MAPPING PROPERTIES OF SOME CLASSES OF ANALYTIC FUNCTIONS UNDER NEW GENERALIZED INTEGRAL OPERATORS

IRINA DORCA AND DANIEL BREAZ

Presented at the $8^{\text {th }}$ International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

AbStract. In this paper we study the mapping properties with respect to some generalized integral operators which was studied recently.

1. Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$
\mathcal{A}=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

and $S=\{f \in \mathcal{A}: f$ is univalent in $U\}$.
In [12] the subfamily T of S consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U \tag{1.1}
\end{equation*}
$$

was introduced.
Thus we have the subfamily $S-T$ consisting of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, a_{j} \geq 0, j=2,3, \ldots, z \in U \tag{1.2}
\end{equation*}
$$

A function $f(z) \in \mathcal{A}$ is said to be spiral-like if there exists a real number $\lambda,|\lambda|<\pi / 2$, such that

$$
\operatorname{Re} e^{i \lambda} \frac{z f^{\prime}(x)}{f(X)}(z \in U)
$$

The class of all spiral-like functions was introduced by L. Spacek ([10]) and we denote it by S_{λ}^{\star}. Later, Robertson ([9]) considered the class C_{λ} of analytic functions in U for which $z f^{\prime}(z) \in S_{\lambda}^{\star}$.

[^0]Let $P_{k}^{\lambda}(\rho)$ be the class of functions $p(z)$ analytic in U with $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} e^{i \lambda} p(z)-\rho \cos \lambda}{1-\rho}\right| d \theta \leq k \pi \cos \lambda, z=r e^{i \theta} \tag{1.3}
\end{equation*}
$$

where $k \geq 2,0 \leq \rho<1, \lambda$ is real with $|\lambda|<\frac{\pi}{2}$. In case that $k=2, \lambda=0, \rho=0$, the class $P_{k}^{\lambda}(\rho)$ reduces to the class P of functions $p(z)$ analytic in U with $p(0)=1$ and whose real part is positive.
we recall the well-known classes

$$
\begin{gathered}
R_{k}^{\lambda}(\rho)=\left\{f(z): f(z) \in \mathcal{A} \text { and } \frac{z f^{\prime}(z)}{f(z)} \in P_{k}^{\lambda}(\rho), 0 \leq \rho<1\right\} \\
V_{k}^{\lambda}(\rho)=\left\{f(z): f(z) \in \mathcal{A} \text { and } \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)} \in P_{k}^{\lambda}(\rho), 0 \leq \rho<1\right\}
\end{gathered}
$$

These classes are introduced and studied in [8].
The propose of this paper is to develop the mapping properties with respect to a new generalized integral operator.

2. Preliminary Results

Prof. Breaz ([3]) has introduced the following integral operators on univalent function spaces:

$$
\begin{equation*}
G(z)=\left[\beta \int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\gamma_{1}} \cdot \ldots \cdot\left(\frac{f_{p}(t)}{t}\right)^{\gamma_{p}} d t\right]^{\frac{1}{\beta}} \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
J(z)=\left\{\beta \int_{0}^{z}\left[f_{1}^{\prime}\left(t^{n}\right)\right]^{\gamma_{1}} \cdot \ldots \cdot\left[f_{p}^{\prime}\left(t^{n}\right)\right]^{\gamma_{p}} d t\right\}^{\frac{1}{\beta}} \tag{2.1}\\
H(z)=\left\{\beta \int_{0}^{z} t^{\beta-1}\left[f_{1}^{\prime}(t)\right]^{\gamma_{1}} \cdot \ldots \cdot\left[f_{p}^{\prime}(t)\right]^{\gamma_{p}} d t\right\}^{\frac{1}{\beta}} \tag{2.2}
\end{gather*}
$$

$$
\begin{equation*}
F(z)=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\gamma_{1}} \cdot \ldots \cdot\left(\frac{f_{p}(t)}{t}\right)^{\gamma_{p}} d t \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
F_{\gamma, \beta}(z)=\left\{\beta \int_{0}^{z} t^{\beta-1}\left(\frac{f_{1}(t)}{t}\right)^{\frac{1}{\gamma_{1}}} \cdot \ldots \cdot\left(\frac{f_{p}(t)}{t}\right)^{\frac{1}{\gamma_{p}}} d t\right\}^{\frac{1}{\beta}} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\gamma, p}(z)=\left\{[p(\gamma-1)+1] \int_{0}^{z} g_{1}^{\gamma-1}(t) \cdot \ldots \cdot g_{p}^{\gamma-1}(t) d t\right\}^{\frac{1}{p(\gamma-1)+1}} \tag{2.6}
\end{equation*}
$$

