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Organizations typically employ the ABC inventory classification technique to have an efficient control on a huge amount of
inventory items. The ABC inventory classification problem is classification of a large amount of items into three groups: A, very
important; B, moderately important; and C, relatively unimportant. The traditional ABC classification only accounts for one
criterion, namely, the annual dollar usage of the items. But, there are other important criteria in real world which strongly affect
the ABC classification. This paper proposes a novel methodology based on a common weight linear optimization model to solve
the multiple criteria inventory classification problem. The proposed methodology enables the classification of inventory items via
a set of common weights which is very essential in a fair classification. It has a remarkable computational saving when compared
with the existing approaches and at the same time it needs no subjective information. Furthermore, it is easy enough to apply for
managers. The proposed model is applied on an illustrative example and a case study taken from the literature. Both numerical
results and qualitative comparisons with the existing methods reveal several merits of the proposed approach for ABC analysis.

1. Introduction

Inventory classification using ABC analysis, which is based
on the Pareto principle, is one of the most widely employed
inventory control techniques in practice [1, 2]. ABC analysis
classifies the inventory items or stock keeping units (SKUs)
into three classes, namely, A (very important), B (moderately
important), and C (relatively unimportant) requiring differ-
ent level of control for each class and, at the same time, setting
the same service level for all SKUs in a class. More details
on inventory control policies for these classes of items can be
found in Silver et al. [3].

Traditional ABC analysis considers only a singlemeasure,
most often annual dollar usage, to classify inventory items.
However, in addition to this criterion, inventory holding
unit cost, part criticality, length and variability of replenish-
ment lead time, commonality, obsolescence, substitutability,
number of requests per year, scarcity, durability, reparability,
order size requirement, stockability, demand distribution,

and stock-out unit penalty cost are recently recognized as
other important criteria which affect inventory classification
[1, 4, 5]. Thus, it can be realized that the traditional ABC
analysis may be an inefficient method for appropriate clas-
sification of inventory items in practice [6–8].

Several methods have been suggested to solve the prob-
lemofmultiple criteria inventory classification (MCIC) in the
literature. Bhattacharya et al. [9] and Rezaei and Dowlatshahi
[10] provide comprehensive reviews of various methods
introduced in the literature forMCIC issue.The implementa-
tion of analytic hierarchy process (AHP) to study this issue is
addressed by Flores et al. [11] and Partovi and Burton [12].
More recently, a fuzzy AHP-DEA approach is proposed by
Hadi-Vencheh andMohamadghasemi [13] to solve theMCIC
problem. However, when applying the AHP method, it is
often a difficult task for the decision maker to accurately
assign exact values to pairwise comparisons. Also, expert’s
opinion and judgment may play important role in deriving
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the criteria weights which consequently can affect ABC
classification results considerably.

Bhattacharya et al. [9] propose a distance-based multicri-
teria consensus framework based on the concepts of positive-
ideal and negative-ideal solutions for the ABC analysis. The
authors also affirm that constructing fuzzy models such
as fuzzy TOPSIS and neurofuzzy hybrid models would be
suitable when considering the ambiguity of attribute values.
An application of the case-based distance model to solve the
MCICproblem can be seen inChen et al. [14]. Recently, a new
approach based on loss profit is proposed to deal with ABC
analysis [15].

Application of artificial intelligence methods such as
genetic algorithms, particle swarm optimization, and artifi-
cial neural networks to solve theMCIC problem can be found
in Guvenir and Erel [6], Tsai and Yeh [16], and Partovi and
Anandarajan [8], respectively. Artificial intelligence based
classification techniques are addressed by Yu [17] to resort
MCIC problem. Also, a fuzzy classification approach is pro-
posed in the casewhere there exists nominal and nonnominal
attributes [2]. Similarly, Rezaei and Dowlatshahi [10] present
a rule-based method for classifying inventory items in a
multicriteria setting. However, thesemethods are too compli-
cated to be applied in practice so that they may not be easily
understood by inventory managers.

A number of optimization based methods have also
been developed to solve the MCIC problem. Ramanathan [1]
proposes a weighted linear optimization model (hereafter R-
model) for classifying inventory items with multiple criteria.
The spirit of R-model is based upon the concept of data
envelopment analysis (DEA) which has no subjectivity in
determining the weights of criteria; that is, the weights are
endogenously and repeatedly generated by aDEA-likemodel.
Zhou and Fan [18] extend the R-model by incorporating
some balancing features for MCIC using two sets of weights
that are most favorable and least favorable for each item.
Then, the final performance score of each item is obtained
by aggregating the best and worst performance scores and
using a control parameter called 𝜆whose value is determined
by the decision maker subjectively. In a similar way, Chen
[19] proposes the peer estimation approach in which the
performance score of each inventory item is first measured in
the most favorable and least favorable senses and then they
are aggregated without any subjectivity. Chen [20] proposes
another alternative model that resorts to virtual items and
the concepts of TOPSIS for ABC analysis. The proposed
model provides a unique inventory classification without any
subjectivity.

