Inactivation of rat liver glucocorticoid receptor by molybdate
Effects on both non-activated and activated receptor complexes

Noriko MURAKAMI and Virinder K. MOUDGIL*
Department of Biological Sciences, Oakland University, Rochester, MI 48063, U.S.A.

(Received 4 January 1981/Accepted 27 May 1981)

When freshly prepared glucocorticoid–receptor complex from rat liver cytosol was incubated at 23°C in the presence of sodium molybdate, its subsequent binding to isolated nuclei, DNA–cellulose and ATP–Sepharose was blocked. In addition, binding to these acceptors by cytosol receptor complex fractionated with (NH₄)₂SO₄ was also blocked by incubation of the complexes with 50mM-sodium molybdate. However, molybdate had no effect on the binding of activated receptor complexes to ATP–Sepharose. Molybdate was also effective in extracting the nuclear- and DNA–cellulose-bound glucocorticoid–receptor complexes in a dose-dependent manner. Molybdate appears to exert its effects directly on the receptor by interacting with both non-activated and activated receptor forms.

Receptors in freshly prepared cytosol can be activated† by incubation at elevated temperatures in presence of hormones (Milgrom et al., 1973), by exposure to high ionic strength (Baxter, 1972; Higgins et al., 1973), or by an incubation with ATP at 4°C (John & Moudgil, 1979; Moudgil & John, 1980a; Moudgil & Eessalu, 1980). Once activated, receptors acquire an increased affinity for isolated nuclei (Lohmar & Toft, 1975; Buller et al., 1975), DNA (Yamamoto & Alberts, 1972; Toft, 1972) and ATP–Sepharose (Miller & Toft, 1978; Moudgil & John, 1980b).

More recent studies have revealed that the addition of molybdate blocks the activation process of steroid receptors (Toft & Nishigori, 1979; Leach et al., 1979; Moudgil et al., 1980; Nishigori & Toft, 1980). However, no inhibitory effect was evident in these studies when molybdate was added to preparations that contained an already activated receptor. Present studies indicate that molybdate blocks the activation in vitro and the acceptor binding of activated glucocorticoid receptor. Therefore, both non-activated and ‘activated’ receptor forms are sensitive to molybdate action. Furthermore, the activated receptor bound to acceptors can be extracted by molybdate, thus suggesting an interaction between glucocorticoid receptor and molybdate.

Materials and methods

All reagents used were of analytical grade.
[6,7(N)³H]Triamcinolone acetonide (30–35 Ci/mmol) was obtained from New England Nuclear; NaF, Na₂MoO₄ and Na₂HAsO₄ were from Merck; levamisole hydrochloride was from Aldrich; K₂HPO₄ was from Baker Chemical Co., dextran T-70 and Sepharose 4B were from Pharmacia; cellulose powder (Cellex 410) was from BioRad; ATP was from Boehringer-Mannheim: Na₂WO₄ was from Fisher Chemical Co., and the other reagents were purchased from Sigma.

Buffers

The following buffers were prepared and stored at 4°C: buffer A: 50mM-Tris/HCl/12mM-thioglycolate/10% (v/v) glycerol, pH 8.0; buffer B: 500mM-sucrose/50mM-Tris/HCl/25mM-KCl/2mM-MgCl₂, pH 7.5; buffer C: 10mM-Tris/HCl/2mM-MgCl₂/20% (v/v) glycerol, pH 7.5; buffer D: 50mM-Tris / HCl / 12mM-monothioglycerol / 10mM-KCl/20% (v/v) glycerol, pH 8.0; buffer E: 10mM-Tris/HCl/1mM-MgCl₂/10% (v/v) glycerol, pH 7.5; buffer F: 50mM-Tris/HCl/12mM-monothioglycerol/20% (v/v) glycerol/1mM-KCl, pH 8.0; buffer G: 50mM-Tris/HCl/12mM-monothioglycerol, pH 8.0.

