

Advances in Mathematics: Scientific Journal 1 (2012), no.1, 1–6 ISSN 1857-8365, UDC: 517.546

AN EXTREME FUNCTION FOR A CERTAIN CLASS OF ANALYTIC FUNCTIONS

JUNICHI NISHIWAKI AND SHIGEYOSHI OWA

Presented at the 8th International Symposium GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 27-31 August 2012, Ohrid, Republic of Macedonia.

ABSTRACT. Let \mathcal{A} be the class of analytic functions f(z) in the open unit disk \mathbb{U} . Furthermore, the subclass \mathcal{B} of \mathcal{A} concerned with the class of uniformly convex functions or the class \mathcal{S}_p is defined. By virtue of some properties of uniformly convex functions and the class \mathcal{S}_p , an extreme function of the class \mathcal{B} and its power series are considered.

1. INTRODUCTION

Let \mathcal{A} be the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. A function $f(z) \in \mathcal{A}$ is said to be in the class of uniformly convex (or starlike) functions denoted by \mathcal{UCV} (or \mathcal{UST}) if f(z) is convex (or starlike) in \mathbb{U} and maps every circle or circular arc in \mathbb{U} with center at ζ in \mathbb{U} onto the convex arc (or the starlike arc) with respect to $f(\zeta)$. These classes are introduced by Goodman [1] (see also [2]). For the class \mathcal{UCV} , it is defined as the one variable characterization by Rønning [4] and [5], that is, a function $f(z) \in \mathcal{A}$ is said to be in the class \mathcal{UCV} if it satisfies

$$\operatorname{Re}\left\{1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}
ight\}>\left|rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}
ight|\qquad(z\in\mathbb{U}).$$

It is independently studied by Ma and Minda [3]. Further, a function $f(z) \in \mathcal{A}$ is said to be the corresponding class denoted by S_p if it satisfies

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\} > \left|rac{zf'(z)}{f(z)} - 1
ight| \qquad (z\in\mathbb{U}).$$

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, uniformly convex function, extreme function, power series.

This class S_p was introduced by Rønning [4]. We easily know that the relation $f(z) \in \mathcal{UCV}$ if and only if $zf'(z) \in S_p$. In view of these classes, we introduce the subclass \mathcal{B} of \mathcal{A} consisting of all functions f(z) which satisfy

$$\operatorname{Re}\left(rac{z}{f(z)}
ight)>\left|rac{z}{f(z)}-1
ight| \qquad (z\in\mathbb{U}).$$

We try to derive some properties of functions f(z) belonging to the class \mathcal{B} .

Remark 1.1. For $f(z) \in \mathcal{B}$, we write $w(z) = \frac{f(z)}{z} = u + iv$, then w lies in the domain which is the part of the complex plane which contains w = 1 and is bounded by a kind of teardrop-shape domain such that

$$u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 + v^2 < 0.$$

2. An extreme function for the class ${\cal B}$

In this section, we would like to exhibit an extreme function of the class \mathcal{B} and its power series. For our results, we need to recall here some properties of the class S_p .

Lemma 2.1. (Rønning [4]). The extremal function f(z) for the class S_p is given by

$$rac{zf'(z)}{f(z)} = 1 + rac{2}{\pi^2} \left(\log\left(rac{1+\sqrt{z}}{1-\sqrt{z}}
ight)
ight)^2.$$

By using the expansion of logarithmic part of $\frac{zf'(z)}{f(z)}$ in Lemma 2.1, we get

Lemma 2.2. (Rønning [4]). The power series of $\frac{zf'(z)}{f(z)}$ is following

$$\frac{zf'(z)}{f(z)} = 1 + \frac{2}{\pi^2} \left(\log\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right) \right)^2$$
$$= 1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} \right) z^n.$$

From Remark 1.1 and Lemma 2.1, we have the first result for the class \mathcal{B} .

