ODD-DIMENSIONAL RIEMANNIAN SPACES WITH ALMOST CONTACT AND ALMOST PARACONTACT STRUCTURES

MARTA TEOFILOVA AND GEORGI ZLATANOV

Abstract

Riemannian spaces admitting almost contact and almost paracontact structures are studied from the point of view of compositions in spaces with a symmetric affine connection. Linear connections with torsion preserving by covariant differentiation the almost (para-)contact structure or the metric tensor are considered.

1. Introduction

Riemannian spaces with almost contact and almost paracontact structures have been studied by various authors, e.g. $[1,3,4,5,8,9,10]$. The almost contact structure is an odd-dimensional extension of the complex structure, and the almost paracontact structure can be considered as an extension of the almost product structure.

By the help of n independent vector fields in [13, 11, 12, 2] an apparatus for studying of spaces endowed with a symmetric affine connection is constructed.

In this work we apply this apparatus to study odd-dimensional Riemannian spaces $V_{2 n+1}$ admitting almost contact and almost paracontact structures. We prove that if these structures are parallel to the Levi-Civita connection of the Riemannian metric the space $V_{2 n+1}$ is a topological product of three differentiable manifolds $X_{n} \times \bar{X}_{n} \times X_{1}$. We also determine the projecting affinors of the structures and by their help obtain some characteristics of the considered space.

In the last section, we study linear connections with respect to which the structures of the space are parallel. We define a connection with torsion which preserves the metric tensor by covariant differentiation and compute the components of its curvature tensor.

2. PRELIMINARIES

Let $V_{2 n+1}$ be a Riemannian space with metric tensor $g_{\alpha \beta}(u)$ and Levi-Civita connection ∇ with Cristoffel symbols $\Gamma_{\alpha \beta}^{\sigma}$. Then, it is known that $\nabla_{\sigma} g_{\alpha \beta}=0$.

[^0]We introduce the following notations

$$
\begin{align*}
& \alpha, \beta, \gamma, \delta, \nu, \sigma, \tau=1,2, \ldots, 2 n+1 \\
& a, b, c, d, e=1,2, \ldots, 2 n \tag{2.1}\\
& j, k, l, p, q, s=1,2, \ldots, n ; \quad \bar{j}, \bar{k}, \bar{l}, \bar{p}, \bar{q}, \bar{s}=n+1, n+2, \ldots, 2 n
\end{align*}
$$

 ditions:

$$
\begin{gather*}
g_{\alpha \beta} v_{\sigma}^{\alpha} v_{\sigma}^{\beta}=1, \quad g_{\alpha \beta} v_{k}^{\alpha} v_{\bar{k}}^{\beta}=0, \quad g_{\alpha \beta} v_{a}^{\alpha} \underset{2 n+1}{v}=0, \tag{2.2}\\
g_{\alpha \beta} v_{k}^{\alpha} v_{s}^{\beta}=\underset{k s}{\cos } \underset{k s}{\omega} \quad g_{\alpha \beta} \bar{v}_{\bar{k}}^{\alpha} v^{\beta}=\cos \underset{\bar{k} \bar{s}}{\omega}
\end{gather*}
$$

The net defined by the vector fields v_{α}^{β} will be denoted by $\left\{\begin{array}{l}v \\ \nu\end{array}\right\}$. The reciprocal covectors $\stackrel{\alpha}{v}_{\beta}$ of the vectors v_{α}^{β} are defined by

$$
\begin{equation*}
v_{\sigma}^{\beta} \stackrel{v}{v}_{\alpha}^{\sigma}=\delta_{\alpha}^{\beta} \quad \Leftrightarrow \quad v_{\alpha}^{\sigma} \stackrel{\beta}{v_{\sigma}}=\delta_{\alpha}^{\beta} \tag{2.3}
\end{equation*}
$$

where δ_{α}^{β} is the identity affinor.
If we choose the net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ to be the coordinate net, we have

$$
\begin{align*}
& v_{1}^{\beta}\left(\frac{1}{\sqrt{g_{11}}}, 0,0, \ldots, 0\right), v_{2}^{\beta}\left(0, \frac{1}{\sqrt{g_{22}}}, 0, \ldots, 0\right), \ldots, \underset{2 n+1}{v^{\beta}}\left(0,0, \ldots, 0, \frac{1}{\sqrt{g_{2 n+1} 2 n+1}}\right) \tag{2.4}\\
& \stackrel{1}{v}_{\beta}\left(\sqrt{g_{11}}, 0,0, \ldots, 0\right), \stackrel{2}{v}_{\beta}\left(0, \sqrt{g_{22}}, 0, \ldots, 0\right), \ldots, \stackrel{2 n+1}{v}_{\beta}\left(0,0, \ldots, 0, \sqrt{g_{2 n+1} 2 n+1}\right)
\end{align*}
$$

According to (2.2) and (2.4), in the parameters of the coordinate net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ the matrix of the metric tensor has the form

$$
\left\|g_{\alpha \beta}\right\|=\left\|\begin{array}{ccc}
g_{s k} & 0 & 0 \tag{2.5}\\
0 & g_{\bar{s} \bar{k}} & 0 \\
0 & 0 & g_{2 n+1} 2 n+1
\end{array}\right\|
$$

From (2.4) and (2.5) it follows that $g_{\alpha \beta} v_{2 n+1}^{\alpha}=\stackrel{2 n+1}{v}{ }_{\beta}$. Also, the following equalities are valid [13]:

