Reactive Oxide Overlayer on Rh Nanoparticles during CO Oxidation and its Size Dependence Studied by In Situ Ambient Pressure XPS**

Michael E. Grass, Yawen Zhang, Derek R. Butcher, Jeong Y. Park, Yimin Li, Hendrik Bluhm, Kaitlin M. Bratlie, Tianfu Zhang, and Gabor A. Somorjai*

CO oxidation is one of the most studied heterogeneous reactions, being scientifically and industrially important, particularly for removal of CO from exhaust streams[9] and preferential oxidation for hydrogen purification in fuel cell applications[10]. The precious metals Ru, Rh, Pd, Pt, and Au are most commonly used for this reaction because of their high activity and stability. Despite the wealth of experimental and theoretical data, it remains unclear what is the active surface for CO oxidation under catalytic conditions for these metals. In this communication, we utilize in situ synchrotron ambient pressure X-ray photoelectron spectroscopy (APXPS) to monitor the oxidation state at the surface of Rh nanoparticles during CO oxidation and demonstrate that the active catalyst is a surface oxide, the formation of which is dependent on particle size. The amount of oxide formed and the reaction rate both increase with decreasing particle size.

Many single crystal CO oxidation studies over Rh suggest that the reaction is structure insensitive and that oxide formation decreases the reaction rate.[6,7] However, recent advances in synthetic techniques and in situ experimentation have revealed that the oxidation state and stoichiometry of the surface oxide greatly affect the oxidation rate.[8-11] At low temperatures or low O2/CO ratios, CO strongly adsorbs to the catalyst surface and inhibits O2 adsorption. At high temperatures or high O2/CO ratios, the catalyst surface becomes saturated with O atoms and the reaction proceeds more rapidly. It has been demonstrated that small nanoparticles (NPs) of Pd[12] are more active for CO oxidation than larger particles and single crystals, while the opposite is reported in the case of Pt.[13] For Rh NPs, no particle size effect was observed for supported Rh catalysts,[14] but a strong particle size dependence was observed for CO desorption, dissociation, and transient CO oxidation over electron beam prepared Rh NPs precovered with oxygen.[15,16]

For this investigation we have prepared small, polymer stabilized Rh NPs with a narrow size distribution and studied CO oxidation; polymer stabilized NP syntheses enable control of NP size, shape and/or composition for reaction studies.[17,18] The turnover frequency (TOF) for CO oxidation at 200 °C increases 6-fold and the apparent activation decreases from 27.9 kcal mol−1 to 19.0 kcal mol−1 as the particle size decreases from 11 nm to 2 nm. APXPS of 2 nm and 7 nm Rh NP films during CO oxidation near 1 Torr provides the first in situ measurement of the oxidation state of Rh NPs during CO oxidation and demonstrates that smaller particles are more oxidized than larger particles during reaction at 150–200 °C. A surface oxygen species is also observed during CO oxidation that is not present when heating in O2 alone, possibly indicating a unique active oxide phase on Rh NPs. This oxide phase may alter the relative bonding geometries of CO and/or O on the Rh surface, thereby lowering the activation energy for the reaction.[19]

The synthesis of monodisperse Rh NPs by polyol reduction using polyvinylpyrrolidone (PVP) as a capping agent and Rh(acac)3 as a Rh precursor[20] was extended to smaller sizes by the addition of sodium citrate. Using this approach, Rh NPs of 3.5 nm (3.6 ± 0.5 nm), 2.5 nm (2.5 ± 0.4 nm), and 2 nm (1.9 ± 0.3 nm) were formed by increasing the amount of sodium citrate. Monolayer films of these particles were then prepared in a Langmuir-Blodgett (LB) trough and characterized with transmission electron microscopy (TEM) and XPS (Figure 1). Panels a, b, and c of Figure 1 show TEM images of the NPs with insets of size distribution histograms taken from 100 particles. Figure 1f shows X-ray photoelectron spectra for the Rh 3d peak of the as-synthesized (no pretreatment) particles after LB deposition onto a silicon wafer. It is clear that the ratio of oxidized Rh to reduced Rh increases as the particle size decreases.

