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ON A PRODUCT SUMMABILITY OF AN ORTHOGONAL SERIES

XHEVAT Z. KRASNIQI

Abstract. In this paper we have de�ned a new product summability, in order to
make an advanced study in the special topic of summability. Namely, we give some
su�cient conditions, in terms of the coe�cients of an orthogonal series, under which
such series is product summable almost everywhere.

1. Introduction

The absolute summability is a generalization of the concept of the absolute convergence

just as the summability is an extension of the concept of the convergence. There are a

lot of notions of absolute summability de�ned by several authors. Particularly, by those

authors such notions are employed for studying the absolute summability of an orthogonal

series. As a recent result can be mentioned those of Y. Okuyama (see section 2) who

has proved two theorems which give su�cient conditions in terms of the coe�cients

of an orthogonal series under which such series would be absolute generalized Nörlund

summable almost everywhere. Moreover, an interested reader could �nd some new results,

see as examples [4]-[6], where are given some statements which include all of the results

previously proved by Y. Okuyama and T. Tsuchikura [8]-[9], and also are given some new

consequences. In order to make an advance study in this direction, here we study the

question when an orthogonal series is product summable almost everywhere.

2. Notations and Known Results

For two sequences of real or complex numbers fpng and fqng, let

Pn = p0 + p1 + p2 + � � �+ pn =

nX
v=0

pv;

Qn = q0 + q1 + q2 + � � �+ qn =

nX
v=0

qv;
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and let the convolution (p � q)n be de�ned by

Rn := (p � q)n :=

nX
v=0

pvqn�v; and denote Rj
n :=

nX
v=j

pvqn�v:

Let
P
1

n=0 an be a given in�nite series with the sequence of its n�th partial sums fsng.

We write

tp;qn =
1

Rn

nX
v=0

pn�vqvsv:

If Rn 6= 0 for all n, the generalized Nörlund transform of the sequence fsng is the sequence

ft
p;q
n g.

The in�nite series
P
1

n=0 an is said to be absolutely summable (N; p; q) if the series

1X
n=1

jtp;qn � t
p;q
n�1j

converges, and we write in brief

1X
n=0

an 2 jN; p; qj:

The jN; p; qj summability was introduced by Tanaka [3].

Let f'j(x)g be an orthonormal system de�ned in the interval (a; b). We assume that

f belongs to L2(a; b) and

(2.1) f(x) �

1X
j=0

cj'j(x);

where cj =
R b
a
f(x)'j(x)dx; (j = 0; 1; 2; : : : ).

Regarding to the orthogonal series (2.1) Y. Okuyama has proved the following two

theorems:

Theorem 2.1 ([8]). If the series

1X
n=1

(
nX

j=1

 
R
j
n

Rn

�
R
j
n�1

Rn�1

!2

jcj j
2

) 1

2

converges, then the orthogonal series

1X
j=0

cj'j(x)

is summable jN; p; qj almost everywhere.

Theorem 2.2 ([8]). Let f
(n)g be a positive sequence such that f
(n)=ng is a non-

increasing sequence and the series

1X
n=1

1

n
(n)
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converges. Let fpng and fqng be non-negative. If the series

1X
n=1

jcnj
2
(n)w(n)

converges, then the orthogonal series

1X
j=0

cj'j(x) 2 jN; p; qj

almost everywhere, where w(n) is de�ned by

w(j) := j�1
1X
n=j

n2

 
R
j
n

Rn

�
R
j
n�1

Rn�1

!2

:

If we take pv = 1 for all v then, the sequence-to-sequence transformation t
p;q
n reduces

to transformation Rq
n :=

1

Qn

nX
v=0

qvsv, while for qv = 1 we obtain the transformation

Rp
n :=

1

Pn

nX
v=0

pn�vsv. G. Das [2] de�ned the transformation

Un :=
1

Pn

nX
v=0

pn�v
Qv

vX
j=0

qv�jsj ;

and gave the following de�nition:

De�nition 2.1. The in�nite series
P
1

n=0 an is said to be summable j(N; p)(N; q)j, if

the sequence fUng is of bonded variation, i.e. the series

1X
n=1

jUn � Un�1j

converges.

