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Abstract

We consider extended wireless networks characterized by a random topology of access points
(APs) contending for medium access over the same wireless channel. Recently, stochastic geometry
has emerged as a powerful tool to analyze random networks adopting MAC protocols such as ALOHA
and CSMA. The main strength of this methodology lies in its ability to account for the randomness in
the nodes’ location jointly with an accurate description atthe physical layer, based on the SINR, that
allows considering also random fading on each link. In this paper we extend previous stochastic geom-
etry models of CSMA networks, developing computationally efficient techniques to obtain throughput
distributions, in addition to spatial averages, which permit us to get interesting insights into the impact
of protocol parameters and channel variability on the spatial fairness among the nodes. Moreover we
extend the analysis to a significant class of topologies in which APs are not placed according to a
Poisson process.

Index Terms

CSMA, fairness, random topology, stochastic geometry, general fading

I. I NTRODUCTION

The CSMA MAC protocol has become extremely popular nowadays,allowing a large number

of users to comfortably enjoy broadband wireless Internet access from their mobile devices

(IEEE 802.11). CSMA Access Points (APs) have proliferated inmany urban areas, both at

public places (airports, train stations, coffee shops, university campuses) and private premises

(residential homes, corporate buildings).

The complex behavior of dense CSMA networks, characterized by a large degree of mutual

interference among neighboring APs, is still far to be fullyunderstood, making of crucial

A previous version of this paper was presented at IEEE Infocom 2011Conference.
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importance the availability of analytical models that can predict the impact of the cumulative

interference produced by the APs operating over the same channel, by incorporating a realistic

description at the physical layer.

Traditional models of CSMA networks typically rely on Markovian approaches. When all

terminals are in the sensing range of each other, very accurate and detailed models of 802.11

are available [1]. However Markovian approaches are difficult to apply to large-scale wireless

networks employing CSMA, especially if one wants to incorporate the specific details of 802.11

and its impairments (e.g., hidden terminals) [2]. Simplified versions of CSMA are still amenable

to Markovian analysis by exploiting the independent sets method originally proposed in [3],

which has recently been revisited, coupled with statistical physics arguments, to explain the

severe unfairness observed in (regular) heavily loaded networks [4]. However, Markovian models

fail to represent physical layer effect (such as the impact of cumulative interference, fading etc.).

From a dual perspective, stochastic geometry has been proposed as a mathematical framework

that allows analyzing random, arbitrarily large and arbitrarily dense wireless networks employing

variants of ALOHA and CSMA, with an accurate description at the physical layer based on the

SINR [5], [6].

The majority of previous work based on the stochastic geometry approach deals with ALOHA

networks, whose behavior has been throughly investigated by exact models [7], [8], [9]. CSMA-

like networks, unfortunately, cannot be exactly analyzed due to intrinsic difficulties in character-

izing the point process of nodes which are allowed concurrently to transmit. In [10] (which is the

starting point of our work), the authors proposed a modified Mat́ern point process to capture key

properties of CSMA networks (for Poisson node distribution)while providing a conservative

estimate of the transmitters’ density. Less conservative hard-core models, such as the Simple

Sequential Inhibition [11], [12], turn out to be very challenging to analyze.

In [6, Ch.3] the authors characterize the interference distribution in Poisson networks, both in

the absence and in the presence of fading. For CSMA networks, they assume that the interference

is produced only by transmitters located outside a disc of radius equal to the sensing range. They

also consider the case in which transmitters are distributed according to a Poisson cluster process.

The work [13] investigates the optimization of the sensing range in the absence of fading (to

maximize the aggregate capacity under the SINR model) for CSMA-like networks where nodes

form a Poisson process. In [14] authors develop simple bounds to the outage probability of

unslotted ALOHA and CSMA in Poisson networks.

More recently, it has been found that, in the high Signal-to-Interference regime (i.e., when
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the density of interferers goes to zero), it is possible to characterize the asymptotic behavior of

the outage probability and of the transmission capacity forgeneral isotropic distributions of the

transmitters, including the (CSMA-like) Matérn hard-core process [15].

In [16] authors propose a general methodology, based on the factorial expansion of functionals

of point processes, that potentially allows estimating (with a controlled degree of approximation)

functions of the interference such as the outage probability. The proposed approach is, in

principle, fairly general, as it can be applied to a large class of point processs. Nevertheless, in

practice, the methodology developed in [16] can be successfully applied only when then-th

order density product of the point process can be efficientlycomputed.

In [17] stochastic geometric models of channel aware (i.e. opportunistic) versions of CSMA

protocol for multi-hop ad-hoc networks have been developed. There, authors provide also a first

characterization of the spatial unfairness among the nodesby evaluating the Jain fairness index.

II. PAPER CONTRIBUTION

With respect to previous work, the contribution of our paperis twofold: i) it proposes a

methodology to estimate the AP throughput distribution in dense CSMA networks; ii) it defines

a computationally efficient procedure to extend the analysis of dense CSMA networks to the case

in which APs are not independently placed over the area. For what concerns the first contribution,

our work goes in the same direction of the previously cited, parallel effort [17] to characterize the

spatial unfairness among the nodes. We emphasize that the throughput distribution obtained in

this paper is a more informative metric than the throughput Jain fairness index derived in [17],

especially for network design purposes. In this respect, [9] has shown (for dense networks

employing ALOHA) that the spatial average of the access delay may become unbounded (through

a phase transition) even if the spatial average of the throughput is not null. This effect is caused

by strong inhomogeneities among the nodes’ throughput: a fraction of the nodes in the network

are almost starved, so that their access delay is extremely large, with a dramatic impact on the

overall spatial average of the delay. Throughput distributions immediately allow detecting the

emergence of starvation, while this is not possible using anaggregate index such as the Jain

fairness index.

For the second contribution of our paper, we emphasize that the methodology developed in

this paper to tackle cases in which APs are not independentlydistributed, is complementary

to the analysis in [16]. Indeed, [16] proposes a much more general approach that also allows

checking the accuracy of the approximation. However, such an approach becomes computation-
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ally prohibitive, in practice, when then-th order density product of the point process can not

be easily estimated, forn greater than 2 or 3. This typically occurs in a dense CSMA network

in which APs are not independently placed, where statistical properties (such as then-th order

density product) of the point process representing locations of simultaneously transmitting nodes

are very complex to characterize. In our work we provide a methodology to analyze a significant

class of random topologies in which APs are not independently placed, more precisely, networks

in which APs locations must respect a minimum separation degree. This class of topologies is

well suited to represent realistic cases in which APs are placed in a coordinated/planned manner

(e.g., corporate WLANs, or publicly accessible APs deployedby an Internet Service Provider).

