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Abstract

We consider extended wireless networks characterized bgndom topology of access points
(APs) contending for medium access over the same wirelessneh Recently, stochastic geometry
has emerged as a powerful tool to analyze random network®tiagdMIAC protocols such as ALOHA
and CSMA. The main strength of this methodology lies in itditghto account for the randomness in
the nodes’ location jointly with an accurate descriptiorthat physical layer, based on the SINR, that
allows considering also random fading on each link. In tleipgr we extend previous stochastic geom-
etry models of CSMA networks, developing computationaffyjceent techniques to obtain throughput
distributions, in addition to spatial averages, which pgemms to get interesting insights into the impact
of protocol parameters and channel variability on the sp#tirness among the nodes. Moreover we
extend the analysis to a significant class of topologies iichvi\Ps are not placed according to a
Poisson process.

Index Terms

CSMA, fairness, random topology, stochastic geometryegsrfading

I. INTRODUCTION

The CSMA MAC protocol has become extremely popular nowadalj®ying a large number
of users to comfortably enjoy broadband wireless Interreetess from their mobile devices
(IEEE 802.11). CSMA Access Points (APs) have proliferatednany urban areas, both at
public places (airports, train stations, coffee shopsyemity campuses) and private premises
(residential homes, corporate buildings).

The complex behavior of dense CSMA networks, characterized large degree of mutual
interference among neighboring APs, is still far to be fullpderstood, making of crucial
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importance the availability of analytical models that caedict the impact of the cumulative
interference produced by the APs operating over the samenehaby incorporating a realistic
description at the physical layer.

Traditional models of CSMA networks typically rely on Markam approaches. When all
terminals are in the sensing range of each other, very aecarad detailed models of 802.11
are available [1]. However Markovian approaches are diffituapply to large-scale wireless
networks employing CSMA, especially if one wants to incogterthe specific details of 802.11
and its impairments (e.g., hidden terminals) [2]. Simpdifiersions of CSMA are still amenable
to Markovian analysis by exploiting the independent setshow originally proposed in [3],
which has recently been revisited, coupled with statibtptaysics arguments, to explain the
severe unfairness observed in (regular) heavily loadedarks [4]. However, Markovian models
fail to represent physical layer effect (such as the impacumulative interference, fading etc.).

From a dual perspective, stochastic geometry has beenggd@s a mathematical framework
that allows analyzing random, arbitrarily large and adity dense wireless networks employing
variants of ALOHA and CSMA, with an accurate description & ffhysical layer based on the
SINR [5], [6].

The majority of previous work based on the stochastic gegnagtproach deals with ALOHA
networks, whose behavior has been throughly investigagyeskbct models [7], [8], [9]. CSMA-
like networks, unfortunately, cannot be exactly analyzed tb intrinsic difficulties in character-
izing the point process of nodes which are allowed conctigrém transmit. In [10] (which is the
starting point of our work), the authors proposed a modifieat&vh point process to capture key
properties of CSMA networks (for Poisson node distributiarjile providing a conservative
estimate of the transmitters’ density. Less conservatael{gcore models, such as the Simple
Sequential Inhibition [11], [12], turn out to be very chaligng to analyze.

In [6, Ch.3] the authors characterize the interferenceildigion in Poisson networks, both in
the absence and in the presence of fading. For CSMA netwdrg assume that the interference
is produced only by transmitters located outside a discaifisaequal to the sensing range. They
also consider the case in which transmitters are distribateording to a Poisson cluster process.
The work [13] investigates the optimization of the sensiagge in the absence of fading (to
maximize the aggregate capacity under the SINR model) for &8k& networks where nodes
form a Poisson process. In [14] authors develop simple b®uodhe outage probability of
unslotted ALOHA and CSMA in Poisson networks.

More recently, it has been found that, in the high Signakrte+ference regime (i.e., when



the density of interferers goes to zero), it is possible tarabterize the asymptotic behavior of
the outage probability and of the transmission capacitygfameral isotropic distributions of the
transmitters, including the (CSMA-like) Matn hard-core process [15].

In [16] authors propose a general methodology, based orattierfal expansion of functionals
of point processes, that potentially allows estimatingl{vai controlled degree of approximation)
functions of the interference such as the outage probabilihe proposed approach is, in
principle, fairly general, as it can be applied to a largesslaf point processs. Nevertheless, in
practice, the methodology developed in [16] can be sucalgsipplied only when the:-th
order density product of the point process can be efficiesdiyputed.

In [17] stochastic geometric models of channel aware (ppoaotunistic) versions of CSMA
protocol for multi-hop ad-hoc networks have been developéere, authors provide also a first
characterization of the spatial unfairness among the nbgewvaluating the Jain fairness index.

Il. PAPERCONTRIBUTION

With respect to previous work, the contribution of our papertwofold: i) it proposes a
methodology to estimate the AP throughput distribution é@msk CSMA networks; ii) it defines
a computationally efficient procedure to extend the analgtdense CSMA networks to the case
in which APs are not independently placed over the area. Rat woncerns the first contribution,
our work goes in the same direction of the previously citedtapel effort [17] to characterize the
spatial unfairness among the nodes. We emphasize that rtwggtiput distribution obtained in
this paper is a more informative metric than the throughjirnt fairness index derived in [17],
especially for network design purposes. In this respedt,hfs shown (for dense networks
employing ALOHA) that the spatial average of the accessydmlay become unbounded (through
a phase transition) even if the spatial average of the thmouigis not null. This effect is caused
by strong inhomogeneities among the nodes’ throughpuiacetién of the nodes in the network
are almost starved, so that their access delay is extreragg,lwith a dramatic impact on the
overall spatial average of the delay. Throughput distrdng immediately allow detecting the
emergence of starvation, while this is not possible usingaggregate index such as the Jain
fairness index.

For the second contribution of our paper, we emphasize Heirtethodology developed in
this paper to tackle cases in which APs are not independeintlyibuted, is complementary
to the analysis in [16]. Indeed, [16] proposes a much moresigérapproach that also allows
checking the accuracy of the approximation. However, suchpproach becomes computation-



ally prohibitive, in practice, when the-th order density product of the point process can not
be easily estimated, for greater than 2 or 3. This typically occurs in a dense CSMA nkwo
in which APs are not independently placed, where statispipaperties (such as the-th order
density product) of the point process representing lonataff simultaneously transmitting nodes
are very complex to characterize. In our work we provide ahogblogy to analyze a significant
class of random topologies in which APs are not indepenggaiced, more precisely, networks
in which APs locations must respect a minimum separatiomegedrhis class of topologies is
well suited to represent realistic cases in which APs aregolan a coordinated/planned manner
(e.g., corporate WLANS, or publicly accessible APs deplolggdan Internet Service Provider).

