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For a 𝑇-variate density function, the present paper defines the point-symmetry, quasi-point-symmetry of order 𝑘 (< 𝑇), and the
marginal point-symmetry of order 𝑘 and gives the theorem that the density function is 𝑇-variate point-symmetric if and only if it
is quasi-point-symmetric and marginal point-symmetric of order 𝑘. The theorem is illustrated for the multivariate normal density
function.

1. Introduction

For square contingency tables, it is known that the symmetry
model holds if and only if both the quasi-symmetry and
the marginal homogeneity models hold (e.g., see Caussinus
[1]; Tomizawa and Tahata [2]). For multiway contingency
tables, Bhapkar and Darroch [3] defined the complete sym-
metry, quasi-symmetry, and marginal symmetry models and
showed that the complete symmetry model holds if and
only if both the quasi-symmetry and the marginal symmetry
models hold.

Tomizawa et al. [4] gave a similar decomposition for the
bivariate density function (instead of cell probabilities). Iki
et al. [5] showed a similar decomposition for the multivariate
density function.

On the other hand, for contingency tables, Wall and
Lienert [6] defined the point-symmetry model for the cell
probabilities, and Tomizawa [7] gave the theorem that the
point-symmetry model holds for the cell probabilities if and
only if both the quasi-point-symmetry and the marginal
point-symmetry models hold (see also Tahata and Tomizawa
[8]).

Tomizawa and Konuma [9] gave a similar decomposition
for the bivariate point-symmetric density function. Now, we
are interested in extending the decomposition of the point-
symmetric density function to multivariate case.

In the present paper, we define the point-symmetry,
quasi-point-symmetry, andmarginal point-symmetry for the
multivariate density function and decompose the point-
symmetry into quasi-point-symmetry and marginal point-
symmetry. Section 2 provides the decomposition for the
trivariate density function. Section 3 extends the decomposi-
tion to multivariate density function. Section 4 illustrates our
decomposition for the multivariate normal distribution.

2. Decomposition of Trivariate
Density Function

Let 𝑋
1
, 𝑋
2
, and 𝑋

3
be three continuous random variables

with a density function 𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
), where

𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) > 0 for (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷
3
,

𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) = 0 for (𝑥

1
, 𝑥
2
, 𝑥
3
) ∉ 𝐷
3
,

(1)

with

𝐷
3
= {(𝑥
1
, 𝑥
2
, 𝑥
3
) | 𝑎
𝑖
< 𝑥
𝑖
< 𝑏
𝑖
; 𝑖 = 1, 2, 3} , (2)

and where 𝑎
𝑖
= −∞ and 𝑏

𝑖
= +∞, or 𝑎

𝑖
and 𝑏
𝑖
are finite.

Let (𝑐
1
, 𝑐
2
, 𝑐
3
) denote a given point in domain 𝐷

3, where 𝑐
𝑖
=

(𝑎
𝑖
+𝑏
𝑖
)/2 if 𝑎

𝑖
and 𝑏
𝑖
are finite. Let 𝑥∗

𝑖
= 2𝑐
𝑖
−𝑥
𝑖
when𝑋

𝑖
= 𝑥
𝑖
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for 𝑖 = 1, 2, 3. For example, when 𝑋
2
= 10 with 𝑐

2
= 3, then

10
∗
= 2 × 3 − 10 = −4. Note that, for 𝑖 = 1, 2, 3, (i) 𝑥∗

𝑖
is the

symmetrical value of 𝑥
𝑖
with respect to 𝑐

𝑖
, (ii) (𝑥∗

𝑖
)
∗
= 𝑥
𝑖
, and

(iii) 𝑐∗
𝑖
= 𝑐
𝑖
.

We will define the point-symmetry (denoted by PS3) of
density function with respect to the point (𝑐

1
, 𝑐
2
, 𝑐
3
) by

𝑓 (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝑓 (𝑥

1
, 𝑥
2
, 𝑥
3
) for every (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
.