Preparation of DNA–cellulose and ATP–Sepharose

DNA–cellulose was prepared according to the method of Alberts & Herrick (1971). Calf thymus DNA (type II) was linked to Cellex-410 and these preparations contained 1.5–2mg of DNA/g of DNA.
packed DNA-cellulose as quantified by the method of Burton (1956).

ATP was covalently linked to Sepharose 4B as described previously (Moudgil & Toft, 1975, 1977) and preparations used here contained 7–10 μmol of nucleotide per ml of packed Sepharose as determined by phosphate analysis (King, 1932).

Preparation of glucocorticoid receptor

Male albino rats of Yale strain (150–200 g) were obtained from King Animal Lab. Inc., Oregon, WI, U.S.A. The animals were bilaterally adrenalectomized, kept on 0.9% NaCl for 3 days and were sacrificed by cervical dislocation. The whole liver tissue was removed, rinsed with cold 0.9% NaCl, minced and homogenized in 4 vol. (w/v) of buffer A with a Tissumizer (Tekmar, model SDT). The homogenate was centrifuged at 12,000 g for 10 min and then at 150,000 g for 1 h. The resultant supernatant was incubated with 10 nM [3H]triamcinolone acetonide at 4°C for 4 h to form a complex.

Activation of cytosol glucocorticoid–receptor complex

The freshly prepared cytosol glucocorticoid–receptor complexes were heat-activated by incubation at 23°C for 40 min and then chilled for 15 min on ice. The mixtures were then mixed with pelleted dextran-coated charcoal (0.5% Norit A/0.05% dextran T-70 made in 10 mM-Tris/ HCl/12 mM-monothioglycerol, pH 8.0) for 5 min to avoid dilution. The activated receptor complexes were recovered by centrifugation twice at 10,000 g for 10 min. The [3H]triamcinolone acetonide–receptor complexes were also fractionated with (NH₄)₂SO₄ at 35% saturation. The resultant precipitate, after centrifugation at 12,000 g for 20 min, was dissolved in buffer A and dialysed against the same buffer for 4 h at 4°C with buffer changes every hour. After centrifugation at 12,000 g for 20 min the supernatant was used as the (NH₄)₂SO₄–activated complex. The heat-activated and (NH₄)₂SO₄–activated complexes were used for the nuclei, DNA–cellulose and ATP–Sepharose binding assay under various conditions.

Preparations of nuclei

Rat liver nuclei were prepared by method III of Spelsberg et al. (1974) with slight modifications. The nuclear fractions that sedimented through a 1.7–1.8 M-sucrose cushion were rinsed twice with buffer B, resuspended in buffer C using a Teflon/glass homogenizer and filtered through organza to remove cell debris and polysaccharides. The nuclear suspension was divided into 1 ml fractions and stored at −20°C.

To isolate nuclei labelled by administration in vivo of steroid, [3H]triamcinolone acetonide (15 μCi/150 g body wt.) dissolved in 0.9% NaCl was injected intravenously and the whole liver was removed 1 h after injection. The nuclear fraction was prepared by the same procedure as described above. The DNA content of nuclear preparations was determined by the method of Burton (1956).

Determination of [3H]triamcinolone acetonide–receptor complex binding to nuclei, DNA–cellulose, and ATP–Sepharose

DNA–cellulose suspension (10 mg/ml) in buffer D was divided equally into a series of tubes (13 mm × 100 mm) and centrifuged at 1000 g for 10 min to obtain the DNA–cellulose pellet (15–30 μg of DNA). ATP–Sepharose suspension (1 ml/tube) was centrifuged at 1000 g for 10 min and rinsed twice with buffer D and the pellet was used for assays. The nuclear preparation from rat liver (200–1500 μg of DNA) was directly used for the assays. The [3H]triamcinolone acetonide–receptor complexes, activated either by incubation at 23°C for 40 min or by treatment with (NH₄)₂SO₄, were incubated with three different acceptors under various conditions. Following gentle shaking at 4°C for 40 min, the incubation mixtures were sedimented by centrifugation at 1000 g for 10 min, and rinsed three times with 3 ml of either buffer E (for nuclei) or buffer D (for DNA–cellulose and ATP–Sepharose).