where $\gamma_{i}, \gamma, \beta \in \mathbb{C}, \forall i=\overline{1, p}, p \in \mathbb{N}-\{0\}, n \in \mathbb{N}-\{0,1\}$.
Let D^{n} be the Sălăgean differential operator (see [11]) $D^{n}: \mathcal{A} \rightarrow \mathcal{A}, n \in \mathbb{N}$, defined as:

$$
\begin{equation*}
D^{0} f(z)=f(z), D^{1} f(z)=D f(z)=z f^{\prime}(z), D^{n} f(z)=D\left(D^{n-1} f(z)\right) \tag{2.7}
\end{equation*}
$$

and $D^{k}, D^{k}: \mathcal{A} \rightarrow \mathcal{A}, k \in \mathbb{N} \cup\{0\}$, of form:

$$
\begin{equation*}
D^{0} f(z)=f(z), \ldots, D^{k} f(z)=D\left(D^{k-1} f(z)\right)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n} \tag{2.8}
\end{equation*}
$$

Definition 2.1. [2] Let $\beta, \lambda \in \mathbb{R}, \beta \geq 0, \lambda \geq 0$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$. We denote by D_{λ}^{β} the linear operator defined by

$$
\begin{equation*}
D_{\lambda}^{\beta}: A \rightarrow A, \quad D_{\lambda}^{\beta} f(z)=z+\sum_{j=n+1}^{\infty}[1+(j-1) \lambda]^{\beta} a_{j} z^{j} \tag{2.9}
\end{equation*}
$$

Remark 2.1. In ([1]) we have introduced the following operator concerning the functions of form (1.1):

$$
\begin{equation*}
D_{\lambda}^{\beta}: A \rightarrow A, \quad D_{\lambda}^{\beta} f(z)=z-\sum_{j=n+1}^{\infty}[1+(j-1) \lambda]^{\beta} a_{j} z^{j} \tag{2.10}
\end{equation*}
$$

The neighborhoods concerning the class of functions defined using the operator (2.10) is studied in [5].

Remark 2.2. Let consider the following operator concerning the functions $f \in$ $S, S=\{f \in \mathcal{A}: f$ is univalent in $U\}$:

$$
\begin{equation*}
D_{\lambda_{1}, \lambda_{2}}^{n, \beta} f(z)=\left(h * \psi_{1} * f\right)(z)=z \pm \sum_{k \geq 2} \frac{\left.\left[1-\lambda_{1}(k-1)\right)\right]^{\beta-1}}{\left.\left[1-\lambda_{2}(k-1)\right)\right]^{\beta}} \cdot \frac{1+c}{k+c} \cdot C(n, k) \cdot a_{k} \cdot z^{k} \tag{2.11}
\end{equation*}
$$ where $C(n, k)=\frac{(n+1)_{k-1}}{(1)_{k-1}} ;(\cdot)$. is the Pochammer symbol; $k \geq 2, c \geq 0$.

The following integral operator is studied in [4], where $f_{i}, i=1 \ldots n, n \in \mathbb{N}$, is considered to be of form (1.2):

Definition 2.2. We define the general integral operator $I_{k, n, \lambda, \mu}: \mathcal{A}_{n} \rightarrow \mathcal{A}$ by

$$
\begin{gather*}
I_{k, n, \lambda, \mu}\left(f_{1}, \ldots, f_{n}\right)=F \tag{2.12}\\
D^{k} F(z)=\int_{0}^{z}\left(\frac{D_{1}^{\lambda} f_{1}(t)}{t}\right)^{\mu_{1}} \cdot \ldots \cdot\left(\frac{D_{n}^{\lambda} f_{n}(t)}{t}\right)^{\mu_{n}} d t
\end{gather*}
$$

where $f_{i} \in \mathcal{A}, i \in \mathbb{N}-\{0\}, \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{N}_{0}^{n}, \mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{N}^{n}, n \in \mathbb{N}$ and $k \in \mathbb{N}_{0}$.