Stanford andMartin [21] introduce a general ABC inven-
tory classification system as the foundation for a normative
model of the maintenance cost structure and stock turnover
characteristics of a large, multi-item inventory system with
constant demand. Ng [5] proposes a weighted linear opti-
mization model for ABC inventory classification. The author
also introduces a transformation technique to simplify the
classification procedure (hereafterNG-model) which aids the
inventory managers with obtaining the aggregated scores of
inventory items without a linear optimizer. Hadi-Vencheh
[22] provides an improved version of the NG-model which

is a nonlinear programming model (hereafter HV-model).
Both the NG and HV models require prior assumption on
the importance order of the criteria which is subjectively
determined by the decision maker. More recently, Teunter et
al. [23] present an alternative approach for usingmulticriteria
methodologies based on multiple way classifications. The
authors propose a new cost criterion for ranking SKUs from
an inventory cost perspective that accounts for demand vol-
ume, holding cost (purchase price), shortage cost (criticality),
and average order quantity.

Park et al. [24] proposed a cross-evaluation-based
weighted linear optimization model for the MCIC problem.
Their proposed method incorporates a cross-efficiency eval-
uation approach into a weighted linear optimization model
for finer classification of inventory items. For classification
of inventory items, Soylu and Akyol [25] incorporated the
preference of the decision-maker into the decision making
process. They applied two utility-function-based sorting
methods to solve the MCIC problem. Bacchetti et al. [26]
proposed a hierarchical multicriteria classification method
for inventory management purposes and applied it in a case
study of the spare parts business of a household appliance
manufacturer. Rezaei and Salimi [27] developed an interval
programming model for ABC inventory classification. Their
proposed model provides optimal results instead of an
expert-based classification and it does not require precise
values of item parameters. Torabi et al. [28] introduced an
imprecise data envelopment analysis model to classify inven-
tory items in the case where there exist both quantitative and
qualitative criteria. Furthermore, Hatefi et al. [29] developed
an iterative DEA-like model to solve the MCIC problem
under quantitative and qualitative criteria. Lolli et al. [30]
introduces a new hybrid method based on the AHP and the
K-means algorithm to solve the MCIC problem.

This paper proposes an alternative optimization-based
model in which the composite performance scores of all
inventory items are calculated simultaneously via a set of
common weights. The proposed common weight linear opti-
mization model has a notable computational saving in terms
of the number of required LP models that must be solved
and therefore can considerably reduce the processing time
when controlling a large number of inventory items. Also,
no subjective information is required to run the proposed
model which is essential in an accurate and fair decision
environment.

The rest of the paper is organized as follows. In Sec-
tion 2, a brief discussion is provided about the R-model as
the first optimization-based ABC classifier. Then, the pro-
posed common weight linear optimization model is
explained in detail. An application of the proposed model
for ABC analysis is shown by a small numerical example as
well as a case study taken from the literature in Sections 3
and 4, respectively. Section 5 provides a comprehensive
comparison and discussion about the proposed approach
and the most relevant existing methods in the literature,
that is, the R-model, the ZF-model, Chen’s [20] model, the
NG-model, and the HV-model. Finally, concluding remarks
are reported in Section 6.
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2. An Alternative Common Weights
MCIC Approach

Suppose that there are 𝑀 inventory items that are being
classified as A, B, and C classes based on𝑁 incommensurable
criteria. Let 𝑦

𝑚𝑛
denote the value of criterion 𝑛 with respect

to inventory item 𝑚. For simplicity, it is assumed that all the
criteria are of benefit type, that is, positively related to the
importance of an item. It is noteworthy to mention that the
cost type criteria (i.e., those criteria that are negatively related
to the importance level of items) can easily be converted into
the benefit type ones by considering their reciprocal values
[1]. Furthermore, in order to avoid any problem arising from
the criteria scale differences, all measures are first normalized
by using the following linear normalization procedure [5, 31]:

𝑦
𝑚𝑛
−min

𝑚=1,2,...,𝑀
{𝑦
𝑚𝑛
}

max
𝑚=1,2,...,𝑀

{𝑦
𝑚𝑛
} −min

𝑚=1,2,...,𝑀
{𝑦
𝑚𝑛
}
,

𝑗 = 1, 2, . . . , 𝑁.

(I)

Notably, the above transformation formula converts all
measurements into the [0, 1] interval.Hereafter for simplicity,
we suppose 𝑦

𝑚𝑛
is the normalized value of criterion 𝑛 with

respect to the inventory item 𝑚. Normalization of criteria
has two main advantages. First, it avoids any problem arising
from the criteria scale differences. Second, normalized data
are fairly easy to interpret [32]. It is worthy to mention that
there exist several normalization methods in the literature.
Some of the well-known normalization methods are listed
below [33].

(i) Ranking Method. It is the simplest normalization tech-
nique, which is not affected by outliers.

(ii) Standardization (or 𝑧-Scores) Method. It converts indi-
cators to a common scale with a mean of zero and
standard deviation of one.

