MIKUSIŃSKI'S OPERATIONAL CALCULUS APPROACH TO THE DISTRIBUTIONAL STIELTJES TRANSFORM

DENNIS NEMZER

Abstract

We consider a space \mathcal{M} which was introduced by Yosida to provide a simplified version for Mikusiński operational calculus. The classical Stieltjes transform is extended to a subspace of \mathcal{M} and then studied. Some Abelian type theorems are presented.

1. Introduction

The ring of continuous complex-valued functions on the real line which vanish on $(-\infty, 0)$, denoted by $C_{+}(\mathbb{R})$, with addition and convolution has no zero divisors by Titchmarch's theorem. The quotient field of $C_{+}(\mathbb{R})$ is called the field of Mikusiński operators [6].

Yosida [10] constructed a space \mathcal{M} in order to provide a simplified version for Mikusiński's operational calculus without using Titchmarch's convolution theorem. Even though the space \mathcal{M} does not give the full space of Mikusiński operators, it contains many of the important operators needed for applications.

In this note, we use the space $\mathcal{M}(r) \subset \mathcal{M}$ to extend the classical Stieltjes transform. It turns out that $\mathcal{M}(r)$ is isomorphic to the space of distributions $J^{\prime}(r)$. Roughly speaking, a distribution T, which is supported on $[0, \infty)$, is in $J^{\prime}(r)$ provided there exist $k \in \mathbb{N}$ and a locally integrable function f satisfying a growth condition at infinity such that T is the $k^{t h}$ distributional derivative of f.

The space $J^{\prime}(r)$, and variations of $J^{\prime}(r)$, have been investigated by several authors [2, 4, 5, 7, 8, 9] in regards to extending the Stieltjes transform.

While the construction of $J^{\prime}(r)$ requires a space of testing functions, the concept of a dual space, and functional analysis, the construction of $\mathcal{M}(r)$ is algebraic, elementary, and only requires elementary calculus.

Key words and phrases. Abelian theorems, generalized function, Mikusiński operational calculus, Stieltjes transform.

2. Preliminaries

Let $C_{+}(\mathbb{R})$ denote the space of all continuous functions on \mathbb{R} which vanish on the interval $(-\infty, 0)$.

For $\mathrm{f}, g \in C_{+}(\mathbb{R})$, the convolution is given by

$$
\begin{equation*}
(f * g)(t)=\int_{0}^{t} f(t-x) g(x) d x \tag{2.1}
\end{equation*}
$$

Let H denote the Heaviside function. That is, $H(t)=1$ for $t \geq 0$ and zero otherwise. For each $n \in \mathbb{N}$, we denote by H^{n} the function $H * \cdots * H$ where H is repeated n times.
The space \mathcal{M} is defined as follows.

$$
\mathcal{M}=\left\{\frac{f}{H^{k}}: f \in C_{+}(\mathbb{R}), k \in \mathbb{N}\right\}
$$

Two elements of \mathcal{M} are equal, denoted $\frac{f}{H^{n}}=\frac{g}{H^{m}}$, if and only if $H^{m} * f=H^{n} * g$.
Addition, multiplication, and scalar multiplication are defined in the natural way, and \mathcal{M} with these operations is a commutative algebra with identity $\delta=\frac{H^{2}}{H^{2}}$.

$$
\begin{equation*}
\frac{f}{H^{n}}+\frac{g}{H^{m}}=\frac{H^{m} * f+H^{n} * g}{H^{n+m}} \tag{2.2}
\end{equation*}
$$

$$
\begin{gather*}
\frac{f}{H^{n}} * \frac{g}{H^{m}}=\frac{f * g}{H^{n+m}} \tag{2.3}\\
\alpha \frac{f}{H^{n}}=\frac{\alpha f}{H^{n}}, \quad \alpha \in \mathbb{C} . \tag{2.4}
\end{gather*}
$$

The generalized derivative is defined as follows.
Let $W=\frac{f}{H^{k}} \in \mathcal{M}$. Then, $D W=\frac{f}{H^{k+1}}$.
Remark 2.1. For the construction of \mathcal{M}, the space of locally integrable functions which vanish on $(-\infty, 0)$ could have been used instead of $C_{+}(\mathbb{R})$. Also notice by identifying $f \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$with $\frac{H * f}{H} \in \mathcal{M}, L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$can be considered a subspace of M.