Theorem 2.1. Let $\alpha, \gamma_{1}, \gamma_{2}, \beta \in \mathbb{C}, \operatorname{Re} \alpha=a>0$ and $D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}(z) \in \mathcal{A}, \lambda_{1}, \lambda_{2}, \kappa \geq$ $0, \sigma \in \mathbb{R}, j=\overline{1, p}, p \in \mathbb{N}, D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)$ of form (2.11). If

$$
\begin{gathered}
\left|\frac{\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)\right)^{\prime \prime}}{\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)\right)^{\prime}}\right| \leq \frac{1}{n} \text { and }\left|\frac{\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)\right)^{\prime}}{\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)\right)}\right| \leq \frac{1}{n}, \forall z \in U, j=\overline{1, p} \\
\frac{\sum_{j=1}^{p}\left[\left|\delta_{j}^{1}\right| \cdot\left(\left|2 \gamma_{1}-1\right|-|\sigma|\right)+\left|\delta_{j}^{2}\right| \cdot\left(\left|2 \gamma_{2}-1\right|-|\sigma|\right)\right]}{\left|\sigma \cdot\left(2 \gamma_{1}-1\right) \cdot\left(2 \gamma_{2}-1\right) \cdot\left(\prod_{j=1}^{p} \delta_{j}^{1} \cdot \delta_{j}^{2}\right)\right|} \leq 1
\end{gathered}
$$

and

$$
\left|\sigma \cdot\left(2 \gamma_{1}-1\right) \cdot\left(2 \gamma_{2}-1\right) \cdot\left(\prod_{j=1}^{p} \delta_{j}^{1} \cdot \delta_{j}^{2}\right)\right| \leq \frac{n+2 a}{2} \cdot\left(\frac{n+2 a}{n}\right)^{\frac{1}{n+2 a}}
$$

then for $\forall \delta, \delta_{j}^{1}, \delta_{j}^{2} \in \mathbb{C}, j=1 \ldots p, \operatorname{Re}(\beta) \geq a, \operatorname{Re}(\beta \delta) \geq a$, the function

$$
\begin{equation*}
I^{1}(z)=\left\{\beta \int_{0}^{z} t^{\beta \delta-1} \cdot \prod_{j=1}^{p}\left[\frac{\left(\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(t^{n}\right)^{\prime}\right)^{2 \gamma_{1}-1}\right.}{t^{\sigma}}\right]^{\delta_{j}^{1}} \cdot\left[\frac{\left(D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(t^{n}\right)\right)^{2 \gamma_{2}-1}}{t^{\sigma}}\right]^{\delta_{j}^{2}} d t\right\}^{\frac{1}{\beta}} \tag{2.13}
\end{equation*}
$$

is univalent for all $n \in \mathbb{N}-\{0\}$.
If we consider the operator $D_{\lambda}^{\beta} f(z)$ of form (2.10) we obtain the following Corolary, whose proof is similar with the prove of Theorem 2.1.

Corollary 2.1. Let $\alpha, \gamma_{1}, \gamma_{2}, \chi \in \mathbb{C}, \operatorname{Re} \alpha=a>0$ and $D_{\lambda}^{\beta} f_{j}(z) \in \mathcal{A}, \beta \geq 0, \lambda \geq$ $0, \sigma \in \mathbb{R}, D_{\lambda}^{\beta} f\left(z^{n}\right)$ of form (2.10). If

$$
\begin{gathered}
\left|\frac{\left(D_{\lambda}^{\beta} f_{j}\left(z^{n}\right)\right)^{\prime \prime}}{\left(D_{\lambda}^{\beta} f_{j}\left(z^{n}\right)\right)^{\prime}}\right| \leq \frac{1}{n} \text { and }\left|\frac{\left(D_{\lambda}^{\beta} f_{j}\left(z^{n}\right)\right)^{\prime}}{\left(D_{\lambda}^{\beta} f_{j}\left(z^{n}\right)\right)}\right| \leq \frac{1}{n}, \forall z \in U, j=\overline{1, p}, \\
\frac{\sum_{j=1}^{p}\left[\left|\delta_{j}^{1}\right| \cdot\left(\left|2 \gamma_{1}-1\right|-|\sigma|\right)+\left|\delta_{j}^{2}\right| \cdot\left(\left|2 \gamma_{2}-1\right|-|\sigma|\right)\right]}{\left|\sigma \cdot\left(2 \gamma_{1}-1\right) \cdot\left(2 \gamma_{2}-1\right) \cdot\left(\prod_{j=1}^{p} \delta_{j}^{1} \cdot \delta_{j}^{2}\right)\right|} \leq 1
\end{gathered}
$$

and

$$
\left|\sigma \cdot\left(2 \gamma_{1}-1\right) \cdot\left(2 \gamma_{2}-1\right) \cdot\left(\prod_{j=1}^{p} \delta_{j}^{1} \cdot \delta_{j}^{2}\right)\right| \leq \frac{n+2 a}{2} \cdot\left(\frac{n+2 a}{n}\right)^{\frac{1}{n+2 a}}
$$

then for all $\delta, \delta_{j}^{1}, \delta_{j}^{2} \in \mathbb{C}, j=1 \ldots p, \operatorname{Re}(\chi) \geq a, \operatorname{Re}(\chi \delta) \geq a$, the function