The three samples of small Rh NP (2, 2.5, and 3.5 nm) LB films and two samples previously synthesized, 7 nm (7.1 ± 0.5 nm) and 11 nm (10.7 ± 0.9 nm) LB films (Figure 1d and e) were tested for catalytic activity in CO oxidation by O2 in a batch reactor monitored with a gas
temperatures above 250 °C, significant deactivation was observed and SEM images after reaction showed a high degree of sintering; these Rh foil (0.28 s$^{-1}$ to 19.0 kcal mol$^{-1}$). The apparent activation energy concurrently decreases from 27.9 kcal mol$^{-1}$ to 250 °C which is consistent with the thermodynamics of oxide stability for nanoparticles as a function of size (Equation 1).

After multiple cycles of CO oxidation between 150 and 225 °C, none of the samples exhibited a change in TOF or activation energy. At temperatures above 250 °C, significant deactivation was observed and SEM images after reaction showed a high degree of sintering; these temperatures were not included in this investigation. PVP and/or its decomposition products may play an important role in stabilizing the nanoparticles against sintering or dispersion at temperatures below 250 °C. Above 250 °C much of the PVP has likely decomposed (Figure S5) and the particles easily sinter. The 7 and 11 nm NP samples were checked before and after reaction and no changes in morphology or particle sintering were observed, but these sites are inactive for CO oxidation. In an ongoing investigation of these same Rh NPs supported on a high surface area SiO$_2$ catalyst support, we have not observed the formation of RhCO$_2$ in the presence of CO between room temperature and 200 °C. This data will be published later. Based on these results and the fact that we do not observe any decrease in activity of the 2 nm NPs after repeated reaction cycles, it appears that the Rh NPs of all sizes are stable to 250 °C during reaction.

XPS was carried out at the Advanced Light Source beamline 11.0.2, LBNL, using the same CB films described above. The photon energy of the X-ray source was tuned such that the kinetic energy of the detected electrons for all spectra was centered at -190 eV. Details of the beamline and setup can be found elsewhere. The experimental procedure for each sample consisted of introducing 200 mTorr CO and acquiring spectra at 25, 100, 150, and 200 °C (~30 min. at each temperature), then cooling and evacuating the chamber (~10$^{-9}$ Torr), 500 mTorr O$_2$ was then introduced and the heating process was repeated. Finally, 200 mTorr CO and 500 mTorr O$_2$ were introduced together and heated. As a result of the experimental setup, equilibrium pressures of ~20 mTorr CO, ~180 mTorr CO$_2$, and ~410 mTorr O$_2$ were established under reaction conditions. The spectra obtained during heating in CO or O$_2$ alone, along with the procedures for fitting spectra are discussed in the Supporting Information.

The Rh 3d spectra in the presence of 200 mTorr CO and 500 mTorr O$_2$ at 150 and 200 °C are shown in Figure 3. The NPs of both samples are initially oxidized because they were previously exposed to O$_2$ at 200 °C; the surface of the 7 nm NPs are 54% Rh(X$^+$) and the 2 nm NPs are 70% Rh(X$^+$) when CO and O$_2$ are first introduced into the chamber. Both samples reduce in the reaction mixture, with the amount of Rh(X$^+$) decreasing to 8% for the 7 nm NPs and to 43% for the 2 nm NPs at 150 °C.

Continued heating, however, results in re-oxidation of the Rh surface, indicating that the coverage of CO on the NP surface decreases and there is a simultaneous increase in O coverage. The fraction of Rh(X$^+$) increases to 25% for the 7 nm NPs and to 67% for the 2 nm NPs at 200 °C. This data suggests that the active phase for CO oxidation is a surface oxide. It also provides in situ evidence that smaller NPs more readily form this surface oxide under reaction conditions, which is consistent with TOF and activation energy measurements (Figure 2a).