Nuclear preparations after washing with buffer E were directly transferred into counting vials, whereas both DNA–cellulose and ATP–Sepharose were incubated with buffer F at 4°C for 30 min to extract the resin-bound [3H]triamcinolone acetonide–receptor complexes.

Levamisole, NaF, K₂HPO₄ and Na₂Na₂AsO₄, Na₂MoO₄, Na₂WO₄, Na₂Cr₂O₇, NaVO₃, Na₂CrO₇, NaHCO₃ and Na₂B₄O₇ were dissolved in buffer G and used to determine their effect on the nuclear uptake of activated receptor complexes.

Effect of molybdate on the dissociation of [3H]triamcinolone acetonide–receptor complex

To determine the effect of molybdate on the dissociation of [3H]triamcinolone acetonide from the activated complex during the incubation period, heat-activated [3H]triamcinolone acetonide–receptor complexes were treated with charcoal and then incubated with different concentrations of molybdate at 4°C for 40 min in a final volume of 0.5 ml. After this the preparations were again mixed with dextran-coated charcoal and the radioactivity of macromolecule-bound [3H]triamcinolone acetonide was measured.

To determine whether the effect of molybdate is reversible, (NH₄)₂SO₄-activated [3H]triamcinolone acetonide–receptor complexes were incubated with buffer G (control) or 50 mM-sodium molybdate at 4°C for 30 min. Both control and molybdate-treated
samples were then dialysed against buffer A for 3 h at 4°C and centrifuged at 10000 g for 20 min to remove the aggregated proteins. Following the above treatment, the aliquots containing \[^3\text{H}\]triamcinolone acetonide–receptor complexes were incubated at 0°C or 23°C for 40 min. The extent of nuclear uptake of the complexes was determined as described earlier.

Extraction of \[^3\text{H}\]triamcinolone acetonide–receptor complexes bound to nuclei, DNA–cellulose and ATP–Sepharose

The procedures of extraction of acceptor-bound \[^3\text{H}\]triamcinolone acetonide–receptor complexes consisted of two steps. The complexes were first incubated with rat liver nuclear preparation, DNA–cellulose, and ATP–Sepharose as described previously. The pellets of each acceptor were incubated with different concentrations of molybdate or KCl dissolved in buffer G, at 4°C for 30 min with gentle shaking. After centrifugation at 10000 g for 10 min, the radioactivity in the supernatant was measured directly. A small portion of the extracts was used for sucrose gradient analysis.

To investigate whether the molybdate-extracted receptor has the ability to rebind to nuclei or to DNA–cellulose, (NH\(_4\))\(_2\)SO\(_4\)-activated \[^3\text{H}\]triamcinolone acetonide–receptor complexes were incubated with nuclei or DNA–cellulose. Following the extraction of acceptor-bound complexes with 75 mM-molybdate, the resultant extracts from nuclei and DNA–cellulose were dialysed against buffer A. Equal portions of (NH\(_4\))\(_2\)SO\(_4\)-fractionated complexes were also dialysed and served as control. The nuclear and DNA–cellulose binding assays were performed with the molybdate-extracted and the activated \[^3\text{H}\]triamcinolone–receptor complex, according to the methods described previously.

Sucrose density gradient analysis

Linear 5–20% sucrose gradients (4.4 ml) were prepared in buffer containing 10 mM-Tris/HCl/12 mM-monothioglycerol/0.3 M-KCl/(pH 8.0) by using a Beckman gradient former. Samples (0.25 ml) containing the molybdate-extracted \[^3\text{H}\]triamcinolone acetonide–receptor complexes from nuclei and DNA–cellulose were layered on separate gradients. The heat-activated \[^3\text{H}\]triamcinolone acetonide–receptor complexes from liver cytosol were diluted with buffer G to lower the glycerol concentration before layering on the gradient. The gradients were centrifuged at 150000 g for 16 h on a Beckman LS-75 ultracentrifuge.

