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Abstract. In the Geometric Function Theory (GFT) much attention is paid to var-
ious linear integral operators mapping the class S of the univalent functions and its
subclasses into themselves. In [10],[11] Hohlov obtained su�cient conditions that
guarantee such mappings for the operator de�ned by means of Hadamard product
with the Gauss hypergeometric function. In our earlier papers as [18], [17], [14], [15],
etc., we extended his method to the operators of the Generalized Fractional Calcu-
lus (GFC, [13]). These operators have product functions of the forms m+1Fm and
m+1	m and integral representations by means of the Meijer G- and Fox H-functions.

It happens that the used techniques can be extended to propose su�cient condi-
tions that guarantee mapping of the univalent, respectively of the convex functions,
into univalent functions in the case of the more general Dziok-Srivastava operator
from [8], de�ned as a Hadamard product with an arbitrary generalized hypergeomet-
ric function pFq . We suggest similar conditions also for its extension involving the
Wright p	q-function and called the Srivastava-Wright operator, [29].

Since the Dziok-Srivastava operaror includes the above-mentioned GFC operators
and many their special cases (operators of the classical FC), from the results proposed
here one can derive univalence criteria for many named operators in the GFT, as the
operators of Hohlov, Carlson and Sha�er, Saigo, Libera, Bernardi, Erdélyi-Kober, etc.,
by giving particular values to the orders p � q + 1 of the generalized hypergeometric
functions and to their parameters.

1. Preliminaries

As usually in GFT, A denotes the class of functions of the form

(1.1) f(z) = z +
1X
k=2

akz
k
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which are analytic in the unit disk U = fz : jzj < 1g, and let S be the subclass of A

of the univalent functions in U . Further, a function f(z) belonging to S is said to be

convex, if it satis�es the inequality

<
n
1 +

zf
00

(z)

f 0(z)

o
> 0 (z 2 U)

and this subclass of S is denoted by K.

The papers studying univalent functions and the subclasses of the starlike, convex etc.

functions involve various linear integral or integro-di�erential operators, among them

the well-known operators of Biernacki, Libera, Bernardi, Komatu, Rusheweyh, Saigo,

Hohlov, Srivastava and Owa, etc. Among the important problems treated there is the

construction of linear integral operators preserving the class S and some of its subclasses,

that is, �nding conditions under which the above mentioned operators do this. Examples

of such results can be found in [1], [5], [19], [10], [11], [23], etc. In [13], [18], [17], [14],

[15], etc. we have shown that all these named operators are special cases of the operators

of the generalized fractional calculus [13] and found univalence criteria for them in terms

of the values at z = 1 of the generalized hypergeometric functions m+1Fm and m+1	m.

Recently, we have extended our study to the more complicated and general cases of

the Dziok-Srivastava and Srivastava-Wright operators, de�ned by means of arbitrary pFq-

function, p � q + 1, or by the Wright function p	q, studied in many recent papers as

[8], [9], [20], [29], [28], [2], etc. The su�cient conditions we obtain for mapping of the

univalent, respectively of the convex functions, into univalent functions supply corollaries

for all the mentioned particular operators used in GFT.

The Hadamard product (convolution) of two analytic functions f , g in U is de�ned

by

(1.2) f(z) =

1X
k=0

akz
k; g(z) =

1X
k=0

bkz
k 7! f � g(z) :=

1X
k=0

akbkz
k:

We brie�y remind also the de�nitions of some special functions used in this paper.