After contracting with $\stackrel{\tau}{v}_{\beta}$ both sides of the first equality in (2.6) and taking into account (2.3), we obtain

$$
\begin{equation*}
\stackrel{T}{\alpha}_{\sigma}^{\tau}=\partial_{\sigma}{\underset{\alpha}{v}}_{v^{\beta}}^{v_{\beta}}+\Gamma_{\sigma \nu}^{\beta}{\underset{\alpha}{v}}_{\nu}^{\nu} \stackrel{\tau}{v}_{\beta} \tag{2.7}
\end{equation*}
$$

According to (2.4), in the parameters of the coordinate net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ equalities (2.7) take the form

$$
\begin{align*}
& {\underset{\alpha}{T}}_{T_{\sigma}}=\frac{\sqrt{g_{\tau \tau}}}{\sqrt{g_{\alpha \alpha}}} \Gamma_{\sigma \alpha}^{\tau} \quad \text { for } \tau \neq \alpha \tag{2.8}\\
& {\underset{\alpha}{\alpha}}_{\alpha}^{\alpha}=\Gamma_{\sigma \alpha}^{\alpha}-\frac{1}{2} \frac{\partial_{\sigma} g_{\alpha \alpha}}{g_{\alpha \alpha}} \quad \text { (no summing over } \alpha \text {). }
\end{align*}
$$

Now, let us consider the following affinor [11, 12, 2]:

$$
\begin{equation*}
a_{\alpha}^{\beta}=v_{a}^{\beta} \stackrel{a}{v}_{\alpha}-\underset{2 n+1}{v} \stackrel{\beta}{v}{ }_{\alpha}^{2 n+1}{ }_{\alpha} . \tag{2.9}
\end{equation*}
$$

From (2.3) and (2.9) we obtain $a_{\alpha}^{\beta} a_{\beta}^{\sigma}=\delta_{\alpha}^{\sigma}$. Hence, the affinor a_{α}^{β} defines a composition $X_{2 n} \times X_{1}$ of the basic manifolds $X_{2 n}$ and X_{1}.

The positions (tangent planes) of the basic manifolds $X_{2 n}$ and X_{1} are denoted by $P\left(X_{2 n}\right)$ and $P\left(X_{1}\right)$, respectively [7].

According to [11, 12], the affinors

$$
\stackrel{1}{a_{\alpha}^{\beta}}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}+a_{\alpha}^{\beta}\right)={\underset{a}{v}}^{\beta} \stackrel{a}{v}_{\alpha}, \quad \stackrel{2}{a_{\alpha}^{\beta}}=\frac{1}{2}\left(\delta_{\alpha}^{\beta}-a_{\alpha}^{\beta}\right)=\underset{2 n+1}{v} \stackrel{\beta}{v}_{\alpha}^{2 n+1}
$$

are the projecting affinors of the composition $X_{2 n} \times X_{1}$. If v^{β} is an arbitrary vector, we have $v^{\beta}=\stackrel{1}{a} a_{\alpha}^{\beta} v^{\alpha}+\stackrel{2}{a}_{\alpha}^{\beta} v^{\alpha}=\stackrel{1}{V}^{\beta}+\stackrel{2}{V}^{\beta}$, where $\stackrel{1}{V}^{\beta}=\stackrel{1}{a}_{\alpha}^{\beta} v^{\alpha} \in P\left(X_{2 n}\right)$ and $\stackrel{2}{V}^{\beta}=\stackrel{2}{a}_{\alpha}^{\beta} v^{\alpha} \in$ $P\left(X_{1}\right)$. Obviously, ${\underset{a}{2}}_{v^{\alpha}} \in P\left(X_{2 n}\right)$, and $\underset{2 n+1}{v}{ }^{\alpha} \in P\left(X_{1}\right)$.

Let $X_{a} \times X_{b}(a+b=n)$ be an arbitrary composition in the Riemannian space V_{n}, and $P\left(X_{a}\right)$ and $P\left(X_{b}\right)$ be the positions of the differentiable manifolds X_{a} and X_{b}, respectively. According to [7], the composition $X_{a} \times X_{b}$ is of the type (c, c), i.e. (Cartesian, Cartesian), if the positions $P\left(X_{a}\right)$ and $P\left(X_{b}\right)$ are translated parallelly along any line in the space V_{n}.

3. Almost contact and almost paracontact structures on $V_{2 n+1}$

Let us consider the following affinors

$$
\begin{equation*}
{\underset{\lambda}{\alpha}}_{b_{\alpha}^{\beta}}=\lambda\left(v^{v^{\beta}} \stackrel{k}{v_{\alpha}}-\frac{v^{\beta}}{\bar{k}} \stackrel{\bar{k}}{v_{\alpha}}\right), \tag{3.1}
\end{equation*}
$$

where $\lambda=1, i$ (i is the imaginary unit, i.e. $i^{2}=-1$). According to (2.3) and (3.1) we have $b_{\lambda}^{\beta} \underset{\lambda n+1}{v}=0$ and $b_{\lambda}^{\beta} \stackrel{2 n+1}{v}{ }_{\beta}=0$.

Let $\lambda=1$. From (2.3) and (3.1) we obtain

$$
{\underset{1}{\alpha}}_{b_{1}^{\beta}}^{b_{\beta}^{\sigma}}=\delta_{\alpha}^{\sigma}-{\underset{2 n+1}{v} \stackrel{2 n+1}{v}{ }_{\alpha}, ~}_{\text {, }}
$$

i.e. the affinor b_{1}^{β} defines an almost paracontact structure on $V_{2 n+1}$.