III. N ETWORK MODEL

A. Location of Access Points and users

We first assume, similarly to previous work [10], that AccessPoints (APs) are located accord-

ing to a homogeneous Poisson point process over the plane with intensityλa. This assumption

is fairly reasonable when APs are deployed in a fully unplanned fashion, such as in residential

scenarios. Indeed, the Poisson assumption implies that, conditionally on the number of APs

falling within any bounded network area, these APs are uniformly and independently located

over the considered area, which reflects the lack of coordination of unplanned deployment. We

denote byΦA = {x1,x2, . . .xk, . . .} the set of AP locations.

We assume that users are associated with their closest AP. Inparticular, we suppose that,

for each AP, the associated users (we assume there is at leastone user per AP) are uniformly

distributed within the AP’s Voronoi cell.

B. Radio propagation model

We assume that the power received at pointx from a transmitter located at pointy, denoted

by P (x,y), is given byP (x,y) = P · l(x,y) · F (x,y), where:

• P is the (fixed) transmitted power, common to all APs;

• l(x,y) is the deterministic component of the path loss betweenx andy;

• F (x,y) is a random variable representing fading and shadowing on the wireless link between

x andy.

We suppose thatl(x,y) depends only on the Euclidean distanced(x,y) between the transmitter

and the receiver. Even if all our expressions hold for a general functionl(d(x,y)), the results that
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we will present in this paper are obtained under the following model accounting for near-field

effects:

l(x,y) =







d(x,y)−α if d(x,y) > r0

r−α
0 if d(x,y) ≤ r0

(1)

where r0 > 0, andα > 2 is the path-loss exponent, which depends on the environment. We

will also use the notationl(r) = (max(r, r0))
−α for all positive real numbersr. The random

variablesF (x,y) are assumed to be i.i.d., with generic distribution, for anypair (x,y)1. Let

gF (ζ) be the probability density function of the fading/shadowing random variable, andφF (s)

its Laplace transform. We denote byGF (ζ) the cumulative distribution function ofgF (ζ), and

by ḠF (ζ) = 1−GF (ζ) the complementary ofGF (ζ).

C. MAC contention model

To determine the subset of APs that transmit simultaneously, we adopt the modified Matérn

model proposed in [10], which captures key features of CSMA-like protocols while maintaining

analytical tractability. In particular, the model captures the fact that an AP refrains from trans-

mitting when it senses the activity of another AP which has extracted a smaller back-off time.

This behavior is modeled in the following way: each pointx of ΦA is attributed an independent

mark tx uniformly distributed in[0, 1], representing the back-off time. The node transmits if it

does not sense the activity of any other node having smaller mark, i.e., nodes that have extracted

a shorter backoff. The subsetΦT of APs transmitting concurrently can be formally defined as

ΦT = {x ∈ ΦA : tx < ty , ∀y : P (x,y) > σ}. (2)

Notice that, in the absence of fading, setΦT becomes a standard hard-core Matérn process with

fixed inhibition radius.

The considered MAC contention model ignores collisions, exponential back-off and history of

timers. Moreover, it is more suitable to describe the synchronized, slotted version of CSMA, in

which nodes independently extract a back-off time at the beginning of a slot, and all concurrent

transmissions finish by the end of the slot. The behavior of unslotted, asynchronous CSMA

is much more complex, and tends to introduce severe short- and long-term unfairness among

the nodes, especially when the average back-off time is muchsmaller than the packet duration,

1In the following we will also denote byF the generic marginal random variableF (x,y).
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as in 802.11 (see [4]). Despite its approximate nature, the modified Mat́ern process provides a

conservative, reasonable estimate of the transmitters’ density in 802.11 networks, as shown in

[10] by comparison with ns2 simulations.

D. Transmission model and throughput analysis

We assume that a transmission is successfully decoded if theSINR at the receiver is larger

than a predefined thresholdβ, which determines the instantaneous rate. We focus on downlink

traffic only (i.e., from the APs to the users), assuming, as inprevious work, that uplink traffic is

negligible. This assumption is justified by the fact that in the current Internet the great majority

of the traffic (85%, according to recent measurements in [18]) flows in the downlink direction.

Moreover, we assume that APs are constantly backlogged by packets to send. A user located at

x correctly receives data sent by its closest AP aty when

SINR(x) =
P (x,y)

N0 +
∑

j∈ΦT \y P (x, j)
> β (3)

whereN0 is the (constant) ambient noise power andI(x,y) =
∑

j∈ΦT \y P (x, j) is the cumulative

interference produced by all other transmitting APs.

In our throughput analysis we focus on a tagged AP and consider the instantaneous rateT
at which this AP is transmitting at a given time. For simplicity, we will assume that there is

exactly one user associated to the tagged AP (i.e., a randomly placed user whose nearest AP is

the tagged AP), to avoid the additional complexity of analyzing the bandwidth sharing among

users associated to the same AP (i.e., located in the same Voronoi cell). The user throughput

can be derived from the AP throughput following the approachproposed in [10].

Moreover, we consider, for simplicity, a unique thresholdβ, and we normalize to one the

corresponding transmission rate. It should be clear, however, that if we are able to evaluate the

successful reception probability according to (3), for an arbitrary β, than we can easily compute

the throughput achievable with a set of different rates (modulation schemes) selected by an

auto-rate function of the SINR (for example, a piecewise constant function).

Under the above assumptions, the instantaneous rateT of the tagged AP equals the joint

probability that: i) the AP is transmitting; ii) the transmission is successfully decoded by the

intended receiver. In this paper we are interested both in the spatial average ofT and in its

spatialdistribution.
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IV. BASELINE ANALYSIS

In this section we briefly recall the technique proposed in [10] to approximate the spatial

throughput average, i.e., the averageE0[T ] of a tagged AP placed2 at 0, under a Poisson

distribution of AP’s. In this way we put the reader in a position of understanding our extended

analysis. As already shown in [10], in an infinite network thespatial average of the AP’s

throughput can be confused with the average throughput of a tagged AP placed at the origin, since

CSMA protocol rules are by their nature spatially homogeneous, or, in other words, because the

pattern of successful transmissions under CSMA does not change when all points are translated

on the plane by an arbitrary fixed quantity.