De�nition 1.1. The Wright generalized hypergeometric functions p	q(z), called also

Fox-Wright functions are de�ned as:

(1.3) p	q

�
(�1; A1); : : : ; (�p; Ap)

(�1; B1); : : : ; (�q; Bq)

���� z
�
=

1X
k=0

�(�1 + kA1) : : :�(�p + kAp)

�(�1 + kB1) : : :�(�q + kBq)

zk

k!
:

When all A1 = � � � = Ap = 1; B1 = � � � = Bq = 1, these are reduced to the more

popular generalized hypergeometric pFq-function, namely:

p	q

�
(�1; 1); : : : ; (�p; 1)

(�1; 1); : : : ; (�q; 1)

���� z
�
= !�1 pFq(�1; : : : ; �p;�1; : : : ; �q; z) ;

(1.4) pFq(�1; : : : ; �p;�1; : : : ; �q; z) =

1X
k=0

(�1)k : : : (�p)k
(�1)k : : : (�q)k

zk

k!
;

where

! :=

2
4 qY
j=1

�(�j)=

pY
i=1

�(�i)

3
5 ; (�)k := �(�+ k)=�(�):
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The series pFq is generally considered for parameters �i; �j 2 C; �j 6= 0;�1;�2; : : :
(i = 1; : : : ; p; j = 1; : : : ; q) and it is absolutely convergent for all jzj < 1 if p � q. If

p = q + 1, it is absolutely convergent in the unit disk U = fz : jzj < 1g, and diverges for

all z 6= 0 if p > q + 1. If jzj = 1 in q+1Fq, we require the condition (see [7], �4.1)

(1.5) <� qX
j=1

�j �
q+1X
i=1

�i

	
> 0:

As we suppose the parameters �i, �j are real positive, the sign < is further omitted.

The p	q-functions are special cases of the Fox H-functions H
m;n
p;q

�
z

���� (�j ; Aj)
p
1

(�k; Bk)
q
1

�
(see details in [30], [25], [13]), which for all A1 = � � � = Ap = 1; B1 = � � � = Bq = 1 reduce

to the Meijer G-functions de�ned by means of the Mellin-Barnes type contour integral

(see de�nition and details in [7], [25], [13])

(1.6)

Gm;n
p;q

�
z

���� (�j ; Aj)
p
1

(�k; Bk)
q
1

�
=

1

2�i

Z
L

mQ
k=1

�(�k + s)
nQ

j=1

�(1� �j � s)

qQ
k=m+1

�(1� �k � s)
pQ

j=n+1

�(�j + s)

z�sds; z 6= 0:

It is analytic function of z with a branch point at the origin. Specially, in the case of

the kernel-function of the operators of the generalized fractional calculus [13], discussed

in Section 3, G
m;0
m;m is analytic in the unit disc jzj < 1 and vanishes identically in jzj > 1.

2. The Dziok-Srivastava and Srivastava-Wright operators

and univalence conditions

By means of the generalized hypergeometric function pFq(z) in its general form (1.4),

Dziok and Srivastava [8] introduced a linear operator known today in GFT as the Dziok-

Srivastava operator. In that paper and in next ones as [20], [29], [28], [2], many authors

studied this operator and its further extension by means of the Wright g.h.f. (1.3), in

view of the mapping properties, coe�cient estimates, distortion theorems, extreme points

etc.

De�nition 2.1. The Dziok-Srivastava operator ([8]) is de�ned on the class A by

means of the Hadamard convolution (1.2) involving an arbitrary pFq-function:

(2.1) Fp;qf(z) = h(z) � f(z) ; h(z) := hp;q(z) = z pFq(�1; : : : ; �p;�1; : : : ; �q; z):

Thus, the D-S operator (2.1) that can be denoted also by Fp;q(�1; : : : ; �p;�1; : : : ; �q),

maps a function of the form (1.1) into a function of the same form:

(2.2) Fp;qf(z) = z +

1X
k=2

	(k) ak z
k

with a multiplies' sequence

(2.3) 	(k) =
(�1)k�1 : : : (�p)k�1

(�1)k�1 : : : (�q)k�1 (k � 1)!
:

De�nition 2.2. The Srivastava's extension of (2.1) from [29], called in [16] as

Srivastava-Wright operator, involves the more general Wright function (1.3):
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(2.4) Wp;qf(z) = h(z) � f(z) ; with h(z) := wp;q(z) = ! z p	q