$$
\begin{equation*}
I^{2}(z)=\left\{\chi \int_{0}^{z} t^{\chi \delta-1} \prod_{j=1}^{p}\left[\frac{\left(\left(D_{\lambda}^{\beta} f_{j}\left(t^{n}\right)^{\prime}\right)^{2 \gamma_{1}-1}\right.}{t^{\sigma}}\right]^{\delta_{j}^{1}}\left[\frac{\left(D_{\lambda}^{\beta} f_{j}\left(t^{n}\right)\right)^{2 \gamma_{2}-1}}{t^{\sigma}}\right]^{\delta_{j}^{2}} d t\right\}^{\frac{1}{\chi}} \tag{2.14}
\end{equation*}
$$

is univalent for $\forall n \in \mathbb{N}-\{0\}$.

Lemma 2.1. [7] Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and $\Psi(u, v)$ be a complex valued function satisfying the conditions:
(i) $\Psi(u, v)$ is continuous in a domain $D \in \mathbb{C}^{2}$,
(ii) $(1,0) \in D$ and $\operatorname{Re} \Psi(1,0)>0$,
(iii) $\operatorname{Re} \Psi\left(i u_{2}, v_{1}\right) \leq 0$, whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+\sum_{i \geq 1} c_{i} z^{i}$ is an analytic function in U such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \Psi\left(h(z), z h^{\prime}(z)\right)>0$ for $z \in U$, then $\operatorname{Reh}(z)>0$ in U.

Lemma 2.2. [6] Let $f(z) \in V_{k}^{\lambda}(\rho), 0 \leq \rho<1$ and λ is real with $|\lambda|<\frac{\pi}{2}$. Then $f(z) \in R_{k}^{\lambda}(\beta)$, where β is one of the root of

$$
\begin{equation*}
2 \beta^{3}+(1-2 \rho) \beta^{2}+\left(3 \sec ^{2} \lambda-4\right) \beta-(1+2 \rho) \tan ^{2} \lambda=0 \tag{2.15}
\end{equation*}
$$

Following we present the mapping properties of the general integral operator of form (2.13), giving also several examples which prove its relevance.

3. Main Results

Using Theorem 2.1 and making additional calculus, we obtain:
Theorem 3.1. Let $D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right) \in R_{k}^{\lambda}, D_{\lambda_{1}, \lambda_{2}}^{n, \kappa} f_{j}\left(z^{n}\right)$ of form (2.11), $n \in \mathbb{N}, \lambda_{1}, \lambda_{2}, \kappa \geq$ $0, \sigma \in \mathbb{R}, j=\overline{1, p}, p \in \mathbb{N}$, for $0 \leq \rho<1$. Also let λ be real, $|\lambda|<\frac{\phi}{2}$. If

$$
0 \leq[\rho-1] \sum_{j=1}^{p} \delta_{j}^{a}+\beta \delta<1
$$

then $I^{1}(z) \in V_{k}^{\lambda}(\eta), I^{1}(z)$ of form (2.13), with

$$
\begin{equation*}
\eta=[\rho-1] \sum_{j=1}^{p} \delta_{j}^{a}+\beta \delta, \tag{3.1}
\end{equation*}
$$

$\beta, \delta, \delta_{j}^{a} \in \mathbb{C}, a \in\{1,2\}, j=\overline{1, p}, \operatorname{Re}(\beta \delta)>0$.
Remark 3.1. If we consider the operator $D_{\lambda}^{\beta} f(z) \in R_{k}^{\lambda}(\rho)$ of form (2.10) we obtain similar result as in Theorem 3.1.

Remark 3.2. If we apply the operator (2.7) to the integral operator $F(z)$ of form (2.3), we obtain the result from [6].

Next we give few examples of particular cases which can be found in literature.
Let $\beta=0$ in $D_{\lambda}^{\beta} f(z)$ of form (2.9) or (2.10). So we have that $D_{\lambda}^{0} f(z)=f(z), \forall \lambda \geq 0$. We will use this form of the integral operator, where the function f is of form (1.2) with respect to the operator (2.14). For further simplification, we consider that $\gamma_{1}=\gamma_{2}=1$, and $\delta=1$ (except of Example 3.4).

For the first four examples we consider $\delta_{j}^{1}=0, j=\overline{1, p}, p \in \mathbb{N}-\{0\}, n=1$.
Example 3.1. If $\sigma=1, \chi=1$ and we use the notation $\delta_{j}^{2}=\gamma_{j}, j=\overline{1, p}, p \in \mathbb{N}-\{0\}$, we obtain the operator $F(z)$ of form (2.3). $F(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1$.