(3)

Let 𝑓
𝑋
1

(𝑥
1
), 𝑓
𝑋
2

(𝑥
2
), and 𝑓

𝑋
3

(𝑥
3
) be the marginal density

functions of 𝑋
1
, 𝑋
2
, and 𝑋

3
, respectively. For the density

function 𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
), we will define the marginal point-

symmetry of order 1 (denoted by MP3
1
) by

𝑓
𝑋
𝑖

(𝑥
∗

𝑖
) = 𝑓
𝑋
𝑖

(𝑥
𝑖
) for 𝑖 = 1, 2, 3; (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
. (4)

Let 𝑓
𝑋
𝑖
𝑋
𝑗

(𝑥
𝑖
, 𝑥
𝑗
) be the marginal density function of (𝑋

𝑖
, 𝑋
𝑗
)

for 1 ≤ 𝑖 < 𝑗 ≤ 3. We define the marginal point-symmetry of
order 2 (denoted by MP3

2
) by

𝑓
𝑋
𝑖
𝑋
𝑗

(𝑥
∗

𝑖
, 𝑥
∗

𝑗
) = 𝑓
𝑋
𝑖
𝑋
𝑗

(𝑥
𝑖
, 𝑥
𝑗
)

for 1 ≤ 𝑖 < 𝑗 ≤ 3; (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝑅
3
.

(5)

Note that MP3
2
implies MP3

1
.

We can express the density function as

𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝜇𝛼

1
(𝑥
1
) 𝛼
2
(𝑥
2
) 𝛼
3
(𝑥
3
)

× 𝛽
12
(𝑥
1
, 𝑥
2
) 𝛽
13
(𝑥
1
, 𝑥
3
) 𝛽
23
(𝑥
2
, 𝑥
3
)

× 𝛾 (𝑥
1
, 𝑥
2
, 𝑥
3
) ,

(6)

where (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷
3, and

𝛼
1
(𝑐
1
) = 1, 𝛽

12
(𝑐
1
, 𝑥
2
) = 𝛽
12
(𝑥
1
, 𝑐
2
) = 1,

𝛾 (𝑐
1
, 𝑥
2
, 𝑥
3
) = 𝛾 (𝑥

1
, 𝑐
2
, 𝑥
3
) = 𝛾 (𝑥

1
, 𝑥
2
, 𝑐
3
) = 1,

(7)

with similar properties of 𝛼
2
, 𝛼
3
, 𝛽
13
, and 𝛽

23
. The terms 𝛼

𝑖

(𝑖 = 1, 2, 3) correspond to main effects of the variable 𝑋
𝑖
, 𝛽
𝑖𝑗

(𝑖 ̸= 𝑗) to interaction effects of𝑋
𝑖
and𝑋

𝑗
, and 𝛾 to interaction

effect of𝑋
1
,𝑋
2
, and𝑋

3
. We see

𝜇 = 𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
) , 𝛼

1
(𝑥
1
) =

𝑓 (𝑥
1
, 𝑐
2
, 𝑐
3
)

𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
)
,

𝛽
12
(𝑥
1
, 𝑥
2
) =

𝑓 (𝑥
1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
)

𝑓 (𝑥
1
, 𝑐
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑐
3
)
,

𝛾 (𝑥
1
, 𝑥
2
, 𝑥
3
)

=
𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑓 (𝑥

1
, 𝑐
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑥
3
)

𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
) 𝑓 (𝑥

1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑥

1
, 𝑐
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑥
3
)
,

(8)

with similar properties of𝛼
2
, 𝛼
3
, 𝛽
13
, and𝛽

23
.The term𝛼

1
(𝑥
1
)

indicates the odds of density function with respect to 𝑋
1
-

values with (𝑋
2
, 𝑋
3
) = (𝑐
2
, 𝑐
3
). Note that

𝛽
12
(𝑥
1
, 𝑥
2
)

=
(𝑓 (𝑥
1
, 𝑥
2
, 𝑐
3
) /𝑓 (𝑐

1
, 𝑥
2
, 𝑐
3
))

(𝑓 (𝑥
1
, 𝑐
2
, 𝑐
3
) /𝑓 (𝑐

1
, 𝑐
2
, 𝑐
3
))

=
(𝑓 (𝑥
1
, 𝑥
2
, 𝑐
3
) /𝑓 (𝑥

1
, 𝑐
2
, 𝑐
3
))

