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Abstract. In this paper we study the mapping properties with respect to some
generalized integral operators which was studied recently.

1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U ,

A = ff 2 H(U) : f(0) = f 0(0)� 1 = 0g

and S = ff 2 A : f is univalent in Ug :

In [12] the subfamily T of S consisting of functions f of the form

(1.1) f(z) = z �

1X
j=2

ajz
j ; aj � 0; j = 2; 3; :::; z 2 U

was introduced.

Thus we have the subfamily S � T consisting of functions f of the form

(1.2) f(z) = z +

1X
j=2

ajz
j ; aj � 0; j = 2; 3; :::; z 2 U

A function f(z) 2 A is said to be spiral-like if there exists a real number � ; j�j < �=2 ;

such that

Re ei�
zf 0(x)

f(X)
(z 2 U) :

The class of all spiral-like functions was introduced by L. Spacek ([10]) and we denote

it by S?� : Later, Robertson ([9]) considered the class C� of analytic functions in U for

which zf 0(z) 2 S?� :
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Let P �
k (�) be the class of functions p(z) analytic in U with p(0) = 1 and

(1.3)

2�Z
0

����Re ei�p(z)� � cos�

1� �

���� d� � k� cos� ; z = rei� ;

where k � 2 ; 0 � � < 1 ; � is real with j�j < �
2 : In case that k = 2 ; � = 0 ; � = 0 ;

the class P �
k (�) reduces to the class P of functions p(z) analytic in U with p(0) = 1 and

whose real part is positive.

we recall the well-known classes

R�
k(�) =

�
f(z) : f(z) 2 A and

zf 0(z)

f(z)
2 P �

k (�) ; 0 � � < 1

�
;

V �
k (�) =

�
f(z) : f(z) 2 A and

(zf 0(z))0

f 0(z)
2 P�

k (�) ; 0 � � < 1

�
:

These classes are introduced and studied in [8].

The propose of this paper is to develop the mapping properties with respect to a new

generalized integral operator.

2. Preliminary results

Prof. Breaz ([3]) has introduced the following integral operators on univalent function

spaces:

(2.1) J(z) =

8<
:�

zZ
0

[f 01(t
n)]

1 � : : : �
�
f 0p(t

n)
�p

dt

9=
;

1
�

;

(2.2) H(z) =

8<
:�

zZ
0

t��1 [f 01(t)]
1 � : : : �

�
f 0p(t)

�p
dt

9=
;

1
�

;

(2.3) F (z) =

zZ
0

�
f1(t)

t

�1

� : : : �

�
fp(t)

t

�p

dt;

(2.4) G(z) =

2
4�

zZ
0

�
f1(t)

t

�1

� : : : �

�
fp(t)

t

�p

dt

3
5

1
�

;

(2.5) F;�(z) =

8<
:�

zZ
0

t��1
�
f1(t)

t

� 1
1

� : : : �

�
fp(t)

t

� 1
p

dt

9=
;

1
�

and
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(2.6) G;p(z) =

8<
:[p( � 1) + 1]

zZ
0

g
�1
1 (t) � : : : � g�1p (t)dt

9=
;

1
p(�1)+1

;

where i ;  ; � 2 C ; 8i = 1; p ; p 2 N� f0g ; n 2 N� f0; 1g:

Let Dn be the S l gean di�erential operator (see [11]) Dn : A ! A, n 2 N, de�ned as:

(2.7) D0f(z) = f(z) ; D1f(z) = Df(z) = zf 0(z) ; Dnf(z) = D(Dn�1f(z))

and Dk ; Dk : A ! A ; k 2 N [ f0g ; of form:

(2.8) D0f(z) = f(z) ; : : : ; Dkf(z) = D(Dk�1f(z)) = z +

1X
n=2

nkanz
n :

De�nition 2.1. [2] Let �; � 2 R, � � 0, � � 0 and f(z) = z+

1X
j=2

ajz
j. We denote by

D
�
� the linear operator de�ned by

(2.9) D
�
� : A! A ; D

�
�f(z) = z +

1X
j=n+1

[1 + (j � 1)�]�ajz
j :

Remark 2.1. In ([1]) we have introduced the following operator concerning the

functions of form (1.1):

(2.10) D
�
� : A! A ; D

�
�f(z) = z �

1X
j=n+1

[1 + (j � 1)�]�ajz
j :

The neighborhoods concerning the class of functions de�ned using the operator

(2.10) is studied in [5].