(iii) Min-Max Method. It normalizes criteria to have an
identical range [0, 1] by subtracting the minimum
value and dividing by the range of the indicator
values.

(iv) Distance to a Reference Method. It measures the rela-
tive position of a given indicator vis-à-vis a reference
point.

The concerned problem is aggregating the performances
of an inventory item in terms of different criteria into a single
score (called aggregated performance or composite index) for
the subsequent ABC classification. The R-model introduced
by the Ramanathan [1] is as follows:

𝑔𝐼
𝑖
= max

𝑁

∑

𝑛=1

𝑤
𝑖𝑛
𝑦
𝑖𝑛

s.t.
𝑁

∑

𝑛=1

𝑤
𝑖𝑛
𝑦
𝑚𝑛
≤ 1; 𝑚 = 1, 2, . . . ,𝑀,

𝑤
𝑖𝑛
≥ 0; 𝑛 = 1, 2, . . . , 𝑁,

(1)

where 𝑔𝐼
𝑖
for 𝑖 = 1, 2, . . . ,𝑀 indicates the aggregated

performance of inventory item 𝑖 with respect to all of
underlying criteria and 𝑤

𝑖𝑛
is the weight of criterion 𝑛 which

is generated endogenously by the R-model when evaluating
item 𝑖. Objective function of the R-model is similar to the
simple additive weighting (SAW) aggregation method, while
the weights of criteria are changeable for each item and
calculated endogenously by the model. Consequently, a set
of indices 𝑔𝐼

1
, 𝑔𝐼
2
, . . . , 𝑔𝐼

𝑀
for all items are provided by

solving the R-model repeatedly for each inventory item. It
should be noted that the R-model is very similar to an output
maximizing multiplier DEA model with multiple outputs
and one constant input [1]. It is noted that there are several
weighting and aggregation methods in the literature. Some
are taken from statistical models, such as factor analysis, data
envelopment analysis, and unobserved components models
(UCM), or fromparticipatorymethods like budget allocation
processes (BAP), analytic hierarchy processes (AHP), and
conjoint analysis (CA). Equal weighting (EW) is one of the
simplest weighting methods. Furthermore, three simple but
popular aggregation methods are the simple additive weight-
ing (SAW)method, the weighted product (WP) method, and
the weighted displaced ideal (WDI) method [33].

In spite of popularity of the R-model, Zhou and Fan [18]
mathematically proved that if an item has a value dominating
other items in terms of a certain criterion, it would always
obtain an aggregated performance score of 1 even if it has
severely bad values with respect to other criteria. This may
lead to the situation where an item with a high value in an
unimportant criterion but with low values in other impor-
tant criteria is inappropriately classified as class A, whichmay
not reflect the real position of this inventory item. Further-
more, the obtainedweights provided by theR-model are often
unrealistic and lead to poor discriminatory power among
SKUs. That is, for each inventory item, the criteria which
have good performance may receive extremely high weights
and those having bad performance may receive extremely
low weights leading to extreme weights that are often unreal-
istic and impractical because of ignoring the impact of criteria
with extremely low weight values for ABC classification [31,
34]. Accordingly, this paper proposes a new MCIC model
in which all inventory items are evaluated using a set of
common weights to enable a fair comparison among them
that differs with the R-model in which the inventory items
are evaluated by different sets of weights. For doing so, let
𝑑
𝑖
denote the performance score deviation of item 𝑖 from

the unity when it is under evaluation. Now, by considering
𝑔𝐼
𝑖
= 1−𝑑

𝑖
, the R-model can be reformulated as follows when

evaluating item 𝑖:

min 𝑑
𝑖

s.t.
𝑁

∑

𝑛=1

𝑤
𝑖𝑛
𝑦
𝑚𝑛
+ 𝑑
𝑚
= 1; 𝑚 = 1, 2, . . . ,𝑀,

𝑤
𝑖𝑛
≥ 0, 𝑑

𝑚
≥ 0; 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 1, 2, . . . ,𝑀,

(2)
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where 𝑑
𝑖
denotes the performance score deviation of item 𝑖,

0 ≤ 𝑖 ≤ 𝑀. Notably, two separate indices 𝑖 and 𝑚 are used
in Model (2) that both of them are bounded as 0 ≤ 𝑖, 𝑚 ≤
𝑀. The first index is related to the 𝑖th linear programming
model that should be solved for measuring the score of item
𝑖. The first 𝑀 constraints of Model (2) indicate that when
evaluating item 𝑖, the composite performance score of each
item, that is,∑𝑁

𝑛=1
𝑤
𝑖𝑛
𝑦
𝑚𝑛

for𝑚 = 1, 2, . . . ,𝑀, plus the related
performance deviation from the unity must be equal to 1.

It is worthwhile to point out when item 𝑖 is under
evaluation, the resulting weight vector (𝑤

𝑖1
, 𝑤
𝑖2
, . . . , 𝑤

𝑖𝑁
) is

similar for both Models (1) and (2) that provides the most
favorable weights for this item. Also, 𝑔𝐼

𝑖
provided by Model

(1) is equal to 1 − 𝑑
𝑖
that is provided by Model (2). Notably,

Model (2) should also be solved 𝑀 times to minimize
the performance score deviation of each item. However,
solving this model for each item separately provides totally
𝑀 different weight vectors for criteria, each of which might
be unrealistic as mentioned before.