Theorem 2.1. The extreme function f(z) for the class \mathcal{B} is given by

$$f(z) = rac{z}{1+rac{2}{\pi^2}\left(\log\left(rac{1+\sqrt{z}}{1-\sqrt{z}}
ight)
ight)^2}$$

Proof. Let us consider the function $\frac{f(z)}{z}$ as given by

$$\frac{f(z)}{z} = \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2}.$$

It sufficies to show that $rac{f(z)}{z}$ maps $\mathbb U$ onto the interior of the domain such that

$$u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 + v^2 < 0$$

implying that $\frac{f(z)}{z}$ maps the unit circle onto the boundary of the domain. Taking $z = e^{i\theta}$, we obtain that

$$\begin{split} \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2} &= \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + e^{i\frac{\theta}{2}}}{1 - e^{i\frac{\theta}{2}}} \right) \right)^2} \\ &= \frac{1}{1 + \frac{2}{\pi^2} \left(\log i - \log \left(\tan \frac{\theta}{4} \right) \right)^2} \\ &= \frac{1}{\frac{1}{2} + \frac{2}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 - i\frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)} \\ &= \frac{\frac{1}{2} + \frac{2}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 - i\frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)} \\ &= \frac{1}{\frac{1}{4} + \frac{6}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 + \frac{4}{\pi^4} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^4} \\ &+ i \frac{\frac{2}{\pi} \log \left(\tan \frac{\theta}{4} \right)}{\frac{1}{4} + \frac{6}{\pi^2} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^2 + \frac{4}{\pi^4} \left(\log \left(\tan \frac{\theta}{4} \right) \right)^4}. \end{split}$$

Writing $rac{f(z)}{z}=u+iv,$ we see that

$$\log\left(anrac{ heta}{4}
ight) = rac{\pi(u\pm\sqrt{u^2-v^2})}{2v}$$

Thus we have

$$v = \frac{\frac{2}{\pi} \log\left(\tan\frac{\theta}{4}\right)}{\frac{1}{4} + \frac{6}{\pi^2} \left(\log\left(\tan\frac{\theta}{4}\right)\right)^2 + \frac{4}{\pi^4} \left(\log\left(\tan\frac{\theta}{4}\right)\right)^4}{\frac{2}{\pi} \frac{\pi(u \pm \sqrt{u^2 - v^2})}{2v}}$$
$$= \frac{\frac{2}{\pi} \frac{\pi(u \pm \sqrt{u^2 - v^2})}{2v}}{\frac{1}{4} + \frac{6}{\pi^2} \left(\frac{\pi(u \pm \sqrt{u^2 - v^2})}{2v}\right)^2 + \frac{4}{\pi^4} \left(\frac{\pi(u \pm \sqrt{u^2 - v^2})}{2v}\right)^4}.$$

Therefore, we arrive that

 $u^4 - 2u^3 + 2u^2v^2 - 2uv^2 + v^4 + v^2 = 0.$

This completes the proof of the theorem.

Considering the power series of the function f(z) in Theorem 2.1, we derive

Theorem 2.2. The power series of the extreme function for the class \mathcal{B} is given by

Proof. Let us suppose that

$$\frac{f(z)}{z} = \frac{1}{1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right) \right)^2}$$

as the proof of Theorem 2.1. Then from Lemma 2.2, we have

$$\frac{f(z)}{z} = \frac{1}{1 + \frac{8}{\pi^2} \sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k}\right) z^n}$$

$$= 1 - \frac{8}{\pi^2} \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} \right) z^n \right) \\ + \left(\frac{8}{\pi^2} \right)^2 \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} \right) z^n \right)^2 \\ - \left(\frac{8}{\pi^2} \right)^3 \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} \right) z^n \right)^3 + \dots \\ + (-1)^n \left(\frac{8}{\pi^2} \right)^n \left(\sum_{n=1}^{\infty} \left(\sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} \right) z^n \right)^n + \dots$$

$$= 1 - \frac{8}{\pi^2} \sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k} z$$

$$+ \left\{ -\frac{8}{\pi^2} \sum_{k=1}^{2} \frac{1}{2k-1} \frac{1}{5-2k} + \left(\frac{8}{\pi^2}\right)^2 \left(\sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k}\right) \left(\sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k}\right) \right\} z^2$$

$$+ \left[-\frac{8}{\pi^2} \sum_{k=1}^{3} \frac{1}{2k-1} \frac{1}{7-2k} + \left\{ \left(\frac{8}{\pi^2}\right)^2 \left(\sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k}\right) \left(\sum_{k=1}^{2} \frac{1}{2k-1} \frac{1}{5-2k}\right) + \left(\sum_{k=1}^{2} \frac{1}{2k-1} \frac{1}{5-2k}\right) \left(\sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k}\right) \right\} z^3$$