Later on, W. T. Sulaiman [1] considered the transformation

Vn :=
1

Qn

nX
v=0

qv
Pv

vX
j=0

pjsj

of the sequence fsng, and presented the de�nition:

De�nition 2.2. The in�nite series
P
1

n=0 an is said to be summable j(R; qn)(R; pn)jk,

k � 1, if
1X
n=1

nk�1jVn � Vn�1j
k

converges, and we write in brief

1X
n=0

an 2 j(R; qn)(R; pn)jk:
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Let us denote by Dn the transformation

Dn :=
1

Rn

nX
v=0

pn�vqv
Rv

vX
j=0

pjqv�jsj

of the sequence fsng.

Now we shall introduce the following de�nition:

De�nition 2.3. The in�nite series
P
1

n=0 an is said to be summable j(N; pn; qn)

(N; qn; pn)jk, k � 1, if
1X
n=1

nk�1jDn �Dn�1j
k

converges, and we write shortly
P
1

n=0 an 2 j(N; pn; qn)(N; qn; pn)jk:

The main purpose of the present paper is to study the j(N; pn; qn)(N; qn; pn)jk summa-

bility of the orthogonal series (2.1) for 1 � k � 2.

Throughout K denotes a positive constant that it may depends only on k, and be

di�erent in di�erent relations.

The following lemma due to Beppo Levi (see, for example [7]) is often used in the

theory of functions. It will need us to prove main results.

Lemma 2.1. If fn(t) 2 L(E) are non-negative functions and

(2.2)

1X
n=1

Z
E

fn(t)dt <1;

then the series
1X
n=1

fn(t)

converges almost everywhere on E to a function f(t) 2 L(E). Moreover, the series

(2.2) is also convergent to f in the norm of L(E).

3. Main Results

We prove the following theorem.

Theorem 3.1. If for 1 � k � 2 the series

1X
n=1

24n2� 2

k

nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

converges, then the orthogonal series

1X
n=0

cn'n(x)

is summable j(N; pn; qn)(N; qn; pn)jk almost everywhere.
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Proof. First we consider the case k 2 (1; 2). We use the notations

eRi
n :=

nX
v=i

qn�vpv
Rv

; eRn
n�1 = 0:

Let

sj(x) =

jX
i=0

ci'i(x)

be the partial sums of order j of the series (2.1). Then, for the transform Dn(x) of the

partial sums sj(x), we have

Dn(x) =
1

Rn

nX
v=0

pn�vqv
Rv

vX
j=0

pjqv�j

jX
i=0

ci'i(x)

=
1

Rn

nX
v=0

pn�vqv
Rv

vX
i=0

ci'i(x)

vX
j=i

pjqv�j

=
1

Rn

nX
v=0

pn�vqv
Rv

vX
i=0

Ri
vci'i(x)

=
1

Rn

nX
i=0

Ri
nci'i(x)

nX
v=i

pn�vqv
Rv

=

nX
i=0

Ri
n
eRi
n

Rn

ci'i(x):

Whence,

4Dn(x) = Dn(x)�Dn�1(x)

=

nX
i=0

Ri
n
eRi
n

Rn

ci'i(x)�

n�1X
i=0

Ri
n�1

eRi
n�1

Rn�1
ci'i(x)

=

nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!
ci'i(x):

Using the Hölder's inequality and orthogonality to the latter equality, we obtainZ b

a

j4Dn(x)j
kdx � (b� a)1�

k

2

 Z b

a

jDn(x)�Dn�1(x)j
2dx

! k

2

= (b� a)1�
k

2

24 nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

:

Subsequently, the series

(3.1)

1X
n=1

nk�1

Z b

a

j4Dn(x)j
kdx � K

1X
n=1

nk�1

24 nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

converges, since the last one does. Now according to the Lemma 2.1 the series (2.1)

is summable j(N; pn; qn)(N; qn; pn)jk almost everywhere. For k = 2 we apply only the
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orthogonality, as far as for k = 1 we apply the well-known Schwarz's inequality. This

completes the proof of the theorem. �

Now we shall prove the counterpart of Theorem 3.1 (it can be seen also as the coun-

terpart of a theorem of P. L. Ul'yanov [10]). It is a general theorem which involves in it

a new positive sequence with some additional conditions. For this reason �rst we put:

(3.2) R(k)(i) :=
1

i
2

k
�1

1X
n=i

n
2

k

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

;

and then the following theorem holds true.

Theorem 3.2. Let 1 � k � 2 and f
(n)g be a positive sequence such that f
(n)=ng

is a non-increasing sequence and the series
P
1

n=1
1

n
(n) converges.