3. Stieltjes Transform

For $k=0,1,2, \ldots$

$$
\begin{equation*}
\mathcal{M}_{k}(r)=\left\{\frac{f}{H^{k}} \in \mathcal{M}: f(t) t^{-r-k+\alpha} \text { is bounded as } t \rightarrow \infty \text { for some } \alpha>0\right\} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{M}(r)=\bigcup_{k=0}^{\infty} \mathcal{M}_{k}(r) \tag{3.2}
\end{equation*}
$$

Let $W \in \mathcal{M}(r)$. That is, $W=\frac{f}{H^{k}} \in \mathcal{M}_{k}(r)$, for some $k \in \mathbb{N}$. For $r>-1$, define the Stieltjes transform of index r by

$$
\begin{equation*}
\Lambda_{z}^{r} W=(r+1)_{k} \int_{0}^{\infty} \frac{f(t)}{(t+z)^{r+k+1}} d t, \quad z \in \mathbb{C} \backslash(-\infty, 0] \tag{3.3}
\end{equation*}
$$

where $(r+1)_{k}=\frac{\Gamma(r+k+1)}{\Gamma(r+1)}=(r+1)(r+2) \cdots(r+k)$ and Γ is the gamma function.

Remark 3.1.

(1) The definition for the Stieltjes transform is well-defined. This follows by observing the following. First, $\frac{f}{H^{k}}=\frac{g}{H^{n}}(n \geq k)$ if and only if $g=H^{n-k} * f$. Also, for $m \in \mathbb{N}$,

$$
\Lambda_{z}^{r}\left(\frac{f}{H^{k}}\right)=\Lambda_{z}^{r}\left(\frac{H^{m} * f}{H^{m+k}}\right), z \in \mathbb{C} \backslash(-\infty, 0]
$$

(2) Notice that the Stieltjes transform Λ_{z}^{r} is consistent with the classical Stieltjes transform S_{z}^{r}. That is, if $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{+}\right)$such that f satisfies the growth condition in (3.1) with $k=0$, then $S_{z}^{r} f=\Lambda_{z}^{r}\left(\frac{H * f}{H}\right)$, where $S_{z}^{r} f=\int_{0}^{\infty} \frac{f(t)}{(t+z)^{r+1}} d t$. The Stieltjes transform can be obtained by iteration of the Laplace transform.

Theorem 3.1. Let $W=\frac{f}{H^{k}} \in \mathcal{M}(r)$. Then, $\Lambda_{z}^{r} W=\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} e^{-z t} t^{r} \widehat{W}(t) d t$, $\operatorname{Re}(z)>0$, where

$$
\begin{equation*}
\widehat{W}(t)=t^{k} \widehat{f}(t)=t^{k} \int_{0}^{\infty} e^{-t \sigma} f(\sigma) d \sigma \tag{3.4}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} e^{-z t} t^{r} \widehat{W}(t) d t=\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(z+\sigma) t} t^{r+k} f(\sigma) d \sigma d t \tag{3.5}
\end{equation*}
$$

Because of the growth condition on f, the interchanging of the order of integration is justified.

Hence,

$$
\begin{align*}
\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(z+\sigma) t} t^{r+k} f(\sigma) d \sigma d t & =\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} f(\sigma)\left(\int_{0}^{\infty} e^{-(z+\sigma) t} t^{r+k} d t\right) d \sigma \tag{3.6}\\
& =\frac{\Gamma(r+k+1)}{\Gamma(r+1)} \int_{0}^{\infty} \frac{f(\sigma)}{(\sigma+z)^{r+k+1}} d \sigma \\
& =\Lambda_{z}^{r} W, \operatorname{Re} z>0
\end{align*}
$$

Therefore, by (3.5) and (3.6),

$$
\Lambda_{z}^{r} W=\frac{1}{\Gamma(r+1)} \int_{0}^{\infty} e^{-z t} t^{r} \widehat{W}(t) d t, \operatorname{Re}(z)>0
$$

Remark 3.2. The Laplace transform operator (3.4) has similar properties as the classical Laplace transform (see [1]).