Remark 2.2. Let consider the following operator concerning the functions f 2

S ; S = ff 2 A : f is univalent in Ug :

(2.11) D
n;�
�1;�2

f(z) = (h� 1 �f)(z) = z�
X
k�2

[1� �1(k � 1))]��1

[1� �2(k � 1))]�
�
1 + c

k + c
�C(n; k) �ak �z

k ;

where C(n; k) = (n+1)k�1
(1)k�1

; (�)� is the Pochammer symbol; k � 2 ; c � 0 :

The following integral operator is studied in [4], where fi ; i = 1 : : : n ; n 2 N ; is

considered to be of form (1.2):

De�nition 2.2. We de�ne the general integral operator Ik;n;�;� : An ! A by

(2.12) Ik;n;�;�(f1; : : : ; fn) = F ;

DkF (z) =

zZ
0

�
D�
1f1(t)

t

��1

� : : : �

�
D�
nfn(t)

t

��n

dt ;

where fi 2 A ; i 2 N� f0g ; � = (�1; : : : ; �n) 2 N
n
0 ; � = (�1; : : : ; �n) 2 N

n ; n 2 N and

k 2 N0 :
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Theorem 2.1. Let � ; 1 ; 2 ; � 2 C ; Re� = a > 0 and D
n;�
�1;�2

fj(z) 2 A ; �1 ; �2 ; � �

0 ; � 2 R ; j = 1; p ; p 2 N ; D
n;�
�1;�2

fj(z
n) of form (2.11). If����� (D

n;�
�1;�2

fj(z
n))00

(D
n;�
�1;�2

fj(zn))0

����� � 1

n
and

����� (D
n;�
�1;�2

fj(z
n))0

(D
n;�
�1;�2

fj(zn))

����� � 1

n
; 8z 2 U ; j = 1; p ;

pP
j=1

[j�1j j � (j21 � 1j � j�j) + j�2j j � (j22 � 1j � j�j)]

j� � (21 � 1) � (22 � 1) � (
pQ

j=1

�1j � �
2
j )j

� 1

and

j� � (21 � 1) � (22 � 1) � (

pY
j=1

�1j � �
2
j )j �

n+ 2a

2
�

�
n+ 2a

n

� 1
n+2a

;

then for 8� ; �1j ; �
2
j 2 C ; j = 1 : : : p ; Re(�) � a ; Re(��) � a ; the function

(2.13)

I1(z) =

8<
:�

zZ
0

t���1 �

pY
j=1

"
((D

n;�
�1;�2

fj(t
n)0)21�1

t�

#�1j
�

"
(D

n;�
�1;�2

fj(t
n))22�1

t�

#�2j
dt

9=
;

1
�

is univalent for all n 2 N� f0g :

If we consider the operator D
�
�f(z) of form (2.10) we obtain the following Corolary,

whose proof is similar with the prove of Theorem 2.1.

Corollary 2.1. Let � ; 1 ; 2 ; � 2 C ; Re� = a > 0 and D
�
�fj(z) 2 A ; � � 0 ; � �

0 ; � 2 R ; D
�
�f(z

n) of form (2.10). If����� (D
�
�fj(z

n))00

(D
�
�fj(z

n))0

����� � 1

n
and

����� (D
�
�fj(z

n))0

(D
�
�fj(z

n))

����� � 1

n
; 8 z 2 U ; j = 1; p ;

pP
j=1

[j�1j j � (j21 � 1j � j�j) + j�2j j � (j22 � 1j � j�j)]

j� � (21 � 1) � (22 � 1) � (
pQ

j=1

�1j � �
2
j )j

� 1

and

j� � (21 � 1) � (22 � 1) � (

pY
j=1

�1j � �
2
j )j �

n+ 2a

2
�

�
n+ 2a

n

� 1
n+2a

;

then for all � ; �1j ; �
2
j 2 C ; j = 1 : : : p ; Re(�) � a ; Re(��) � a ; the function

(2.14) I2(z) =

8<
:�

zZ
0

t���1
pY

j=1

"
((D

�
�fj(t

n)0)21�1

t�

#�1j "
(D

�
�fj(t

n))22�1

t�

#�2j
dt

9=
;

1
�

is univalent for 8n 2 N� f0g :
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Lemma 2.1. [7] Let u = u1 + iu2 ; v = v1 + iv2 and 	(u; v) be a complex valued

function satisfying the conditions:

(i) 	(u; v) is continuous in a domain D 2 C2 ;

(ii) (1; 0) 2 D and Re	(1; 0) > 0 ;

(iii) Re	(iu2; v1) � 0 ; whenever (iu2; v1) 2 D and v1 � � 1
2 (1 + u22) :

If h(z) = 1 +
P
i�1

ciz
i is an analytic function in U such that (h(z); zh0(z)) 2 D and

Re	(h(z); zh0(z)) > 0 for z 2 U ; then Reh(z) > 0 in U :

Lemma 2.2. [6] Let f(z) 2 V �
k (�) ; 0 � � < 1 and � is real with j�j < �

2 : Then

f(z) 2 R�
k(�) ; where � is one of the root of

(2.15) 2�3 + (1� 2�)�2 + (3 sec2 �� 4)� � (1 + 2�) tan2 � = 0 :

Following we present the mapping properties of the general integral operator of form

(2.13), giving also several examples which prove its relevance.