(𝑓 (𝑐
1
, 𝑥
2
, 𝑐
3
) /𝑓 (𝑐

1
, 𝑐
2
, 𝑐
3
))

,

𝛾 (𝑥
1
, 𝑥
2
, 𝑥
3
)

=
(𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑥
3
) /𝑓 (𝑥

1
, 𝑐
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑥
3
))

(𝑓 (𝑥
1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
) /𝑓 (𝑥

1
, 𝑐
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑐
3
))

=
(𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑐
3
) /𝑓 (𝑥

1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑥
2
, 𝑥
3
))

(𝑓 (𝑥
1
, 𝑐
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
) /𝑓 (𝑥

1
, 𝑐
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑥
3
))

=
(𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑓 (𝑥

1
, 𝑐
2
, 𝑐
3
) /𝑓 (𝑥

1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑥

1
, 𝑐
2
, 𝑥
3
))

(𝑓 (𝑐
1
, 𝑥
2
, 𝑥
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑐
3
) /𝑓 (𝑐

1
, 𝑥
2
, 𝑐
3
) 𝑓 (𝑐
1
, 𝑐
2
, 𝑥
3
))

.

(9)

Thus, 𝛽
12
(𝑥
1
, 𝑥
2
) indicates the odds ratio of density func-

tion with respect to (𝑋
1
, 𝑋
2
)-values with 𝑋

3
= 𝑐
3
. Also

𝛾(𝑥
1
, 𝑥
2
, 𝑥
3
) indicates the ratio of odds ratios of density

function, that is, the ratio of odds ratio with respect to
(𝑋
1
, 𝑋
2
)-values with 𝑋

3
= 𝑥
3
to that with 𝑋

3
= 𝑐
3
(or

the ratio of odds ratio with respect to (𝑋
𝑖
, 𝑋
𝑗
)-values with

𝑋
𝑘
= 𝑥
𝑘
to that with 𝑋

𝑘
= 𝑐
𝑘
, where (𝑖, 𝑗, 𝑘) = (1, 3, 2) and

(2, 3, 1)).
The density function is PS3 if and only if it is expressed as

form (6) with

𝛼
𝑖
(𝑥
∗

𝑖
) = 𝛼
𝑖
(𝑥
𝑖
) for 𝑖 = 1, 2, 3,

𝛽
𝑖𝑗
(𝑥
∗

𝑖
, 𝑥
∗

𝑗
) = 𝛽
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) for 1 ≤ 𝑖 < 𝑗 ≤ 3,

𝛾 (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) .

(10)

We will define the quasi-point-symmetry of order 1
(denoted by QP3

1
) by (6) with

𝛽
𝑖𝑗
(𝑥
∗

𝑖
, 𝑥
∗

𝑗
) = 𝛽
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) for 1 ≤ 𝑖 < 𝑗 ≤ 3,

𝛾 (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) .

(11)

The QP3
1
is equivalent to

𝜃 (𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
; 𝑢) = 𝜃 (𝑠

∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
; 𝑢
∗
) ,

𝜃 (𝑠
1
, 𝑠
2
; 𝑢; 𝑡
1
, 𝑡
2
) = 𝜃 (𝑠

∗

1
, 𝑠
∗

2
; 𝑢
∗
; 𝑡
∗

1
, 𝑡
∗

2
) ,

𝜃 (𝑢; 𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
) = 𝜃 (𝑢

∗
; 𝑠
∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
) ,

(12)
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where

𝜃 (𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
; 𝑢) =

𝑓 (𝑠
1
, 𝑡
1
, 𝑢) 𝑓 (𝑠

2
, 𝑡
2
, 𝑢)

𝑓 (𝑠
1
, 𝑡
2
, 𝑢) 𝑓 (𝑠

2
, 𝑡
1
, 𝑢)

,

𝜃 (𝑠
1
, 𝑠
2
; 𝑢; 𝑡
1
, 𝑡
2
) =

𝑓 (𝑠
1
, 𝑢, 𝑡
1
) 𝑓 (𝑠
2
, 𝑢, 𝑡
2
)