In the parameters of the coordinate net, it is easy to prove that

$$
\begin{equation*}
g_{\sigma \nu}{\underset{1}{\alpha}}_{b_{\alpha}^{\sigma}}^{b_{\beta}^{\nu}}=g_{\alpha \beta}-\stackrel{2 n+1}{v}{ }_{\alpha} \stackrel{2 n+1}{v}{ }_{\beta}, \tag{3.2}
\end{equation*}
$$

i.e. the almost paracontact structure b_{1}^{β} is compatible with the Riemannian metric $g_{\alpha \beta}$, and hence $V_{2 n+1}$ is an almost paracontact Riemannian manifold [1, 8].

In the case $\lambda=i$ the affinor (3.1) defines an almost contact structure in $V_{2 n+1}$ which is not compatible with the Riemannian metric $g_{\alpha \beta}$, i.e. (3.2) does not hold for ${\underset{i}{\alpha}}_{\beta}^{\beta}$.

Theorem 3.1. The affinor $\underset{\lambda}{b_{\alpha}^{\beta}}$ is parallel to the Levi-Civita connection ∇, i.e. $\nabla_{\sigma}{\underset{\lambda}{b_{\alpha}^{\beta}}}_{\beta}^{\beta}=$ 0 , iff the coefficients of the derivative equations (2.6) satisfy

$$
\begin{equation*}
{\stackrel{\bar{s}}{\underset{k}{T}} \sigma=\stackrel{s}{T}{ }_{\bar{k}} \sigma}=0, \quad \stackrel{a}{T}{ }_{2 n+1} \sigma=\stackrel{2 n+1}{\underset{a}{T}}{ }^{2}=0 \tag{3.3}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\nabla_{\sigma}{\underset{\lambda}{\alpha}}_{b_{\alpha}^{\beta}}^{\beta}=0 . \tag{3.4}
\end{equation*}
$$

According to (2.6) and (3.1), equality (3.4) takes the form

After contracting (3.5) with $\nu_{s}^{\alpha}, \frac{v}{s}^{\alpha}$ and $\underset{2 n+1}{v}{ }^{\alpha}$, we obtain the following equalities which are equivalent to (3.5):

From the independency of the vectors v_{ν}^{β} it follows that equalities (3.6) are equivalent to conditions (3.3) which proves the statement.

Let us note that manifolds satisfying (3.4) are contact and paracontact analogues to Kähler manifolds.

Corollary 3.1. If $\nabla_{\sigma} \underset{\lambda}{b_{\alpha}^{\beta}}=0$, in the parameters of the net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$, the Christoffel symbols $\Gamma_{\alpha \beta}^{\nu}$ satisfy

$$
\begin{equation*}
\Gamma_{\sigma s}^{\bar{k}}=0, \quad \Gamma_{\sigma \bar{s}}^{k}=0, \quad \Gamma_{\sigma 2 n+1}^{a}=0, \quad \Gamma_{\sigma a}^{2 n+1}=0 \tag{3.7}
\end{equation*}
$$

Proof. According to (2.8), equalities (3.3) take the form (3.7).
Corollary 3.2. If $\nabla_{\sigma}{\underset{\lambda}{\beta}}_{b_{\alpha}^{\beta}}=0$, the composition $X_{2 n} \times X_{1}$ defined by the affinor (2.9), is of the type (c, c).

Proof. Having in mind (3.4), equalities (3.7) hold.
Then, according to [7], from $\Gamma_{\sigma 2 n+1}^{a}=\Gamma_{\sigma a}^{2 n+1}=0$ it follows that the composition $X_{2 n} \times X_{1}$ is of the type (c, c).

From (2.5) it follows that the composition $X_{2 n} \times X_{1}$ is orthogonal. The coordinate net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ gives rise to coordinates which are adapted to the composition $X_{2 n} \times X_{1}$. In accordance to [6], the line element of the space $V_{2 n+1}$ is of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{a b}\left(u_{u}^{c}\right) \mathrm{d} \stackrel{a}{u}^{\mathrm{d}} \mathrm{u}^{b}+g_{2 n+1} 2_{n+1}\left(\stackrel{2 n+1}{u}^{2}\right) \mathrm{d}\left(\stackrel{2 n+1}{u}^{2}\right)^{2} \tag{3.8}
\end{equation*}
$$

where $g_{a b}$ is the metric tensor of the manifold $X_{2 n}$.
Theorem 3.2. If condition (3.4) holds, the Riemannian space $X_{2 n}$ is a space of the composition $X_{n} \times \bar{X}_{n}$ with line element defined in the parameters of the net $\left\{\begin{array}{l}v \\ v\end{array}\right\}$ by

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{k s}\left({ }_{u}^{j}\right) \mathrm{d}{ }^{k} \mathrm{~d}^{s} u^{\bar{k}}+g_{\bar{k} \bar{s}}(\bar{j}) \mathrm{d} u \mathrm{~d}{ }^{\bar{k}}{ }^{\bar{s}} . \tag{3.9}
\end{equation*}
$$

Proof. The tensors $\underset{\lambda}{b_{a}^{d}}, \nabla_{c} \underset{\lambda}{b}{ }_{a}^{d}$ and $g_{a b}$ are the full projections of the tensors $\underset{\lambda}{b_{\alpha}^{\beta}}, \nabla_{\sigma} \underset{\lambda}{b_{\alpha}^{\beta}}$ and $g_{\alpha \beta}$, respectively, over the positions $P\left(X_{2 n}\right)$.