To overcome this deficiency, we propose a common
weight DEA-like model as follows. The objective function of
Model (2) only involves the performance score deviation of
item 𝑖. However, to maximize the aggregated performance
scores of all inventory items simultaneously as it is needed
in a common weight framework, we need to reformulate
this model via a set of common weights. For doing so, this
paper uses theminimax approach tominimize themaximum
efficiency deviation among all items. It is noteworthy to
mention that the minimax efficiency score is employed to
avoid yielding unrealistic weight dispersion and improve the
discriminating power in the context of DEA models [35]. In
this manner, the proposed common weight linear model can
be written as follows:

min 𝜂

s.t. 𝜂 − 𝑑
𝑚
≥ 0; 𝑚 = 1, 2, . . . ,𝑀,

𝑁

∑

𝑛=1

𝑤
𝑛
𝑦
𝑚𝑛
+ 𝑑
𝑚
= 1; 𝑚 = 1, 2, . . . ,𝑀,

𝑤
𝑛
≥ 0, 𝑑

𝑚
≥ 0; 𝑛 = 1, 2, . . . , 𝑁, 𝑚 = 1, 2, . . . ,𝑀,

(3)

where 𝑤
𝑛
denotes the common weight with respect to

criterion 𝑛 among all inventory items which is endogenously
generated by solving Model (3). Notably, the constraints 𝜂 −
𝑑
𝑚
≥ 0; ∀𝑚 assure that 𝜂 is the maximum of 𝑑

𝑚
values while

they do not change the feasible region of decision variables as
discussed in Li andReeves [35].WhenModel (3) is solved, the
composite index of all inventory items can be calculated by
1−𝑑
𝑚
for𝑚 = 1, 2, . . . ,𝑀. After determining the item scores,

we sort them in a nonincreasing order and then classify
them by the Pareto rule based principle of ABC analysis. The
classifying distribution of inventory items performs based on
their scores. For example, the classifying distribution, that is,
20% of the inventory items with best scores in class A, 30% in
class B, and 50% in class C, can be considered.

According to the literature of common weights DEA
models [31, 34], all inventory items are concurrently evaluated
using a set of common weights to enable a fair comparison
among them which highly differs with the R-model in
which each inventory item is evaluated by its own favored
weights. Furthermore, the common weight structure of the
proposedmethod improves the discriminatory power among
all inventory items. Notably, unrealistic weight distribution
is a main difficulty of some DEA models where some input-
output weights achieve the extreme or zero values which in
turn leads to wrong assessment of some DMUs as efficient
units. However, as discussed by Li and Reeves [35] and
Bal et al. [36], the minimax approach provides realistic
input-output weights and improves the discrimination power
among DMUs. Accordingly, the main reasons for applying
the minimax approach to derive the final scores of inventory
items are as follows.

The minimax approach does not lead to the most favor-
able weights for each inventory item under evaluation as
the R-model does. Therefore, the items’ scores generated
by this approach are tighter than those provided by the R-
model. In particular, if inventory item 𝑖 achieves score of 1
by employing the minimax approach, it must also achieve
score of 1 by employing the R-model, since the minimax
score requires 𝑑

𝑖
= 0. However, if inventory item 𝑖 achieves

score of 1 by employing the R-model, it may receive a score
less than 1 by applying the minimax approach, because
𝑔𝐼
𝑖
= 1 or 𝑑

𝑖
= 0 does not necessarily means that 𝜂 is

being minimized. According to this discussion, it can be
affirmed that theminimax approach generally results in fewer
efficient items with score of 1 leading to discrimination power
improvement of Model (3). Moreover, since 𝜂 is defined
as a function of all deviation variables and each deviation
variable is associated with a constraint, therefore, minimizing
𝜂 is equivalent to imposing rigorous constraints on common
weight variables. In this way, the range of criteria weights is
effectively restricted leading to moderating the homogeneity
of weights dispersion on a common base and henceModel (3)
provides a realistic and reasonable set of weights for the ABC
analysis.

In spite of above descriptive advantages of proposed
Model (3), its attractiveness can be more declared through
clarifying its interesting mathematical properties as follows.

(a) Model (3) Is always Feasible

Proof. Suppose that all required data (i.e., the 𝑦
𝑚𝑛

values) in
Model (3) are first normalized. So, we would have 0 ≤ 𝑦

𝑚𝑛
≤

1,∀𝑚, 𝑛.Then, the following solution is feasible forModel (3).
Consider 𝑤

𝑛
= 0 for 𝑛 ̸= 𝑘 and 𝑤

𝑘
= 1 ⇒ 𝑑

𝑚
= 1 − 𝑦

𝑚𝑘
;

∀𝑚 ⇒ 𝜂 = max
𝑚
{1 − 𝑦

𝑚𝑘
}.