I11. NETWORK MODEL
A. Location of Access Points and users

We first assume, similarly to previous work [10], that AccBssnts (APs) are located accord-
ing to a homogeneous Poisson point process over the plahemgnsity \,. This assumption
is fairly reasonable when APs are deployed in a fully unpéghfashion, such as in residential
scenarios. Indeed, the Poisson assumption implies thagitcanally on the number of APs
falling within any bounded network area, these APs are umifp and independently located
over the considered area, which reflects the lack of coatidmaf unplanned deployment. We
denote byd, = {x;,x5,...xx,...} the set of AP locations.

We assume that users are associated with their closest Apartitular, we suppose that,
for each AP, the associated users (we assume there is ableastser per AP) are uniformly
distributed within the AP’s Voronoi cell.

B. Radio propagation model

We assume that the power received at pairitom a transmitter located at poigt, denoted
by P(x,y), is given byP(x,y) = P -l(x,y) - F(x,y), where:
o P is the (fixed) transmitted power, common to all APs;
. l(x,y) is the deterministic component of the path loss betweemndy;
. F(x,y)isarandom variable representing fading and shadowingewiteless link between
x andy.

We suppose thd{x,y) depends only on the Euclidean distanke,y) between the transmitter
and the receiver. Even if all our expressions hold for a garfanction/(d(x,y)), the results that



we will present in this paper are obtained under the follgmmnodel accounting for near-field
effects:

lx.y) = d(x,_y)_a ?f d(x,y) > rg )
ro® if d(x,y) <
wherer, > 0, anda > 2 is the path-loss exponent, which depends on the environnvéat
will also use the notatiori(r) = (max(r, 7))~ for all positive real numbers. The random
variables F'(x,y) are assumed to be i.i.d., with generic distribution, for aayr (x,y)!. Let
gr(¢) be the probability density function of the fading/shadagviandom variable, andy(s)
its Laplace transform. We denote I6y-(¢) the cumulative distribution function aofx(¢), and

by Gr(¢) =1 — Gr(¢) the complementary of/(¢).

C. MAC contention model

To determine the subset of APs that transmit simultanepustyadopt the modified Matn
model proposed in [10], which captures key features of CSM&+brotocols while maintaining
analytical tractability. In particular, the model captairtbe fact that an AP refrains from trans-
mitting when it senses the activity of another AP which hasaeted a smaller back-off time.
This behavior is modeled in the following way: each patnof ¢ 4 is attributed an independent
mark t, uniformly distributed in[0, 1], representing the back-off time. The node transmits if it
does not sense the activity of any other node having smakek,me., nodes that have extracted
a shorter backoff. The subset: of APs transmitting concurrently can be formally defined as

Or={xedy:tx<ty,Vy: P(x,y) >0} 2

Notice that, in the absence of fading, et becomes a standard hard-core &tatprocess with
fixed inhibition radius.

The considered MAC contention model ignores collisionposential back-off and history of
timers. Moreover, it is more suitable to describe the symeized, slotted version of CSMA, in
which nodes independently extract a back-off time at thermégg of a slot, and all concurrent
transmissions finish by the end of the slot. The behavior cflaited, asynchronous CSMA
is much more complex, and tends to introduce severe shodtlag-term unfairness among
the nodes, especially when the average back-off time is rsodler than the packet duration,

In the following we will also denote by" the generic marginal random variablé(x, y).



as in 802.11 (see [4]). Despite its approximate nature, tbdified Maérn process provides a
conservative, reasonable estimate of the transmitterssijein 802.11 networks, as shown in
[10] by comparison with ns2 simulations.

D. Transmission model and throughput analysis

We assume that a transmission is successfully decoded BHKR at the receiver is larger
than a predefined thresholti which determines the instantaneous rate. We focus on dukwnl
traffic only (i.e., from the APs to the users), assuming, asrevious work, that uplink traffic is
negligible. This assumption is justified by the fact thathe turrent Internet the great majority
of the traffic (85%, according to recent measurements in)[A8ls in the downlink direction.
Moreover, we assume that APs are constantly backlogged ¢kefsato send. A user located at
x correctly receives data sent by its closest AR avhen

SINR(x) = Pix.y) > (3)

- NO + Z_je:bT\y P(Xa.])

whereN, is the (constant) ambient noise power diig, y) = > P(x,j) is the cumulative

JELT\Y
interference produced by all other transmitting APs.

In our throughput analysis we focus on a tagged AP and congiideinstantaneous ratg
at which this AP is transmitting at a given time. For simpliciwve will assume that there is
exactly one user associated to the tagged AP (i.e., a ragdaladed user whose nearest AP is
the tagged AP), to avoid the additional complexity of analgzthe bandwidth sharing among
users associated to the same AP (i.e., located in the sanmmdfocell). The user throughput
can be derived from the AP throughput following the appropadposed in [10].

Moreover, we consider, for simplicity, a unique threshgldand we normalize to one the
corresponding transmission rate. It should be clear, hewekiat if we are able to evaluate the
successful reception probability according to (3), for dniteary 3, than we can easily compute
the throughput achievable with a set of different rates (utattbn schemes) selected by an
auto-rate function of the SINR (for example, a piecewisestamt function).

Under the above assumptions, the instantaneous7raté the tagged AP equals the joint
probability that: i) the AP is transmitting; ii) the transssion is successfully decoded by the
intended receiver. In this paper we are interested both ensftatial average of and in its
spatialdistribution



V. BASELINE ANALYSIS

In this section we briefly recall the technique proposed i@] [tb approximate the spatial
throughput average, i.e., the averagl7]| of a tagged AP placédat 0, under a Poisson
distribution of AP’s. In this way we put the reader in a pasitiof understanding our extended
analysis. As already shown in [10], in an infinite network theatial average of the AP’s
throughput can be confused with the average throughputagged AP placed at the origin, since
CSMA protocol rules are by their nature spatially homogeseou in other words, because the
pattern of successful transmissions under CSMA does notgehahen all points are translated
on the plane by an arbitrary fixed quantity.