From (3.1) it follows that $\underset{\lambda}{b_{a}^{d}} \underset{\lambda}{b}{ }_{d}^{c}= \pm \delta_{a}^{c}$. Hence, the affinor $\underset{\lambda}{b_{a}^{d}}$ defines a composition $X_{n} \times \bar{X}_{n}$ in the manifold $X_{2 n}$. Because of the condition $\nabla_{c}{\underset{\lambda}{a}}_{a}^{d}=0$, the composition $X_{n} \times \bar{X}_{n}$ is of the type (c, c) [7]. From (2.5) it follows that the composition $X_{n} \times \bar{X}_{n}$ is orthogonal. Then, according to [6], the line element of $X_{n} \times \bar{X}_{n}$ is of the form (3.9).

Let $P\left(X_{n}\right)$ and $P\left(\bar{X}_{n}\right)$ are the positions of the differentiable manifolds X_{n} and \bar{X}_{n}, respectively. The projecting affinors of the composition $X_{n} \times \bar{X}_{n}$ are:

$$
\stackrel{1}{b}_{\alpha}^{\beta}=\lambda v_{k}^{\beta} \stackrel{k}{v_{\alpha}}, \quad \stackrel{2}{b_{\alpha}^{\beta}}=\lambda{\underset{\bar{v}}{v}}^{\beta} \stackrel{\bar{k}}{v_{\alpha}}
$$

For an arbitrary vector $w^{\alpha} \in P\left(X_{2 n}\right)$ we have $w^{\beta}=\stackrel{1}{b_{\alpha}^{\beta}} w^{\alpha}+\stackrel{2}{b_{\alpha}^{\beta}} w^{\alpha}=\stackrel{1}{W^{\beta}}+\stackrel{2}{W}^{\beta}$, where $\stackrel{1}{W^{\beta}}=\stackrel{1}{b_{\alpha}^{\beta}} w^{\alpha} \in P\left(X_{n}\right)$, and $\stackrel{2}{W}^{\beta}=\stackrel{2}{b_{\alpha}^{\beta}} w^{\alpha} \in P\left(\bar{X}_{n}\right)$. Obviously, ${\underset{k}{v}}_{k}^{\beta} \in P\left(X_{n}\right)$, and $\bar{v}_{\bar{k}}^{\beta} \in P\left(\bar{X}_{n}\right)$.

The following statements are immediate consequences of our results:
Proposition 3.1. If condition (3.4) holds, the Riemannian space $V_{2 n+1}$ is a topological product of three basic differentiable manifolds X_{n}, \bar{X}_{n} and X_{1}, i.e. $V_{2 n+1}$ is a space of the composition $X_{n} \times \bar{X}_{n} \times X_{1}$.

Proposition 3.2. If (3.4) holds, in the parameters of the coordinate net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ the line element of the space $V_{2 n+1}$ is of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{k s}\left(u_{u}^{u}\right) \mathrm{d} u \mathrm{~d} \mathrm{~d}^{s}+g_{\bar{k} \bar{s}}(\stackrel{\bar{j}}{u}) \mathrm{d} u \mathrm{~d} u_{u}^{\bar{s}}+g_{2 n+1} 2 n+1\left(\stackrel{2 n+1}{u}^{2 n+} \mathrm{d}\left(\stackrel{2 n+1}{u}^{2 n}\right)^{2} .\right. \tag{3.10}
\end{equation*}
$$

Now we will prove the following theorem.
Theorem 3.3. Condition (3.4) is equivalent to the following:

$$
\begin{equation*}
\stackrel{1}{b}_{\nu}^{\sigma} \nabla_{\alpha} \stackrel{1}{b}_{\sigma}^{\beta}=0, \quad \stackrel{2}{b}_{\nu}^{\sigma} \nabla_{\alpha} \stackrel{2}{b}_{\sigma}^{\beta}=0, \quad \stackrel{2}{a}_{\nu}^{\sigma} \nabla_{\alpha} \stackrel{2}{a}_{\sigma}^{\beta}=0 \tag{3.11}
\end{equation*}
$$

where $\stackrel{1}{b_{\nu}^{\sigma}}, \stackrel{2}{b}{ }_{\nu}^{\sigma}$ and $\stackrel{2}{a}{ }_{\nu}^{\sigma}$ are the projecting affinors of the composition $X_{n} \times \bar{X}_{n} \times X_{1}$.
Proof. Because of $\stackrel{1}{b_{\nu}^{\sigma}}=\lambda \underset{k}{v^{\sigma}} \stackrel{k}{v_{\nu}}, \stackrel{2}{b_{\nu}^{\sigma}}=\lambda \underset{\bar{k}}{v^{\sigma}} \stackrel{\bar{k}}{v_{\nu}}$ and $\stackrel{2}{a}_{\nu}^{\sigma}=\underset{2 n+1}{v}{ }^{\sigma} \stackrel{2 n+1}{v}{ }_{\nu}$, we obtain

$$
\begin{align*}
& \stackrel{1}{b}_{\nu}^{\sigma} \nabla_{\alpha} \stackrel{1}{b}_{b_{\sigma}^{\beta}}= \pm v_{k}^{\sigma} \stackrel{k}{v_{\nu}} \nabla_{\alpha}\left(v_{s}^{\beta} \stackrel{s}{v}_{\sigma}\right) \\
& \stackrel{2}{b}_{\nu}^{\sigma} \nabla_{\alpha} \stackrel{2}{b}_{\sigma}^{\beta}= \pm \stackrel{v^{\sigma}}{\bar{k}} \stackrel{\bar{k}}{v_{\nu}} \nabla_{\alpha}\left(\frac{v^{\beta}}{\bar{s}} \stackrel{\bar{s}}{v_{\sigma}}\right) \tag{3.12}\\
& \stackrel{2}{a_{\nu}^{\sigma}} \nabla_{\alpha} \stackrel{2}{a_{\sigma}^{\beta}}=v_{2 n+1}^{v} \stackrel{{ }^{2 n+1}}{v}{ }_{\nu} \nabla_{\alpha}\left(\underset{2 n+1}{v} \stackrel{2 n+1}{v}{ }_{\sigma}\right) .
\end{align*}
$$