Definition 1: By conditioning on the distancer between the AP and the user, the average

AP throughput can be expressed as,

E0[T ] =

∫ ∞

0

E0[T |r] fD(r) dr, (4)

wherefD(r) is the probability density of the distance between a user andits closest AP, which

reads in the Poisson case as

fD(r,Poisson) = 2πrλae
−λaπr

2

. (5)

The conditioned averageE0[T |r] is given by the product of the conditioned transmission prob-

ability pT (r) of the tagged AP, given that there is a user at distancer (whose closest AP is the

tagged AP) and the conditioned probabilityps(r) of successful reception at distancer from the

tagged AP, given that this AP transmits.

Hence the computation of the average of the AP throughput requires to evaluate the above

defined probabilitiespT (r) andps(r).

For what concernspT (r), we state the following:

Proposition 1: Let the tagged AP be located at the origin0 (we denote this AP with0 in

the following), and the receiving node be located at pointy = (r, 0). We have,

pT (r) =

∫ 1

0

e−λat0
∫
R2\B(y,r)S(x) dx dt0 =

1− e−λa

∫
R2\B(y,r) S(x)dx

λa
∫

R2\B(y,r)
S(x) dx

, (6)

2
E0[T ] should be intended as the Palm expectation operator, which can be intuitivelyinterpreted as the conditional expectation,

conditioned on having a node at the origin.
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whereB(y, r) is the ball of radiusr centered aty, whereasS(x) is the probability for0 to

sense another AP located atx.

Proof: The spatial integral in (6) can be intuitively explained (see [5] for a rigorous proof

based on Palm probability and Slivnyak’s Theorem) considering that the infinitesimal areadx

centered at any pointx of the plane (excluding ballB(y, r), which by hypothesis does not

contain APs) must be free of nodes sensed by0. Conditioning on the markt0 of AP 0 (which

provides the outer integral in (6)), the intensity of the Poisson Point process of APs that can

potentially prevent0 from transmitting, i.e. those having mark smaller thant0, is λat0. This

point process is then further thinned by the (location-dependent) probabilityS(x) that0 indeed

senses an AP located atx. We haveS(x) = Pr[P (0,x) > σ] = ḠF

(

σ
P l(x)

)

, (wherex denotes

the euclidean norm||x||) which is the probability that the signal transmitted atx is received by

0 with power above the sensing thresholdσ.

To evaluate the probability of successful receptionps(r), we need to compute (though in an

approximate way) the cumulative interference produced by all of the other APs concurrently

transmitting with0. For this, we first need an auxiliary functionh(x, λa), which provides the

probability that an AP transmits, conditioned on the fact that there is a transmitting AP at distance

x from it, belonging to the same Poisson point process of intensity λa. Functionh(x, λa) can

be evaluated exactly following the approach in [5], which isbriefly outlined in Appendix A for

the reader’s convenience.

Having computedh(x, λa), we can evaluate in an approximate way the cumulative interference

plus noise suffered at the receiving node, by the following:

Lemma 1: Approximating the set of interfering APs with an in-homogenous Poisson point

process whose local intensity depends only on the distancex (through functionh(x, λa)) from

the AP transmitting the useful signal, we can derive an approximation of the Laplace transform

ψI+N0(s) of interference plus noise as (see [5] for details):

ψI+N(s) = ψI(s)ψN(s) ≈ e−λa

∫ 2π
0

∫∞
r

h(b(ρ,θ),λa)[1−φF (sP l(ρ))]ρ dρ dθe−sN0 , (7)

where the spatial integral is computed using polar coordinates centered at the receiving node. In

this coordinate system,b(ρ, θ) = ρ2 + r2 − rρ cos(θ) provides the distance of the generic point

(ρ, θ) from the AP transmitting the useful signal, which is assumedto be located at(r, 0).

From the above approximation of the cumulative interference plus noise, we can evaluate the

reception probabilityps(r) by the following:
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Proposition 2: For a general fading distribution, we have

ps(r) =

∫ ∞

0

ḠF

(

βξ

P l(r)

)

L−1{ψI+N0(s)}|ξ dξ , (8)

where we recall that the signal is decoded successfully if the received power exceeds threshold

β (see (3)), hence for a given valueξ of (I +N0), the fading variableF should be larger than
βξ

P l(r)
.

Expression (8) requires, in general, to numerically invertthe Laplace transformψI+N0(s); how-

ever, a direct computation ofps(r) is possible in the special case in which the fading is

exponentially distributed (i.e., Rayleigh fading). Indeed, whenF is exponential with mean1/µ,

we have

ps(r) =

∫ ∞

0

e−
µβξ
Pl(r) dPr(I +N0 ≤ ξ), (9)

which is equivalent to evaluate the Laplace transformψI+N0(s) at s = µβ/(Pl(r)). The expres-

sion (9) can be generalized to the case in which the fading variable is phase-type distributed,

GF (z) = 1−
∑

i ci

(

∑Ki

k=0
(µiz)

k

k!
e−µiz

)

, with ci ≥ 0 and
∑

i ci = 1, obtaining:

ps(r) =
∑

i

ci

(

Ki
∑

k=0

∫ ∞

0

γki
k!
e−γi dPr(I +N0 ≤ ξ)

)

, (10)

whereγi = µiβξ/(Pℓ(r)). The computation of (10) reduces to evaluate a linear combination of

the Laplace transformψI+N0(s) and its derivatives at pointssi = µiβ/(Pl(r)).

V. BEYOND SPATIAL AVERAGES

In this section we describe how the stochastic geometry approach can be extended to obtain,

besides spatial averages, also an estimate of thedistribution of the throughput achieved by the

APs. Doing so, we will get interesting insights into the impact of several system parameters

(especially the sensing threshold and the distribution of fading/shadowing) on the discrepancies

that we can observe among the throughputs of different APs ina random network. Notice in

(4) that we have already identified one cause of variability in the spatial distribution of AP

throughput, namely, the one due to the variable distance between an AP and its associated user,

which we can account for by the analysis presented so far. Besides the impact of the distance

between AP and user, we (separately) capture two additionalsources of variability in the spatial
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distribution of AP throughput: the variability in the transmission probabilitypT (r), in Section

V-A, and the variability in the probabilityps(r) of successful reception, in Section V-B. Then

in Section V-C we combine everything together obtaining ourfinal estimate of the throughput

distribution.

