order approximation [50]. In other words, the ripple magnitudes in the curves of Figure 
13.14 are practically determined only by the 8 m ratio at the operating point. Then, it is reasonable to 
expect that the constant-gm-ratio strategy should maintain a consistent linearity performance over 
temperature and process variations. 

Figure 13.27 shows simulated and measured IDQ curves of an lateral double-diffused MOS (LDMOS) 
transistor under constant-gm-ratio conditions. The resulting practically constant IDQ curves agree with 
and for the first time explain the traditional PA biasing strategy. Figure 13.28 shows that a constant gm 
ratio is substantially better than constant IDQ biasing under fabrication process variations. In addition, 
this method is fully compatible with IC implementation requirements and the differential nature of the 
circuits makes them insensitive to RF coupling effects, as discussed for single-ended current mirrors. 

A HISTORICAL PERSPECTIVE AND CONCLUSIONS 

The PA has been an essential component since the dawn of electronics, and its history has been 
closely entangled with that of wireless information transmission technology, from the traditional 
analog radio to the sophisticated digital systems of today. Lee De Forest invented the triode tube 
in 1906 [52], the first electrical power-amplifying device, whose gain was boosted by Edwin H. 
Armstrong of Columbia University in 1915 through positive-feedback circuit techniques [53]. These 
advancements enabled the start of AM broadcasting in 1920. In 1926, Bernhard D. H. Tellegen of 
Philips Research Labs invented the pentode tube [54], the first voltage-controlled-current-source 
device, which opened the door for the development of amplifier circuit techniques known today as 
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classes A, B, AB, and C. The effort to resolve linearity issues led to the discovery of feed-forward 
and negative-feedback principles in 1924 and 1927, respectively, both by Harold Black [55,56] of Bell 
Telephone Laboratories. All these early inventions consolidated the AM broadcasting industry, and 
even though the FM modulation was invented in 1933 by E. Armstrong and essentially modern FM 
transmitters were installed as early as 1940, AM remained the dominant method for RF broadcasting 
until 1978 when finally the FM exceeded AM in number of listeners. 

During the golden years of AM radio broadcasting (1920-1960), much emphasis was put on 
power-efficient amplifiers, and in the mid-1930s, two important techniques were invented. In 1935, 
Henry Chireix described the out-phasing PA topology [12] and in 1936, William Doherty of Bell 
Telephone Laboratories invented a load modulation technique [13]. Today, these techniques bear 
the name of their inventors, the Doherty amplifier being sometimes called the crown jewel of RF 
power amplification. Both the Chireix and the Doherty architectures were successfully commercial­
ized. Western Electric deployed Doherty-based AM transmitters in 1938, and RCA used the Chireix 
architecture in 1956 under the name ampliphase. Other notable accomplishments in efficient RF 
PAs are the concept ofEER developed by Leonard Kahn in 1952 [14], the concept of odd-harmonic 
enhancement (class F) developed by V. J. Taylor in 1958 [7] and the zero-voltage-switching amplifier 
(class E) developed by Nathan Sokal and Alan Sokal in 1972 [4,5]. 

Since FM has fundamental advantages over AM in terms of higher quality audio signals and 
constant-envelope RF signals (OdB PAR) for easy and efficient PA implementation, it was selected as 
the preferred modulation format for the original cellular systems, AMPS in 1983 and GSM in 1992. 
Other wireless systems followed suit. The great consumer market opportunity opened by these applica­
tions focused most EE talent on designing PAs for constant-envelope modulation formats. The new 
circuit design technology available and appropriate for low-cost implementations was now based on 
Ies. There was no need for realizing efficient PAs under back-off conditions, so the respective genera­
tion of circuit designers could just ignore and forget most of the wealth of PA knowledge developed 
earlier. Class E switching PA is a perfect example of an appropriate architecture for constant-envelope 



applications. The powerful Doherty, Chireix, and EER techniques, among others, had all but fallen 
into obscurity, but not for long. 

In the last 10 years, the constant push for higher data rates has reintroduced AM modulation with 
a vengeance, as discussed in the subsection "Reasons for Back-Off Requirements and Efficiency 
Penalties." Reviewing their limited present options, PA designers have quickly realized that by looking 
into the past, they can see the future. We are witnessing a true renaissance in the PA field, and as 
was the case in the sixteenth-century art, we expect the rebirth of classical PA techniques such as 
class AB, Doherty, Chireix, etc., to surpass the originals in mastery. 
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