According to (2.6) and (3.12), we get

$$
\begin{align*}
& \stackrel{2}{a_{\nu}^{\sigma}} \nabla_{\alpha}{ }_{2}^{2}{ }_{\sigma}^{\beta}=\stackrel{a}{T}{ }_{2 n+1} \alpha \underset{a}{v^{\beta}} \stackrel{2 n+1}{v}{ }_{\nu} . \tag{3.13}
\end{align*}
$$

From (3.13) it follows that conditions (3.11) hold iff conditions (3.3) hold, too. And, according to Theorem 3.1, (3.3) are equivalent to condition (3.4). Then, (3.4) and (3.11) are also equivalent which completes the proof.

In accordance to (3.7), for the components of the curvature tensor $R_{\alpha \beta \sigma}{ }^{\nu}=\partial_{\alpha} \Gamma_{\beta \sigma}^{\nu}-$ $\partial_{\beta} \Gamma_{\alpha \sigma}^{\nu}+\Gamma_{\alpha \delta}^{\nu} \Gamma_{\beta \sigma}^{\delta}-\Gamma_{\beta \delta}^{\nu} \Gamma_{\alpha \sigma}^{\delta}$ we obtain

$$
\begin{equation*}
R_{\alpha k s}^{\bar{j}}=R_{k s \alpha}{ }^{\bar{j}}=R_{\alpha \bar{k} \bar{s}}^{j}=R_{\bar{k} \bar{s} \alpha}^{j}=R_{\alpha a b}^{2 n+1}=R_{a b \alpha}^{2 n+1}=0 . \tag{3.14}
\end{equation*}
$$

4. TRANSFORMATIONS OF LINEAR CONNECTIONS

4.1. Linear connections with torsion. Let us consider the linear connection

$$
\begin{equation*}
{ }^{1} \Gamma_{\alpha \beta}^{\nu}=\Gamma_{\alpha \beta}^{\nu}+S_{\alpha \beta}^{\nu} \tag{4.1}
\end{equation*}
$$

where $S_{\alpha \beta}^{\nu}$ is the deformation tensor. The covariant derivative and the curvature tensor with respect to ${ }^{1} \Gamma$ are denoted by ${ }^{1} \nabla$ and ${ }^{1} R$.

Theorem 4.1. The affinors (3.1) are parallel to ∇ and ${ }^{1} \nabla$ iff in parameters of the net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ the tensor $S_{\alpha \beta}^{\nu}$ satisfies

$$
\begin{equation*}
S_{\alpha \bar{k}}^{s}=S_{\alpha 2 n+1}^{s}=S_{\alpha k}^{\bar{s}}=S_{\alpha 2 n+1}^{\bar{s}}=S_{\alpha a}^{2 n+1}=0 \tag{4.2}
\end{equation*}
$$

Proof. Let conditions (3.4) hold and let

$$
\begin{equation*}
{ }^{1} \nabla_{\sigma}{\underset{\lambda}{\alpha}}_{b_{\alpha}^{\beta}}^{\beta}=0 . \tag{4.3}
\end{equation*}
$$

According to (4.1), we have ${ }^{1} \nabla_{\sigma}{\underset{\lambda}{b}}_{b_{\alpha}^{\beta}}=\nabla_{\sigma} \underset{\lambda}{b_{\alpha}^{\beta}}+S_{\sigma \nu}^{\beta} \underset{\lambda}{b_{\alpha}^{\nu}}-S_{\sigma \alpha}^{\nu} \underset{\lambda}{b_{\nu}^{\beta}}$, from where it follows that equalities (3.4) and (4.3) hold iff

$$
\begin{equation*}
P_{\sigma \alpha}^{\beta}=S_{\sigma \nu}^{\beta}{\underset{\lambda}{\alpha}}_{b_{\alpha}^{\nu}}^{-}-S_{\sigma \alpha}^{\nu} \underset{\lambda}{b_{\nu}^{\beta}}=0 \tag{4.4}
\end{equation*}
$$

We choose $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ for the coordinate net. In its parameters of the net, the matrix of the affinor $\underset{\lambda}{b_{\alpha}^{\beta}}$ has the form

$$
\left\|\underset{\lambda}{b_{\alpha}^{\beta}}\right\|=\left\|\begin{array}{ccc}
\lambda \delta_{s}^{k} & 0 & 0 \tag{4.5}\\
0 & -\lambda \delta_{\bar{s}}^{\bar{k}} & \vdots \\
0 & \cdots & 0
\end{array}\right\| .
$$