𝑓 (𝑠
1
, 𝑢, 𝑡
2
) 𝑓 (𝑠
2
, 𝑢, 𝑡
1
)
,

𝜃 (𝑢; 𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
) =

𝑓 (𝑢, 𝑠
1
, 𝑡
1
) 𝑓 (𝑢, 𝑠

2
, 𝑡
2
)

𝑓 (𝑢, 𝑠
1
, 𝑡
2
) 𝑓 (𝑢, 𝑠

2
, 𝑡
1
)
,

(13)

with (𝑠
𝑖
, 𝑡
𝑗
, 𝑢) ∈ 𝐷

3 and so on. Therefore, QP3
1
indicates that

the density function is point-symmetric with respect to the
odds ratio.

Also, we will define the quasi-point-symmetry of order 2
(denoted by QP3

2
) by (6) with

𝛾 (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) . (14)

The QP3
2
is equivalent to

𝜃 (𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
; 𝑢
1
)

𝜃 (𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
; 𝑢
2
)
=
𝜃 (𝑠
∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
; 𝑢
∗

1
)

𝜃 (𝑠
∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
; 𝑢
∗

2
)
,

𝜃 (𝑠
1
, 𝑠
2
; 𝑢
1
; 𝑡
1
, 𝑡
2
)

𝜃 (𝑠
1
, 𝑠
2
; 𝑢
2
; 𝑡
1
, 𝑡
2
)
=
𝜃 (𝑠
∗

1
, 𝑠
∗

2
; 𝑢
∗

1
; 𝑡
∗

1
, 𝑡
∗

2
)

𝜃 (𝑠
∗

1
, 𝑠
∗

2
; 𝑢
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
)
,

𝜃 (𝑢
1
; 𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
)

𝜃 (𝑢
2
; 𝑠
1
, 𝑠
2
; 𝑡
1
, 𝑡
2
)
=
𝜃 (𝑢
∗

1
; 𝑠
∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
)

𝜃 (𝑢
∗

2
; 𝑠
∗

1
, 𝑠
∗

2
; 𝑡
∗

1
, 𝑡
∗

2
)
.

(15)

Therefore, QP3
2
indicates that the density function is point-

symmetric with respect to the ratio of odds ratios. We note
that QP3

1
implies QP3

2
. We obtain the following theorem.

Theorem 1. For 𝑘 fixed (𝑘 = 1, 2), the trivariate density
function 𝑓(𝑥

1
, 𝑥
2
, 𝑥
3
) is 𝑃𝑆3 if and only if it is both 𝑄𝑃3

𝑘
and

𝑀𝑃
3

𝑘
.

Proof. Consider the case of 𝑘 = 1. If a density function is PS3,
then it satisfies QP3

1
andMP3

1
. Assume that it is both QP3

1
and

MP3
1
, and then we will show that it satisfies PS3.
Let𝑋
1
, 𝑋
2
, and𝑋

3
be three continuous random variables

with a density function ℎ(𝑥
1
, 𝑥
2
, 𝑥
3
) which satisfies both QP3

1

and MP3
1
. Therefore, we see

log ℎ (𝑥
1
, 𝑥
2
, 𝑥
3
)

= log𝜇 + log𝛼
1
(𝑥
1
) + log𝛼

2
(𝑥
2
)

+ log𝛼
3
(𝑥
3
) + log𝛽

12
(𝑥
1
, 𝑥
2
) + log𝛽

13
(𝑥
1
, 𝑥
3
)

+ log𝛽
23
(𝑥
2
, 𝑥
3
) + log 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) ,

(16)

where (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷

3, 𝛽
𝑖𝑗
(𝑥
∗

𝑖
, 𝑥
∗

𝑗
) = 𝛽
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) (1 ≤ 𝑖 < 𝑗 ≤

3), and 𝛾(𝑥∗
1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝛾(𝑥

1
, 𝑥
2
, 𝑥
3
).