Definition 1: By conditioning on the distance between the AP and the user, the average
AP throughput can be expressed as,

Eo[T] = / B [TIr] fo(r) dr, )

where fp(r) is the probability density of the distance between a userisnclosest AP, which
reads in the Poisson case as

fp(r,Poisson = 2mrAge e (5)

The conditioned averagg,[7 |r] is given by the product of the conditioned transmission prob
ability p(r) of the tagged AP, given that there is a user at distan@ghose closest AP is the
tagged AP) and the conditioned probability(r) of successful reception at distancérom the
tagged AP, given that this AP transmits.
Hence the computation of the average of the AP throughpulines) to evaluate the above
defined probabilitiegr(r) and py(r).

For what concerngr(r), we state the following:

Proposition 1. Let the tagged AP be located at the originfwe denote this AP witlD in
the following), and the receiving node be located at pgint (r,0). We have,

1— €_>\a f]RQ\B(y’T) S(x)dx

S(x)dx

1
pr(r) = / e Net0 fe2ysty SO g ®)
0

)\a f]RQ \B(y,r)

%, [T should be intended as the Palm expectation operator, which can be intuiititeglyreted as the conditional expectation,
conditioned on having a node at the origin.



where B(y, r) is the ball of radius- centered aty, whereasS(x) is the probability for0 to
sense another AP located at

Proof: The spatial integral in (6) can be intuitively explainedg48] for a rigorous proof
based on Palm probability and Slivnyak’s Theorem) consgidethat the infinitesimal areax
centered at any point of the plane (excluding balB(y,r), which by hypothesis does not
contain APs) must be free of nodes sensedbgZonditioning on the mark, of AP 0 (which
provides the outer integral in (6)), the intensity of the 93on Point process of APs that can
potentially preventd from transmitting, i.e. those having mark smaller thignis \,tq. This
point process is then further thinned by the (location-deeat) probabilityS(x) that 0 indeed

senses an AP located at We haveS(x) = Pr[P(0,x) > o] = Gp (%) (wherez denotes

the euclidean nornix||) which is the probability that the signal transmittedxais received by
0 with power above the sensing thresheld [ |

To evaluate the probability of successful receptigofr), we need to compute (though in an
approximate way) the cumulative interference produced Ibpfathe other APs concurrently
transmitting with0. For this, we first need an auxiliary functior(x, A,), which provides the
probability that an AP transmits, conditioned on the faet there is a transmitting AP at distance
x from it, belonging to the same Poisson point process of gitgn\,. Functionh(x, A,) can
be evaluated exactly following the approach in [5], whiclprgefly outlined in Appendix A for
the reader’s convenience.

Having computed:(z, \,), we can evaluate in an approximate way the cumulative ertenice
plus noise suffered at the receiving node, by the following:

Lemma 1. Approximating the set of interfering APs with an in-homogasa Poisson point
process whose local intensity depends only on the distanglerough functionh(z, A,)) from
the AP transmitting the useful signal, we can derive an appration of the Laplace transform
Y1y, (s) of interference plus noise as (see [5] for details):

Uran(s) = Vr(s)n(s) ~ e N h(b(p0):Xa) 1~ (sPUP)) )P dpdf o —sNo 7)

where the spatial integral is computed using polar cootdseentered at the receiving node. In
this coordinate systend(p, ) = p? + r* — rpcos(f) provides the distance of the generic point
(p,0) from the AP transmitting the useful signal, which is assurttetle located afr, 0).

From the above approximation of the cumulative interfeeeplus noise, we can evaluate the
reception probability,(r) by the following:



Proposition 2: For a general fading distribution, we have

pir) = [ Gr (e ) £ (e, ©

where we recall that the signal is decoded successfullyeifréteived power exceeds threshold

B (see (3)), hence for a given valgeof (I + Ny), the fading variable?” should be larger than

B¢
Pi(r)"

Expression (8) requires, in general, to numerically intilet Laplace transforng;, n,(s); how-
ever, a direct computation gf;(r) is possible in the special case in which the fading is
exponentially distributed (i.e., Rayleigh fading). Indeadhen F' is exponential with mea/,

we have

ps(r) — / 6_% dPr(I-i— NO S 5)7 (9)
0

which is equivalent to evaluate the Laplace transfermy,(s) at s = u3/(Pl(r)). The expres-
sion (9) can be generalized to the case in which the fadin@haris phase-type distributed,

Gr(z)=1=>,¢ ( i (“;f) e Hi* ) with ¢; > 0 and ) . ¢; = 1, obtaining:

pelr) = e (Z/ o e dPr(I 4+ Ny < 5)), (10)

where~y; = ;8¢ /(P£4(r)). The computation of (10) reduces to evaluate a linear coatioin of
the Laplace transformy;, n,(s) and its derivatives at points = p;5/(Pl(r)).

V. BEYOND SPATIAL AVERAGES

In this section we describe how the stochastic geometryoagpr can be extended to obtain,
besides spatial averages, also an estimate ofligtebution of the throughput achieved by the
APs. Doing so, we will get interesting insights into the irapaf several system parameters
(especially the sensing threshold and the distributioradfrfg/shadowing) on the discrepancies
that we can observe among the throughputs of different APs iandom network. Notice in
(4) that we have already identified one cause of variabilitythe spatial distribution of AP
throughput, namely, the one due to the variable distanocgdsst an AP and its associated user,
which we can account for by the analysis presented so fardBeghe impact of the distance
between AP and user, we (separately) capture two additsmates of variability in the spatial
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distribution of AP throughput: the variability in the transsion probabilitypr(r), in Section
V-A, and the variability in the probability,(r) of successful reception, in Section V-B. Then
in Section V-C we combine everything together obtaining fial estimate of the throughput
distribution.

A. Variability in the transmission probability

Clearly, the likelihood of an AP to access the channel is gisoaffected by the pattern of
contending APs in its neighborhood: even in the presenceadih@, the nodes that are most
likely to prevent an AP from transmitting are those locatecalose proximity to it. To capture
this fact, we introduce the following:

Proposition 3: The conditional probability? (r, n) that the tagged AP, located @tis allowed
to transmit, given that there areother APs within distancé from it (excluding the empty disc
of radiusr centered at the receiver), is

1
ph(r,n) = / eEd (1 — toZ(r, d))" dty, (12)
0
where S(x) = Gp (Pf&)) and
S(x) dx
E(r,d) = g / Sx)dx  ;  Z(rd) = Ja0.a081y.0 _
R2\(B(0,d)UB(y.r)) Js0.00 586y X

Proof: Similarly to (6), we condition on the mark associated to A®. To transmit, the