�
(�i; Ai)

p
1

(�j ; Bj)
q
1

���� z
�
;

with

! :=
� qY
j=1

�(�j)=

pY
i=1

�(�i)
�
;

that is, for f 2 A (see e.g. (3)-(4) in [2]),

(2.5) Wp;qf(z) = z +

1X
k=2

	(k) ak z
k;

with 	(k) = !
�(�1 + A1(k � 1)) : : :�(�p + Ap(k � 1))

�(�1 +B1(k � 1)) : : :�(�q +Bq(k � 1)) (k � 1)!
:

Many authors proposed recently various results for the Dziok-Srivastava and Srivas-

tava-Wright operators (2.1), (2.4), as convolutional and distortion theorems, extreme

points, coe�cient estimates, etc. Here we state some univalency results for the Dziok-

Srivastava (D-S) operator in its simpler form (2.1), but they go in similar way with heavier

denotations for the Srivastava-Wright (S-W) operator (2.4). From the above de�nitions,

it is easy to derive the following result mentioned in most of the papers.

Lemma 2.1. The Dziok-Srivastava operator (2.1) and the Srivastava-Wright oper-

ator (2.4) map the function class A into itself.

Idea of Proof. As de�ned by the Hadamard products in (2.1) and (2.4), both operators

transform a function of the form (1.1) into an image-function having series representation

of the same form. It remains to prove that this series has the same radius of convergence

(R
0

=R=1), using the Cauchy-Hadamard formula and the Stirling asymptotic formula

for the involved �-functions and Pochhammer symbols, in a way similar to [12], [18]. �

The aim of the next theorems is to propose some su�cient conditions on the parameters

of the Dziok-Srivastava ensuring that a univalent function, respectively a convex function,

will be transformed into a univalent function.

Theorem 2.1. Suppose that for the parameters of the generalized hypergeometric

function hp;q(z) = zpFq(z) in the product (2.1) the following conditions are satis�ed:

(2.6) �i > 0; �j > 0; i = 1; : : : ; p; j = 1; : : : ; q; p � q + 1;

and if p = q + 1, let additionally

(2.7)

qX
j=1

�j �
pX

i=1

�i > 0 :

If the inequality

(2.8)2
6664

pQ
i=1

�i(�i+1)

qQ
j=1

�j(�j+1)

3
7775pFq

�
(�i+2)

p
1

(�j+2)
q
1

���� 1
�
+3

2
6664

pQ
i=1

�i

qQ
j=1

�j

3
7775pFq

�
(�i+1)

p
1

(�j+1)
q
1

���� 1
�
+pFq

�
(�i)

p
1

(�j)
q
1

���� 1
�
<2

holds true, then for each univalent function f in the class A, the Dziok-Srivastava

image Fp;qf is also univalent, that is, Fp;q : S 7! S.
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Idea of Proof. For the operator Fp;q to preserve the class S of univalent functions, we

require for the image-function

Fp;qf(z) = z +

1X
k=2

bkz
k;

where bk = 	(k)ak and 	(k) is as in (2.3), that the following condition (see Avhadiev

and Alksent'ev [3]) is satis�ed:

(2.9) �1 :=

1X
k=2

kjbkj =
1X
k=2

k	(k)jakj < 1 :

Using the known estimate for the coe�cients of an univalent function f(z) = z+
1P
k=1

akz
k2

A, given by de Branges' theorem [6]: jakj < k, we can estimate the parameter �1 as:

�1 =
1X
k=2

k	(k)jakj �
1X
k=2

k2	(k) =
1X
k=2

k2

(1)k�1
[	(k)(1)k�1] =

1X
k=2

k2

(1)k�1
�(k) < 1;

with the denotation (compare with (2.3))

(2.10) �(k) := 	(k)(1)k�1 =
� pY
i=1

(�i)k�1
�
=
� qY
j=1

(�j)k�1
�
:

Then, the estimate (2.9), giving a su�cient condition for the univalency of the Dziok-

Srivastava image Fp;qf , takes the form:

�1 �
1X
k=2

�
k � 1

(1)k�2
+

2

(1)k�2
+

1

(1)k�1

�
�(k)

=

1X
k=2

k � 1

(1)k�2
�(k) + 2

1X
k=2

1

(1)k�2
�(k) +

1X
k=2

1

(1)k�1
�(k) := A+ 2B + C < 1 ;

where the constants A, B and C are represented by the values at z = 1 of the pFq-functions

in (2.8). The proof uses essentially the techniques of the generalized hypergeometric

functions and the details can be seen in Kiryakova [16]. �

Similarly, we obtain the following

Theorem 2.2. Assume the same conditions (2.6) (and (2.7) if p = q + 1) for the

parameters of the generalized hypergeometric function pFq in the Hadamard product

(2.1). If the inequality:

(2.11)
h pY
i=1

�i =

qY
j=1

�j

i
pFq

�
(�i + 1)

p
1

(�j + 1)
q
1

���� 1
�
+ pFq

�
(�i)

p
1

(�j)
q
1

���� 1
�
< 2

is satis�ed, then the Dziok-Srivastava operator Fp;q maps a convex function f(z)

into a univalent function, that is, Fp;q : K 7! S.

Idea of Proof. The proof is much akin to that of Theorem 2, again requiring (according to

a criterium from [3]) the condition (2.9). But in this case, instead of the estimate jakj � k,

we use the estimate jakj � 1 for the coe�cients of convex functions f(z) de�ned by (1.1)

(see, for example [24]). Thus, we require that �1 =
1P
k=2

k	(k)jakj �
1P
k=2

k	(k) := D < 1;

and by similar manipulations and arguments as in the earlier proof, we obtain for D + 1

the expression from (2.11). �

Similarly to Theorems 2.1 and 2.2, we can derive criteria for the Srivastava-Wright

operator (2.4) so to have Wp;q : S 7! S and Wp;q : K 7! S. We use the same techniques,
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including the values of the Wright generalized hypergeometric functions p	q(1), and

to ensure their existence we require the additional conditions on the parameters, as:
pP

i=1

Ai �
qP

j=1

Bj + 1, and also
qP

j=1

bj �
pP

i=1

ai +
p�q
2 > 1

2 , if
pP

i=1

Ai =
qP

j=1

Bj + 1.

3. The generalized fractional calculus operators as special cases

The following operators of the Generalized Fractional Calculus (GFC) have been

introduced in Kiryakova [13], where a full their theory is proposed, together with various

applications to the special functions and integral transforms, hyper-Bessel operators,

ODEs and Volterra integral equations, geometric function theory, etc. All the classical

FC operators ([27]), and most of their generalizations by other authors fall in the GFC as

very special cases, by taking �multiplicities� m = 1; 2; : : : and some speci�c parameters.

Specially, for m = 1 these are the Erdélyi-Kober fractional integration operators and

the Riemann-Liouville integrals, and the respective fractional derivatives, see [27].

De�nition 3.1. (see in Kiryakova [13], [12], [17], [15], etc.) Let m � 1 be an integer;

�i � 0; i 2 R; i = 1; : : : ;m; � > 0. We consider � = (�1; : : : ; �m) as a multi-

order of fractional integration;  = (1; : : : ; m) as multi-weight, and � as additional

parameter. The integral operators de�ned by means of the kernel G
m;0
m;m-function

(1.6) as follows:

(3.1) If(z) = I
(i);(�i)
�;m f(z) =

1Z
0

Gm;0
m;m

�
�

���� (i + �i)
m
1

(i)
m
1

�
f(z�1=�)d� if

mX
i=1

�i > 0;

and as
If(z) = f(z) if �1 = �2 = � � � = �m = 0;

are said to be multiple (m-tuple) Erdélyi-Kober fractional integration operators.

