A NEW CLASS OF LOG-HARMONIC FUNCTIONS

YAŞAR POLATOG̃LU

Presented at the $8^{\text {th }}$ International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

AbStract. In this paper, we consider a new class of log-harmonic mappings of the form $f=z h(z) \overline{g(z)}$ defined on the open disc $\mathbb{D}=\{z|\quad| z \mid<1\}$ which are univalent and satisfying the condition $\left|\frac{h(z)}{g(z)}-M\right|<M$ for every $z \in \mathbb{D}$.

1. Introduction

Let $H(\mathbb{D})$ be the linear space of analytic functions defined on the open unit disc \mathbb{D}. A log-harmonic mapping is a solution of the non-linear elliptic partial differential equation

$$
\begin{equation*}
\frac{\bar{f}_{\bar{z}}}{\bar{f}}=w(z) \cdot \frac{f_{z}}{f} \tag{1.1}
\end{equation*}
$$

where $w(z)$ is the second dilatation function of f and $w(z) \in H(\mathbb{D})$ such that $|w(z)|<1$ for all $z \in \mathbb{D}$. It has been shown that if f is a non-vanishing log-harmonic mapping, then f can be expressed as

$$
\begin{equation*}
f=h(z) \cdot \overline{g(z)} \tag{1.2}
\end{equation*}
$$

where $h(z)$ and $g(z)$ are analytic functions in \mathbb{D}. On the other hand, if f vanishes at $z=0$ but is not identically zero, then f admits the representation,

$$
\begin{equation*}
f=z|z|^{2 \beta} h(z) \overline{g(z)} \tag{1.3}
\end{equation*}
$$

where $\operatorname{Re} \beta>-\frac{1}{2}$ and $h(z)$ and $g(z)$ are analytic functions in $\mathbb{D}, g(0)=h(0)=1$. Univalent log-harmonic mapping have been studied extensively (for details see [1],[2],[3],[4],[5],[6]). The class of all log-harmonic mappings is denoted by $S_{L H}$.

Let $f=z|z|^{2 \beta} h(z) \overline{g(z)}$ be a univalent harmonic mapping. We say that f is a starlike log-harmonic mapping if

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \arg f\left(r . e^{i \theta}\right)=\operatorname{Re}\left[\frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}\right]>0 \tag{1.4}
\end{equation*}
$$

[^0]for all $z \in \mathbb{D}$. Denote by $S T_{L H}$ the set of all starlike log-harmonic mappings.
Finally, let Ω be the family of functions $\phi(z)$ regular in \mathbb{D} and satisfying $\phi(0)=0$, $|\phi(z)|<1$ for all $z \in \mathbb{D}$. Next, let $F(z)=z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\cdots$ and $G(z)=z+$ $\beta_{2} z^{2}+\beta_{3} z^{3}+\cdots$ be analytic functions in \mathbb{D}, if there exist a function $\phi(z) \in \Omega$ such that $F(z)=G(\phi(z))$ for every $z \in \mathbb{D}$, then we say that $F(z)$ is subordinate to $G(z)$, and we write $F(z) \prec G(z)$ [7].

In this paper we will investigate the class of log-harmonic mappings defined by

$$
S_{L H(M)}=\left\{\left.f \in S_{L H}| | \frac{h(z)}{g(z)}-M \right\rvert\,<M, M \geq 1 \text { is a fixed number, } h(0)=g(0)=1\right\}
$$

2. Main Results

Theorem 2.1. Let $f=z h(z) \overline{g(z)}$ be an element of $S_{L H(M)}$, then

$$
\begin{align*}
\frac{h(z)}{g(z)} & \prec \frac{1+z}{1-\left(1-\frac{1}{M}\right) z} \tag{2.1}\\
\frac{1-r}{1+\left(1-\frac{1}{M}\right) r} & \leq\left|\frac{h(z)}{g(z)}\right| \leq \frac{1+r}{1-\left(1-\frac{1}{M}\right) r} \tag{2.2}
\end{align*}
$$

Proof.

$$
\left|\frac{h(z)}{g(z)}-M\right|<M \Rightarrow\left|\frac{1}{M} \frac{h(z)}{g(z)}-1\right|<1
$$

then the function $\psi(z)=\left(\frac{1}{M} \frac{h(z)}{g(z)}-1\right)$ has modulus at 1 in the unit disc \mathbb{D}, so that

$$
\begin{equation*}
\phi(z)=\frac{\psi(z)-\psi(0)}{1-\psi(0) \psi(z)}=\frac{\left(\frac{1}{M} \frac{h(z)}{g(z)}-1\right)-\left(\frac{1}{M}-1\right)}{1-\left(\frac{1}{M}-1\right)\left(\frac{1}{M} \frac{h(z)}{g(z)}-1\right)} \tag{2.3}
\end{equation*}
$$