[^14\text{C}]Ovalbumin (Rice & Means, 1971) was layered onto a separate gradient as a standard for the determination of sedimentation coefficients (Martin & Ames, 1961). The fractions were collected by piercing the bottom of each tube.

For measurement of radioactivity, aqueous samples were combined with 5 ml of scintillation fluid consisting of toluene (RPI)/Spectrafluor (Amersham) (1000:42, v/v), mixed thoroughly and cooled before counting.

Results

Effect of molybdate on the heat-activation of \[^3\text{H}\]triamcinolone acetonide–receptor complex from rat liver cytosol

Based on several reports (Toft & Nishigori, 1979; Leach et al., 1979; Moudgil et al., 1980; Nishigori & Toft, 1980; Shyamala & Leonard, 1980; Noma et al., 1980), it is now generally believed that heat activation of steroid–receptor complexes is blocked in the presence of sodium molybdate. The extent of activation in these studies was determined by measuring the binding of receptor complexes to ATP–Sepharose (Nishigori & Toft, 1980), DNA–cellulose (Leach et al., 1979) and nuclear suspensions (Noma et al., 1980). Fig. 1 illustrates a typical profile of the heat activation of glucocorticoid–receptor complexes in the presence of different concentrations of molybdate. The three acceptors used to measure receptor activation appeared to differ somewhat in their affinity for molybdate-treated preparations. A 50% inhibition in the binding of receptor to nuclei and DNA–cellulose was observed at 10 mM-molybdate, whereas much higher concentrations (>50 mM) of the inhibitor were required to inhibit receptor activation completely. The binding of receptor complexes to ATP–Sepharose was much more sensitive to the presence of molybdate during activation and was completely blocked by 5–10 mM-molybdate.

Effect of molybdate on acceptor binding by activated receptor complexes

The freshly formed cytosol \[^3\text{H}\]triamcinolone acetonide–receptor complexes were activated by incubation at 23°C for 40 min. The effect of molybdate on the already activated preparations was determined by measuring the binding of receptor to nuclei, DNA–cellulose and ATP–Sepharose in the presence of different concentrations of molybdate (Fig. 2a). A 50% inhibition in the binding of receptor to nuclear preparation and DNA–cellulose was observed with about 30 mM-molybdate. At higher concentrations (>50 mM) molybdate completely blocked the binding of activated complexes to nuclei and DNA–cellulose. However, only a minor inhibitory effect of molybdate was seen on the receptor binding to ATP–Sepharose.

To support the finding that molybdate is effective against an activated receptor and to eliminate the possibility that the cytosol preparations used in Fig. 2(a) might have been only partially activated,
activated cytosol preparations (Fig. 2a). However, the molybdate concentrations required for the inhibitory effects were slightly greater than those seen in Fig. 2(a). Again, no inhibition in the binding of receptor to ATP–Sepharose was observed under these conditions (Figs. 2a and 2b).

Since the conductivity of sodium molybdate was found to be comparable to that of KCl on an equimolar basis, KCl was included in parallel series of samples. The results of Fig. 2, therefore, suggest that molybdate may be interacting with the activated glucocorticoid–receptor complex and its effects may not be due to its ionic strength. In addition, molybdate may bind to the site(s) that survive(s) the process of receptor activation.

Effect of molybdate and KCl on the extraction of acceptor-bound \([3H]\)triamcinolone acetonide receptor complex

Fig. 3 shows that the majority (approx. 70%) of \([3H]\)triamcinolone acetonide–receptor complex bound to nuclear preparation (Fig. 3a) or DNA–cellulose (Fig. 3b) could be extracted by molybdate in a concentration-dependent manner. The receptor bound to ATP–Sepharose showed insensitivity to molybdate and could not be extracted (Fig. 3c).