The proofs of the following properties follow directly by using the previous theorem and the properties of the Laplace transform.

Properties. Let $W=\frac{f}{H^{k}} \in \mathcal{M}(r)$. Then for $r>-1$ and $z \in \mathbb{C} \backslash(-\infty, 0]$,
(1) $\Lambda_{z}^{r} \tau_{c} W=\Lambda_{z+c}^{r} W, c>0$ and $\tau_{c} W=\frac{\tau_{c} f}{H^{k}}, \tau_{c} f(t)=f(t-c)$.
(2) $\Lambda_{z}^{r} D^{m} W=(r+1)_{m} \Lambda_{z}^{r+m} W, m=1,2, \ldots$
(3) $\frac{d^{m}}{d z^{m}} \Lambda_{z}^{r} W=(-1)^{m}(r+1)_{m} \Lambda_{z}^{r+m} W=(-1)^{m} \Lambda_{z}^{r} D^{m} W, m=1,2, \ldots$
(4) $\Lambda_{z}^{r+1}(t W)=\Lambda_{z}^{r} W-z \Lambda_{z}^{r+1} W$, where $t W=\frac{t f}{H^{k}}-\frac{k f}{H^{k-1}}, k \geq 2$.

Theorem 3.2. Let $W \in \mathcal{M}(r)$. Then, there exist positive numbers α and β such that
(i) $\Lambda_{z}^{r} W=o\left(z^{-\alpha}\right)$ as $z \rightarrow 0,|\arg z| \leq \psi<\frac{\pi}{2}$.
(ii) $\Lambda_{z}^{r} W=o\left(z^{-\beta}\right)$ as $z \rightarrow \infty,|\arg z| \leq \psi<\frac{\pi}{2}$.

Proof. Let $W=\frac{f}{H^{k}} \in \mathcal{M}(r)$, where for some positive constants M, α, and γ,

$$
|f(t)| \leq M t^{r+k-\alpha}, \text { for } t \geq \gamma
$$

(i) $\Lambda_{z}^{r} W=\frac{1}{\Gamma(r+1)}\left(t^{r+k} \widehat{f}(t)\right)^{\wedge}(z), \operatorname{Re} z>0$.

Now,

$$
\frac{t^{r+k} \widehat{f}(t)}{t^{r+k}}=\widehat{f}(t) \rightarrow 0 \text { as } t \rightarrow \infty
$$

Therefore, by a classical Abelian theorem for the Laplace transform [3],

$$
\frac{z^{r+k+1}\left(t^{r+k} \widehat{f}(t)\right)^{\wedge}}{\Gamma(r+k+1)} \rightarrow 0 \text { as } z \rightarrow 0,|\arg z| \leq \psi<\frac{\pi}{2}
$$

Thus,

$$
\lim _{\substack{z \rightarrow 0 \\|\operatorname{argz}| \leq \psi<\frac{\pi}{2}}} z^{r+k+1} \Lambda_{z}^{r} W=0 .
$$

This completes the proof of (i). Now, for the proof of (ii). There exist $A>0$ and $B>0$ such that

$$
\left|t^{r+k} \widehat{f}(t)\right| \leq A t^{r+k}+\frac{B}{t^{1-\alpha}}, t>0(\text { see [7], p. 211). }
$$

Thus, the function $t^{r+k} \widehat{f}(t)$ is locally integrable on $[0, \infty)$.
Now,

$$
\begin{aligned}
\left|\Lambda_{z}^{r} W\right| & \leq \frac{1}{\Gamma(r+1)} \int_{0}^{\infty} e^{-t \operatorname{Re} z} t^{r+k}|\widehat{f}(t)| d t \\
& \leq \frac{1}{\Gamma(r+1)} \int_{0}^{\infty} e^{-t \operatorname{Re} z}\left(A t^{r+k}+\frac{B}{t^{1-\alpha}}\right) d t \\
& =\frac{C}{(\operatorname{Re} z)^{r+k+1}}+\frac{D}{(\operatorname{Re} z)^{\alpha}}, \quad \operatorname{Re} z>0
\end{aligned}
$$

for some positive constants C, D.
Thus,

$$
\lim _{\substack{z \rightarrow \infty \\|\arg z| \leq \psi<\frac{\pi}{2}}} z^{\beta} \Lambda_{z}^{r} W=0, \text { where } \beta=\frac{1}{2} \min \{\alpha, r+k+1\}
$$

This completes the proof of the theorem.