(b) 0 ≤ 𝑑
𝑚
≤ 1, ∀𝑚

Proof. Taking into account the nonnegativity of the variables
𝑤
𝑛
and 𝑑

𝑚
for each 𝑚 and 𝑛 and the fact that 0 ≤ 𝑦

𝑚𝑛
≤ 1,

∀𝑚, 𝑛, it would be clear that ∑𝑁
𝑛=1
𝑤
𝑛
𝑦
𝑚𝑛
≥ 0, ∀𝑚. Therefore,

according to the constraints∑𝑁
𝑛=1
𝑤
𝑛
𝑦
𝑚𝑛
+𝑑
𝑚
= 1, ∀𝑚we can

conclude that 𝑑
𝑚
≤ 1, ∀𝑚.
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(c)The CommonWeights Generated by ProposedModel (3) Do
Not Exceed 1 (i.e., 𝑤

𝑛
≤ 1, ∀𝑛)

Proof. Assume that for at least criterion 𝑛 for which we
have 𝑦𝑛max = max

𝑚
{𝑦
𝑚𝑛
} = 1, Model (3) yields 𝑤

𝑛
> 1. Then,

the constraint ∑𝑁
𝑛=1
𝑤
𝑛
𝑦
𝑚𝑛
+ 𝑑
𝑚
= 1 enforces the corre-

sponding deviation variable, that is, 𝑑
𝑚

must be negative,
a contradiction. Therefore, the common weights generated
by proposed Model (3) do not exceed 1 and we have 𝑤

𝑛
≤ 1,

∀𝑛.

(d) Regarding Proposed Model (3). If 𝑖th item be minimax
efficient, that is, 𝑑

𝑖
= 0, then it is recognized as an efficient

item by the R-model as well; that is, 𝑔𝐼
𝑖
= 1. However, if

the 𝑖th item be efficient by the R-model, it may be minimax
inefficient by employing Model (3), since it may not be
assured that 𝜂 is being minimized. Also, it can be concluded
that if 𝑔𝐼

𝑖
< 1 by usingModel (1), thenModel (3) yields 𝑑

𝑖
> 0

and consequently it will be inefficient since 1−𝑑
𝑖
< 1. On the

other hand, if a specific item achieves a score smaller than 1 in
terms of Model (1), then it also gives a score less than 1 when
applying Model (3).

3. Numerical Example

In this section, we provide a numerical example to illustrate
the advantages of the proposed approach. The example
presented in Table 1 is part of the data set used as a case
study in the literature [1, 5, 11, 18, 20, 22]. More details about
this data set are reported in the next section. The data set
contains 7 inventory items with three benefit-type criteria,
that is, average unit cost (AUC), annual dollar usage (ADU),
and lead time (LT). After normalization, Models (1) to (3) are
applied and related results are given in Table 2.

To achieve inventory item scores, that is, 𝑔𝐼
1
, 𝑔𝐼
2
, . . . , 𝑔𝐼

7
,

Model (1) is separately solved for each inventory item by
changing the objective function accordingly. In a similar way,
Model (2) is repeatedly solved for each inventory item. For
example, when evaluating inventory item 44, Models (1) and
(2) can be written as follows.

Model (1). Consider

𝑔𝐼
4
= max 1𝑤

41
+ 0.426𝑤

42
+ 0.2𝑤

43
,

subject to

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

0.285𝑤
41
+ 1𝑤
42
+ 0𝑤
43
≤ 1,

0.734𝑤
41
+ 0.929𝑤

42
+ 0𝑤
43
≤ 1,

0.538𝑤
41
+ 0.639𝑤

42
+ 0.6𝑤

43
≤ 1,

1𝑤
41
+ 0.426𝑤

42
+ 0.2𝑤

43
≤ 1,

0.651𝑤
41
+ 0.168𝑤

42
+ 1𝑤
43
≤ 1,

0.511𝑤
41
+ 0.064𝑤

42
+ 0.2𝑤

43
≤ 1,

0𝑤
41
+ 0𝑤
42
+ 0.6𝑤

43
≤ 1,

𝑤
41
, 𝑤
42
, 𝑤
43
≥ 0.

(4)

Table 1: Numerical example data.

𝑚 Item number Average unit
cost ($)

Annual dollar
usage ($)

Lead time
(week)

1 Item S41 19.8 79.2 2
2 Item S42 37.7 75.4 2
3 Item S43 29.89 59.78 5
4 Item S44 48.3 48.3 3
5 Item S45 34.4 34.4 7
6 Item S46 28.8 28.8 3
7 Item S47 8.46 25.38 5