Sucrose-density-gradient analysis of molybdate-extracted receptor

Aliquots of molybdate extracts from nuclear preparations and DNA–cellulose were applied onto sucrose gradients containing 0.3 m-KCl. Fig. 4 represents the sedimentation profiles of \([3H]\)triamcinolone acetonide–receptor complexes treated under different conditions before layering. The heat-activated and molybdate-extracted DNA-bound receptor sedimented as an approx. 4S entity whereas the receptor extracted by molybdate treatment from nuclei showed an additional smaller peak of radioactivity corresponding to about 2S.

Results similar to those presented in Fig. 3 were obtained when the nuclear \([3H]\)triamcinolone acetonide–receptor complexes were formed in vivo by administration of \([3H]\)triamcinolone acetonide. Nuclear preparations containing the labelled complex were incubated in vitro with different concentrations of sodium molybdate for the extraction of receptor (Fig. 5a). The nuclear receptor was extractable with 50 mM-molybdate whereas KCl at same concentrations was ineffective. Although nuclear receptor complexes formed both in vivo and in vitro were extractable by sodium molybdate the percent extraction differed in the two cases. Only 50% of the nuclear receptor formed in vivo could be extracted by molybdate whereas greater (approx. 70%) receptor content was extractable in preparations where nuclear receptor complexes were formed in vitro. The less efficient extraction of nuclear

The following experiment was performed. The cytosol preparations containing \([3H]\)triamcinolone acetonide–receptor complexes were fractionated with 35%-satd. \((NH_4)_2SO_4\). The receptors in such preparations have been reported to be in an activated state (Buller et al., 1975) and cannot be activated further by heat (Lohmar & Toft, 1975). When \((NH_4)_2SO_4\)-fractionated receptor was incubated with different concentrations of molybdate, subsequent analysis of nuclear and DNA binding revealed patterns (Fig. 2b) similar to those seen with heat-
Glucocorticoid receptor inactivation by molybdate

Fig. 2. Effect of molybdate on the uptake of glucocorticoid−receptor complex by acceptors

$[^3]H$Triamcinolone acetonide−receptor complexes from rat liver cytosol activated by incubation at 23°C for 40 min (53 500 d.p.m.) (a), or by treatment with (NH$_4$)$_2$SO$_4$ (350 000 d.p.m.) (b), were incubated with nuclei (204 µg of DNA, O), DNA−cellulose (15 µg of DNA, ○), or ATP−Sepharose (1.0 ml of suspension, ▲) with and without different concentrations of sodium molybdate, in a total volume of 1.0 ml. The binding to acceptors was measured as described in the Materials and methods section. A 100% binding in Fig. 2(a) equals 5000, 4500 and 5250 d.p.m. for nuclear, DNA−cellulose, and ATP−Sepharose binding, respectively, and 63 000, 83 000 and 80 000 d.p.m. for Fig. 2(b).

Fig. 3. Effect of molybdate and KCl concentrations on the extraction of nuclear−, DNA−cellulose− and ATP−Sepharose−bound $[^3]H$triamcinolone acetonide−receptor complexes