4. Localization

Definition 4.1. Let $W=\frac{f}{H^{k}} \in \mathcal{M}$. W is said to vanish on an open interval (a, b), denoted $W(t)=0$ on (a, b), provided there exists a polynomial p with degree at most $k-1$ such that $p(t)=f(t)$ for $a<t<b$.

The support of $W \in \mathcal{M}$, denoted supp W, is the complement of the largest open set on which W vanishes.

Remark 4.1.
(1) The definition of W vanishing on an interval does not depend on the representation of W.
(2) The notion of an element of \mathcal{M} vanishing on an interval is consistent with the notion of a function vanishing on an interval. That is, $f(t)=0$ for $a<t<b$ if and only if $W_{f}(t)=0$ on (a, b), where $f \in C_{+}(\mathbb{R})$ and $W_{f}=\frac{H * f}{H}$.
(3) It follows that if $W(t)=0$ on (a, b), where $a<0$, then $f(t)=0$ for all $a<t<b$, where $W=\frac{f}{H^{k}}$.
Example 4.1. Recall $\delta=\frac{H^{2}}{H^{2}}$. Notice that $H^{2}(t)=t$ on the open interval $(0, \infty)$. Thus, $\delta(t)=0$ on $(0, \infty)$. Also, $H(t)=0$ on $(-\infty, 0)$. So, $\delta(t)=0$ on $(-\infty, 0)$. Therefore, $\operatorname{supp} \delta=\{0\}$.
Example 4.2. Let $W=\frac{f}{H^{3}}$, where $f(t)=\left\{\begin{array}{cc}t^{2} & 0 \leq t<2 \\ t+2 & t \geq 2 \\ 0 & t<0 .\end{array}\right.$
Then W has compact support. Notice that W vanishes on $(-\infty, 0) \cup(0,2) \cup(2, \infty)$, and hence, supp $W=\{0\} \cup\{2\}$.

Theorem 4.1. Let $W \in \mathcal{M}$. If $D W(t)=0$ on (a, b), then W is constant on (a, b).
Proof. Let $W=\frac{f}{H^{k}}$ such that $D W=\frac{f}{H^{k+1}}=0$ on (a, b). Therefore, there exists a polynomial $p(t)=\alpha_{0}+\alpha_{1} t+\ldots+\alpha_{k} t^{k}$ such that $f(t)=p(t)$, for all $a<t<b$. That is,

$$
f-k!\alpha_{k} H^{k+1}=\alpha_{0} H+\alpha_{1} H^{2}+\cdots+(k-1)!\alpha_{k-1} H^{k} \text { on }(a, b) .
$$

Thus,

$$
\frac{f}{H^{k}}-\frac{k!\alpha_{k} H^{k+1}}{H^{k}}=0 \text { on }(a, b)
$$

That is, $W=\frac{f}{H^{k}}=k!\alpha_{k} H$ on (a, b).

5. Abelian Theorems

As an application, we establish some Abelian type theorems.
Let $W, V \in \mathcal{M}$. Then, $W(t)=V(t)$ on (a, b) provided $(W-V)(t)=0$ on (a, b).
Definition 5.1. Let $W \in \mathcal{M}$ and $\xi, \lambda \in \mathbb{C}$ where $\operatorname{Re} \lambda>-1$. W is said to be equivalent at the origin (infinity) to ξt^{λ}, denoted $W(t) \sim \xi t^{\lambda}$ as $t \rightarrow 0^{+}(t \rightarrow \infty)$, provided there exist an interval (a, b) with $a<0$ and $b>0(a>0$ and $b=\infty)$ and $g \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$such that $W(t)=W_{g}(t)$ on (a, b), where $W_{g}=\frac{H * g}{H} \in \mathcal{M}$, and $\frac{g(t)}{t^{\lambda}} \rightarrow \xi$ as $t \rightarrow 0^{+}(t \rightarrow \infty)$.