A. Variability in the transmission probability

Clearly, the likelihood of an AP to access the channel is strongly affected by the pattern of

contending APs in its neighborhood: even in the presence of fading, the nodes that are most

likely to prevent an AP from transmitting are those located in close proximity to it. To capture

this fact, we introduce the following:

Proposition 3: The conditional probabilitypdT (r, n) that the tagged AP, located at0, is allowed

to transmit, given that there aren other APs within distanced from it (excluding the empty disc

of radiusr centered at the receiver), is

pdT (r, n) =

∫ 1

0

e−t0E(r,d)(1− t0I(r, d))n dt0, (11)

whereS(x) = ḠF

(

σ
P l(x)

)

and

E(r, d) = λa

∫

R2\(B(0,d)∪B(y,r))

S(x) dx ; I(r, d) =
∫

B(0,d)\B(y,r)
S(x) dx

∫

B(0,d)\B(y,r)
dx

.

Proof: Similarly to (6), we condition on the markt0 associated to AP0. To transmit, the

AP must not sense any other AP having smaller mark. The APs located outside the ballB(0, d),
having mark smaller thant0, form a Poisson process of intensityλat0 and can be treated exactly

in the same way as before, providing the terme−λat0E(r,d), which is identical to (6) except for a

difference in the spatial integration domain (now we have toexclude two discs fromR2). Then

we need to consider then APs located in the regionB(0, d) \ B(y, r), considering that each of

them is uniformly distributed in this region, and with probability t0 it has mark smaller than

t0. Quantity I(r, d) provides the probability that the AP senses one of them, considering all

possible locations within the regionB(0, d)\B(y, r). Since the AP must not sense any of them,

we obtain for this set of nodes the term(1− t0I(r, d))n in (11).

The parameterd has to be chosen with care: if it is too small, the expected number of APs

in B(0, d) is also small, and the conditioning becomes ineffective. Ifit is set large, we loose
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control on the number of critical APs (i.e., the nodes most likely to be sensed). A natural choice

is to setd equal to the ‘effective’ sensing rangeR0 = l−1(σ/(PF̄ )), which is the fixed inhibition

radius of a system in which the fading variable is deterministically equal to its mean.

B. Variability in the probability of successful reception

The probability of successful receptionps(r) at distancer from the AP is strongly affected

by the pattern of interferers around the receiver, as well ason the characteristics of the wireless

channel (i.e., path loss exponent, and fading/shadowing distribution). Proceeding in a similar

way as for the transmission probability, we state the following:

Proposition 4: The conditional probabilitypes(r,m) of successful reception, given that there

arem transmitting APs within distancee from the receiver, withe > r (by construction there

are no APs at distance smaller thanr) can be obtained according to (8), (9), (10), respectively

for general, Rayleigh or phase type fading distribution, once the Laplace transform on the

corresponding conditional interference plus noise distribution is given.

Under our assumptions on nodes locations,ψe
I+N0

[r,m](s) =

= e−λa

∫ 2π
0

∫∞
e

h(b(ρ,θ),λa)[1−φF (sP l(ρ))]ρ dρdθ

(

∫ 2π

0

∫ e

r
h (b(ρ, θ), λa)φF (sP l(ρ))ρ dρ dθ
∫ 2π

0

∫ e

r
h (b(ρ, θ), λa) ρ dρ dθ

)m

e−sN0.

(12)

Proof: By definition the cumulative interference at the receiver is the sum of all powers

received from transmitting APs other than the good one. The corresponding Laplace transform

is the product of the Laplace transform of the individual contributions. The contribution of APs

located outside the disc of radiuse centered at the receiver can be treated exactly in the same

way as before, providing the first exponential term in (12), which is identical to (7) except for the

different integration domain. Note that we are using polar coordinates centered at the receiver,

with the transmitter located at(r, 0).

Then we need to consider them APs located in the regionB(0, e) \ B(0, r), considering

that each of them is located at point(ρ, θ) with density proportional to the local intensity

λah (b(ρ, θ), λa) of the inhomogeneous Poisson process of APs concurrently transmitting. Hence

the contribution of each of them APs is

∫ 2π

0

∫ e

r
h (b(ρ, θ), λa)φF (sP l(ρ))ρ dρ dθ
∫ 2π

0

∫ e

r
h (b(ρ, θ), λa) ρ dρ dθ

.
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Considering also the contribution of the ambient noise, we get the expression in (12).

Again, parametere has to be chosen with care, trying to isolate those APs which are responsible

for the highest variability in the interference. In our results we have sete = 1.5r, which has

empirically been found to provide the best fit with simulations.

C. Throughput distribution

Definition 2: In analogy with previous section and former definition of conditioned AP

throughput (4), we introduce the spatial average of the conditioned throughputE0[T |n,m, r]
of a tagged AP, located atr, transmitting to a user located at the origin0, given that there are

n other APs within the areaB(r, d) \ B(0, r) andm other APs in the ringB(0, e) \ B(0, r):

E0[T |r, n,m] = pdT (r, n)p
e
s(r,m). (13)

At last we obtain our estimated law for the spatial distribution of T by combining together all

considered sources of variability, as stated in the following:

Proposition 5: An estimate of the AP throughput distribution can be expressed as:

P{T < η} ≈
∑

n

∑

m

∫ ∞

0

1(E0[T |r,n,m]<η)F
d,e
r (n,m)fD(r) dr.

Proof: Denoting byAd
r the area of regionB(r, d) \B(0, r), the probabilityF d

r (n) to find n

other APs in it is

F d
r (n) = e−λaAd

r
(λaAd

r)
n

n!

Instead, the probabilityF e
r (n) to find m other transmitting APs in the ringB(0, e) \ B(0, r) is

F e
r (m) ≈ e−λa

∫ 2π
0

∫ e
r
h(b(ρ,θ),λa)ρ dρdθ

(λa
∫ 2π

0

∫ e

r
h(b(ρ, θ), λa)ρ dρ dθ)

m

m!
.