From (4.4) and (4.5) we compute the following non-zero components of P :

$$
\begin{array}{lll}
P_{s \bar{k}}^{j}=-2 \lambda S_{s \bar{k}}^{j}, & P_{\bar{s} \bar{k}}^{j}=-2 \lambda S_{\bar{s} \bar{k}}^{j}, & P_{s 2 n+1}^{j}=-\lambda S_{s 2 n+1}^{j}, \\
P_{2 n+1,2 n+1}^{j}=-\lambda S_{2 n+1,2 n+1}^{j}, & P_{\bar{s} 2 n+1}^{j}=-\lambda S_{\bar{s} 2 n+1}^{j}, & P_{2 n+1 \bar{s}}^{j}=-2 \lambda S_{2 n+1 \bar{s}}^{j}, \\
P_{\bar{s} k}^{\bar{j}}=2 \lambda S_{\bar{s} k}^{\bar{j}}, & P_{s k}^{\bar{j}}=2 \lambda S_{s k}^{\bar{j}}, & P_{\bar{s} 2 n+1}^{\bar{j}}=\lambda S_{\bar{s} 2 n+1}^{\bar{j}} \\
P_{2 n+1,2 n+1}^{\bar{j}}=\lambda S_{2 n+1,2 n+1}^{\bar{j}}, & P_{s 2 n+1}^{\bar{j}}=\lambda S_{s 2 n+1}^{\bar{j}}, & P_{2 n+1 s}^{\bar{j}}=2 \lambda S_{2 n+1 s}^{\bar{j}}, \\
P_{s k}^{2 n+1}=\lambda S_{s k}^{2 n+1}, & P_{\bar{s} k}^{2 n+1}=\lambda S_{\bar{s} k}^{2 n+1}, & P_{s \bar{k}}^{2 n+1}=-\lambda S_{k \bar{s}}^{2 n+1}, \\
P_{\bar{s} \bar{k}}^{2 n+1}=-\lambda S_{\bar{s} \bar{k}}^{2 n+1}, & P_{2 n+1 s}^{2 n+1}=\lambda S_{2 n+1 s}^{2 n+1}, & P_{2 n+1 \bar{s}}^{2 n+1}=-\lambda S_{2 n+1 \bar{s}}^{2 n+1},
\end{array}
$$

Then, according to (4.6), equalities (4.4) hold iff (4.2) hold, too.
From (4.1) and (4.2) we get the non-zero components of ${ }^{1} \Gamma$ expressed by the components of Γ and S :

$$
\begin{array}{lll}
{ }^{1} \Gamma_{s k}^{j}=\Gamma_{s k}^{j}+S_{s k}^{j}, & { }^{1} \Gamma_{\overline{\bar{k}} s}^{j}=S_{\overline{\bar{k} s}}^{j}, & { }^{1} \Gamma_{2 n+1 s}^{j}=S_{2 n+1 s}^{j} \\
{ }^{1} \Gamma_{\bar{s} \bar{k}}^{\bar{j}}=\Gamma_{\bar{s} \bar{k}}^{\bar{j}}+S_{\bar{s} \bar{k}}^{\bar{j}}, & { }^{1} \Gamma_{k \bar{s}}^{\bar{j}}=S_{k \bar{s}}^{\bar{j}}, & { }^{1} \Gamma_{2 n+1 \bar{s}}^{\bar{j}}=S_{2 n+1 \bar{s}}^{\bar{j}}, \tag{4.7}\\
{ }^{1} \Gamma_{s 2 n+1}^{2 n+1}=S_{s 2 n+1}^{2 n+1}, & { }^{1} \Gamma_{\bar{s} 2 n+1}^{2 n+1}=S_{\bar{s} 2 n+1}^{2 n+1}, & { }^{1} \Gamma_{2 n+1,2 n+1}^{2 n+1}=S_{2 n+1,2 n+1}^{2 n+1} .
\end{array}
$$

Having in mind (4.7), we compute the following components of the curvature tensor ${ }^{1} R_{\alpha \beta \sigma}{ }^{\nu}:$

$$
\begin{gathered}
{ }^{1} R_{\alpha s k}{ }^{\bar{j}}={ }^{1} R_{\alpha \bar{s} \bar{k}}={ }^{1} R_{\alpha a b}^{2 n+1}=0, \\
{ }^{1} R_{k s \alpha}{ }^{\bar{j}}=2\left(\partial_{[k} S_{s] \alpha}^{\bar{j}}+S_{[k|\bar{l}|}^{j} S_{s] \alpha}^{\bar{l}}\right), \quad{ }^{1} R_{\bar{k} \bar{s} \alpha}^{j}=2\left(\partial_{[\bar{k} \bar{k}}^{j} S_{\bar{s}] \alpha}^{j}+S_{[\bar{k}|l|}^{j} S_{\bar{s}] \alpha}^{l}\right), \\
{ }^{1} R_{a b \alpha}^{2 n+1}=2\left(\partial_{[a} S_{b] \alpha}^{2 n+1}+S_{[a|2 n+1|}^{2 n+1} S_{b] \alpha}^{2 n+1}\right), \\
{ }^{1} R_{s k l}{ }^{j}=R_{s k l}{ }^{j}+2\left(\partial_{[s} S_{k] l}^{j}+\Gamma_{[s|p|}^{j} S_{k] l}^{p}+S_{[s|p|}^{j} \Gamma_{k] l}^{p}+S_{[s|p|}^{j} S_{k] l}^{p}\right), \\
{ }^{1} R_{\bar{s} \bar{l} \bar{l}}{ }^{\bar{j}}=R_{\bar{s} \bar{k} \bar{l}} \bar{j}+2\left(\partial_{[\bar{s}} S_{\bar{k}] \bar{l}}^{\bar{j}}+\Gamma_{[\bar{s}|\bar{p}|}^{\bar{j}} S_{\bar{k}] \bar{l}}^{\bar{p}}+S_{[\bar{s}|\bar{p}|}^{\bar{j}} \Gamma_{\bar{k}] \bar{l}}^{\bar{p}}+S_{[\bar{s}|\bar{p}|}^{\bar{j}} S_{\bar{k}] \bar{l}}^{\bar{p}}\right) .
\end{gathered}
$$