Model (2). Consider

min 𝑑
4

subject to

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

0.285𝑤
41
+ 1𝑤
42
+ 0𝑤
43
+ 𝑑
1
= 1,

0.734𝑤
41
+ 0.929𝑤

42
+ 0𝑤
43
+ 𝑑
2
= 1,

0.538𝑤
41
+ 0.639𝑤

42
+ 0.6𝑤

43
+ 𝑑
3
= 1,

1𝑤
41
+ 0.426𝑤

42
+ 0.2𝑤

43
+ 𝑑
4
= 1,

0.651𝑤
41
+ 0.168𝑤

42
+ 1𝑤
43
+ 𝑑
5
= 1,

0.511𝑤
41
+ 0.064𝑤

42
+ 0.2𝑤

43
+ 𝑑
6
= 1,

0𝑤
41
+ 0𝑤
42
+ 0.6𝑤

43
+ 𝑑
7
= 1,

𝑤
41
, 𝑤
42
, 𝑤
43
≥ 0, 𝑑

1
, 𝑑
2
, . . . , 𝑑

7
≥ 0,

(5)

where 𝑤
41
, 𝑤
42
, and 𝑤

43
denote the weights of AUC, ADU,

and LT criteria, respectively. After solving the above Mod-
els (1) and (2), the respective weight vectors (1, 0, 0) and
(0.6747, 0.543, 0.4696) are found, respectively. Notably, item
44 dominates all items in terms of AUC and hence Model (1)
generates high weight value of 1 for this criterion and assigns
for other criteria weights, which is clearly unrealistic because
of ignoring the impact of ADU and LT criteria completely
and at the same time assigning an extreme weight value
for the AUC. The obtained score for this item is 1 that is
calculated as 𝑔𝐼

4
by Model (1) and (1 − 𝑑

4
) by Model (2).

It is worth pointing out that the solution generated by using
Models (1) and (2) for evaluating this item is not unique. It
is actually software dependent. For example, the solutions of
(𝑤
41
, 𝑤
42
, 𝑤
43
, 𝑔𝐼
4
) = (1, 0, 0, 1) and (𝑤

41
, 𝑤
42
, 𝑤
43
, 𝑔𝐼
4
) =

(0.6747, 0.543, 0.4696, 1) are optimal for Model (1) when
evaluating item 44. According to the results of Table 2, seven
different weight vectors are produced by employing Models
(1) or (2) to calculate final scores of all items. However, these
items can be more fairly and confidently evaluated by just a
unique set of common weights by solving proposed Model
(3) that is written as follows.



6 Advances in Decision Sciences

Table 2: The results.

Model (1) Model (2) Model (3)
Item score 𝑤

𝑖1
𝑤
𝑖2

𝑤
𝑖3

Item score 𝑤
𝑖1

𝑤
𝑖2

𝑤
𝑖3

Item score
Item 41 1 0 1 0 1 0 1 0 0.38861
Item 42 1 0.1504 0.9572 0 1 0.1504 0.9572 0 0.58458
Item 43 1 0 1 0.6014 1 0 1 0.6014 0.80642
Item 44 1 1 0 0 1 0.6747 0.543 0.4696 0.71328
Item 45 1 0 0 1 1 0 0.7426 0.8755 1
Item 46 0.5498 0.9198 0 0.4011 0.5498 0.9198 0 0.4011 0.38861
Item 47 0.6 0 0 1 0.6 0 0 1 0.38861

Model (3). Consider

min 𝜂

subject to

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝜂 − 𝑑
𝑚
≥ 0, 𝑚 = 1, 2, . . . , 7,

0.285𝑤
1
+ 1𝑤
2
+ 0𝑤
3
+ 𝑑
1
= 1,

0.734𝑤
1
+ 0.929𝑤

2
+ 0𝑤
3
+ 𝑑
2
= 1,

0.538𝑤
1
+ 0.639𝑤

2
+ 0.6𝑤

3
+ 𝑑
3
= 1,

1𝑤
1
+ 0.426𝑤

2
+ 0.2𝑤

3
+ 𝑑
4
= 1,

0.651𝑤
1
+ 0.168𝑤

2
+ 1𝑤
3
+ 𝑑
5
= 1,

0.511𝑤
1
+ 0.064𝑤

2
+ 0.2𝑤

3
+ 𝑑
6
= 1,

0𝑤
1
+ 0𝑤
2
+ 0.6𝑤

3
+ 𝑑
7
= 1,

𝑤
1
, 𝑤
2
, 𝑤
3
≥ 0, 𝑑

1
, 𝑑
2
, . . . , 𝑑

7
≥ 0,

(6)

where 𝑤
1
, 𝑤
2
, and 𝑤

3
denote the common weights of

AUC, ADU, and LT, respectively. Proposed Model (3) pro-
vides the score of all items by a more distributed weight
vector (0.4759, 0.2531, 0.6477) that is both unique and more
reasonable than those generated by Models (1) and (2).
Furthermore, when comparing the items’ score columns
presented in Table 2, it can be affirmed that Model (3) gives
more discriminated scores than those obtained byModels (1)
and (2).