Let fpng and fqng be non-negative. If the series

1X
n=1

jcnj
2


2

k
�1(n)R(k)(n)

converges, then the orthogonal series
1X
n=0

cn'n(x) 2 j(N; pn; qn)(N; qn; pn)jk

almost everywhere, where R(k)(n) is de�ned by (3.2).

Proof. Applying Hölder's inequality to the inequality (3.1) we get that

1X
n=1

nk�1

Z b

a

j4Dn(x)j
kdx

� K

1X
n=1

nk�1

24 nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

= K

1X
n=1

1

(n
(n))
2�k

2

24(n
(n)) 2k�1 n2� 2

k

nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

� K

 
1X
n=1

1

n
(n)

! 2�k

2

24 1X
n=1

(n
(n))
2

k
�1

n2�
2

k

nX
i=1

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2

jcij
2

35
k

2

� K

8<:
1X
i=1

jcij
2
1X
n=i

(n
(n))
2

k
�1

n2�
2

k

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2
9=;

k

2

� K

8<:
1X
i=1

jcij
2

�

(i)

i

� 2

k
�1 1X

n=i

n
2

k

 
Ri
n
eRi
n

Rn

�
Ri
n�1

eRi
n�1

Rn�1

!2
9=;

k

2

� K

(
1X
i=1

jcij
2


2

k
�1(i)R(k)(i)

) k

2

;
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which is �nite by assumption. Doing the same reasoning as in the proof of Theorem 3.1

we easy arrive to �nish the proof. �

It is obvious that the transformation Dn can never be the same as �
p;q
n , therefore

Theorems 3.1-3.2 bring new results. Moreover, transformation Dn can not reduces to

the transformations Un or Vn, i.e. it would be of particular interest to answer ques-

tions: Under what conditions an orthogonal series of the form (2.1) is (N; p)(N; q) or

(R; qn)(R; pn)k summable? Regarding to these questions, in the following, we shall give

four theorems without their proofs.

Denote

eP i;q
n =

nX
v=i

pn�v
Qv

; eQi;p
n =

nX
v=i

qv
Pv

; and ePn;q
n�1 = eQn;p

n�1 = 0:

Theorem 3.3. If the series

1X
n=1

24 nX
i=1

 
Qi

n
eP i;q
n

Pn

�
Qi

n�1
eP i;q
n�1

Pn�1

!2

jcij
2

35
1

2

converges, then the orthogonal series

1X
n=0

cn'n(x)

is summable j(N; p)(N; q)j almost everywhere.

Theorem 3.4. Let f
(n)g be a positive sequence such that f
(n)=ng is a non-

increasing sequence and the series
P
1

n=1
1

n
(n) converges.

Let fpng and fqng be non-negative. If the series

1X
n=1

jcnj
2
(n)Rp;q(n)

converges, then the orthogonal series

1X
n=0

cn'n(x) 2 j(N; p)(N; q)j

almost everywhere, where Rp;q(n) is de�ned by

Rp;q(i) :=
1

i

1X
n=i

n2

 
Qi

n
eP i;q
n

Pn

�
Qi

n�1
eP i;q
n�1

Pn�1

!2

:

Theorem 3.5. If for 1 � k � 2 the series

1X
n=1

24n2� 2

k

nX
i=1

 
P i
n
eQi;p
n

Qn

�
P i
n�1

eQi;p
n�1

Qn�1

!2

jcij
2

35
k

2

converges, then the orthogonal series

1X
n=0

cn'n(x)
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is summable j(R; qn)(R; pn)jk almost everywhere.

Theorem 3.6. Let 1 � k � 2 and f
(n)g be a positive sequence such that f
(n)=ng

is a non-increasing sequence and the series
P
1

n=1
1

n
(n) converges.

Let fpng and fqng be non-negative. If the series
1X
n=1

jcnj
2


2

k
�1(n)bR(p;q;k)(n)

converges, then the orthogonal series
1X
n=0

cn'n(x) 2 j(R; qn)(R; pn)jk

almost everywhere, where bR(p;q;k)(n) is de�ned by

bR(p;q;k)(i) :=
1

i
2

k
�1

1X
n=i

n
2

k

 
P i
n
eQi;p
n

Qn

�
P i
n�1

eQi;p
n�1

Qn�1

!2

:
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