AP must not sense any other AP having smaller mark. The ARdddoutside the balb(0, d),
having mark smaller thaty, form a Poisson process of intensityt, and can be treated exactly
in the same way as before, providing the term«*¢("4 which is identical to (6) except for a
difference in the spatial integration domain (now we havexolude two discs froniR?). Then
we need to consider the APs located in the regio8(0, d) \ B(y, r), considering that each of
them is uniformly distributed in this region, and with proiddy ¢, it has mark smaller than
to. Quantity Z(r, d) provides the probability that the AP senses one of them,iderisg all
possible locations within the regids(0, d) \ B(y,r). Since the AP must not sense any of them,
we obtain for this set of nodes the tefth— toZ(r,d))" in (11). u

The parameted has to be chosen with care: if it is too small, the expectedbminof APs
in B(0,d) is also small, and the conditioning becomes ineffectivet 1§ set large, we loose
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control on the number of critical APs (i.e., the nodes mdslyi to be sensed). A natural choice
is to setd equal to the ‘effective’ sensing rand® = [~!(o/(PF)), which is the fixed inhibition
radius of a system in which the fading variable is deternicaly equal to its mean.

B. Variability in the probability of successful reception

The probability of successful receptign(r) at distance- from the AP is strongly affected
by the pattern of interferers around the receiver, as wetlmthe characteristics of the wireless
channel (i.e., path loss exponent, and fading/shadowistildlition). Proceeding in a similar
way as for the transmission probability, we state the foihay

Proposition 4: The conditional probability¢(r, m) of successful reception, given that there
arem transmitting APs within distance from the receiver, withe > r (by construction there
are no APs at distance smaller thancan be obtained according to (8), (9), (10), respectively
for general, Rayleigh or phase type fading distribution, eoice Laplace transform on the
corresponding conditional interference plus noise distion is given.

Under our assumptions on nodes locations, y, [, m|(s) =

oA S22 (b(p0) Ao 1= 61 (sPLUP)]p dp a6 A h WF(SP p)pdpdd ) _on,
f h o) pdpdb
(12)

Proof: By definition the cumulative interference at the receiverhis sum of all powers
received from transmitting APs other than the good one. Tdreesponding Laplace transform
is the product of the Laplace transform of the individual tednations. The contribution of APs
located outside the disc of radiuscentered at the receiver can be treated exactly in the same
way as before, providing the first exponential term in (12)jch is identical to (7) except for the
different integration domain. Note that we are using polaordinates centered at the receiver,
with the transmitter located &t 0).

Then we need to consider the APs located in the regio5(0,¢) \ B(0,r), considering
that each of them is located at poify, #) with density proportional to the local intensity
Ah (b(p,0), A,) of the inhomogeneous Poisson process of APs concurreatigrritting. Hence
the contribution of each of the: APs is

G >¢F<sPl< p)pdpdd
Js Q“I h Mo) pdpdd
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Considering also the contribution of the ambient noise, wetlye expression in (12). =

Again, parameter has to be chosen with care, trying to isolate those APs whiehesponsible
for the highest variability in the interference. In our rksuwe have set = 1.5, which has
empirically been found to provide the best fit with simulago

C. Throughput distribution

Definition 2: In analogy with previous section and former definition of dibloned AP
throughput (4), we introduce the spatial average of the itionéd throughputEy[7 |n, m, ]
of a tagged AP, located at transmitting to a user located at the origingiven that there are
n other APs within the are#(r,d) \ B(0,r) andm other APs in the ring3(0,¢) \ B(0, r):

Eo [T|Ta n, m] - p%(r, n)pi(r, m) (13)

At last we obtain our estimated law for the spatial distridtof 7 by combining together all
considered sources of variability, as stated in the folhauwi
Proposition 5. An estimate of the AP throughput distribution can be exmpédsss:

P{T <n}=) Y. /0 (&g Tirinm)<n) (0, m) fo(r) dr.

Proof: Denoting by.A¢ the area of regiolB(r, d) \ B(0,r), the probability7%(n) to find n
other APs in it is
—Aa Ad (AaA?)n

n!

Filn)=e

Instead, the probability(n) to find m other transmitting APs in the ring(0,¢) \ B(0,r) is

Fe(m) as e e Jo™ J7 (b(p0) Aa)pdpdn f J; h(d )ﬂdpde)
m!

The joint probability%¢(n, m) to find n APs in regionB(r,d)\ B(0,r) andm APs in region
B(0,¢) \ B(0,r) can be approximated as
E2(n,m) ~ F(n)Fe(m),

where the approximation lies in the fact that the above tvwgpores are non disjoint, thus the
numbers of points falling in them are not independent. Froengiven expression fard<(n, m),
the throughput law approximation follows.
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We emphasize that, in principle, a more accurate estimaté?6fn,m) can be obtained by
conditioning on the number of nodéslying in the intersection of region8(r, d) \ B(0,r) and
B(0,¢e)\ B(0,r). This refinement, however, comes at a cost of a significam¢é@se in the model
computational complexity.

D. AP throughput distribution: results and insights

In this subsection we report a selection of the most interggsesults that can be obtained
following our approach to estimating the spatial distribntof AP throughput. Since our formulas
contain several approximations, model predictions areclkadte against results obtained by a
Montecarlo simulator of the system as described in SectibnThe spatial integrals of our
approximate analysis are computed numerically using stahdiscretization methods.

We remark that our approximation becomes asymptoticailyttin the following two asymp-
totic regimes: 1) when the sensing threshelds 0; 2) when the density of APs, — 0. In the
first regime, indeed, throughput performance is dominatethé transmission probability, which
is exactly characterized in our model (under the simpldgydescription of the pattern of CSMA
transmitters as a Matn point process); In the second regime, the second-ordeugpt density
(Aoh(z, Ay)) used in the model to approximately describe the patternteffering APs becomes
asymptotically exact, whei, — 0. This because, for any finite domaip, the probability that
three or more points lie withi® becomes negligible with respect to the probability of hgvin
2 points.

In all presented cases we will assume tliat= 1, 5 = 1. Unless otherwise specified, we
will consider the path-loss exponent= 3. Furthermore, we will assume thaf = 0, i.e., we
will focus on interference-limited networks, in which thpact of the ambient noise power is
negligible.

1) Impact of sensing threshold on the spatial average of AP thnaghput: before exploring
throughput distributions, it is interesting to look at holetspatial averag&[7] of the AP
throughput depends on the sensing threshgldhat governs the transmission probability (6)
through the sensing functiofi(x) = Pr[P(0,x) > o] (see baseline analysis in Section V).
Indeed, it was such preliminary observation that motivaiedto look at spatial distributions
instead of just spatial averages.