The nature of the oxide phase is not within the scope of this work and it may be affected by the presence of the PVP capping layer. For both NP systems, however, the particles are not completely oxidized and there must therefore be an interface between the oxide surface and the metallic core. The presence of this interface induces a strain on the oxide which makes it less stable and thus more reactive. An additional strain may also be induced from the small size of nanoparticles, which distorts the bonding of surface atoms. This increased instability may be an added reason for the higher reactivity of the smaller NPs.

The peak associated with this "reactive oxide" overlayer diminishes upon evacuation of the reaction chamber, indicating incomplete oxide formation of even a single layer over the larger NPs. A comparison of the two samples at 200 °C is illustrated to scale in Figure 2b.

Under the conditions of these experiments, the oxygen chemical potential is high enough that the bulk oxide is thermodynamically stable (µ$_O$ = -0.36 eV at 25 °C, -0.62 eV at 200 °C), but it has been shown that for Rh single crystals under similar temperatures and pressures, the oxide formation is kinetically controlled. Although this system is also likely under kinetic control, it is instructive to understand how NP size affects oxide stability. A simple thermodynamic model for nanoparticles, similar to that developed for thin films, has been formulated and used to understand the dissociation pressure of a RhO$_2$ NP as a function of particle size (Supporting Information):

$$P_{O_2} = P_{O_2}^{bulk} \exp \left(- \frac{21 \text{ nm}}{r_0} \right)$$

Where P is the dissociation pressure of a RhO$_2$ NP and r_0 is the size of the corresponding metal Rh NP. From this equation, the dissociation pressure of a 7 nm RhO$_2$ NP is 20 times lower than that of the bulk, while for a 2 nm Rh NP, the dissociation pressure is decreased by a factor of 4 x 103.

In addition to the increase in oxidized Rh observed in the Rh 3d spectra at 200 °C under reaction conditions, a low BE (~529.5 eV) peak in the O 1s spectrum is also observed under these conditions (Figure 4b) that is not present during heating in O$_2$ alone (a and c). This suggests that a distinct oxide forms during CO oxidation that is stabilized by CO or a reaction intermediate that does not form when the NPs are simply heated in O$_2$. The peak associated with this "reactive oxide" overlayer diminishes upon evacuation of the reaction chamber, further establishing that this oxide is intimately correlated with the CO oxidation reaction. Most of the O 1s intensity associated with surface O (peak centered at ~531 eV) is attributed to PVP. Further characterization of this oxide and its size dependence is necessary and may
enhance theoretical models for understanding nanoparticle activity as a function of metal type and particle size. Gas phase O₂, CO, and CO₂ are also observed in Figure 4 and we will utilize this added information in future studies after designing a sample holder that does not itself exhibit catalytic activity.

In a recent theoretical study, Gong et al. carried out DFT calculations for CO + O → CO₂ on metal and oxide surfaces including Rh(111) and found that the reaction barrier is lower over the oxide than over the metal because of a change in the adsorption geometry of O atoms. In this study we have directly correlated the amount of surface oxide on two different sizes of Rh NPs with the TOF and apparent activation energy. The observed particle size dependence of CO oxidation over Rh NPs in this study is correlated with increased oxide formation over small particles. PVP may also play a role in the formation of the surface oxide layer and affect the interaction of CO and O₂ with the Rh surface.

In situ studies are invaluable to the understanding of a working catalyst and this communication demonstrates the first observation of the active phase of a Rh nanoparticle catalyst during CO oxidation by photoelectron spectroscopy, providing evidence for the observed size dependence of this reaction. Further studies are required to understand the form of the reactive oxide and the role, if any, of PVP in its formation. Importantly, this study shows that the use of APXPS in the study of model catalysts will be able to complement other in situ techniques such as scanning tunnelling microscopy and surface X-ray diffraction in determining the structure of a catalyst during reactions.