Let

𝑔 (𝑥
1
, 𝑥
2
, 𝑥
3
) =

1

Δ
𝑤 (𝑥
1
, 𝑥
2
, 𝑥
3
) , (17)

where
log𝑤 (𝑥

1
, 𝑥
2
, 𝑥
3
) = log𝛽

12
(𝑥
1
, 𝑥
2
) + log𝛽

13
(𝑥
1
, 𝑥
3
)

+ log𝛽
23
(𝑥
2
, 𝑥
3
) + log 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) ,

𝑔 (𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) = 𝑔 (𝑥

1
, 𝑥
2
, 𝑥
3
) ,

Δ = ∭𝑤(𝑥
1
, 𝑥
2
, 𝑥
3
) 𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
.

(18)

Note that∭𝑔(𝑥
1
, 𝑥
2
, 𝑥
3
)𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
= 1. Then we have

log(
ℎ (𝑥
1
, 𝑥
2
, 𝑥
3
)

𝑔 (𝑥
1
, 𝑥
2
, 𝑥
3
)
) = ] + log𝛼

1
(𝑥
1
)

+ log𝛼
2
(𝑥
2
) + log𝛼

3
(𝑥
3
) ,

(19)

where ] = logΔ + log𝜇.
Since ℎ(𝑥

1
, 𝑥
2
, 𝑥
3
) satisfies MP3

1
, we see

ℎ
𝑋
𝑖

(𝑥
∗

𝑖
) = ℎ
𝑋
𝑖

(𝑥
𝑖
) (𝑖 = 1, 2, 3) , (20)

where (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷

3 and ℎ
𝑋
𝑖

(𝑥
𝑖
) is the marginal density

function of𝑋
𝑖
for 𝑖 = 1, 2, 3. Denote (20) as ℎ

𝑋
𝑖

(𝑥
∗

𝑖
) = ℎ
𝑋
𝑖

(𝑥
𝑖
)

(= ℎ
(0)

𝑋
𝑖

(𝑥
𝑖
)) for 𝑖 = 1, 2, 3.

Consider the arbitrary density function 𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
)

satisfying MP3
1
with

𝑓
𝑋
𝑖

(𝑥
∗

𝑖
) = 𝑓
𝑋
𝑖

(𝑥
𝑖
) = ℎ
(0)

𝑋
𝑖

(𝑥
𝑖
) (𝑖 = 1, 2, 3) . (21)

From (19), (20), and (21), we have

∭{𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
) − ℎ (𝑥

1
, 𝑥
2
, 𝑥
3
)}

× log(
ℎ (𝑥
1
, 𝑥
2
, 𝑥
3
)

𝑔 (𝑥
1
, 𝑥
2
, 𝑥
3
)
) 𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
= 0.

(22)

Using (22), we obtain
𝐼 (𝑓, 𝑔) = 𝐼 (ℎ, 𝑔) + 𝐼 (𝑓, ℎ) , (23)

where 𝐼(⋅, ⋅) is the Kullback-Leibler information; that is,

𝐼 (𝑓, 𝑔) = ∭𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
)

× log(
𝑓 (𝑥
1
, 𝑥
2
, 𝑥
3
)

𝑔 (𝑥
1
, 𝑥
2
, 𝑥
3
)
) 𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
.

(24)

For 𝑔 fixed, we see

min
𝑓

𝐼 (𝑓, 𝑔) = 𝐼 (ℎ, 𝑔) , (25)

and then ℎ uniquely minimizes 𝐼(𝑓, 𝑔).
Let ℎ̃(𝑥

1
, 𝑥
2
, 𝑥
3
) = ℎ(𝑥

∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) for (𝑥

1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷

3.
Since ℎ̃(𝑥

1
, 𝑥
2
, 𝑥
3
) satisfies QP3

1
, we see

log ℎ̃ (𝑥
1
, 𝑥
2
, 𝑥
3
)

= log 𝜇 + log𝛼
1
(𝑥
∗

1
) + log𝛼

2
(𝑥
∗

2
) + log𝛼

3
(𝑥
∗

3
)

+ log𝛽
12
(𝑥
1
, 𝑥
2
) + log𝛽

13
(𝑥
1
, 𝑥
3
)

+ log𝛽
23
(𝑥
2
, 𝑥
3
) + log 𝛾 (𝑥

1
, 𝑥
2
, 𝑥
3
) .