Lemma 5.1. Let $k \in \mathbb{N}, \alpha>0$, and $r>-1$. If $f \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$such that $f(t) t^{-r-k+\alpha}$ is bounded on $[b, \infty)$ (for some $b>0$), then
$\int_{b}^{\infty} \frac{f(t)}{(t+z)^{n+k+1}} d t$ is bounded in the half-plane $\operatorname{Re} z>0$.
The following is an initial value theorem.
Theorem 5.1. Let $W \in \mathcal{M}(r)$ and $\nu>-1$. If $W(t) \sim \xi t^{\nu}$ as $t \rightarrow 0^{+}$, then for $r>\nu$,

$$
\lim _{\substack{z \rightarrow 0 \\|\arg z| \leq \psi<\frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} W}{\Gamma(r-\nu) \Gamma(\nu+1)}=\xi .
$$

Proof. Since $W(t) \sim \xi t^{\nu}$ as $t \rightarrow 0^{+}, W(t)=W_{g}(t)$ on $(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$, where $g \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$and $\frac{g(t)}{t^{\nu}} \rightarrow \xi$ as $t \rightarrow 0^{+}$. We may assume that $g(t)=0$ on $[\varepsilon, \infty)$.

Now, $W=W_{g}+V$, where for some $k \in \mathbb{N}, V \in \mathcal{M}_{k}(r)$ and $\operatorname{supp} V \subseteq[\varepsilon, \infty)$. Thus, by a classical Abelian theorem for the Stieltjes transform and the previous lemma, we obtain

$$
\lim _{\substack{z \rightarrow 0 \\|\operatorname{argz}| \leq \psi<\frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} g}{\Gamma(r-\nu) \Gamma(\nu+1)}=\xi
$$

and,

$$
\lim _{\substack{z \rightarrow 0 \\|\arg z| \leq \psi<\frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} V}{\Gamma(r-\nu) \Gamma(\nu+1)}=0 .
$$

Therefore,

$$
\lim _{\substack{z \rightarrow 0 \\|\arg z| \leq \psi<\frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} W}{\Gamma(r-\nu) \Gamma(\nu+1)}=\xi .
$$

Lemma 5.2. Let $a>0$ and $k \in \mathbb{N}$. Then, for $n=0,1,2, \ldots, k-1$ and $r>\nu>-1$,

$$
\lim _{\substack{z \rightarrow \infty \\ \operatorname{Re} z>0}} z^{r-\nu} \int_{a}^{\infty} \frac{t^{n}}{(t+z)^{r+k+1}} d t=0
$$

Proof. Follows by induction on k .
Now, the final value theorem.
Theorem 5.2. Let $W \in \mathcal{M}$ and $\nu>-1$. If $W(t) \sim \xi t^{\nu}$ as $t \rightarrow \infty$, then for $r>\nu$,

$$
\lim _{z \rightarrow \infty}^{|\operatorname{argz}| \leq \psi<\frac{\pi}{2}} \left\lvert\, ~ \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} W}{\Gamma(r-\nu) \Gamma(\nu+1)}=\xi .\right.
$$

Proof. Since $W(t) \sim \xi t^{\nu}$ as $t \rightarrow \infty$, there exist $k \in \mathbb{N}, c>0$, a polynomial p, and $g \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right)$such that supp $g \subseteq[c, \infty)$, deg $p \leq k-1$, and $f(t)=\left(H^{k} * g\right)(t)+p(t)$ on (c, ∞) with $\frac{g(t)}{t^{\nu}} \rightarrow \xi$ as $t \rightarrow \infty$.

It follows that $W \in \mathcal{M}_{k}(r)$ and that $W=W_{g}+V$, where $V=\frac{f-H^{k} * g}{H^{k}} \in \mathcal{M}_{k}(r)$ and $\operatorname{supp} V \subseteq[0, c]$. By using a classical Abelian theorem and noting that $\Lambda_{z}^{r} W_{g}$ is the same as the classical Stieltjes transform of g, we obtain

$$
\lim _{\substack{\rightarrow \infty \\|\arg z| \leq \psi<\frac{\pi}{2}}} \frac{z^{r-\nu} \Gamma(r+1) \Lambda_{z}^{r} W_{g}}{\Gamma(r-\nu) \Gamma(\nu+1)}=\xi
$$