3. Main Results

Using Theorem 2.1 and making additional calculus, we obtain:

Theorem 3.1. Let D
n;�
�1;�2

fj(z
n) 2 R�

k ; D
n;�
�1;�2

fj(z
n) of form (2.11), n 2 N ; �1 ; �2 ; � �

0 ; � 2 R ; j = 1; p ; p 2 N ; for 0 � � < 1 : Also let � be real, j�j < �
2 : If

0 � [�� 1]

pX
j=1

�aj + �� < 1 ;

then I1(z) 2 V �
k (�) ; I1(z) of form (2.13), with

(3.1) � = [�� 1]

pX
j=1

�aj + �� ;

� ; � ; �aj 2 C ; a 2 f1; 2g ; j = 1; p ; Re(��) > 0 :

Remark 3.1. If we consider the operator D
�
�f(z) 2 R

�
k(�) of form (2.10) we obtain

similar result as in Theorem 3.1.

Remark 3.2. If we apply the operator (2.7) to the integral operator F (z) of form

(2.3), we obtain the result from [6].

Next we give few examples of particular cases which can be found in literature.

Let � = 0 in D
�
�f(z) of form (2.9) or (2.10). So we have that D0

�f(z) = f(z) ; 8� � 0 :

We will use this form of the integral operator, where the function f is of form (1.2) with

respect to the operator (2.14). For further simpli�cation, we consider that 1 = 2 = 1 ;

and � = 1 (except of Example 3.4).

For the �rst four examples we consider �1j = 0 ; j = 1; p ; p 2 N� f0g ; n = 1 :

Example 3.1. If � = 1 ; � = 1 and we use the notation �2j = j ; j = 1; p ; p 2 N�f0g ;

we obtain the operator F (z) of form (2.3). F (z) 2 V �
k (�) if 0 � (�� 1)

pP
j=1

j + 1 < 1

with � = (�� 1)
pP

j=1

j + 1 :
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Example 3.2. If � = 1 we obtain the operator G(z) of form (2.4) for �2j = j ; j =

1; p ; p 2 N�f0g : G(z) 2 V �
k (�) if 0 � (�� 1)

pP
j=1

j +1 < 1 with � = (�� 1)
pP

j=1

j +1 :

Example 3.3. If � = 1 and we use the notation �2j = 1=j ; j = 1; p ; p 2 N�f0g ; we

obtain the operator F;�(z) of form (2.15). F;�(z) 2 V
�
k (�) if 0 � (��1)

pP
j=1

1
j
+� < 1

with � = (�� 1)
pP

j=1

j + � :

Example 3.4. If � = 0 we obtain the operator G;p(z) of form (2.6) for � = [p( �

1) + 1] ; � = 1
�
and �2j =  � 1 ; G;p(z) 2 V

�
k (�) if

0 � (1� �)
pP

j=1

j + 1 < 1 with � = (�� 1)
pP

j=1

j + 1 :

For the next two examples we consider �2j = 0 j = 1; p ; p 2 N� f0g ; and � = 0 :

Example 3.5. a) If � = 1 ; � = 1 ; we obtain a particular case of the function J(z) of

form (2.9), in which � = 1 ; 8n 2 N� f0g : J(z) 2 V �
k (�) if 0 � (1� �)

pP
j=1

j + 1 < 1

with � = (�� 1)
pP

j=1

j + 1 :

b) If � = 1
�
; �1j = j ; j = 1; p ; p 2 N � f0g : we obtain the operator J(z) of form

(2.9), in which � = 1 ; 8n 2 N� f0g : J(z) 2 V �
k (�) if

0 � (1� �)
pP

j=1

j + 1 < 1 with � = (�� 1)
pP

j=1

j + 1 :

Example 3.6. If n = 1 ; � = 1
�
; we obtain the operator H(z) of form (2.12) for

�1j = j ; j = 1; p ; p 2 N � f0g : F (z) 2 V �
k (�) if 0 � (1 � �)

pP
j=1

j + � < 1 with

� = (�� 1)
pP

j=1

j + � :
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