(26)
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Since ℎ̃(𝑥
1
, 𝑥
2
, 𝑥
3
) satisfies MP3

1
, we see

ℎ̃
𝑋
𝑖

(𝑥
∗

𝑖
) = ℎ̃
𝑋
𝑖

(𝑥
𝑖
) = ℎ
(0)

𝑋
𝑖

(𝑥
𝑖
) (𝑖 = 1, 2, 3) , (27)

where (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷
3.

Consider the arbitrary density function 𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
)

satisfying MP3
1
with

𝑓
𝑋
𝑖

(𝑥
∗

𝑖
) = 𝑓
𝑋
𝑖

(𝑥
𝑖
) = ℎ
(0)

𝑋
𝑖

(𝑥
𝑖
) (𝑖 = 1, 2, 3) , (28)

where (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ 𝐷
3. In a similar way, we see

∭{𝑓(𝑥
1
, 𝑥
2
, 𝑥
3
) − ℎ̃ (𝑥

1
, 𝑥
2
, 𝑥
3
)}

× log(
ℎ̃ (𝑥
1
, 𝑥
2
, 𝑥
3
)

𝑔 (𝑥
1
, 𝑥
2
, 𝑥
3
)
)𝑑𝑥
1
𝑑𝑥
2
𝑑𝑥
3
= 0.

(29)

Thus, we obtain

𝐼 (𝑓, 𝑔) = 𝐼 (ℎ̃, 𝑔) + 𝐼 (𝑓, ℎ̃) . (30)

For 𝑔 fixed, we see

min
𝑓

𝐼 (𝑓, 𝑔) = 𝐼 (ℎ̃, 𝑔) , (31)

and then ℎ̃ uniquely minimizes 𝐼(𝑓, 𝑔). Therefore, we
see ℎ(𝑥

1
, 𝑥
2
, 𝑥
3
) = ℎ̃(𝑥

1
, 𝑥
2
, 𝑥
3
). Thus, ℎ(𝑥

1
, 𝑥
2
, 𝑥
3
) =

ℎ(𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
). Namely, ℎ(𝑥

1
, 𝑥
2
, 𝑥
3
) satisfies PS3. The case of

𝑘 = 2 can be proved in a similar way as the case of 𝑘 = 1. So
the proof is completed.

3. Decomposition of Multivariate
Density Function

Let 𝑋
1
, . . . , 𝑋

𝑇
be 𝑇 continuous random variables with a

density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
), where 𝑓(𝑥

1
, . . . , 𝑥

𝑇
) > 0 for

(𝑥
1
, . . . , 𝑥

𝑇
) ∈ 𝐷

𝑇 and 𝐷
𝑇 is defined in a similar way to

𝐷
3. Let (𝑐

1
, . . . , 𝑐

𝑇
) denote a given point in 𝐷

𝑇, where 𝑐
𝑖
=

(𝑎
𝑖
+𝑏
𝑖
)/2 if 𝑎

𝑖
and 𝑏
𝑖
are finite. Let 𝑥∗

𝑖
= 2𝑐
𝑖
−𝑥
𝑖
when𝑋

𝑖
= 𝑥
𝑖

for 𝑖 = 1, . . . , 𝑇. For the density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
), we

will define the point-symmetry (denoted by PS𝑇) with respect
to the point (𝑐

1
, . . . , 𝑐

𝑇
) by

𝑓 (𝑥
∗

1
, . . . , 𝑥

∗

𝑇
) = 𝑓 (𝑥

1
, . . . , 𝑥

𝑇
)

for every (𝑥
1
, . . . , 𝑥

𝑇
) ∈ 𝑅
𝑇
.

(32)

Also, for 𝑘 = 1, . . . , 𝑇 − 1, we will define the marginal point-
symmetry of order 𝑘 (denoted by MP𝑇

𝑘
) by

𝑓
𝑋
𝑖1
⋅⋅⋅𝑋
𝑖
𝑘

(𝑥
∗

𝑖
1

, . . . , 𝑥
∗

𝑖
𝑘

) = 𝑓
𝑋
𝑖1
⋅⋅⋅𝑋
𝑖
𝑘

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑘

)

(1 ≤ 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑘
≤ 𝑇) ,

(33)

where 𝑓
𝑋
𝑖1
⋅⋅⋅𝑋
𝑖
𝑘

is the marginal density function of
(𝑋
𝑖
1

, . . . , 𝑋
𝑖
𝑘

). We note that MP𝑇
𝑘+1

implies MP𝑇
𝑘

(𝑘 = 1, . . . , 𝑇 − 2).

