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MIKUSI�SKI'S OPERATIONAL CALCULUS APPROACH TO THE

DISTRIBUTIONAL STIELTJES TRANSFORM

DENNIS NEMZER

Abstract. We consider a spaceM which was introduced by Yosida to provide a sim-
pli�ed version for Mikusi«ski operational calculus. The classical Stieltjes transform
is extended to a subspace of M and then studied. Some Abelian type theorems are
presented.

1. Introduction

The ring of continuous complex-valued functions on the real line which vanish on

(�1; 0), denoted by C+(R), with addition and convolution has no zero divisors by Titch-

march's theorem. The quotient �eld of C+(R) is called the �eld of Mikusi«ski operators

[6].

Yosida [10] constructed a spaceM in order to provide a simpli�ed version for Mikusi«ski's

operational calculus without using Titchmarch's convolution theorem. Even though the

space M does not give the full space of Mikusi«ski operators, it contains many of the

important operators needed for applications.

In this note, we use the spaceM(r) �M to extend the classical Stieltjes transform. It

turns out thatM(r) is isomorphic to the space of distributions J 0(r). Roughly speaking,

a distribution T , which is supported on [0;1), is in J 0(r) provided there exist k 2 N and

a locally integrable function f satisfying a growth condition at in�nity such that T is the

kth distributional derivative of f .

The space J 0(r), and variations of J 0(r), have been investigated by several authors

[2, 4, 5, 7, 8, 9] in regards to extending the Stieltjes transform.

While the construction of J 0(r) requires a space of testing functions, the concept of

a dual space, and functional analysis, the construction of M(r) is algebraic, elementary,

and only requires elementary calculus.
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2. Preliminaries

Let C+(R) denote the space of all continuous functions on R which vanish on the

interval (�1; 0).

For f; g 2 C+(R), the convolution is given by

(2.1) (f � g)(t) =

Z t

0

f(t� x)g(x) dx:

Let H denote the Heaviside function. That is, H(t) = 1 for t � 0 and zero otherwise.

For each n 2 N, we denote by Hn the function H �� � ��H where H is repeated n times.

The space M is de�ned as follows.

M =

�
f

Hk
: f 2 C+(R); k 2 N

�
:

Two elements of M are equal, denoted f

Hn = g

Hm , if and only if Hm � f = Hn � g.

Addition, multiplication, and scalar multiplication are de�ned in the natural way, and

M with these operations is a commutative algebra with identity � = H2

H2 .

(2.2)
f

Hn
+

g

Hm
=
Hm � f +Hn � g

Hn+m

(2.3)
f

Hn
�

g

Hm
=

f � g

Hn+m

(2.4) �
f

Hn
=
�f

Hn
; � 2 C:

The generalized derivative is de�ned as follows.

Let W = f

Hk 2M. Then, DW = f

Hk+1 .

Remark 2.1. For the construction of M, the space of locally integrable functions

which vanish on (�1; 0) could have been used instead of C+(R) . Also notice by

identifying f 2 L1loc(R
+) with H�f

H
2 M, L1loc(R

+) can be considered a subspace of

M.

3. Stieltjes Transform

For k = 0; 1; 2; : : :

(3.1) Mk(r) =

�
f

Hk
2M : f(t) t�r�k+� is bounded as t!1 for some � > 0

�

(3.2) M(r) =

1[
k=0

Mk(r)

Let W 2 M(r). That is, W = f

Hk 2 Mk(r), for some k 2 N. For r > �1, de�ne the

Stieltjes transform of index r by
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(3.3) �rzW = (r + 1)k

Z 1

0

f(t)

(t+ z)r+k+1
dt; z 2 Cn(�1; 0];

where (r + 1)k = �(r+k+1)
�(r+1) = (r + 1)(r + 2) � � � (r + k) and � is the gamma function.

Remark 3.1.

(1) The de�nition for the Stieltjes transform is well-de�ned. This follows by

observing the following. First, f

Hk = g

Hn (n � k) if and only if g = Hn�k � f .

Also, for m 2 N,

�rz

�
f

Hk

�
= �rz

�
Hm � f

Hm+k

�
; z 2 Cn(�1; 0]:

(2) Notice that the Stieltjes transform �rz is consistent with the classical Stieltjes

transform Srz . That is, if f 2 L1loc(R
+) such that f satis�es the growth con-

dition in (3.1) with k = 0, then Srzf = �rz

�
H�f
H

�
, where Srzf =

R1
0

f(t)
(t+z)r+1 dt.

The Stieltjes transform can be obtained by iteration of the Laplace transform.

Theorem 3.1. Let W =
f

Hk
2 M(r). Then, �rzW =

1

�(r + 1)

Z 1

0

e�zttrcW (t) dt,

Re (z) > 0, where

(3.4) cW (t) = tk bf(t) = tk
Z 1

0

e�t�f(�)d�:

Proof.