Then $\phi(0)=0$ and $|\phi(z)|<1$, therefore by Schwarz's Lemma

$$
\begin{equation*}
|\phi(z)| \leq|z| \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) we obtain,

$$
\frac{h(z)}{g(z)}=\frac{1+\phi(z)}{1-\left(1-\frac{1}{M}\right) \phi(z)}
$$

and using the subordination principle we get (2.1). On the other hand $\omega=\frac{1+z}{1-\left(1-\frac{1}{M}\right) z}$ maps $|z|=r$ onto the circle with the center

$$
C(r)=\left(\frac{1+\left(1-\frac{1}{M}\right) r^{2}}{1-\left(1-\frac{1}{M}\right) r^{2}}, 0\right)
$$

and the radius

$$
\rho(r)=\frac{2\left(1-\frac{1}{M}\right) r}{1-\left(1-\frac{1}{M}\right) r^{2}}
$$

and again using the subordination principle, then we have

$$
\begin{equation*}
\left|\frac{h(z)}{g(z)}-\frac{1+\left(1-\frac{1}{M}\right) r^{2}}{1-\left(1-\frac{1}{M}\right) r^{2}}\right| \leq \frac{2\left(1-\frac{1}{M}\right) r}{1-\left(1-\frac{1}{M}\right) r^{2}} \tag{2.5}
\end{equation*}
$$

The last inequality gives (2.2).
Theorem 2.2. The radius of starlikeness of the class $S_{L H(M)}$ is $r=\frac{1}{1+\sqrt{2-\frac{1}{M}}}$. Proof. Using (2.5) we have,

$$
\begin{equation*}
z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}=\frac{\left(2-\frac{1}{M}\right) z \phi^{\prime}(z)}{1-\frac{1}{M} \phi(z)-\left(1-\frac{1}{M}\right)(\phi(z))^{2}} . \tag{2.6}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right| \leq \frac{\left(2-\frac{1}{M}\right) r}{1-r^{2}} \frac{1-|\phi(z)|^{2}}{1-\frac{1}{M}|\phi(z)|-\left(1-\frac{1}{M}\right)|\phi(z)|^{2}}, \tag{2.7}
\end{equation*}
$$

where we used the estimate

$$
\left|\phi^{\prime}(z)\right| \leq \frac{\left(1-|\phi(z)|^{2}\right)}{1-r^{2}}
$$

This estimate can be found in [1]. It can be easily shown that,

$$
\begin{equation*}
\frac{1-|\phi(z)|^{2}}{1-\frac{1}{M}|\phi(z)|-\left(1-\frac{1}{M}\right)|\phi(z)|^{2}} \leq \frac{1-r^{2}}{1-\frac{1}{M} r^{2}-\left(1-\frac{1}{M}\right) r^{2}} \tag{2.8}
\end{equation*}
$$

and relations (2.7) and (2.8) give

$$
\begin{equation*}
\left|z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right| \leq \frac{\left(2-\frac{1}{M}\right) r}{1-\frac{1}{M} r-\left(1-\frac{1}{M}\right) r^{2}} . \tag{2.9}
\end{equation*}
$$

On the other hand we have

$$
\begin{gathered}
\Phi(z)=z \frac{h(z)}{g(z)}, f=z h(z) \overline{g(z)} \Rightarrow \\
\operatorname{Re} \frac{z f_{z}-\bar{z} f_{\bar{z}}}{f}=\operatorname{Re} z \frac{\Phi^{\prime}(z)}{\Phi(z)}=\operatorname{Re}\left[1+z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right]
\end{gathered}
$$

and we deduce that f will be univalent and starlike if

$$
\begin{equation*}
\left|z \frac{\Phi^{\prime}(z)}{\Phi(z)}-1\right|<\left|z \frac{h^{\prime}(z)}{h(z)}-z \frac{g^{\prime}(z)}{g(z)}\right|<1 \tag{2.10}
\end{equation*}
$$

Using (2.9) we deduce that (2.10) will be satisfied if

$$
\frac{\left(2-\frac{1}{M}\right) r}{1-\frac{1}{M} r-\left(1-\frac{1}{M}\right) r^{2}}<1
$$

and this implies that

$$
r=|z|<\frac{1}{1+\sqrt{2-\frac{1}{M}}}
$$

Theorem 2.3. Let $f=z h(z) \overline{g(z)}$ be an element of $S_{L H(M)}$, then

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{k}-b_{k}\right|^{2} \leq\left(2-\frac{1}{M}\right)^{2}+\sum_{k=1}^{n-1}\left|b_{k}+\left(1-\frac{1}{M}\right) a_{k}\right|^{2} \tag{2.11}
\end{equation*}
$$