The joint probabilityF d,e
r (n,m) to find n APs in regionB(r, d)\B(0, r) andm APs in region

B(0, e) \ B(0, r) can be approximated as

F d,e
r (n,m) ≈ F d

r (n)F
e
r (m),

where the approximation lies in the fact that the above two regions are non disjoint, thus the

numbers of points falling in them are not independent. From the given expression forF d,e
r (n,m),

the throughput law approximation follows.
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We emphasize that, in principle, a more accurate estimate ofF d,e
r (n,m) can be obtained by

conditioning on the number of nodesk lying in the intersection of regionsB(r, d) \ B(0, r) and

B(0, e)\B(0, r). This refinement, however, comes at a cost of a significant increase in the model

computational complexity.

D. AP throughput distribution: results and insights

In this subsection we report a selection of the most interesting results that can be obtained

following our approach to estimating the spatial distribution of AP throughput. Since our formulas

contain several approximations, model predictions are checked against results obtained by a

Montecarlo simulator of the system as described in Section III. The spatial integrals of our

approximate analysis are computed numerically using standard discretization methods.

We remark that our approximation becomes asymptotically tight in the following two asymp-

totic regimes: 1) when the sensing thresholdσ → 0; 2) when the density of APsλa → 0. In the

first regime, indeed, throughput performance is dominated by the transmission probability, which

is exactly characterized in our model (under the simplifying description of the pattern of CSMA

transmitters as a Matérn point process); In the second regime, the second-order product density

(λah(x, λa)) used in the model to approximately describe the pattern of interfering APs becomes

asymptotically exact, whenλa → 0. This because, for any finite domainO, the probability that

three or more points lie withinO becomes negligible with respect to the probability of having

2 points.

In all presented cases we will assume thatP = 1, β = 1. Unless otherwise specified, we

will consider the path-loss exponentα = 3. Furthermore, we will assume thatN0 = 0, i.e., we

will focus on interference-limited networks, in which the impact of the ambient noise power is

negligible.

1) Impact of sensing threshold on the spatial average of AP throughput: before exploring

throughput distributions, it is interesting to look at how the spatial averageE0[T ] of the AP

throughput depends on the sensing thresholdσ, that governs the transmission probability (6)

through the sensing functionS(x) = Pr[P (0,x) > σ] (see baseline analysis in Section IV).

Indeed, it was such preliminary observation that motivatedus to look at spatial distributions

instead of just spatial averages.

We consider a scenario in which APs are placed according to a Poisson process with intensity

λa = 1/π, while fading is exponentially (Rayleigh) distributed withmean1/µ = 1.
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Fig. 1 reports the spatial averageE0[T ], the (de-conditioned) transmission probabilitypT =
∫∞

0
pT (r)fD(r) dr and the (de-conditioned) probability of successful reception ps =

∫∞

0
ps(r)fD(r) dr,

as function of the sensing thresholdσ. Model predictions turn out to be rather accurate in the

considered scenario, despite the several approximations (for the throughput figure we have also

reported 99%-level confidence intervals derived from our simulations).

As expected, the transmission probabilitypT increases withσ (since the probability to sense

nearby nodes and thus refrain from transmitting decreases), whereas the success probabilityps

decreases withσ (since there is more interference). The overall effect on average throughput

is instead less obvious: AP throughput increases withσ up to a maximum value. Beyond this

point the throughput decreases very little as we further augment σ (a similar behavior occurs

for different values ofα andβ). Recall that we assume that users are always associated to the

closest AP (the decay of the throughput after the optimum value can be more pronounced under

different user-AP association models).

Looking just at Fig. 1, one would be tempted to conclude that in dense CSMA networks the

sensing mechanism is not that useful (at least under the closest-AP user association). Indeed

observe that an aloha-like protocol3 would achieve nearly maximum throughput. However, the

spatial average of AP throughput provides alone a limited view of the system behavior, and here

is exactly where our approach to estimating the throughput distribution comes into play to better

understand the role of sensing.

2) Impact of sensing threshold on AP throughput distribution: Fig. 2 reports the estimated

cumulative distribution function (cdf) of the AP throughput (14) for three values ofσ = 0.1, 1, 10.

We observe that thesensing threshold has a dramatic impact on the spatial fairness among

the nodes.Indeed, for large values ofσ a significant fraction of APs (those in more unfavorable

topological conditions) experience negligible throughput (starvation), being their transmissions

systematically affected by strong interference.Reducingσ (i.e., increasing the sensing range)

permits evening out the throughput of contending APs, at the cost of a reduction in the average AP

throughput (Fig. 1). Although capacity-fairness trade-offs are common in many communication

systems, ours is probably the first analytical model to show such trade-off within the stochastic

geometry framework to analyze random CSMA networks. We observe that our approach to

estimating the throughput distribution well predicts the impact of of σ, although it tends to

underestimate the lower tail of the distribution (see Fig. 2). This because our approach is able

3As σ tends to infinity, the system behaves like slotted-Aloha with transmit probability equal to 1.
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to capture the main sources of variability in the throughputdistribution, but cannot estimate

precisely the occurrence of rare topological conditions leading to extremely low throughput.

3) Impact of fading variability on AP throughput distribution : another interesting effect

that can be captured by our analysis is related to the shape ofthe fading/shadowing variable. In

Fig. 3 we show again the cdf reported in 2 in the case ofσ = 10, which was shown to produce

a severe unbalance in the throughput distribution under Rayleigh fading. This time, we increase

the variation coefficient of the fading/shadowing variable(while maintaining the same mean),

considering second order hyper-exponential distributions instead of a simple exponential. In the

first hyper-exponential case, labelled “hyper–A”, we consider a combination of two exponentials

of meansµ1 = 1/3, µ2 = 3 (moderate variation coefficient). In the second hyper-exponential

case, labelled “hyper–B”, we consider a combination of two exponentials of meansµ1 = 1/10,

µ2 = 10 (large variation coefficient).

We observe thathigher diversity in the fading distribution increases the spatial fairness,

alleviating the starvation of APs in unfavorable topological conditions. This again occurs at the

expense of a reduction in the average AP throughput (not shown here). The model captures fairly

well this counter-intuitive phenomenon.