Aliquots (1 ml) containing nuclear suspension (a, 300 µg of DNA), DNA−cellulose (b, 20 µg of DNA) and ATP−Sepharose (c) were incubated at 4°C for 40 min with heat-activated complexes (104 880 d.p.m.). Following their uptake, $[^3]H$triamcinolone acetonide−receptor complexes were extracted by incubation of acceptors with 1 ml of buffer G containing different concentrations of molybdate or KCl. The total binding of $[^3]H$triamcinolone acetonide−receptor complexes to each acceptor was expressed as 100% and equals 37 369, 31 102 and 40 982 d.p.m. for nuclei, DNA−cellulose, and ATP−Sepharose, respectively. O—O, KCl−extracted; ▲—▲, molybdate−extracted. Inset (d): Determination of conductivity of sodium molybdate and KCl. Different solutions containing various concentrations of sodium molybdate and KCl were prepared in buffer G. The conductivity was determined by using a conductivity bridge (Yellow Springs Instrument Co., model 31). O—O, KCl; ▲—▲, sodium molybdate.
Fig. 4. Sucrose-gradient analysis of the molybdate-extracted [3H]triamcinolone acetonide–receptor complexes from nuclei and DNA–cellulose
DNA–cellulose (300 μg of DNA) and nuclear preparation (1 mg of DNA) were incubated with heat-activated [3H]triamcinolone acetonide–receptor complex at 4°C for 40 min as described in the Materials and methods section. The nuclear- and DNA–cellulose-bound [3H]triamcinolone acetonide–receptor complexes were then extracted by incubation with buffer G containing 75 mM-molybdate. Aliquots (0.2 ml) containing extracted receptor were layered onto 5–20% linear sucrose gradients (4.4 ml) containing 0.3 M-KCl and centrifuged at 150,000 g for 16 h. [3H]Ovalbumin was layered onto a separate gradient and served as a sedimentation standard (3.7 S). Fractions (0.2 ml) were collected by piercing the bottom of the gradient tubes. •—•, nuclear extract; x—x, DNA–cellulose extract; ○—○, heat-activated complex.

Table 1. Effect of various compounds on the nuclear uptake of activated [3H]triamcinolone acetonide–receptor complexes

<table>
<thead>
<tr>
<th>Compound</th>
<th>Nuclear-bound [3H]triamcinolone acetonide–receptor complex (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>Levamisole</td>
<td>100</td>
</tr>
<tr>
<td>NaF</td>
<td>100</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>91</td>
</tr>
<tr>
<td>Na₂B₄O₇</td>
<td>200</td>
</tr>
<tr>
<td>KCl</td>
<td>100</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>80</td>
</tr>
<tr>
<td>Na₂HAsO₄</td>
<td>79</td>
</tr>
<tr>
<td>Na₂MoO₄</td>
<td>50</td>
</tr>
<tr>
<td>Na₂WO₄</td>
<td>0</td>
</tr>
<tr>
<td>Na₂CrO₄</td>
<td>27</td>
</tr>
<tr>
<td>Na₂Cr₂O₇</td>
<td>10</td>
</tr>
<tr>
<td>NaVO₃</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 2. Effects of dialysis on the reversibility of molybdate action
(NH₄)₂SO₄-fractionated [3H]triamcinolone acetonide–receptor complexes were incubated with buffer (10 mM-Tris/HCl/12 mM-monothioglycerol, pH 8.0) or 50 mM-sodium molybdate at 4°C for 30 min. Identical portions were then dialysed against buffer A for 3 h at 4°C. After this treatment, the samples containing receptor complexes were incubated at 0°C or 23°C for 40 min. The extent of nuclear uptake was determined by incubating the nuclear suspension (204 μg of DNA) with 0.4 ml of [3H]triamcinolone acetonide–receptor complex and 0.3 ml of the above buffer at 4°C for 40 min.

<table>
<thead>
<tr>
<th>Sample</th>
<th>[3H]triamcinolone acetonide (d.p.m./tube)</th>
<th>[3H]Triamcinolone acetonide complex added (d.p.m./tube)</th>
<th>Nuclear bound [3H]triamcinolone acetonide complex (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control, dialysis</td>
<td>50955 ± 515</td>
<td>246360</td>
<td>20.7</td>
</tr>
<tr>
<td>+50 mM-sodium, dialysis</td>
<td>47310 ± 2419</td>
<td>234480</td>
<td>20.2</td>
</tr>
</tbody>
</table>
Glucocorticoid receptor inactivation by molybdate