We consider a scenario in which APs are placed according tmss®h process with intensity
A, = 1/m, while fading is exponentially (Rayleigh) distributed withean1/u = 1.
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Fig. 1 reports the spatial avera@®|7], the (de-conditioned) transmission probability =
Jo” pr(r) fo(r) dr and the (de-conditioned) probability of successful reioegi, = [, p.(r) fp(r) dr,
as function of the sensing threshatd Model predictions turn out to be rather accurate in the
considered scenario, despite the several approximatfonshe throughput figure we have also
reported 99%-level confidence intervals derived from oarusations).

As expected, the transmission probability increases withy (since the probability to sense
nearby nodes and thus refrain from transmitting decreasd®reas the success probability
decreases witly (since there is more interference). The overall effect oeraye throughput
is instead less obvious: AP throughput increases witlp to a maximum value. Beyond this
point the throughput decreases very little as we furthemsarg o (a similar behavior occurs
for different values ofx and 5). Recall that we assume that users are always associated to th
closest AP (the decay of the throughput after the optimuraevahn be more pronounced under
different user-AP association models).

Looking just at Fig. 1, one would be tempted to conclude thalense CSMA networks the
sensing mechanism is not that useful (at least under thestldd user association). Indeed
observe that an aloha-like protogatould achieve nearly maximum throughput. However, the
spatial average of AP throughput provides alone a limitesvwof the system behavior, and here
is exactly where our approach to estimating the throughgstitilbution comes into play to better
understand the role of sensing.

2) Impact of sensing threshold on AP throughput distribution: Fig. 2 reports the estimated
cumulative distribution function (cdf) of the AP througtiga4) for three values of = 0.1, 1, 10.

We observe that theensing threshold has a dramatic impact on the spatial &8smamong
the nodesindeed, for large values of a significant fraction of APs (those in more unfavorable
topological conditions) experience negligible throughfsiarvation), being their transmissions
systematically affected by strong interferen&aducingo (i.e., increasing the sensing range)
permits evening out the throughput of contending fs®$he cost of a reduction in the average AP
throughput (Fig. 1). Although capacity-fairness tradés-@re common in many communication
systems, ours is probably the first analytical model to shoeghdrade-off within the stochastic
geometry framework to analyze random CSMA networks. We ofesénat our approach to
estimating the throughput distribution well predicts tmepact of of o, although it tends to
underestimate the lower tail of the distribution (see Fig.This because our approach is able

3As o tends to infinity, the system behaves like slotted-Aloha with transmit probabilityaleto 1.
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to capture the main sources of variability in the throughgistribution, but cannot estimate
precisely the occurrence of rare topological conditiorzlieg to extremely low throughput.

3) Impact of fading variability on AP throughput distribution : another interesting effect
that can be captured by our analysis is related to the shathe dading/shadowing variable. In
Fig. 3 we show again the cdf reported in 2 in the case ef 10, which was shown to produce
a severe unbalance in the throughput distribution underdrgtylfading. This time, we increase
the variation coefficient of the fading/shadowing variabMhile maintaining the same mean),
considering second order hyper-exponential distribstimstead of a simple exponential. In the
first hyper-exponential case, labelled “hyper—A”, we cdasia combination of two exponentials
of meansu; = 1/3, s = 3 (moderate variation coefficient). In the second hyper-eeptial
case, labelled “hyper—B”, we consider a combination of twpasentials of meang; = 1/10,
1o = 10 (large variation coefficient).

We observe thatigher diversity in the fading distribution increases thgasal fairness,
alleviating the starvation of APs in unfavorable topolagjiconditions This again occurs at the
expense of a reduction in the average AP throughput (notisth@nre). The model captures fairly
well this counter-intuitive phenomenon.

We considered also the case of fading distributions whichataallow a phase-type represen-
tation. In this case, one approach to evaluate the receptioipability is to numerically invert
the Laplace transform of interference and noise (8), whigh be, however, computationally
expensive. Alternatively, we have found that a phase-tyig&iloution matching the first few
moments of the original distribution provides in generalistactory result, especially with
respect to the other forms of approximation introduced i@ #malysis. As an example, we
have considered the case of log-normal fading, which is somes used to model the amplitude
change in signal caused by shadowing. We recall that a logralodistribution has variation

coefficient (v.c.)v/e’~1, wherew is the variance of the normal distribution which is obtained
by taking the logarithm of the log-normal random variable.iM/Imaintaining the mean of the
log-normal distribution equal to one, we have investigadéterent values of v.c. considering
v = log2 (which correspond to a v.c. equal to 1),= 1, v = 2. Then we have fitted each
considered log-normal distribution by an hyper-exporandiistribution of the second order,
which allows matching the first three moments of the corradpa log-normal distribution.
The resulting cdf’s of AP throughput, as obtained by simatatare reported in Fig. 4, in the
case ofc = 10. We observe that the cdf resulting from the fitted hyper-egmbial distributions
(which can be estimated also analytically) are close to threesponding ones resulting from
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the log-normal distribution. We conclude that a limited pédype representation allows obtain-
ing satisfactory results also for general (possibly loaiget) fading distributions, while more
complex approaches would produce only marginal improvésien

4) Impact of path-loss exponent on AP throughput distribution: at last in Fig. 5 we
investigate the impact on the path-loss exponreon the throughput distribution, restricting our
attention to Rayleigh fading and= 1. As expected, smaller values afincrease the aggregate
amount of interference in the network, resulting in much lsnahroughputs. Besides this, our
analysis also captures the fact thiat; small values of the path-loss exponent, the throughput
distribution is largely unbalancedsee the curve labelled = 2.1) with a significant fraction
of nodes experiencing negligible throughput (about 20%hef modes achieve less than 0.01
throughput). Indeed, in this case the node performance re msceptible to local topological
conditions (i.e., network areas more or less populated lokesio For large values af, instead,
the impact of unfavorable topological conditions is mitegh thus the spatial fairness increases.
We can also observe that in the considered scenario thegavéineoughput increases with
This apparently surprising result should be taken with canmece we have assumed that the
ambient noise power is negligiblévf = 0). When this is not the case, the average throughput is
not monotonic withwo, since for very large power attenuation the network pertoroe becomes
noise-limited.