Proof. The proof of this theorem is based on the Clunie method [8]. We start with the equality,

$$
\begin{equation*}
\frac{h(z)}{g(z)}=\frac{1+\phi(z)}{1-\left(1-\frac{1}{M}\right) \phi(z)} \Leftrightarrow h(z)-g(z)=\left[\left(1-\frac{1}{M}\right) h(z)+g(z)\right] \phi(z) . \tag{2.12}
\end{equation*}
$$

Then let $h(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}, g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}, \phi(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ and note that $|\phi(z)|<1$, for all $z \in \mathbb{D}$. Therefore equation (2.12) now takes the form, (2.13)
$\sum_{k=1}^{n}\left(a_{k}-b_{k}\right) z^{k}+\sum_{k=n+1}^{\infty}\left(a_{k}-b_{k}\right) z^{k}=\left[(a+1)+\sum_{k=1}^{n-1}\left(b_{k}+a a_{k}\right) z^{k}+\sum_{k=n}^{\infty}\left(b_{k}+a a_{k}\right) z^{k}\right]\left(\sum_{k=1}^{\infty} c_{k} z^{k}\right)$,
where $a=1-\frac{1}{M}$ or
(2.14)
$\sum_{k=1}^{n}\left(a_{k}-b_{k}\right) z^{n}+\sum_{k=n+1}^{\infty}\left(a_{k}-b_{k}\right) z^{k}-\left(\sum_{k=n}^{\infty}\left(b_{k}+a a_{k}\right) z^{k}\right)\left(\sum_{n=1}^{\infty} c_{n} z^{n}\right)=\left[(1+a)+\sum_{k=1}^{n-1}\left(b_{k}+a a_{k}\right) z^{k}\right] \phi(z)$.
Equality (2.14) can be written in the following form:

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{k}-b_{k}\right) z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}=\left[(1+a)+\sum_{k=1}^{n-1}\left(b_{k}+a a_{k}\right) z^{k}\right] \phi(z) \tag{2.15}
\end{equation*}
$$

Since (2.15) has the form $F(z)=\phi(z) \cdot G(z)$, where $|\phi(z)|<1$, it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|G\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{2.16}
\end{equation*}
$$

for each $r,(0<r<1)$. Expressing (2.16) in terms of the coefficients in (2.15) we obtain the inequality

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{k}-b_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|a_{k}^{\prime}\right|^{2} r^{2 k} \leq|1+a|^{2}+\sum_{k=1}^{n-1}\left|a a_{k}+b_{k}\right|^{2} r^{2 k} \tag{2.17}
\end{equation*}
$$

By letting $r \rightarrow 1$ in (2.17) we conclude that

$$
\sum_{k=1}^{n}\left|a_{k}-b_{k}\right|^{2} \leq\left(2-\frac{1}{M}\right)^{2}+\sum_{k=1}^{n-1}\left|\left(1-\frac{1}{M}\right) a_{k}+b_{k}\right|^{2}
$$

proving the theorem.

References

[1] Z. Abdulhadi: Close-to-starlike log-harmonic mappings, Internat. J. Math and Math. Sci, 19(3) (1996), 563-574.
[2] Z. AbDULHADI: Typically real log-harmonic mappings, Internat J. Math and Math and Math Sci., 31(1) (2002), 1-9.
[3] Z. Abdulhadi, Y. Abu Muhanna: Starlike log-harmonic mapping of order alpha, Journal of Inequalities in Pure and Applied Mathematics, 7(4), (2006), 1-6.
[4] Z. Abdulhadi, D. Bshouty: Univalent Functions in $H \bar{H}$, Trans. Amer. Math. Soc., 305(2) (1988), 841-849.
[5] Z. Abdulhadi, W. Hengartner: Spirallike log-harmonic mappings, Complex Variables Theory Appl. 9(2,3) (1987), 121-130.
[6] Z. Abdulhadi, W. Hengartner: One pointed univalent log-harmonic mappings, J. Math. Anal. Appl. 203(2) (1996), 333-351.
[7] A. W. Goodman: Univalent functions, Mariner Publishing Company INC., Washington, New Jersey, 1983.
[8] J. Clunie: On meromorphic Schlict functions, Jour. London, Math. Soc. 34, (1959), 215-216.
Department of Mathematics and Computer Sciences İstanbul Kültür University, İstanbul, Turkey
E-mail address: y.polatoglu@iku.edu.tr

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. log-harmonic mapping, distortion theorem, growth theorem, coefficient inequality.