More generally, all the operators of the form

(3.2) eIf(z) = z�0 I
(i);(�i)
(�i);m

f(z) with �0 � 0;

are brie�y called as generalized (m-tuple) fractional integrals. The corresponding

generalized fractional derivatives are denoted by D
(i);(�i)
�;m and de�ned by means of

explicit di�erintegral expressions (Kiryakova [13, Ch.1]), similarly to the idea for

the classical Riemann-Liouville derivative (see e.g. in [27]).

The operators of GFC have also more general variants when in the integral operator

(3.1) the kernel G-function is replaced by a Fox's H
m;0
m;m-function, and the parameter

� > 0 is generalized to a multi-index. See results in GFT for these H-function operators

of GFC for example in Kiryakova [12], [17], etc.

However less havier for denotations, yet enough general and most interesting for the

purposes of GFT, is the simpler case of the generalized fractional integral (3.1) when

� = 1:

(3.3) I
(j);(�j)
1;m f(z) =

1Z
0

Gm;0
m;m

�
�

���� (j + �j)
m
1

(j)
m
1

�
f (z�) d�; if

mX
j=1

�j > 0:

Note, that the conditions

(3.4) �i � 0; i � �1; i = 1; : : : ;m;
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ensure that the �normalized� operator

(3.5) eI(i);(�i)1;m f(z) :=

2
4 mY
j=1

�(j + �j + 2)

�(j + 2)

3
5 I

(i);(�i)
1;m f(z); such that eI(i);(�i)1;m fzg = z;

does preserve the function class A. The details can be seen in [12], [17], [15]. In terms

of the Hadamard product (1.2), we have in A the following representation

(3.6) eI(i);(�i)1;m f(z) = h(z) � f(z); with h(z) = z m+1Fm

�
1; (j + 2)m1

(j + �j + 2)m1

���� z
�

and the multipliers squence is: 	(k) =
mY
j=1

(j + 2)k�1
(j + �j + 2)k�1

> 0:

Evidently, the GFC operator (3.5) is a special case of the Dziok-Srivastava operator

(2.1), with its parameters taken as:

(3.7)
p = m+ 1; q = m (that is, we are in the case p = q + 1);

�m+1 = 1; �i = i + 2; i = 1; :::;m; �j = j + �j + 2; j = 1; :::;m:

Then, Theorems 2.1, 2.2 from Section 2 yield as corollaries criteria for the generalized

operators of fractional integration (3.1), (3.4) so eI : S 7! S and eI : K 7! S. These are

already proved in Kiryakova, Saigo and Srivastava [18] as Theorems 3 and 4 there.

4. More special cases of the Dziok-Srivastava and of the GFC operators

The results for the operators of Sections 2 and 3 can be specialized for a great number

of linear integral operators used in Geometric Function Theory, starting from the classi-

cal operators of Biernacki, Libera, Bernardi, Komatu, Rusheweyh, Saigo, Hohlov,

Srivastava and Owa, and going to the more general operators studied recently by dif-

ferent authors. It is enough to choose suitable particular parameters m;k; �k; � for the

operators of GFC. We list below examples, and their presentation in the denotation (3.3).

For m = 1, we have the examples (see longer list and more details in [13], [18]):

Biernacki operator : ([5]) Bf(z) = I
�1;1
1;1 f(z) = log(

1

1� z
) � f(z) =

zZ
0

f(�)

�
d�;

Libera operator : Lf(z) = 2I
0;1
1;1f(z) = z 2F1(1; 2; 3; z) � f(z) = 2

z

zZ
0

f(�)d�;

Generalized Libera operator : ([22]) Bcf(z) = (c+1)I
c�1;1
1;1 f(z)=

c+1

zc

zZ
0

�c�1f(�)d�

= zc+12F1(1; c+1; c+2; z)�f(z); For integer c 2 N; it is called Bernardi operator ([4]);

Carlson-Sha�er operator : L(a; c)f(z) =
�(c)

�(a)
I
a�2;c�a
1;1 f(z) = z 2F1(1; a; c; z) � f(z)

=
�(c)

�(a)�(c� a)

1Z
0

(1� �)c�a�1�a�2f(z�)d�:

Examples of GFC operators for m = 2 are the so-called hypergeometric integral op-

erators of Hohlov and Saigo. We pay here some more attention on them.
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In [10],[11] Hohlov introduced the hypergeometric operator F(a,b,c) (we call it as

Hohlov operator) de�ned in the class A by means of the Hadamard product with the

Gauss hypergeometric function 2F1(a; b; c; z):

(4.1) F(a; b; c)f(z) = fz 2F1(a; b; c; z)g � f(z):
We can write (4.1) in terms of the GFC operators (3.3)-(3.5) with m = 2, as:

(4.2) F(a; b; c) =
�(c)

�(a)�(b)
I
(a�2;b�2);(1�a;c�b)
1;2 = eI(a�2;b�2);(1�a;c�b)1;2 :

Another class of hypergeometric fractional integration operators has been introduced

by Saigo [26](see [14]) for solving the Euler-Darboux equation, and studied from view

of univalent functions' theory in series of papers by Srivastava, Saigo and Owa, as for

example [31]. This linear integral operator named as Saigo operator can be represented

also as a generalized fractional integral in the sense of (3.3) with m = 2 (details in [14]):

(4.3)

I
�;�;�
0;z f(z)=

z����

�(�)

zZ
0

(z��)��12F1
�
�+�;��

�

���� 1� �

z

�
f(�)d�=z��I

(���;0);(��;�+�)
1;2 f(z):

To preserve the class A, the Saigo operator is normalized as

(4.4) eI�;�;�0;z :=
�(2� �)�(2 + �+ �)

�(2� � + �)
z� I

�;�;�
0;z :

Operators (3.3) with "multiplicity" m > 2 have been not so popular. Such one is the

Saigo operator (see in [13], [14]) with the Appel F3-function in the kernel, that is, an

operator (3.3) with m = 3:

I(�;�0; �; �0; )f(z) = z��
zZ

0

(z � �)�1

�()
���

0

F3

�
�;�0; �; �0; ; 1� �

z
; 1� z

�

�
f(�)d�

(4.5) = z����
0+

1Z
0

G
3;0
3;3

�
�

���� �� �0 + �;  � 2�0;  � �0 � �0

�� �0; � � �0;  � 2�0 � �0

�
f(z�)d�

= z����
0+ I

(���0;���0;�2�0
��0);(�;��0

��;�0)
1;3 f(z):

A typical example of (3.3) with arbitrary m > 2 is given by the integral operator

L = z�I
(1;:::;m);(1;1;:::1)
�;m which is the linear right inverse to the so-called hyper-Bessel

di�erential operator, introduced by Dimovski (see in [13, Ch.3]), of the form

(4.6) B = z�0
d

dz
z�1

d

dz
: : :

d

dz
z�m = z��

mY
i=1

�
z
d

dz
+ �k

�
; � > 0; �i; i 2 R:

In this relation, let us mention the Salagean di�erential operator (see e.g. [21]), de�ned

in A for functions f(z) of the form (1.1) and for m = 1; 2; 3; ::: by the recurrence relation

(4.7) S0f(z)=f(z);S1f(z)=zf
0

(z); : : : ; Smf(z)=S1 (Sm�1f(z))=z +

1X
k=2

kmakz
k:

This operator can be seen as an interesting case of hyper-Bessel di�erential operator with

� = 1 and all k = �1; �k = 1, k = 1; :::;m. Its linear right inverse operator is the

integral operator of Alexander ([1], see e.g. [21]): Am, m = 1; 2; 3:::,
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(4.8) A0f(z)=f(z); A1f(z)=

1Z
0

f(�)

�
d�; ::: ; Amf(z)=A1(Am�1f(z))=z+

1X
k=2

1

km
akz

k;

which can be written in the form of generalized fractional integral (3.3), namely:

(4.9)

Amf(z)=I
(�1;�1;:::;�1);(1;1;:::;1)
1;m f(z); put 	(k)=1=km=[�(k)=�(1+k)]

m
in (2.3):