Fig. 5. Effects of molybdate on the extraction in vitro of nuclear $[^{3}H]$triamcinolone acetonide administered in vivo

Nuclear suspension was prepared from the liver of a rat given 15 μCi of $[^{3}H]$triamcinolone acetonide for 1 h as described in the Materials and methods section. (a) The nuclear preparations (300 μg of DNA) were incubated at 4°C for 30 min with buffer G containing different concentrations of sodium molybdate (●) or KCl (○) in a final volume of 1.0 ml. A 100% extraction equals 8090 d.p.m. (b) Sedimentation rate analysis of molybdate-extracted $[^{3}H]$triamcinolone acetonide–receptor complexes from the nuclear complex formed in vivo. The $[^{3}H]$triamcinolone acetonide–receptor complexes from the nuclear preparation were extracted with 75 mM-molybdate and 0.2 ml aliquots (2700 d.p.m.) were layered on 5–20% linear sucrose gradients containing 0.3 M-KCl. The gradients were centrifuged at 150 000 g for 16 h and 0.2 ml fractions were collected. The entire fractions were used to measure the radioactivity.

Receptor preparations at 30 mM concentration and their effects were determined by a nuclear binding assay. As seen in Table 1, molybdate and related compounds of groups 5B and 6B were most effective in blocking the nuclear uptake of activated receptors whereas NaF, levamisole, KCl and NaHCO$_3$ had no effect at these conditions. Other known inhibitors of phosphatases, K$_2$HPO$_4$ and Na$_2$HAsO$_4$, also caused noticeable inhibition. Interestingly, borate increased the nuclear uptake of glucocorticoid–receptor complexes two-fold.

Reversibility of molybdate effects

The results of attempts to determine the reversibility of molybdate effects on an already activated glucocorticoid receptor are summarized in Table 2. Aliquots of (NH$_4$)$_2$SO$_4$-fractionated receptor complexes were incubated with 50 mM-sodium molybdate at 4°C for 30 min. The control samples received only buffer G. Both groups were dialysed for 3 h at 4°C. The resulting receptor preparations were further kept at 0°C or 23°C to determine whether molybdate treatment converted the activated receptor to a non-activated form which could be reactivated. The results of Table 2 indicate that the inhibitory effects of molybdate on an activated receptor are completely reversed upon dialysis. In addition it is clear that molybdate-treated receptor remains in an activated form.

Ability of $[^{3}H]$triamcinolone acetonide–receptor complex to rebind to acceptors after extraction with molybdate

Since the effects of molybdate were found to be reversible, whether the extraction of nuclear- or DNA–cellulose-bound receptors by molybdate affected the integrity of the receptor was examined. Receptor preparations fractionated with (NH$_4$)$_2$SO$_4$ were incubated with nuclei and DNA–cellulose and the acceptor-bound complexes were extracted with 75 mM-sodium molybdate. After a thorough dialysis, samples of the complexes were incubated with nuclei or DNA–cellulose. Not only was the effect of molybdate completely reversed, but the entire $[^{3}H]$triamcinolone acetonide–receptor complex extracted with molybdate retained its capacity to bind to nuclear sites or DNA–cellulose (Table 3). These observations indicate that the extraction of receptor by molybdate does not destroy its capacity to bind to nuclei or DNA.
Discussion

Studies from various laboratories have established that molybdate blocks the process of receptor activation and has no effect on the binding of activated receptor to nuclei, DNA–cellulose, phosphocellulose and ATP–Sepharose (Toft & Nishigori, 1979; Leach et al., 1979; Nishigori & Toft, 1980). In these studies the concentration of molybdate used to observe its inhibitory effects was limited to 10–20 mM. Results of the present studies indicate that molybdate is, in fact, active against both non-activated and activated glucocorticoid receptor. The effects of molybdate on the process of activation (Fig. 1) are in agreement with those from other studies (Toft & Nishigori, 1979; Leach et al., 1979; Nishigori & Toft, 1980). However, much higher concentrations of molybdate were required to block the binding of activated receptor to acceptors (Fig. 2). Although the reasons why higher concentrations of molybdate are required to inhibit activated receptor are not clear, the activated receptor may have undergone a change in conformation that is not sensitive to lower concentrations of molybdate. Furthermore, the inhibition in the binding of activated receptor to acceptors in the presence of molybdate is not due to an incomplete activation of cytosol preparations, since (NH₄)₂SO₄-fractionated receptor also shows sensitivity to the presence of molybdate.