We considered also the case of fading distributions which donot allow a phase-type represen-

tation. In this case, one approach to evaluate the receptionprobability is to numerically invert

the Laplace transform of interference and noise (8), which can be, however, computationally

expensive. Alternatively, we have found that a phase-type distribution matching the first few

moments of the original distribution provides in general satisfactory result, especially with

respect to the other forms of approximation introduced in the analysis. As an example, we

have considered the case of log-normal fading, which is sometimes used to model the amplitude

change in signal caused by shadowing. We recall that a log-normal distribution has variation

coefficient (v.c.)
√
ev−1, wherev is the variance of the normal distribution which is obtained

by taking the logarithm of the log-normal random variable. While maintaining the mean of the

log-normal distribution equal to one, we have investigateddifferent values of v.c. considering

v = log 2 (which correspond to a v.c. equal to 1),v = 1, v = 2. Then we have fitted each

considered log-normal distribution by an hyper-exponential distribution of the second order,

which allows matching the first three moments of the corresponding log-normal distribution.

The resulting cdf’s of AP throughput, as obtained by simulation, are reported in Fig. 4, in the

case ofσ = 10. We observe that the cdf resulting from the fitted hyper-exponential distributions

(which can be estimated also analytically) are close to the corresponding ones resulting from
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the log-normal distribution. We conclude that a limited phase-type representation allows obtain-

ing satisfactory results also for general (possibly long-tailed) fading distributions, while more

complex approaches would produce only marginal improvements.

4) Impact of path-loss exponent on AP throughput distribution: at last in Fig. 5 we

investigate the impact on the path-loss exponentα on the throughput distribution, restricting our

attention to Rayleigh fading andσ = 1. As expected, smaller values ofα increase the aggregate

amount of interference in the network, resulting in much smaller throughputs. Besides this, our

analysis also captures the fact that,for small values of the path-loss exponent, the throughput

distribution is largely unbalanced,(see the curve labelledα = 2.1) with a significant fraction

of nodes experiencing negligible throughput (about 20% of the nodes achieve less than 0.01

throughput). Indeed, in this case the node performance is more susceptible to local topological

conditions (i.e., network areas more or less populated by nodes). For large values ofα, instead,

the impact of unfavorable topological conditions is mitigated, thus the spatial fairness increases.

We can also observe that in the considered scenario the average throughput increases withα.

This apparently surprising result should be taken with care, since we have assumed that the

ambient noise power is negligible (N0 = 0). When this is not the case, the average throughput is

not monotonic withα, since for very large power attenuation the network performance becomes

noise-limited.

We conclude this part summarizing our main findings, reminding that our insights have been

obtained under the closest-AP user association policy:

• increasing the sensing range of CSMA improves the spatial fairness in the network, but

reduces the average throughput;

• for increasing variability of the fading distribution (keeping fixed the mean), the spatial

fairness in the network improves, while the average throughput decreases;

• for increasing path-loss exponent, the spatial fairness inthe network improves, as well as

the average throughput, as long as the network is interference-limited (i.e., the ambient

noise is negligible).

VI. B EYOND THE POISSON PROCESS

Usually in planned networks APs are not placed independently of each other4. Hence the

Poisson point process is not well suited to describe controlled network topologies. In particular,

4this is true also in unplanned networks, e.g., residential APs, although in aweaker sense.
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in the Poisson point process we can find nodes arbitrarily close to each other, which is something

that any reasonable strategy of nodes placement tries to avoid. To minimize mutual interference,

while maximizing area coverage, the optimal solution wouldbe to place the APs according to

a regular tessellation of the plane (e.g., a triangular lattice). However, APs cannot in general be

deployed at any location, due to physical and cost constraints. Hence some randomness in the

AP topology has to be considered. To reflect the above facts, we model the point process of APs

by a hard-core Matérn process of parameters(λ,R), which guarantees a minimum separation

constraint ofR between APs. Notice that this model can also be used to represent, in unplanned

scenarios, the repulsive effect induced by intelligent channel selection schemes, or, in the context

of green networking, the effect of switching off redundant APs covering the same region of the

network area. Fig. 6 shows a portion of a sample topology generated by a Mat́ern process with

parametersλ = 10/π, R = 1. Note that there are no nodes separated by a distance smallerthan

R = 1.

In this section we will show that the above Matérn model of AP placement can be smoothly

incorporated in the previous analysis, resorting to the same Poisson approximation for the

intensity of the (conditioned) Matérn process. We proceed as follows. In Section VI-A we

compute the conditional transmission probabilitypT (r) of an AP, given that there is a user at

distancer from it. In Section VI-B we evaluate the probability of successful receptionps(r) at

the user.

At last, to finally apply the throughput formula (4), we need to estimate the distribution

fD(r,Matérn) of the distancer between the AP and the user. In the case of a (hard-core) Matérn

process of APs, such distribution is not known in closed form. Therefore we have developed

an approximate analysis offD(r,Matérn) which is sufficiently accurate for our purposes. The

details of this analysis can be found in Sect. VI-C.

A. Transmission probability

Similarly to what has been done before to characterize the set of transmitting APs, we first

characterize the set of AP locations by computing the probability g(x, λ,R) that, given the

existence of an AP in the origin, we find another AP at distancex from it. We start by the

following

Lemma 2: Let Φ be the set of ‘candidate’ AP locations generated by the original Poisson

point process of rateλ, and letP0,x
Φ {} be the probability law associated with point process
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Φ + 0+ x. The desired function

g(x, λ,R) = P
0,x
Φ {x ∈ ΦA | 0 ∈ ΦA}

can be expressed5, by specializing (20) to the case of no fading (we consider now a hard-core

Matérn process), in closed form as

g(x, λ,R) = 1(x > R)
2

1− e−λπR2

[

1− e−λ(πR2+M(x))

λ(πR2 +M(x))
− e−λπR2 1− e−λM(x)

λM(x)

]

,

whereM(x) is the area ofB(x, R) \ B(0, R), illustrated in Fig. 7 by a light gray region.