We can express the density function as

𝑓 (𝑥
1
, . . . , 𝑥

𝑇
)

= 𝜇[

𝑇

∏

𝑖
1
=1

𝛼
𝑖
1

(𝑥
𝑖
1

)][

[

∏∏

1≤𝑖
1
<𝑖
2
≤𝑇

𝛼
𝑖
1
𝑖
2

(𝑥
𝑖
1

, 𝑥
𝑖
2

)]

]

× ⋅ ⋅ ⋅

× [

[

∏⋅ ⋅ ⋅∏

1≤𝑖
1
<⋅⋅⋅<𝑖
𝑇−1
≤𝑇

𝛼
𝑖
1
⋅⋅⋅𝑖
𝑇−1

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑇−1

)]

]

× 𝛼
1⋅⋅⋅𝑇

(𝑥
1
, . . . , 𝑥

𝑇
) ,

(34)

where (𝑥
1
, . . . , 𝑥

𝑇
) ∈ 𝐷
𝑇, and

{𝛼
𝑖
(𝑐
𝑖
) = 𝛼
𝑖
1
𝑖
2

(𝑐
𝑖
1

, 𝑥
𝑖
2

) = ⋅ ⋅ ⋅ = 𝛼
1⋅⋅⋅𝑇

(𝑥
1
, . . . , 𝑥

𝑇−1
, 𝑐
𝑇
) = 1} .

(35)

Then, the density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) being PS𝑇 is also

expressed as (34) with

𝛼
𝑖
1
⋅⋅⋅𝑖
𝑚

(𝑥
∗

𝑖
1

, . . . , 𝑥
∗

𝑖
𝑚

) = 𝛼
𝑖
1
⋅⋅⋅𝑖
𝑚

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑚

)

(𝑚 = 1, . . . , 𝑇; 1 ≤ 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑚
≤ 𝑇) .

(36)

For 𝑘 = 1, . . . , 𝑇−1, we will define the quasi-point-symmetry
of order 𝑘 (denoted by QP𝑇

𝑘
) by (34) with

𝛼
𝑖
1
⋅⋅⋅𝑖
𝑚

(𝑥
∗

𝑖
1

, . . . , 𝑥
∗

𝑖
𝑚

) = 𝛼
𝑖
1
⋅⋅⋅𝑖
𝑚

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑚

)

(𝑚 = 𝑘 + 1, . . . , 𝑇; 1 ≤ 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑚
≤ 𝑇) .

(37)

We note that QP𝑇
𝑘
implies QP𝑇

𝑘+1
(𝑘 = 1, . . . , 𝑇 − 2). Then we

obtain the following theorem.

Theorem 2. For 𝑘 fixed (𝑘 = 1, . . . , 𝑇 − 1), the multivariate
density function 𝑓(𝑥

1
, . . . , 𝑥

𝑇
) is 𝑃𝑆𝑇 if and only if it is both

𝑄𝑃
𝑇

𝑘
and𝑀𝑃

𝑇

𝑘
.

The proof of Theorem 2 is omitted because it is obtained
in a similar way to the proof of Theorem 1.

4. Point-Symmetry of Multivariate
Normal Density Function

Consider a 𝑇-dimensional random vector𝑋 = (𝑋
1
, . . . , 𝑋

𝑇
)
󸀠

having a normal distribution with mean vector 𝜇 =

(𝜇
1
, . . . , 𝜇

𝑇
)
󸀠 and covariance matrix Σ. The density function

is

𝑓 (𝑥
1
, . . . , 𝑥

𝑇
) =

1

(2𝜋)
𝑇/2

|Σ|
1/2

× exp {−1
2
(𝑥 − 𝜇)

󸀠

Σ
−1
(𝑥 − 𝜇)} .