$$+ \cdots$$

$$+ \left\{ -\frac{8}{\pi^2} \sum_{k=1}^n \frac{1}{2k-1} \frac{1}{2n+1-2k} + \left(\frac{8}{\pi^2}\right)^2 \sum_{m_1=1}^{n-1} \left(\sum_{k=1}^{m_1} \frac{1}{2k-1} \frac{1}{2m_1+1-2k}\right) \left(\sum_{k=1}^{n-m_1} \frac{1}{2k-1} \frac{1}{2n-2m_1+1-2k}\right) - \left(\frac{8}{\pi^2}\right)^3 \sum_{m_1=1}^{n-2} \left(\sum_{k=1}^{m_1} \frac{1}{2k-1} \frac{1}{2m_1+1-2k}\right) \sum_{m_2=1}^{n-1-m_1} \left(\sum_{k=1}^{m_2} \frac{1}{2k-1} \frac{1}{2m_2+1-2k}\right) \\ \times \left(\sum_{k=1}^{n-m_1-m_2} \frac{1}{2k-1} \frac{1}{2n-2m_1-2m_2+1-2k}\right) + \cdots$$

$$+ (-1)^{p} \left(\frac{8}{\pi^{2}}\right)^{p} \sum_{m_{1}=1}^{m_{1}-p} \left(\sum_{k=1}^{m_{1}} \frac{1}{2k-1} \frac{1}{2m_{1}+1-2k}\right) \sum_{m_{2}=1}^{n+2-p-m_{1}} \left(\sum_{k=1}^{m_{2}} \frac{1}{2k-1} \frac{1}{2m_{2}+1-2k}\right) \\ \times \dots \times \sum_{m_{p-1}=1}^{n-1-A_{p-2}} \left(\sum_{k=1}^{m_{p-1}} \frac{1}{2k-1} \frac{1}{2m_{p-1}+1-2k}\right) \left(\sum_{k=1}^{n-A_{p-1}} \frac{1}{2k-1} \frac{1}{2(n-A_{p-1})+1-2k}\right) \\ + \dots + \left(\sum_{k=1}^{1} \frac{1}{2k-1} \frac{1}{3-2k}\right)^{n} \right\} z^{n} \\ + \dots \qquad \left(A_{p} = \sum_{l=1}^{p} m_{l}\right)$$

$$= 1 + \sum_{n=2}^{\infty} \sum_{p=1}^{n} (-1)^{p} \left(\frac{8}{\pi^{2}}\right)^{p} \sum_{m_{1}=1}^{n+1-p} \left(\sum_{k=1}^{m_{1}} \frac{1}{2k-1} \frac{1}{2m_{1}+1-2k}\right) \\ \times \sum_{m_{2}=1}^{n+2-p-m_{1}} \left(\sum_{k=1}^{m_{2}} \frac{1}{2k-1} \frac{1}{2m_{2}+1-2k}\right) \times \cdots \\ \times \sum_{m_{p-1}=1}^{n-1-A_{p-2}} \left(\sum_{k=1}^{m_{p-1}} \frac{1}{2k-1} \frac{1}{2m_{p-1}+1-2k}\right) \left(\sum_{k=1}^{n-A_{p-1}} \frac{1}{2k-1} \frac{1}{2(n-A_{p-1})+1-2k}\right) z^{n}.$$
This completes the proof of the theorem

This completes the proof of the theorem.

References

- [1] A. W. GOODMAN: On uniformly convex functions, Annal. Polon. Math. 56(1991), 87 92.
- [2] A. W. GOODMAN: On uniformly starlike functions, J. Math. Anal. Appl. 155(1991), 364 370.
- [3] W. MA, D. MINDA: Uniformly convex functions, Annal. Polon. Math. 57(1992), 165 175.
- [4] F. RØNNING: Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118(1993), 189 - 196.
- [5] F. RØNNING: On uniform starlikeness and related properties of univalent functions, Complex Variables 24(1994), 233 - 239.

DEPARTMENT OF MATHEMATICS AND PHYSICS SETSUNAN UNIVERSITY Neyagawa, Osaka 572-8508 Japan E-mail address: jerjun2002@yahoo.co.jp

DEPARTMENT OF MATHEMATICS KINKI UNIVERSITY HIGASHI-OSAKA, OSAKA 577-8502 JAPAN E-mail address: shige21@ican.zaq.ne.jp