We conclude this part summarizing our main findings, renmgdhat our insights have been
obtained under the closest-AP user association policy:

. increasing the sensing range of CSMA improves the spatiahdas in the network, but
reduces the average throughput;

« for increasing variability of the fading distribution (k@eg fixed the mean), the spatial
fairness in the network improves, while the average thrpugldecreases;

« for increasing path-loss exponent, the spatial fairneghennetwork improves, as well as
the average throughput, as long as the network is interferémited (i.e., the ambient
noise is negligible).

VI. BEYOND THE POISSON PROCESS

Usually in planned networks APs are not placed indepenglaftlieach othet. Hence the
Poisson point process is not well suited to describe cdattaietwork topologies. In particular,

“this is true also in unplanned networks, e.g., residential APs, althouglwiaker sense.
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in the Poisson point process we can find nodes arbitrarilsecto each other, which is something
that any reasonable strategy of nodes placement tries td.ak@minimize mutual interference,
while maximizing area coverage, the optimal solution woodédto place the APs according to
a regular tessellation of the plane (e.g., a triangulaicktt However, APs cannot in general be
deployed at any location, due to physical and cost conssraifence some randomness in the
AP topology has to be considered. To reflect the above fagsnadel the point process of APs
by a hard-core M&rn process of parametefa, R), which guarantees a minimum separation
constraint ofR between APs. Notice that this model can also be used to mmres unplanned
scenarios, the repulsive effect induced by intelligenihcigh selection schemes, or, in the context
of green networking, the effect of switching off redunda®sAcovering the same region of the
network area. Fig. 6 shows a portion of a sample topology rg¢ee by a Marn process with
parameters\ = 10/7, R = 1. Note that there are no nodes separated by a distance sihalfer
R=1.

In this section we will show that the above Mat model of AP placement can be smoothly
incorporated in the previous analysis, resorting to the es&nisson approximation for the
intensity of the (conditioned) Matn process. We proceed as follows. In Section VI-A we
compute the conditional transmission probability(r) of an AP, given that there is a user at
distancer from it. In Section VI-B we evaluate the probability of suss&l receptiorp,(r) at
the user.

At last, to finally apply the throughput formula (4), we neex dstimate the distribution
fp(r,Matérn) of the distance between the AP and the user. In the case of a (hard-corériMat
process of APs, such distribution is not known in closed fofiherefore we have developed
an approximate analysis of,(r, Matéern) which is sufficiently accurate for our purposes. The
details of this analysis can be found in Sect. VI-C.

A. Transmission probability

Similarly to what has been done before to characterize thefsgansmitting APs, we first
characterize the set of AP locations by computing the prtibaby(x, A\, R) that, given the
existence of an AP in the origin, we find another AP at distandeom it. We start by the
following

Lemma 2. Let ® be the set of ‘candidate’ AP locations generated by the malgPoisson

point process of rate\, and IetIP’?I;"{} be the probability law associated with point process



18

® + 0 + x. The desired function
gz, \,R) =Py {x € &, | 0 € Dy}

can be expressedby specializing (20) to the case of no fading (we considev achard-core
Matérn process), in closed form as

1 — e—>\(7rR2+M(ac)) —AM (z)

2
1 — e—>\7TR2

o —)\7rR21 — €

g(x,\,R) =1(x > R) N M (@) e M) |

where M (z) is the area of3(x, R) \ B(0, R), illustrated in Fig. 7 by a light gray region.
¢From the above result, it is straightforward to show that

Proposition 6: The conditional transmission probabilipy(r) for the case in which APs are
placed according to an inhomogeneous Poisson process asads

1
pr(r) = / e ™10 Jamtyn AaCISI X g (14)
0

once we approximate the law’(x) of ®,, conditioned on the everd € ®,4, by an in-
homogeneous Poisson point process of intensity

A0(x) = Ag(z, A, R). (15)

B. Probability of successful reception

To evaluate the probability of successful receptigfr), we need to characterize the set of
APs transmitting concurrently with the tagged AP locatedaiThe key step consists again
in computing functionh(x, A\, R) = ]P’f{’;;‘{x € &y | 0 € &1}, which can be interpreted as the
conditional probability that AR € ® 4 transmits, given that AB € ® 4 is transmitting. Function
h(z, A, R) can then be used to characterize (in an approximate wayathef transmitting APs
around APO. The computation ofi(xz, A\, R) can be carried out by approximating the law of
the other APs (different fromx and 0) with an inhomogeneous Poisson process of intensity
A0X(z) = APY**{z € &, | 0 € By, x € By}, wherePy™*{} is the probability law associated
to the point proces® + 0 + x + z. Functioni(z, A\, R) can then be computed by extending (21)

®Notice thatg(x, X, R) can be evaluated in a way analogous to funcfi¢n, \,) in (20) (see Appendix A), although with a

very different meaning (here we are characterizing the set of ARgidog not yet the set of transmitting APS).
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and (22) to the case of an in-homogeneous Poisson processeabity \>*(z). In particular,
(21) becomes:

1 p1
/ / o~ (tx—to) [z A0%(2) 8, (2) dz At eto Ja2 A2 (2)S0 or x (2) dz dto,

0 Jtg

< g
Pg*{x € &r,0 € O7} = 2GF (le)

(16)

and similarly for (22):

h(l‘,)\, R) POX 0 PZ(; / / —(tx—to) fR2 >‘A (2)Sx(z|to<tz<ix)dz dt
9 {0 dr}

0,x
e to fRQ /\A (Z)S()orx(z‘tz<t0) dz dt07

where

1 tx
0 0

1 — g t 0,x
- Of 2 A (Z)S()(thz<to)dz dt dt ]
[ o (5)] o o} i

To compute\?*(z), we extend the approach used to derive (15) to the case & fuiats,

obtaining

Py {z € ®4,0 € Py, x € Dy}

MX(2) = APY** [z € Dy |0 € Dy, x €Dy} = A

6PG™"{z € 4,0 € Pu, X € Pa | t,<tx<to}
2PY 0 € By x € Dy |ty < Lo}

fol fti fti e~ MoTR? j—Atx M (x) o~ Atz N (x,2) dto dt, dt,

=3A ) .
fO Lx e~ MomR? o—Atx M (x) dt() dt,

)

which can be computed in closed form as function of the aga) of B(x, R) \ B(0, R), and
of the areaV(x, z) of B(z, R) \ (B(x, R) UB(0, R)), illustrated in Fig. 7 by a light gray region
and a dark gray region, respectively.