(3.5)
1

�(r + 1)

Z 1

0

e�zttrcW (t) dt =
1

�(r + 1)

Z 1

0

Z 1

0

e�(z+�)t tr+kf(�)d� dt

Because of the growth condition on f , the interchanging of the order of integration is

justi�ed.

Hence,

1

�(r + 1)

Z 1

0

Z 1

0

e�(z+�)t tr+kf(�)d� dt =
1

�(r + 1)

Z 1

0

f(�)

�Z 1

0

e�(z+�)t tr+k dt

�
d�

=
�(r + k + 1)

�(r + 1)

Z 1

0

f(�)

(� + z)r+k+1
d�

= �rzW; Re z > 0:

(3.6)

Therefore, by (3.5) and (3.6),

�rzW =
1

�(r + 1)

Z 1

0

e�zttrcW (t) dt; Re (z) > 0 :

�

Remark 3.2. The Laplace transform operator (3.4) has similar properties as the

classical Laplace transform (see [1]).
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The proofs of the following properties follow directly by using the previous theorem

and the properties of the Laplace transform.

Properties. Let W = f

Hk 2M(r). Then for r > �1 and z 2 Cn(�1; 0],

(1) �rz�cW = �rz+cW; c > 0 and �cW = �cf

Hk ; �cf(t) = f(t� c):

(2) �rzD
mW = (r + 1)m�r+mz W; m = 1; 2; : : :

(3) dm

dzm
�rzW = (�1)m(r + 1)m�r+mz W = (�1)m�rzD

mW; m = 1; 2; : : :

(4) �r+1z (tW ) = �rzW � z�r+1z W , where tW = tf

Hk �
kf

Hk�1 ; k � 2.

Theorem 3.2. Let W 2 M(r). Then, there exist positive numbers � and � such

that

(i) �rzW = o(z��) as z ! 0; jarg zj �  < �
2 .

(ii) �rzW = o(z��) as z !1; jarg zj �  < �
2 .

Proof. Let W = f

Hk 2M(r), where for some positive constants M , �, and 
,

jf(t)j �M tr+k��; for t � 
:

(i) �rzW = 1
�(r+1) (t

r+k bf(t))^(z); Re z > 0:

Now,

tr+k bf(t)
tr+k

= bf(t)! 0 as t!1:

Therefore, by a classical Abelian theorem for the Laplace transform [3],

zr+k+1(tr+k bf(t))^
�(r + k + 1)

! 0 as z ! 0; jargzj �  <
�

2
:

Thus,

lim
z!0

jargzj� < �

2

zr+k+1�rzW = 0:

This completes the proof of (i). Now, for the proof of (ii). There exist A > 0 and B > 0

such that

jtr+k bf(t)j � Atr+k +
B

t1��
; t > 0 (see [7], p. 211):

Thus, the function tr+k bf(t) is locally integrable on [0;1).

Now,

j�rzW j �
1

�(r + 1)

Z 1

0

e�t Re z tr+kj bf(t)j dt
�

1

�(r + 1)

Z 1

0

e�t Re z
�
Atr+k +

B

t1��

�
dt

=
C

( Re z)r+k+1
+

D

( Re z)�
; Re z > 0;

for some positive constants C, D.

Thus,

lim
z!1

jargzj� < �

2

z��rzW = 0; where � =
1

2
minf�; r + k + 1g:

This completes the proof of the theorem. �
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4. Localization

De�nition 4.1. Let W = f

Hk 2 M. W is said to vanish on an open interval (a; b),

denoted W (t) = 0 on (a; b), provided there exists a polynomial p with degree at most

k � 1 such that p(t) = f(t) for a < t < b.

The support of W 2 M, denoted supp W , is the complement of the largest open set

on which W vanishes.

Remark 4.1.

(1) The de�nition of W vanishing on an interval does not depend on the repre-

sentation of W .

(2) The notion of an element of M vanishing on an interval is consistent with

the notion of a function vanishing on an interval. That is, f(t) = 0 for

a < t < b if and only if Wf (t) = 0 on (a; b), where f 2 C+(R) and Wf = H�f
H

.

(3) It follows that if W (t) = 0 on (a; b), where a < 0, then f(t) = 0 for all

a < t < b, where W = f

Hk .

Example 4.1. Recall � = H2

H2 . Notice that H2(t) = t on the open interval (0;1).

Thus, �(t) = 0 on (0;1). Also, H(t) = 0 on (�1; 0). So, �(t) = 0 on (�1; 0).

Therefore, supp � = f0g.

Example 4.2. Let W = f

H3 , where f(t) =

8<
:

t2 0 � t < 2

t+ 2 t � 2

0 t < 0:
Then W has compact support. Notice that W vanishes on (�1; 0) [ (0; 2) [ (2;1),

and hence, supp W = f0g [ f2g.

Theorem 4.1. Let W 2M. If DW (t) = 0 on (a; b), then W is constant on (a; b).