The above list of examples of operators of classical and generalized fractional calculus,

that fall also as special cases of the Dziok-Srivastava operator, shows that the univalence

criteria from Section 2 can be speci�ed for each of them. We give examples only for the

most interesting hypergeometric operators, when p = 2, q = 1. Namely, in [10], [11]

Hohlov studied the problem for which values of the parameters a; b; c the operator (4.1)

maps the class S of univalent functions into itself? His results, that can be obtained also,

on the base of representation (4.2), from Theorems 2.1 and 2.2, state as follows:

Theorem 4.1. ([10],[11]) Let F(a; b; c) be the operator (4.1) in A. Suppose that the

parameters a; b; c 2 R+ satisfy the inequalities

(4.10) a > 0; b > 0; c > a+ b+ 2;

(4.11)
�(c)�(c�a�b�2)

�(c�a)�(c� b)
[(a)2(b)2 + 3ab(c�a�b�2) + (c�a�b�2)2] < 2:

Then for each univalent function f in A, the image F(a; b; c)f is also univalent, i.e.

F(a; b; c) : S 7! S.

Theorem 4.2. ([10],[11]) Let F(a; b; c) be operator (4.1) in A. Suppose that the

parameters a; b; c 2 R+ satisfy

(4.12) a > 0; b > 0; c > a+ b+ 1;

(4.13)
�(c)�(c� a� b� 1)

�(c� a)�(c� b)
[ab+ c� a� b� 1] < 2:

Then, F(a; b; c) maps any convex function into a univalent function, F(a; b; c) : K 7!
S.

From Theorems 2.1 and 2.2 we can derive also some univalence criteria for the normal-

ized Saigo operator eI�;�;�0;z , that involve values of the hypergeometric function 3F2 at the

point z = 1. Similarly to the case of Hohlov, the conditions can be substantially simpli-

�ed to involve the Gauss 2F1-function at z = 1, by taking in (4.3)-(4.4) some particular

parameters �; �; �. For example, if � = 0, our conditions for eI�;0;� : S 7! S reduce to:

(4.14) �2 < � � 0; � > 3;
(�+�+1)(�2+3��+2�2+�+�)

(��1)(��2)(��3)
< 2 ;

and if � = ��, the same conditions get the form

(4.15) � � 0; � > 3; �+ � � 0;
�(�+ 1)2

(�� 1)(�� 2)(�� 3)
< 2:

Although the conditions in the general cases of the Dziok-Srivastava operator (2.1)

and generalized fractional integrals (3.3)-(3.5) may look somewhat abstract and too com-

plicated, by the above special cases when taking speci�c values to the parameters for a
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particular operator, these criteria for univalence reduce to some easily checked numerical

inequalities (as say, these in (4.14) and (4.15). One more example in this direction is to

use the particular Hohlov's criteria (Theorems 4 and 5) for the operator of Biernacki and

its generalization. Namely, the operator of Biernacki,

Bf(z) = I
�1;1
1;1 f(z) = log(

1

1� z
) � f(z) =

zZ
0

f(�)

�
d� = F(1; 1; 2)f(z)

does not map the class of univalent functions into itself, as observed by a counterexample

given by Krzyz and Lewandowski [19]. The explanation is that in this case the set of

parameters (a; b; c) = (1; 1; 2) does not satisfy the Hohlov's inequalities in Theorem 4 (the

series 2F1(1; 1; 2; 1) is divergent). However, for the generalized Biernacki operator

(4.16) F(1; 1; n+ 1)f(z) = n! z1�n
zZ

0

�nZ
0

: : :

�2Z
0

f(�1)

�1
d�1 : : : d�n

it follows that any univalent function is transferred into a univalent function for any

n > 8. As a matter of fact, the operator F(1; 1; c) maps the class S into S for any real

c > c0 = (11 +
p
33)=2, but the assumptions for a natural parameter n slightly increases

the required value of the parameter.
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