20

Given that we approximately describe the process of tratisgniAPs around AR as an inho-
mogeneous Poisson process of intendftyz)h(x, A, R), we can easily obtain the characteristic
function of the cumulative interference adapting (8):

bi(s) = e Jo 7 I3 X eONhbpO) AR 1= (sPUR)Ipdpds (17)

where we remind that the spatial integrals are computedyysatar coordinates centered at the
receiving node, being(p, #) the distance of the generic poify, §) from the AP transmitting
the useful signal. The success probabilityr) can finally be obtained plugging;.n(s) =
Yr(s)e=*No in (8), (9), and (10), respectively for general, Rayleigh bage type fading distri-
bution.

At last we wish to emphasize that our Mat model of AP locations can be extended to
evaluate also throughput distributions, following the saapproach outlined in Section V, which
essentially requires to replace, with \%(z) andh(z, A4) with h(z, A, R) in (11) and (12).

C. Distance distribution between transmitter and receiver.

We need to evaluate the distance distribution between a mnodgbitrarily placed on the
plane and the closest AP belonging g (denoted withA). When ®, is a standard Poisson
process, the above distribution is well known (5). Unfoetaly, instead, whe® 4 is a (hard-
core) Maérn point process, the above distance distribution is @obist of our knowledge) not
known in closed form. Therefore we approximate it with a fasmilar to (5), which provides
an estimate offp (r, Matérn) sufficiently accurate for our purposes. Our approximat®based
on a simple observation, which allows modifying (5) adagfinto the case of a Mé&tn process
of parameterg\, R). The observation is that, for all valuessuch that2r < R, the exact
probability f(r, Matérn) is

fo(r,Matérn) = 2wr\p, for 2r <R, (18)
1= AR

AT R2
Indeed, consider the cage < R illustrated in the left part of Fig. 11. Once we know that ther

wherep = is the probability of retaining a point in the original Passpoint process.
is a pointA € ¢, at distancel € [r,r + dr| (this event has probabilitgrrAp dr), we do not
need to worry about the presence of other APs closertttan A (i.e., other nodes belonging to
® 4, lying within the disk of radius- centered at:). Indeed, wher2 » < R this disk is entirely
contained in the disk of radiug centered atd, which by definition cannot contain any other
point belonging tod 4.



21

Instead, in the caser > R, we need to worry about the possible presence of APs closer
to n than A, but only in the area denoted by a shaded region in the rightgfeFig. 11. Our
approximation is to assume that the existence of theserckide depends uniquely on the area
M (r, R) of the region where we can find them. The valuel6fr, R) can be computed in closed
form applying elementary geometry, and we omit its expoesbiere. Moreover, we assume that
nodes belonging t@® 4 populate area/(r, R) with a probability equivalent to that of a virtual
Poisson point process of intensity. Hence we write

fp(r,Matérn) ~ 2xripe M), (19)

which is valid also for2r < R, assuming thaf\/(r, R) = 0 in this case. At last, the value of
A* to be used in (19) is the only one that guarantees fhat, Matérn) is a proper pdf, i.e., it
is the unique value\* such that [ * 2rrApe "M% dr = 1. We have found that this simple
approximation provides sufficiently accurate distribnidor all values ofA and R.

D. Matérn process of APs: results and insights

In this subsection, we evaluate the effect of different AREc@ments on the average AP
throughput and its spatial distribution.

1) Impact of minimum AP separation on average throughput: Fig. 8 reports the spatial
averageEq[T] as function of the average density of APs in the network, in the case of
Rayleigh fading withc = 1. Besides the Poisson process (for which= ),), we consider
hard-core Matrn processeé\, R) with different radiusR, in which we let\ vary from very

1767)\#}?/2
TR2

small to very large values, obtaining average node dessitie- . We observe that,

for given average node density the average AP throughput increases with the minimum AP

separation R (but notice thatR cannot exceed/\/ﬁ). This effect can be explained by the
fact that the resulting topologies become more and morelaeguith a beneficial effect also
on the distance distribution between AP and user. What is Bomeurprising is thatfor fixed
minimum AP separatio®?, the average AP throughput can even increase for increagaiges

of the AP’s densityif R is sufficiently large (see curves related b= 0.75,1,2). This can

be again attributed to the fact that, for a given Matéern processes become more regular by
increasing\ (and ), although this beneficial effect can be offset, for snfllby the increased
interference. We observe, again, that our model is able pduoa fairly well this interesting
phenomenon.
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2) Impact of path-loss exponent on average throughput:in Fig. 9 we explore the impact
of the path-loss exponent in the case of a M&rn process of APs witlR = 1, focusing
again on Rayleigh fading witlr = 1. For a givena, the AP throughput slightly increases
when AP density increases, as confirmed by both simulatiaharalysis. We again observe
that the average throughput increases wittbut this unexpected behavior depends on the fact
that we have assumed an interference-limited system, ichwtie impact of the ambient noise
is negligible (Vy, = 0).

3) Impact of sensing threshold on AP throughput distribution: at last, Fig. 10 reports
the throughput cdf for a fixed Matn process with\ = 10/7 and R = 1. We consider Rayleigh
fading, and different values of the sensing thresheld= 0.1,1,10. We have also reported
the throughput cdf’s for the cases in which AP’s form a Paispoocess with same average
AP density. We observe thabesides increasing the average AP throughput (see Fig. 8), a
more regular placement of the APs with respect to the Poissooeps is also able to reduce
throughput variability as correctly predicted by the model.

In summary, a careful deployment of APs can significantlyrionp the average throughput
performance as well as reduce the spatial unfairness amésg A

VIl. CONCLUSIONS

In this paper we have extended the stochastic geometry agpto modeling dense CSMA
networks. So far, spatial averages of performance meabkavesprovided only a limited, possibly
misleading view of the system behavior, and therefore thestnibe supplemented with an
analysis of the spatial distribution of the same measures.h@re shown how the stochastic
geometry analysis can provide fundamental insights ingottinoughput distribution, especially
how the inherent unbalance due to the randomness in theomppat affected by the sensing
mechanism and the variability of radio signal propagatidoreover, we have proposed a
methodology that permits us to consider scenarios in whiek Are not distributed according to
a Poisson process, obtaining additional insights thatdcguide the topology design and control
of densely deployed CSMA networks.

REFERENCES

[1] G. Bianchi, “Performance analysis of the IEEE 802.11 distributeatdination function,JEEE JSACvol. 18, pp. 235-247,
2000.

[2] M. Garetto, T. Salonidis, and E.-W. Knightly, “Modeling per-flow thighput and capturing starvation in CSMA multi-hop
wireless networks,IEEE/ACM Trans. Netwvol. 16, no. 4, pp. 864-877, 2008.