Proof. Let W = f

Hk such that DW = f

Hk+1 = 0 on (a; b). Therefore, there exists a

polynomial p(t) = �0 + �1t+ : : :+ �kt
k such that f(t) = p(t), for all a < t < b. That is,

f � k!�kH
k+1 = �0H + �1H

2 + � � �+ (k � 1)!�k�1H
k on (a; b):

Thus,
f

Hk
�
k!�kH

k+1

Hk
= 0 on (a; b):

That is, W = f

Hk = k!�kH on (a; b). �

5. Abelian Theorems

As an application, we establish some Abelian type theorems.

Let W;V 2M. Then, W (t) = V (t) on (a; b) provided (W � V )(t) = 0 on (a; b).

De�nition 5.1. Let W 2 M and �; � 2 C where Re� > �1. W is said to be

equivalent at the origin (in�nity) to �t� , denoted W (t) � �t� as t ! 0+ (t ! 1),

provided there exist an interval (a; b) with a < 0 and b > 0 (a > 0 and b = 1) and

g 2 L1loc(R
+) such that W (t) = Wg(t) on (a; b), where Wg = H�g

H
2 M, and g(t)

t�
! �

as t! 0+ (t!1).
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Lemma 5.1. Let k 2 N, � > 0, and r > �1. If f 2 L1loc(R
+) such that f(t)t�r�k+� is

bounded on [b;1) (for some b > 0), thenR1
b

f(t)
(t+z)r+k+1

dt is bounded in the half-plane Re z > 0.

The following is an initial value theorem.

Theorem 5.1. Let W 2M(r) and � > �1. If W (t) � �t� as t! 0+, then for r > �,

lim
z!0

jargzj� < �

2

zr���(r + 1)�rzW

�(r � �)�(� + 1)
= �:

Proof. Since W (t) � �t� as t ! 0+, W (t) = Wg(t) on (�"; ") for some " > 0, where

g 2 L1loc(R
+) and g(t)

t�
! � as t! 0+. We may assume that g(t) = 0 on [";1).

Now, W = Wg + V , where for some k 2 N, V 2 Mk(r) and supp V � [";1). Thus,

by a classical Abelian theorem for the Stieltjes transform and the previous lemma, we

obtain

lim
z!0

jargzj� < �

2

zr���(r + 1)�rzg

�(r � �)�(� + 1)
= �;

and,

lim
z!0

jargzj� < �

2

zr���(r + 1)�rzV

�(r � �)�(� + 1)
= 0:

Therefore,

lim
z!0

jargzj� < �

2

zr���(r + 1)�rzW

�(r � �)�(� + 1)
= �:

�

Lemma 5.2. Let a > 0 and k 2 N. Then, for n = 0; 1; 2; : : : ; k � 1 and r > � > �1,

lim
z!1

Re z>0

zr��
Z 1

a

tn

(t+ z)r+k+1
dt = 0:

Proof. Follows by induction on k. �

Now, the �nal value theorem.

Theorem 5.2. Let W 2M and � > �1. If W (t) � �t� as t!1, then for r > �,

lim
z!1

jargzj� < �

2

zr���(r + 1)�rzW

�(r � �)�(� + 1)
= �:

Proof. Since W (t) � �t� as t ! 1 , there exist k 2 N, c > 0, a polynomial p, and

g 2 L1loc(R
+) such that supp g � [c;1), deg p � k � 1, and f(t) = (Hk � g)(t) + p(t) on

(c;1) with g(t)
t�

! � as t!1.

It follows that W 2 Mk(r) and that W = Wg + V , where V = f�Hk�g
Hk 2 Mk(r) and

supp V � [0; c]. By using a classical Abelian theorem and noting that �rzWg is the same

as the classical Stieltjes transform of g, we obtain

lim
z!1

jargzj� < �

2

zr���(r + 1)�rzWg

�(r � �)�(� + 1)
= �:
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Now, letting T = f �Hk � g, we obtain

zr���rzV = (r + 1)k z
r��

Z 1

0

T (t)

(t+ z)r+k+1
dt

= (r + 1)k z
r��

Z c

0

T (t)

(t+ z)r+k+1
dt+ (r + 1)k z

r��

Z 1

c

p(t)

(t+ z)r+k+1
dt:

By the previous lemma, for Re z > 0, it follows that the limit of the second term converges

to zero as z !1. Now, for Re z > 0,����zr��
Z c

0

T (t)

(t+ z)r+k+1
dt

���� � jzj�k���1
Z c

0

jT (t)j dt! 0 as z !1:

The proof of the theorem is completed by observing that

zr���rzW = zr���rzWg + zr���rzV:

�

As a �nal remark, the map f

Hk ! Dkf is a well-de�ned linear bijection from M(r)

onto J 0(r), where D denotes the distributional di�erential operator [11] and

J 0(r) = fDkf : k 2 N; f 2 L1loc(R
+); f(t)t�r�k+� bdd as t!1 for some � > 0g:

Moreover, the Stieltjes transform for f

Hk 2 M(r) and the Stieltjes transform for Dkf 2

J 0(r) are equivalent.
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