¿From the above result, it is straightforward to show that

Proposition 6: The conditional transmission probabilitypT (r) for the case in which APs are

placed according to an inhomogeneous Poisson process readsas:

pT (r) =

∫ 1

0

e−t0
∫
R2\B(y,r) λ

0
a(x)S(x) dx dt0 , (14)

once we approximate the lawλ0a(x) of ΦA, conditioned on the event0 ∈ ΦA, by an in-

homogeneous Poisson point process of intensity

λ0a(x) = λ g(x, λ,R). (15)

B. Probability of successful reception

To evaluate the probability of successful receptionps(r), we need to characterize the set of

APs transmitting concurrently with the tagged AP located at0. The key step consists again

in computing functionh(x, λ,R) = P
0,x
ΦA

{x ∈ ΦT | 0 ∈ ΦT}, which can be interpreted as the

conditional probability that APx ∈ ΦA transmits, given that AP0 ∈ ΦA is transmitting. Function

h(x, λ,R) can then be used to characterize (in an approximate way) the law of transmitting APs

around AP0. The computation ofh(x, λ,R) can be carried out by approximating the law of

the other APs (different fromx and 0) with an inhomogeneous Poisson process of intensity

λ0,xa (z) = λP0,x,z
Φ {z ∈ ΦA | 0 ∈ ΦA,x ∈ ΦA}, whereP0,x,z

Φ {} is the probability law associated

to the point processΦ+0+x+ z. Functionh(x, λ,R) can then be computed by extending (21)

5Notice thatg(x, λ,R) can be evaluated in a way analogous to functionh(x, λa) in (20) (see Appendix A), although with a

very different meaning (here we are characterizing the set of APs location, not yet the set of transmitting APs).
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and (22) to the case of an in-homogeneous Poisson process of intensityλ0,xa (z). In particular,

(21) becomes:

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT} = 2GF

(

σ

P l(x)

)
∫ 1

0

∫ 1

t0

e−(tx−t0)
∫
R2 λ

0,x
a (z)Sx(z) dz dtxe

−t0
∫
R2 λ

0,x
a (z)S0 orx(z) dz dt0,

(16)

and similarly for (22):

h(x, λ,R) ≈
2
[

ḠF

(

σ
Pℓ(x)

)]

P
0,x
ΦA

{0 ∈ ΦT}

∫ 1

0

∫ 1

t0

e−(tx−t0)
∫
R2 λ

0,x
A (z)Sx(z|t0<tz<tx) dz dtx

e−t0
∫
R2 λ

0,x
A (z)S0 orx(z|tz<t0) dz dt0,

where

P
0,x
ΦA

{0 ∈ ΦT} ≈
∫ 1

0

{

∫ tx

0

e−t0
∫
R2 λ

0,x
A

(z)S0(z|tz<t0) dz dt0+

∫ 1

tx

[

Ḡ

(

σ

Pℓ(x)

)]

e−t0
∫
R2 λ

0,x
A (z)S0(z|tz<to) dz dt0

}

dtx.

To computeλ0,xa (z), we extend the approach used to derive (15) to the case of three points,

obtaining

λ0,xa (z) = λP0,x,z
Φ {z ∈ ΦA | 0 ∈ ΦA,x ∈ ΦA} = λ

P
0,x,z
Φ {z ∈ ΦA,0 ∈ ΦA,x ∈ ΦA}

P
0,x,z
Φ {0 ∈ ΦA,x ∈ ΦA}

=

= λ
6P0,x,z

Φ {z ∈ ΦA,0 ∈ ΦA,x ∈ ΦA | tz<tx<t0}
2P0,x,z

Φ {0 ∈ ΦA,x ∈ ΦA | tx < t0}
=

= 3λ

∫ 1

0

∫ 1

tz

∫ 1

tx
e−λt0πR

2
e−λtxM(x)e−λtzN(x,z) dt0 dtx dtz

∫ 1

0

∫ 1

tx
e−λt0πR2e−λtxM(x) dt0 dtx

,

which can be computed in closed form as function of the areaM(x) of B(x, R) \ B(0, R), and

of the areaN(x, z) of B(z, R) \ (B(x, R)∪B(0, R)), illustrated in Fig. 7 by a light gray region

and a dark gray region, respectively.
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Given that we approximately describe the process of transmitting APs around AP0 as an inho-

mogeneous Poisson process of intensityλ0a(x)h(x, λ,R), we can easily obtain the characteristic

function of the cumulative interference adapting (8):

ψI(s) = e−
∫ 2π
0

∫ r
0 λ0

a(b(ρ,θ))h(b(ρ,θ),λ,R)[1−φF (sP l(ρ))]ρdρ dθ, (17)

where we remind that the spatial integrals are computed using polar coordinates centered at the

receiving node, beingb(ρ, θ) the distance of the generic point(ρ, θ) from the AP transmitting

the useful signal. The success probabilityps(r) can finally be obtained pluggingψI+N(s) =

ψI(s)e
−sN0 in (8), (9), and (10), respectively for general, Rayleigh or phase type fading distri-

bution.

At last we wish to emphasize that our Matérn model of AP locations can be extended to

evaluate also throughput distributions, following the same approach outlined in Section V, which

essentially requires to replaceλA with λ0A(x) andh(z, λA) with h(z, λ, R) in (11) and (12).

C. Distance distribution between transmitter and receiver.

We need to evaluate the distance distribution between a noden arbitrarily placed on the

plane and the closest AP belonging toΦA (denoted withA). WhenΦA is a standard Poisson

process, the above distribution is well known (5). Unfortunately, instead, whenΦA is a (hard-

core) Mat́ern point process, the above distance distribution is (to the best of our knowledge) not

known in closed form. Therefore we approximate it with a formsimilar to (5), which provides

an estimate offD(r,Matérn) sufficiently accurate for our purposes. Our approximation is based

on a simple observation, which allows modifying (5) adapting it to the case of a Matérn process

of parameters(λ,R). The observation is that, for all valuesr such that2r ≤ R, the exact

probability fD(r,Matérn) is

fD(r,Matérn) = 2πrλp, for 2 r ≤ R, (18)

wherep = 1−e−λπR2

λπR2 is the probability of retaining a point in the original Poisson point process.

Indeed, consider the case2r ≤ R illustrated in the left part of Fig. 11. Once we know that there

is a pointA ∈ ΦA at distanced ∈ [r, r + dr] (this event has probability2πrλp dr), we do not

need to worry about the presence of other APs closer ton thanA (i.e., other nodes belonging to

ΦA, lying within the disk of radiusr centered atn). Indeed, when2 r ≤ R this disk is entirely

contained in the disk of radiusR centered atA, which by definition cannot contain any other

point belonging toΦA.
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Instead, in the case2r > R, we need to worry about the possible presence of APs closer

to n thanA, but only in the area denoted by a shaded region in the right part of Fig. 11. Our

approximation is to assume that the existence of these closer APs depends uniquely on the area

M(r, R) of the region where we can find them. The value ofM(r, R) can be computed in closed

form applying elementary geometry, and we omit its expression here. Moreover, we assume that

nodes belonging toΦA populate areaM(r, R) with a probability equivalent to that of a virtual

Poisson point process of intensityλ∗. Hence we write

fD(r,Matérn) ≈ 2πrλpe−λ∗M(r,R), (19)

which is valid also for2r ≤ R, assuming thatM(r, R) = 0 in this case. At last, the value of

λ∗ to be used in (19) is the only one that guarantees thatfD(r,Matérn) is a proper pdf, i.e., it

is the unique valueλ∗ such that
∫∞

0
2πrλpe−λ∗M(r,R) dr = 1. We have found that this simple

approximation provides sufficiently accurate distributions for all values ofλ andR.