4.2. A metric connection. Let $V_{2 n+1}$ be a space with $\nabla_{\sigma}{\underset{\lambda}{\alpha}}_{b_{\alpha}^{\beta}}=0$, and let us consider the connection

$$
\begin{equation*}
{ }^{2} \Gamma_{\alpha \beta}^{\nu}=\Gamma_{\alpha \beta}^{\nu}+\bar{S}_{\alpha \beta}^{\nu}, \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{S}_{\alpha \beta}^{\nu}=\sum_{\tau=1}^{2 n+1} v_{\alpha} g_{\beta \delta} \sum_{k=1}^{n}\left(v_{k}^{\delta} \underset{k+n}{v}{ }^{\nu}-v_{k}^{\nu} \underset{k+n}{v} \delta\right) \tag{4.9}
\end{equation*}
$$

The covariant derivative and the curvature tensor with respect to the connection ${ }^{2} \Gamma$ are denoted by ${ }^{2} \nabla$ and ${ }^{2} R$.

Theorem 4.2. The metric tensor of the space $V_{2 n+1}$ is parallel to the connection ${ }^{2} \Gamma$, i.e.

$$
\begin{equation*}
{ }^{2} \nabla_{\sigma} g_{\alpha \beta}=0 \tag{4.10}
\end{equation*}
$$

Proof. From (4.8) and (4.10) we get

$$
\begin{equation*}
{ }^{2} \nabla_{\sigma} g_{\alpha \beta}=\nabla_{\sigma} g_{\alpha \beta}-\bar{S}_{\sigma \alpha}^{\nu} g_{\nu \beta}-\bar{S}_{\sigma \beta}^{\nu} g_{\nu \alpha} . \tag{4.11}
\end{equation*}
$$

Let us consider the tensor

$$
\begin{equation*}
T_{\sigma \alpha \beta}=\bar{S}_{\sigma \alpha}^{\nu} g_{\nu \beta} \tag{4.12}
\end{equation*}
$$

According to (4.9) and (4.12), we have

$$
T_{\sigma \alpha \beta}=\sum_{\tau=1}^{2 n+1} \stackrel{\tau}{v}_{\sigma} g_{\alpha \delta} \sum_{k=1}^{n}\left(\begin{array}{ccc}
v^{\nu} & v^{\delta} & v_{+n} \tag{4.13}\\
k+v_{k}^{\delta} & v^{\nu}
\end{array}\right) g_{\nu \beta}
$$

In the parameters of the coordinate net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ we obtain

$$
T_{\sigma \alpha \beta}=\sum_{\tau=1}^{2 n+1} \stackrel{\tau}{v}_{\sigma} \sum_{k=1}^{n} \frac{1}{\sqrt{g_{k k}} \sqrt{g_{k+n k+n}}}\left(g_{\alpha k+n} g_{\beta k}-g_{\beta k+n} g_{\alpha k}\right)
$$

from where it follows that

$$
\begin{equation*}
T_{\sigma(\alpha \beta)}=0 \tag{4.14}
\end{equation*}
$$

Then, (4.11), (4.12) and (4.14) imply (4.10).
By (2.4) and (4.9) we obtain the components of the deformation tensor \bar{S} of ${ }^{2} \nabla$ and then by (3.7) and (4.8) we get the non-zero Christoffel symbols of ${ }^{2} \nabla$ in the parameters of the coordinate net as follows:

$$
\begin{align*}
& { }^{2} \Gamma_{k}^{j} \\
& { }^{2} \Gamma_{n+k}^{j}=-\frac{\sqrt{g_{k k}}}{\sqrt{g_{j j}} \sqrt{g_{n+j n+j}}} g_{n+s}=-\frac{\sqrt{g_{n+k n+k}}}{\sqrt{g_{j j}} \sqrt{g_{n+j}+j}} g_{n+s} n+j, \\
& { }^{2} \Gamma_{s k}^{n+j}=\frac{\sqrt{g_{s s}}}{\sqrt{g_{j j}} \sqrt{g_{n+j n+j}}} g_{j k}, \tag{4.15}\\
& { }^{2} \Gamma_{n+s k}^{n+j}=\frac{\sqrt{g_{n+s}+s}}{\sqrt{g_{j j}} \sqrt{g_{n+j n+j}}} g_{j k}, \\
& { }^{2} \Gamma_{2 n+1 n+s}^{j}=-\frac{\sqrt{g_{2 n+1} 2 n+1}}{\sqrt{g_{j j}} \sqrt{g_{n+j} n+j}} g_{n+s n+j}, \\
& { }^{2} \Gamma_{2 n+1 k}^{n+j}=\frac{\sqrt{g_{2 n+1}+1}}{\sqrt{g_{j j}} \sqrt{g_{n+j n+j}}} g_{j k} .
\end{align*}
$$