Now, letting $T=f-H^{k} * g$, we obtain

$$
\begin{aligned}
z^{r-\nu} \Lambda_{z}^{r} V & =(r+1)_{k} z^{r-\nu} \int_{0}^{\infty} \frac{T(t)}{(t+z)^{r+k+1}} d t \\
& =(r+1)_{k} z^{r-\nu} \int_{0}^{c} \frac{T(t)}{(t+z)^{r+k+1}} d t+(r+1)_{k} z^{r-\nu} \int_{c}^{\infty} \frac{p(t)}{(t+z)^{r+k+1}} d t .
\end{aligned}
$$

By the previous lemma, for $\operatorname{Re} z>0$, it follows that the limit of the second term converges to zero as $z \rightarrow \infty$. Now, for $\operatorname{Re} z>0$,

$$
\left|z^{r-\nu} \int_{0}^{c} \frac{T(t)}{(t+z)^{r+k+1}} d t\right| \leq|z|^{-k-\nu-1} \int_{0}^{c}|T(t)| d t \rightarrow 0 \text { as } z \rightarrow \infty .
$$

The proof of the theorem is completed by observing that

$$
z^{r-\nu} \Lambda_{z}^{r} W=z^{r-\nu} \Lambda_{z}^{r} W_{g}+z^{r-\nu} \Lambda_{z}^{r} V .
$$

As a final remark, the map $\frac{f}{H^{k}} \rightarrow D^{k} f$ is a well-defined linear bijection from $\mathcal{M}(r)$ onto $J^{\prime}(r)$, where D denotes the distributional differential operator [11] and

$$
J^{\prime}(r)=\left\{D^{k} f: k \in \mathbb{N}, f \in L_{l o c}^{1}\left(\mathbb{R}^{+}\right), f(t) t^{-r-k+\alpha} \text { bdd as } t \rightarrow \infty \text { for some } \alpha>0\right\} .
$$

Moreover, the Stieltjes transform for $\frac{f}{H^{k}} \in \mathcal{M}(r)$ and the Stieltjes transform for $D^{k} f \in$ $J^{\prime}(r)$ are equivalent.

Acknowledgment

The author would like to thank Professor Arpad Takači for providing helpful comments.

References

[1] D. Atanasiu, D. Nemzer: Extending the Laplace Transform, Math. Student 77 (2008), 203 212.
[2] R. D. Carmichael, E. O. Milton: Abelian Theorems for the Distributional Stieltjes Transform, J. Math. Anal. Appl. 72 (1979), 195-205.
[3] G. Doetsch: Theorie der Laplace Transformation, Band I, Verlag Birkhauser, Basel,1950.
[4] J. L. Lavoine, O. P. Misra: Sur la Transformation de Stieltjes des Distributions et son Inversion au Moyen de la Transformation de Laplace, , C.R. Acad. Sc. Paris 290 (1980), 139-142.
[5] V. Marić, M. Skendžıć, A. Takači: On Stieltjes Transform of Distributions Behaving as Regularly Varying Functions, Acta Sci. Math. (Szoged) 50 (1986), 405-410.
[6] J. MikuSińSki: Operational Calculus, Vol. I, Second Edition, International Series of Monographs in Pure and Applied Mathematics 109, Pergamon Press, Oxford; PWN - Polish Scientific Publishers, Warsaw, 1983.
[7] O.P. Misra, J.L. Lavoine: Transform Analysis of Generalized Functions, Elsevier Science Publishers, Amsterdam, 1986.
[8] D. Nikolić-Despotović, S. Pilipović: Abelian Theorem for the Distributional Stieltjes Transformation, Generalized Functions, Convergence Structures and their Applications, Plenum Press, New York and London, (1988) 269-277.
[9] S. Pilipović, B. Stanković, A. Takači: Asymptotic Behaviour and Stieltjes Transformation of Distributions, Taubner, Leipzig, 1990.
[10] K. YOSIDA: Operational Calculus: A Theory of Hyperfunctions, Springer-Verlag, New York, 1984.
[11] A. H. Zemanian: Distribution Theory and Transform Analysis, Dover Publications, New York, 1987.

Department of Mathematics
California State University, Stanislaus
One University Circle
Turlock, CA 95382, USA
E-mail address: jclarke@csustan.edu