Previous studies have suggested that phosphorylation mechanisms may be involved in determining the level of active receptor in the cell (Nielsen et al., 1977b; Leach et al., 1979). Based on the effects of molybdate and other phosphatase inhibitors on the process of receptor activation, dephosphorylation of receptor protein has been suggested as a requirement for activation (Leach et al., 1979; Barnett et al., 1980). Studies presented in this paper suggest that molybdate is effective against the receptor in both its non-activated and activated forms (Figs. 1–3). The effects of molybdate may not be indirect or due entirely to inhibition of phosphatases.

The activated receptor complexes bound to DNA–cellulose or nuclear sites are extracted by molybdate in a dose-dependent manner (Fig. 4). Furthermore, the molybdate-extracted receptor retains its ability to bind to DNA or nuclear sites (Table 2), although upon nuclear binding, it undergoes a change which results in the appearance of a smaller (2S) form of glucocorticoid receptor. It is not clear whether the smaller form is a subunit or a dissociated region of glucocorticoid-receptor protein, or merely an artifact.

At present, the mode of action of molybdate is not clear. This paper presents new evidence that molybdate is effective against both non-activated and activated glucocorticoid receptor. At low concentrations (<20 mM) molybdate is effective against only non-activated receptor, whereas at higher concentrations (>20 mM) its effects can be observed on the activated receptor as well. It is also possible that at higher concentrations molybdate may exert some ionic effects which may contribute to its ability to block acceptor binding and extract glucocorticoid-receptor complexes. However, equimolar concentrations of KCl and other ionic buffers seem ineffective in causing molybdate-like effects. Nishigori & Toft (1980) have shown that molybdate inhibition of avian progesterone receptor activation is pH-dependent, molybdate being ten times more effective at pH 7.0. The present studies were performed at pH 8.0, and it is possible that at a lower pH molybdate may be more effective against activated receptor at much lower concentrations. There is a good probability that molybdate causes its effects by binding to the receptor via a site which is retained after activation. Molybdate does not appear to convert the activated receptor into an inactivated state in an irreversible manner, since the molybdate-pretreated or molybdate-extracted receptor is able to bind nuclei and DNA–cellulose after dialysis. The

Table 3. Effect of dialysis on the capacity of molybdate-extracted glucocorticoid–receptor complex to rebind the acceptors

<table>
<thead>
<tr>
<th>Bound [3H]triamcinolone</th>
<th>[3H]triamcinolone</th>
<th>Acceptor-bound [3H]triamcinolone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>acetonide complex added</td>
<td>acetonide complex (%)</td>
</tr>
<tr>
<td>A</td>
<td>(d.p.m./tube)</td>
<td>(d.p.m./tube)</td>
</tr>
<tr>
<td>A'</td>
<td>17 500</td>
<td>85 000</td>
</tr>
<tr>
<td>B</td>
<td>29 000</td>
<td>85 000</td>
</tr>
<tr>
<td>B'</td>
<td>26 500</td>
<td>85 000</td>
</tr>
</tbody>
</table>
present studies advance our knowledge about molybdate action, but the exact mode of its operation must await future investigations.

We wish to thank Dr. David O. Toft, Mayo Clinic, Rochester, MN, U.S.A., for his helpful comments and encouragement. This work was supported by the National Institutes of Health Grant No. AM-20893.

References