By (4.15) we compute the components of the curvature tensor ${ }^{2} R$, for example

$$
\begin{align*}
{ }^{2} R_{s k p}{ }^{j}= & R_{s k p}{ }^{j}, \quad{ }^{2} R_{\bar{s} \bar{k} \bar{p}}{ }^{\bar{j}}=R_{\overline{s \bar{k} \bar{p}}}{ }^{\bar{j}}, \quad{ }^{2} R_{a b c}^{2 n+1}=0, \\
{ }^{2} R_{p k}{ }_{n+s}^{j} & =\frac{g_{n+s n+s}}{\sqrt{g_{n+j}+j}}\left(\partial_{k} \frac{\sqrt{g_{p p}}}{\sqrt{g_{j j}}}-\partial_{p} \frac{\sqrt{g_{k k}}}{\sqrt{g_{j j}}}\right)+\sqrt{g_{p p}} \sum_{l=1}^{n} \Gamma_{k l}^{j} \frac{g_{n+s n+l}}{\sqrt{g_{l l}} \sqrt{g_{n+l} n+l}} \tag{4.16}\\
& -\sqrt{g_{k k}} \sum_{l=1}^{n} \Gamma_{p l}^{j} \frac{g_{n+s n+l}}{\sqrt{g_{l l}} \sqrt{g_{n+l} n+l}}, \\
{ }^{2} R_{2 n+1 k s}^{n+j} & =\frac{\sqrt{g_{2 n+12 n+1}}}{\sqrt{g_{n+j n+j}}}\left(\frac{1}{\sqrt{g_{j j}}} g_{l j} \Gamma_{k s}^{l}-\partial_{k} \frac{g_{s j}}{\sqrt{g_{j j}}}\right) .
\end{align*}
$$

As an example we consider a 5 -dimensional Riemannian space V_{5}. The matrix (2.5) has the form

$$
\left\|g_{\alpha \beta}\right\|=\left\|\begin{array}{ccc}
g_{s k} & 0 & 0 \tag{4.17}\\
0 & g_{\bar{s} \bar{k}} & 0 \\
0 & 0 & g_{55}
\end{array}\right\|
$$

where $j, k, s=1,2, \bar{j}, \bar{k}, \bar{s}=3,4$.
In the parameters of the net $\left\{\begin{array}{l}v \\ \alpha\end{array}\right\}$ the line element if given by

$$
\begin{equation*}
\mathrm{d} s^{2}=g_{s k}\left({ }_{u}^{j}\right) \mathrm{d}{ }^{k} \mathrm{~d} \stackrel{s}{u}^{s}+g_{\bar{k} \bar{s}}\left({ }^{\bar{j}}\right) \mathrm{d} \mathrm{~d}^{\bar{k}} \mathrm{~d} u^{\bar{s}}+g_{55}\left({ }_{u}^{5}\right) \mathrm{d} u^{5} . \tag{4.18}
\end{equation*}
$$

From the last one of the equalities (4.16) we get

$$
\begin{equation*}
{ }^{2} R_{512}^{3}=\frac{\sqrt{g_{55}}}{\sqrt{g_{33}}}\left(\frac{1}{\sqrt{g_{11}}} g_{l 1} \Gamma_{12}^{l}-\partial_{1} \frac{g_{12}}{\sqrt{g_{11}}}\right) . \tag{4.19}
\end{equation*}
$$

Since $g_{l 1} \Gamma_{12}^{l}=\frac{1}{2} \partial_{2} g_{11}$, (4.19) implies

$$
\begin{equation*}
{ }^{2} R_{512}{ }^{3}=\frac{\sqrt{g_{55}}}{\sqrt{g_{33}}}\left(\frac{1}{2 \sqrt{g_{11}}} \partial_{2} g_{11}-\partial_{1} \frac{g_{12}}{\sqrt{g_{11}}}\right) . \tag{4.20}
\end{equation*}
$$

Acknowledgment

This work is partially supported by the Scientific Research Fund of the University of Plovdiv, Bulgaria, Project NI13-FMI-002.

References

[1] T. Adati, T. Miyazawa: On paracontact Riemannian manifolds, TRU Math. 13(2)(1977), 27 39.
[2] M. Ajeti, M. Teofilova, G. Zlatanov: Triads of compositions in an even-dimensional space with a symmetric affine connection, Tensor, N.S. 73(3)(2011), 171-187.
[3] D. Blair: Riemannian geometry of contact and symplectic manifolds, Prog. in Math. 203, Birkhäuser Boston, 2002.
[4] S. Kaneyuki, F. L. Williams: Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99(1985), 173 - 187.
[5] S. Kaneyuki, M. Kozai: Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8(1)(1985), 81 - 98.
[6] A. P. Norden: Spaces of Cartesian composition, Izv. Vyssh. Uchebn. Zaved., Math. 4(1963), 117 - 128 (in Russian).
[7] A. P. Norden, G. N. Timofeev: Invariant criteria for special compositions of multidimensional spaces, Izv. Vyssh. Uchebn. Zaved., Mat. 8(1972), 81 - 89 (in Russian).
[8] S. SASAKI: On paracontact Riemannian manifolds, TRU Math. 16(2)(1980), 75 Ũ- 86.
[9] S. SaSAKI: On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J.(2) 12(3)(1960), 459 Ü- 476.
[10] I. Sato: On a structure similar to the almost contact structure, Tensor 30(3)(1976), 219 - 224.
[11] G. Zlatanov: Compositions generated by special nets in affinely connected spaces, Serdica Math. J. 28(2002), 1001 - 1012.
[12] G. Zlatanov: Special compositions in affinely connected spaces without a torsion, Serdica, Math. J. 37(2011), 211 - 220.
[13] G. Zlatanov, B. Tsareva: Geometry of the nets in equaffine spaces, J. Geom. 55(1996), 192 201.

Faculty of Mathematics and Informatics

Plovdiv University
4003 Plovdiv, Bulgaria
E-mail address: marta@uni-plovdiv.bg
Faculty of Mathematics and Informatics
Plovdiv University
4003 Plovdiv, Bulgaria
E-mail address: zlatanovg@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53B05, 53B99.
 Key words and phrases. Composition, almost paracontact structure, almost contact structure, affinor of composition.