Experimental Section

The synthesis of 7 and 11 nm Rh NPs and Langmuir-Blodgett (LB) films has been described elsewhere. The setup of the chamber and the sample holder has also been explained in detail. For the 2 nm Rh NPs, 0.1 mmol Rh(acac)₃, 0.3 mmol sodium citrate, and 1 mmol poly(vinylpyrrolidone) (PVP, 55K, molarity in terms of monomer units), were added to 20 ml of 1,4-butanediol in a 50 ml three-necked flask at room temperature. The stock solution was heated to 140 °C in a Glas-Col electromantle (50 W; 50 ml) with a Cole-Parmer temperature controller (Dibi-sense®), and was evacuated at this temperature for 20 min to remove water and oxygen under magnetic stirring, resulting in an optically transparent orange-yellow solution. The flask was then heated to 220 °C at a rate of 10 °C min⁻¹, and maintained at this temperature (±2 °C) for 2 h under Ar. During the reaction, the color of the solution gradually turned from orange-yellow to black. When the reaction was complete, an excess of acetone was poured into the solution at room temperature to form a cloudy black suspension. This suspension was separated by centrifugation at 4200 rpm for 6 min, and the black product was collected by discarding the colorless supernatant. The precipitated Rh NPs were washed with acetone once then re-dispersed in ethanol. The 2.5 and 3.5 nm Rh NPs were synthesized similarly using 0.1 mmol and 0.025 mmol sodium citrate, respectively.
Figure 1. TEM images with insets of particle size distribution histograms of 100 particles for a) 2 nm, b) 2.5 nm, c) 3.5 nm, d) 7 nm, and e) 11 nm Rh NPs. All scale bars are 20 nm except for the HRTEM insets. f) Rh 3d XPS spectra of the 2, 2.5, and 3.5 nm Rh NPs together with previously synthesized 7 and 11 nm Rh NPs, showing the increase in oxidized Rh as the particle size decreases.

Figure 2. a) Turnover Frequency relative to Rh foil at 50 Torr O2, 20 Torr CO, and 200 °C and activation energy (150 - 225 °C) for CO oxidation are both particle size dependent. b) The thickness of the oxide shell scales with particle size; 2 nm and 7 nm NPs are illustrated here with the oxide layers shown to scale, as determined by APXPS.

Figure 3. APXPS spectra of the Rh 3d5/2 peak with fits for reduced Rh (307.2 eV) and oxidized Rh (308.2 eV, 309.4 eV). The NPs of both samples initially reduce and then oxidize at higher temperatures. The 2 nm NPs are more oxidized at all temperatures. The two Rh(X+) peaks are attributed to Rh atoms in two different oxidation states or coordinated to a different number of oxygen atoms.

Figure 4. O 1s spectra of 2 nm and 7 nm Rh NPs in 500 mTorr O2 (a and c) and during reaction (410 mTorr O2, 20 mTorr CO) (b and d). When exposed to both O2 and CO, a peak at higher binding energy forms, which is attributed to a RhO2 species.

Keywords: heterogeneous catalysis • nanomaterials • X-ray spectroscopy • Rh • carbon monoxide
In situ synchrotron ambient pressure X-ray photoelectron spectroscopy has been used to examine the oxidation state of the
surface of Rh nanoparticles during CO oxidation by O₂. 2 nm nanoparticles oxidize to a larger extent than 7 nm nanoparticles
during reaction at 150 – 200 °C and this is correlated with a 5-fold increase in turnover frequency for the smaller nanoparticles.
7 nm NP Film

2 nm NP Film

Rh 3d 5/2
hv = 510 eV

BE/eV

312 310 308

306

Rh(0)

Rh(II)

Rh(III)

150 °C

200 °C

BE/eV

312 310 308

306
$\text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2$

- 2 nm Rh, thick oxide
 - 11 s$^{-1}$
- 7 nm Rh, thin oxide
 - 1 s$^{-1}$

Conversion vs. time (t/min)