D. Matérn process of APs: results and insights

In this subsection, we evaluate the effect of different APs placements on the average AP

throughput and its spatial distribution.

1) Impact of minimum AP separation on average throughput: Fig. 8 reports the spatial

averageE0[T ] as function of the average densitȳλ of APs in the network, in the case of

Rayleigh fading withσ = 1. Besides the Poisson process (for whichλ̄ = λa), we consider

hard-core Mat́ern processes(λ,R) with different radiusR, in which we letλ vary from very

small to very large values, obtaining average node densities λ̄ = 1−e−λπR2

πR2 . We observe that,

for given average node densitȳλ, the average AP throughput increases with the minimum AP

separationR (but notice thatR cannot exceed1/
√
πλ̄). This effect can be explained by the

fact that the resulting topologies become more and more regular, with a beneficial effect also

on the distance distribution between AP and user. What is somehow surprising is that,for fixed

minimum AP separationR, the average AP throughput can even increase for increasingvalues

of the AP’s density, if R is sufficiently large (see curves related toR = 0.75, 1, 2). This can

be again attributed to the fact that, for a givenR, Matérn processes become more regular by

increasingλ (and λ̄), although this beneficial effect can be offset, for smallR, by the increased

interference. We observe, again, that our model is able to capture fairly well this interesting

phenomenon.
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2) Impact of path-loss exponent on average throughput:in Fig. 9 we explore the impact

of the path-loss exponentα in the case of a Matérn process of APs withR = 1, focusing

again on Rayleigh fading withσ = 1. For a givenα, the AP throughput slightly increases

when AP density increases, as confirmed by both simulation and analysis. We again observe

that the average throughput increases withα, but this unexpected behavior depends on the fact

that we have assumed an interference-limited system, in which the impact of the ambient noise

is negligible (N0 = 0).

3) Impact of sensing threshold on AP throughput distribution: at last, Fig. 10 reports

the throughput cdf for a fixed Matérn process withλ = 10/π andR = 1. We consider Rayleigh

fading, and different values of the sensing thresholdσ = 0.1, 1, 10. We have also reported

the throughput cdf’s for the cases in which AP’s form a Poisson process with same average

AP density. We observe that,besides increasing the average AP throughput (see Fig. 8), a

more regular placement of the APs with respect to the Poisson process is also able to reduce

throughput variability, as correctly predicted by the model.

In summary, a careful deployment of APs can significantly improve the average throughput

performance as well as reduce the spatial unfairness among APs.

VII. C ONCLUSIONS

In this paper we have extended the stochastic geometry approach to modeling dense CSMA

networks. So far, spatial averages of performance measureshave provided only a limited, possibly

misleading view of the system behavior, and therefore they must be supplemented with an

analysis of the spatial distribution of the same measures. We have shown how the stochastic

geometry analysis can provide fundamental insights into the throughput distribution, especially

how the inherent unbalance due to the randomness in the topology is affected by the sensing

mechanism and the variability of radio signal propagation.Moreover, we have proposed a

methodology that permits us to consider scenarios in which APs are not distributed according to

a Poisson process, obtaining additional insights that could guide the topology design and control

of densely deployed CSMA networks.
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APPENDIX A

COMPUTATION OF FUNCTIONh(x, λa).

Let 0 andx be two APs at distancex from each other, and lett0 and tx be their marks. We

can expressh(x, λa) as

h(x, λa) = P
0,x
ΦA

{x ∈ ΦT | 0 ∈ ΦT} =
P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT}
P
0,x
ΦA

{0 ∈ ΦT}
, (20)

whereP0,x
ΦA

{} is the probability law associated to the point processΦA + 0 + x; observe that

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT} is the probability that two APs placed at distancex from each other

transmit concurrently, whereasP0,x
ΦA

{0 ∈ ΦT} is the probability that0 transmits, given that there

is another AP at distancex from it (not necessarily concurrently transmitting).

We start computing the joint probability that0 andx transmits concurrently. When considering

all possible combinations oftx and t0, we can limit ourselves to the caset0 < tx, and then

multiply the result by two (the casetx < t0 is symmetric). Besides nodes0 andx, we need to

consider the superposition of two independent homogeneousPoisson point processes: a process

of intensity λat0, related to those nodes having markt < t0 that can be sensed by nodes0

and/or nodex; a process of intensityλ(tx− t0), related to those nodes having markt0 < t < tx

that can be sensed by nodex only. Hence we can expressP0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT} as

P
0,x
ΦA

{x ∈ ΦT ,0 ∈ ΦT} = 2GF

(

σ

P l(x)

)
∫ 1

0

∫ 1

t0

e−λa(tx−t0)
∫
R2 Sx(z) dz dtxe

−λat0
∫
R2 S0 orx(z) dz dt0.

(21)

In the above equation, the termGF

(

σ
P l(x)

)

corresponds to the probability that the AP transmitting

first is not sensed by the other, which is the only requirementto have the two nodes concurrently

transmitting when there are no other nodes in the network;Sx(z) is the probability that nodex

senses a node atz; S0 orx(z)=1−(1−S0(z))(1−Sx(z)) is the probability that at least one node

(between0 andx) senses a node atz.

The conditional probabilityP0,x
ΦA

{0 ∈ ΦA} can be obtained in a similar way, this time

considering all possible combinations oft0 and tx:

P
0,x
ΦA

{0 ∈ ΦT} =

∫ 1

0

{

∫ tx

0

e−λat0
∫
R2 S0(z) dz dt0 +

∫ 1

tx

GF

(

σ

P l(x)

)

e−λat0
∫
R2 S0(z) dz dt0

}

dtx.

(22)

In the above expression,GF

(

σ
P l(x)

)

is the probability that0 does not sense the transmission of

x, whent0 > tx.