(3]
(4]
(5]
(6]
(7]
(8]
9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

[18]

23

R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin, “Tylaput analysis in multihop CSMA packet radio networks,”
IEEE Transactions on Communicationsl. 35, pp. 267-274, 1987.

M. Durvy, O. Dousse, and P. Thiran, “On the fairness of larggVlBShetworks,” IEEE JSAC vol. 27, pp. 1093-1104,
20009.

F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wisetestworks, vol. 2: Applications,Foundations and
Trends in Networkingvol. 4, no. 1-2, pp. 1-312, 2009.

M. Haenggi and R. K. Ganti, “Interference in Large Wireless Netsd Foundations and Trends in Networkingol. 3,
no. 2, pp. 127-248, 2009.

F. Baccelli, B. Blaszczyszyn, and P. Mlethaler, “An aloha protocol for multihop mobile wireless network&EEE
Transactions on Information Thearyol. 52, no. 2, pp. 421-436, 2006.

F. Baccelli, B. Blaszczyszyn, and P.(Mlethaler, “A stochastic model for spatial and opportunistic aloH8EE JSAC
vol. 27, no. 7, pp. 1105-1119, 2009.

F. Baccelli and B. Bfaszczyszyn, “A New Phase Transition for dlobelays in MANETS,”In Proc. IEEE INFOCOM
201Q

H. Q.Nguyen, F.Baccelli, and D.Kofman, “A Stochastic Geomeinalysis of Dense IEEE 802.11 NetworkdEEE
INFOCOM 2007

A. Busson and G. Chelius, “Point processes for interferenadating in CSMA/CA ad-hoc networksPE-WASUN 2009

I. Palasti, “On some random space filling problefibl. Math. Inst. Hung. Acad. Sgvol. 1, no. 5, pp. 353-359, 1960.
A. Hasan and J. Andrews, “The guard zone in wireless ad howanks,” IEEE Trans. on Wireless Comn®6(3), pp.
897-906, 2007.

M. Kaynia, G.E.dien, and N. Jindal, “Impact of fading on thefpemance of ALOHA and CSMA,'SPAWC 2009

R. K. Ganti, J. G. Andrews, and M. Haenggi, “High-SIR Transsitia Capacity of Wireless Networks with General Fading
and Node Distribution,1EEE Trans. on Information Theoryol.57, no.5, pp.3100-3116, May 2011.

R, K. Ganti, F. Baccelli, J. G. Andrews, “Series Expansion faelference in Wireless Networks”, submitted to IEEE
Trans. on Information Theory, 2011; available on-line at: http://arxiyains/1101.3824.

Y. Kim, F. Baccelli and G. de Veciana, “Spatial Reuse and Fa#riedMobile Ad-Hoc Networks With Channel-Aware
CSMA Protocols”, submitted to IEEE Trans. on Information Theory,22@Wailable on-line at: http://users.ece.utexas.edu/
~gustavo/publications.php.

G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominahnamacteristics of residential broadband internet traffic,”
IMC '09.



I ' T PEER] 1
0.4 et
T 1
0.35
4 0.8
3 03
<
(o))
>
o 0.25 1 0.6
e
|_
% 0.2
g _—
& ==r=——d 04
o 0.15
>
<
0.1 )
sim - Throughput—— 4 0.2
mod -_Throu&;hput
0.05¥ sim/mod - g -----e-
sim-g —-—-
mod-p —-—-
0 L L I 0
0.01 0.1 1 10 100

Sensing thresholdy

pr and g probabilities

24

Fig. 1. Spatial average of AP throughput (left y axis), average in&sson probabilitypr and average success probability

(right y axis), as function of the sensing thresheldfor A4 = 1/7, Rayleigh fading.
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0 . . . . . . . * . Fig. 7. Geometry used to compute joint/conditional proba-
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Fig. 6. Example of topology generated by a Efat process
with A\ = 10/7, R = 1.
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Fig. 10. CDF of AP throughput, for different values of the sensingsthoéd o, in the case of a Mé&tn process withk = 1,

A =10/, and the corresponding Poisson (with the same AP density), for Rayfteigg. Comparison between analysis (left

plot) and simulation (right plot).

Fig. 11.

case 2r<R

case 2r>R

its closest Access Poil, in the case of a M&tn process of APs.

lllustration of the two cases arising in the approximate computatitimeadistance distribution between a nodend
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APPENDIXA
COMPUTATION OF FUNCTIONA(z, A,).

Let 0 andx be two APs at distance from each other, and let andt, be their marks. We
can express(x, \,) as

Pg*{x € &7,0 € &7}

Wz, Ay) =P {x € ®r|0c dr} =

: (20)

wherePg’j{} is the probability law associated to the point procéss+ 0 + x; observe that
ng;{x € &7,0 € dr} is the probability that two APs placed at distancdrom each other

transmit concurrently, Whereé’%’:{o € ®r} is the probability thad transmits, given that there
is another AP at distance from it (not necessarily concurrently transmitting).

We start computing the joint probability th@tandx transmits concurrently. When considering
all possible combinations aof, andty, we can limit ourselves to the cagg < t,, and then
multiply the result by two (the casg < to is symmetric). Besides nod@&@andx, we need to
consider the superposition of two independent homogenBoisson point processes: a process
of intensity \,to, related to those nodes having mark< ¢, that can be sensed by nodes
and/or nodex; a process of intensity(¢, —to), related to those nodes having magk< ¢ < ty
that can be sensed by nogeonly. Hence we can expre@%’;‘{x € dr,0€ dr} as

X 4 ! ! — — z)dz — z)dz

Pe*{x € ®7,0 € 1} =2Gp (—PZ(I)) /0 /t e Naltxt0) Jp2 Sx(#)dz p o =Aato Je2 Soorx(x)dz iy,
(21)

In the above equation, the ter@y- (%) corresponds to the probability that the AP transmitting
first is not sensed by the other, which is the only requirent@hiave the two nodes concurrently
transmitting when there are no other nodes in the netwgykz) is the probability that nod&
senses a node at Sp..x(z)=1—(1—S50(2z))(1—5x(z)) is the probability that at least one node
(between0 andx) senses a node at

The conditional probabilityPg’;‘{O € ®,} can be obtained in a similar way, this time
considering all possible combinations if and,:

1 tx 1
Y Y ey
0 0

tx

o —/\atof 2 So(Z) dz dt dt
<Pl<x>) T o} dix
(22)

In the above expressiol; (Pf@)) is the probability thad does not sense the transmission of

x, whentg > t4.