Example 3.2. If $\sigma=1$ we obtain the operator $G(z)$ of form (2.4) for $\delta_{j}^{2}=\gamma_{j}, j=$ $\overline{1, p}, p \in \mathbb{N}-\{0\} . G(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1$.
Example 3.3. If $\sigma=1$ and we use the notation $\delta_{j}^{2}=1 / \gamma_{j}, j=\overline{1, p}, p \in \mathbb{N}-\{0\}$, we obtain the operator $F_{\gamma, \beta}(z)$ of form (2.15). $F_{\gamma, \beta}(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(\rho-1) \sum_{j=1}^{p} \frac{1}{\gamma_{j}}+\beta<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+\beta$.

Example 3.4. If $\sigma=0$ we obtain the operator $G_{\gamma, p}(z)$ of form (2.6) for $\chi=[p(\gamma-$ 1) +1$], \delta=\frac{1}{\chi}$ and $\delta_{j}^{2}=\gamma-1, G_{\gamma, p}(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(1-\rho) \sum_{j=1}^{p} \gamma_{j}+1<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1$.

For the next two examples we consider $\delta_{j}^{2}=0 j=\overline{1, p}, p \in \mathbb{N}-\{0\}$, and $\sigma=0$.
Example 3.5. a) If $\chi=1, \delta=1$, we obtain a particular case of the function $J(z)$ of form (2.9), in which $\beta=1, \forall n \in \mathbb{N}-\{0\}$. $J(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(1-\rho) \sum_{j=1}^{p} \gamma_{j}+1<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1$.
b) If $\delta=\frac{1}{\chi}, \delta_{j}^{1}=\gamma_{j}, j=\overline{1, p}, p \in \mathbb{N}-\{0\}$. we obtain the operator $J(z)$ of form (2.9), in which $\beta=1, \forall n \in \mathbb{N}-\{0\} . J(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(1-\rho) \sum_{j=1}^{p} \gamma_{j}+1<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+1$.
Example 3.6. If $n=1, \delta=\frac{1}{\chi}$, we obtain the operator $H(z)$ of form (2.12) for $\delta_{j}^{1}=\gamma_{j}, j=\overline{1, p}, p \in \mathbb{N}-\{0\} . F(z) \in V_{k}^{\lambda}(\eta)$ if $0 \leq(1-\rho) \sum_{j=1}^{p} \gamma_{j}+\beta<1$ with $\eta=(\rho-1) \sum_{j=1}^{p} \gamma_{j}+\beta$.

Acknowledgment

This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

[1] M. Acu, I. Dorca, S. OwA: On some starlike functions with negative coefficients, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, Alba Iulia ICTAMI 2011.
[2] M. Acu, S. OwA: Note on a class of starlike functions, Proceeding of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory - Kyoto, (2006) 1-10.
[3] D. Breaz: Integral operators on univalent function spaces, Ed. Acad. Române, Bucureşti, 2004.
[4] D. Breaz, H. O. Güney, G. Ş. Sălăgean: A new general integral operator, Tamsui Oxford Journal of Mathematical Sciences, Aletheia University, 25(4) (2009) 407-414.
[5] Irina Dorca, Mugur Acu, Daniel Breaz: Note on Neighborhoods of Some Classes of Analytic Functions with Negative Coefficients, ISRN Mathematical Analysis, vol. 2011, Article ID 610549, 7 pages, 2011. doi:10.5402/2011/610549.
[6] K. I. Noor, M. Arif, A. Muhammad: Mapping properties of some classes of analytic functions under an integral operator, Journal of Mathematical Inequalities, 4(4) (2010), 593-600.
[7] S. S. Miller, P. T. Mocanu: Differential subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[8] E. J. Moulis: Generalizations of the Robertson functions, Pacific J. Math., 81(1) (1979), 167-174.
[9] M. S. Robertson: Univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spiral-like, Mich. Math. J. 16 (1969), 97-101.
[10] L. Spacek: Prispĕvek k teorii funkei prostych, Čapopis Pest. Mat. Fys., 62 (1933), 12-19.
[11] G. S. SĂLĂGean: Geometria Planului Complex, Ed. Promedia Plus, Cluj - Napoca, 1999.
[12] H. Silverman: Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 5(1975), 109-116.

University of Pitegsti
TÂrgu din Vale No. 1
Argeş, România
E-mail address: irina.dorca@gmail.com
University " $1^{\text {st }}$ December 1918" of Alba Iulia
Alba Iulia, Romania
E-mail address: dbreaz@uab.ro

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. Analytic functions, positive coefficients, negative coefficients, integral operator.