4. Case Study

The proposed common weight linear optimization model
is applied for the same multicriteria inventory classification
problem as discussed in the literature [1, 5, 11, 18, 20, 22].
The data include 47 inventory items (SKUs) with four criteria,
namely, annual dollar usage (ADU), average unit cost (AUC),
critical factor (CF), and lead time (LT). However, we follow
Ng [5], Zhou and Fan [18], Chen [20], andHadi-Vencheh [22]
studies and consider just ADU, AUC, and LT criteria for ABC
classification, since CF is a categorical and discontinuous
criterion and not suitable for linear models. Note that all
the three criteria that are presented in Table 3 are positively
related to the importance level of inventory items. The same
classifying distribution, that is, 10 class A, 14 class B, and 23
class C, is adopted for illustration and comparison purposes
as considered in the earlier similar works.

Before applying our proposed model, all measures are
normalized. Proposed Model (3) generates the common
weights 0.2290, 0.5474, and 0.3453 for ADU, AUC, and LT
criteria, respectively. The fifth column of Table 3 shows the
optimal aggregated performance scores of inventory items by
solving proposed Model (3). The ABC classification with the
above three criteria and by using the proposed model, the
Chen [20]model, theR-model, the ZF-model, theNG-model,
and the HV-model [22] has also been listed in Table 3. As our
proposed model and the Chen-model [20] and ZF-model are
various extensions of the R-model, therefore, our quantitative
comparisons are considerably focused on the results of these
models.

Zhou and Fan [18] discuss that the ZF model which is an
extended version of the R-model provides a more reasonable
and encompassing index for ABC classification. When our
model is compared to the ZF-model, 4 out of 47 inventory
items do not have the same classification. For class A items
identified by our proposed model, nine items are classified as
group A items in both models. Also, 12 out of 14 class B items
and 22 out of 23 class C items arematched in bothmodels. For
instance, item S34 is classified as class A by the R-model as it
has the highest lead time and this is the only criterion taken
into account in the model. However, it is classified as class
B in both our model and the ZF model since, in addition to
the high lead time, they also take into consideration its low
average unit cost.

When comparing our proposed model with the Chen-
model [20], 10 out of 47 items have different classifications.
Items 18 and 45 are classified as class B by the Chen-model
[20], while they are moved up to class A by applying Model
(3). Two class A items and three class C items resulting
from the Chen-model [20] exchanged their classifications
and shifted to class B when applying proposed Model (3).
Furthermore, three class B items sorted by the Chen-model
[20] are moved down to class C by using the proposed
approach. In particular, item 15 with the normalized scores
of 0.323 (AUC), 0.143 (ADU), and 0.333 (LT) dominates item
44 with the normalized scores of 0.211 (AUC), 0.003 (ADU),
and 0.333 (LT). Consequently, as item 44 is rated as class C by
all methods, it is more appropriate that item 15 is shifted to a
better class like Bwhich coincideswith the results of proposed
Model (3) and the Chen-model [20]. As another comparison,
item 9 has the normalized data as 0.333 (AUC), 0.412 (ADU),
and 0.833 (LT), which is classified as class A by applying all
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Table 4: Qualitative comparisons.

Qualitative attributes Proposed
model

Chen-model
[20]

ZF-model
[18] R-model [1] HV-model

[22]
NG-model

[5]
Type of optimization model Linear Linear Linear Linear Nonlinear —
Type of weights for evaluating each item common changeable changeable changeable changeable Independent
Number of models which must be solved 1 At least 2M 2M M M —
Requiring subjective information No No Yes No Yes Yes

models, and the normalized data of item 8 are as 0.243 (AUC),
0.445 (ADU), and 0.5 (LT). Item 9 dominates item 8 in terms
of the AUC and LT criteria. Also, both items are relatively
similar in terms of theADU.Therefore, it is expected that item
8 might be inferior when compared to item 9. Therefore, it is
more appropriate that item 8 bemoved down to a second-rate
class like B which coincides with classification ofModel (3) as
well as four othermodels presented in Table 3. However, item
8 is rated as class A when employing the Chen-model [20].

According to the results, the classification results reported
by the Chen-model [20] are different for 3 out of 47 items,
that is, items 8, 34, and 12, from other classifications while
in the proposed classification, just item 1 has different
classification from those provided by the other models. The
reasons for this difference can be justified as follows. Consider
the normalized data, {0.292(AUC), 0.074(ADU), 0.5(LT)},
for item 22 which is classified as class B by the ZF-
model, the Chen-model [20], and our proposed model,
and {0.219(AUC), 1(ADU), 0.167(LT)} for item 1 which is
evaluated as class A by five models presented in Table 3. It
is clear that item 22 dominates item 1 in terms of AUC and
LT criteria. Furthermore, proposed Model (3) assigns larger
values for theweights of AUCandLT than theweight ofADU.
In this way, item 22 is considerably superior to item 1 and
hence it is more appropriate to put item 1 in an inferior class
like class B which matches with our proposed classification.
However, themain difference between ours and othermodels
is that our composite index is calculated based on a unique set
of common weights among all items.

When the proposed model is compared with the HV-
model [22] that is an extended version of the NG-model, 11
out of 47 inventory items are not coincident. Among the class
A items recognized in our proposed model, 7 out of 10 items
are classified as class A in both models. Furthermore, 9 out
of 14 class B items and 20 out of 23 class C items are similarly
classified in both models.

