On the Solution of NP-hard Linear Complementarity Problems

Joaquim J. Júdice*
Departamento de Matemática, Universidade de Coimbra, Coimbra, Portugal
e-mail: judice@dragao.it.uc.pt

Ana M. Faustino and Isabel Martins Ribeiro**
Faculdade de Engenharia, Universidade do Porto. Porto, Portugal
e-mail: afausti@fe.up.pt iribeiro@fe.up.pt

Abstract
In this paper two enumerative algorithms for the Linear Complementarity Problems (LCP) are discussed. These procedures exploit the equivalence of the LCP into a nonconvex quadratic and a bilinear programs. It is shown that these algorithms are efficient for processing NP-hard LCPs associated with reformulations of the Knapsack problem and should be recommended to solve difficult LCPs.

Key Words: mathematical programming, complementarity, global optimization, enumerative algorithms.

AMS subject classification: 90C33, 65K10.

1 Introduction

The Linear Complementarity Problem (LCP) consists of finding vectors \(z \in \mathbb{R}^n \) and \(w \in \mathbb{R}^n \) such that

\[
\begin{align*}
 w &= q + Mz \\
 z &\geq 0, \quad w \geq 0 \\
 z^T w &= 0
\end{align*}
\]

for a given matrix \(M \in \mathbb{R}^{n \times n} \) and a vector \(q \in \mathbb{R}^n \). This problem has originally appeared in the sixties for the solution of bimatrix games and convex quadratic programs. Since then, it has received an increasing interest,

* Support for this author was provided by Instituto de Telecomunicações and by FCT under grant POCTI/35059/MAT/2000

** Support for this author was provided by PRODEP under grant 4/5.3/PRODEP/00