5. Discussion

To alleviate deficiencies of the R-model, Zhou and Fan [18]
proposed another DEA-based model that aggregates the
best and worst performance scores of each item using a
control parameter called 𝜆 to obtain the ZF-index for ABC
classification.The poor discrimination power in the R-model
is also improved in the ZF-model. However, choosing an
appropriate value for this subjective parameter is crucial
and depends on the decision maker’s preference on two
extreme cases. This flexibility may also sometimes cause
difficulty for decision makers to make a subjective choice in

specifying the value of 𝜆. Furthermore, different values of 𝜆
may lead to distinct, misleading, and nonunique results. It is
noteworthy to mention that 2𝑀 linear optimization models
must be solved in order to calculate the ZF-index for all SKUs.
Furthermore, Chen [20] proposed an alternative model for
ABC analysis whose structure is similar to the ZF-model but
without any subjectivity.

Ng [5] proposes a novel and easy-to-usemethod that does
not require a linear optimizer for ABC analysis. Besides its
many advantages, Hadi-Vencheh [22] discusses that the Ng-
model leads to a situation where the NG-index for each item
is independent from the obtained weights. Consequently,
Hadi-Vencheh [22] improves the NG-model and constructs
a nonlinear programming model that keeps the impacts of
weights when calculating the final indices. The HV-model
is solved for each inventory item repeatedly (i.e., it requires
to run 𝑀 nonlinear programming models) and a different
set of weights is obtained for calculating the final index of
each item. Moreover, both the NG and HV models need
prior assumption on the importance order of criteria which
is determined subjectively by the decision maker. It should
be noted that when the number of criteria is large, it is an
overwhelming task for the decisionmaker to rank all criteria.

Relying on the above discussions, the proposed method
generates a set of common weights for evaluating all items
simultaneously that obviously improves the discrimination
power among them. Also, the proposed method removes any
subjectivity which may lead to confusing interpretation of
ABC classification results and hence provides unique ABC
classification results. Table 4 shows the several merits of our
proposed method in summary when comparing it with the
recently developedmethods for ABC inventory classification.

As highlighted by Chen et al. [37], common weights
strategy to DEA has several features. First, the common
weights strategy diminishes computational complexity/time
compared with the traditional model. Second, common
weightsmodels showhigher discrimination power than other
classical models. However, for a typical MCIC problem, the
proposed common weights strategy incorporated in the
minimax approach in this paper has the following merits.

(1) Despite other existing methods that generate several
sets of weights for the criteria, the proposed method
obtains a unique set of common weights for evaluat-
ing all inventory itemswhich is very essential for a fair
classification of items and provides unique results for
ABC analysis.

(2) The proposed model like the models presented by
Chen [19, 20] requires no subjective information
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leading to provide a unique classification results
for inventory managers while some recent MCIC
approaches do. Requiring any subjective information
may lead to nonunique and misleading results for the
ABC analysis, making difficulty in reaching a final
decision.

(3) The proposed method is very efficient from the
computational point of view since only a LP model
needs to be solved while the other methods need that
several linear or even nonlinear models to be solved.

(4) The common weight structure incorporated in our
proposed method improves the poor discrimination
power of other methods especially the R-model by
providing a full-ranked vector of items based upon
their composite performance scores.

Relying on the aforementioned merits, it can be con-
cluded that the proposedmodel is an easy-to-understand and
easy-to-use method that helps inventory managers and prac-
titioners to manage inventory items in reality. The proposed
method can be applied to industry. Furthermore, it is easy to
apply for humanmanagers.Theonly background required for
implementing our proposed model is to know how to solve
linear programming models via a commercial software like
LINGO. In summary, inventory managers can perform the
following steps to classify their inventory items.

(1) Provide normalized measures by the transformation
procedure presented in the paper.

(2) Solve proposed Model (3) on normalized data by the
commercial software.

(3) Provide item scores by formula 1 − 𝑑
𝑖
for 𝑖 = 1, 2,

. . . ,𝑀 and then sort them in a nonincreasing order.
(4) Classify inventory items by the Pareto rule based

principle of ABC analysis.

6. Concluding Remarks

This paper addresses the ABC inventory classification prob-
lem through the multiple criteria inventory classification
(MCIC) approach and proposes a common weight linear
optimization method that enables us to classify inventory
items using a set of common weights in an efficient and effec-
tive way. The numerical results along with some qualitative
assessments confirm the superiority of the proposed method
when compared with the previously developed relevant
techniques.

Recently, finding common weights based on the DM’s
preference information is addressed by Jahanshahloo et al.
[38] in the DEA literature that measures the preferences
of decision maker when generating the common weights.
Accordingly, incorporating the inventory manager’s prefer-
ences in a new model to derive common weights is proposed
for future research in the context of MCIC. Furthermore, all
above-mentionedDEA-basedmethods in this paper can only
take into account quantitative criteria for dealing with MCIC
problem.
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