(38)

Denote Σ−1 by 𝐴 = (𝑎
𝑖𝑗
) with 𝑎

𝑖𝑗
= 𝑎
𝑗𝑖
. Then the density

function can be expressed as

𝑓 (𝑥
1
, . . . , 𝑥

𝑇
) = 𝐶 exp {−1

2
𝐻} , (39)
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where 𝐶 is positive constant and

𝐻 =

𝑇

∑

𝑠=1

𝑎
𝑠𝑠
𝑥
2

𝑠
+ ∑

𝑠 ̸= 𝑡

𝑎
𝑠𝑡
𝑥
𝑠
𝑥
𝑡

− 2

𝑇

∑

𝑠=1

𝑇

∑

𝑡=1

𝑎
𝑠𝑡
𝜇
𝑠
𝑥
𝑡
.

(40)

For an arbitrary given point (𝑐
1
, . . . , 𝑐

𝑇
), we set 𝑥

𝑖
= 𝑥
𝑖
−𝑐
𝑖
and

𝜇
𝑖
= 𝜇
𝑖
− 𝑐
𝑖
(𝑖 = 1, . . . , 𝑇). Then noting that 𝑥

𝑖
− 𝜇
𝑖
= 𝑥
𝑖
− 𝜇
𝑖

(𝑖 = 1, . . . , 𝑇), we see

𝑓 (𝑥
1
, . . . , 𝑥

𝑇
) = 𝐶 exp {−1

2
𝐻̃} , (41)

where 𝐶 is positive constant and

𝐻̃ =

𝑇

∑

𝑠=1

𝑎
𝑠𝑠
𝑥
2

𝑠
+ ∑

𝑠 ̸= 𝑡

𝑎
𝑠𝑡
𝑥
𝑠
𝑥
𝑡

− 2

𝑇

∑

𝑠=1

𝑇

∑

𝑡=1

𝑎
𝑠𝑡
𝜇
𝑠
𝑥
𝑡
.

(42)

Thus,

𝛼
𝑖
(𝑥
𝑖
)

=
𝑓 (𝑐
1
, . . . , 𝑐

𝑖−1
, 𝑥
𝑖
, 𝑐
𝑖+1
, . . . , 𝑐

𝑇
)

𝑓 (𝑐
1
, . . . , 𝑐

𝑇
)

= exp{−1
2
(𝑎
𝑖𝑖
𝑥
2

𝑖
− 2

𝑇

∑

𝑠=1

𝑎
𝑠𝑖
𝜇
𝑠
𝑥
𝑖
)} (𝑖 = 1, . . . , 𝑇) ,

𝛼
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
)

= (𝑓 (𝑐
1
, . . . , 𝑐

𝑖−1
, 𝑥
𝑖
, 𝑐
𝑖+1
, . . . , 𝑐

𝑗−1
, 𝑥
𝑗
, 𝑐
𝑗+1

, . . . , 𝑐
𝑇
)

× 𝑓 (𝑐
1
, . . . , 𝑐

𝑇
))

× (𝑓 (𝑐
1
, . . . , 𝑐

𝑖−1
, 𝑥
𝑖
, 𝑐
𝑖+1
, . . . , 𝑐

𝑇
)

× 𝑓 (𝑐
1
, . . . , 𝑐

𝑗−1
, 𝑥
𝑗
, 𝑐
𝑗+1

, . . . , 𝑐
𝑇
))
−1

= exp (−1
2
𝑎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
) (𝑖 < 𝑗) ,

(43)

and for𝑚 = 3, . . . , 𝑇,

𝛼
𝑖
1
⋅⋅⋅𝑖
𝑚

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑚

) = 1 (1 ≤ 𝑖
1
< ⋅ ⋅ ⋅ < 𝑖

𝑚
≤ 𝑇) . (44)

Since 𝑥∗
𝑖
= 2𝑐
𝑖
− 𝑥
𝑖
(𝑖 = 1, . . . , 𝑇), we see

𝛼
𝑖𝑗
(𝑥
∗

𝑖
, 𝑥
∗

𝑗
) = exp {−1

2
𝑎
𝑖𝑗
(𝑥
∗

𝑖
− 𝑐
𝑖
) (𝑥
∗

𝑗
− 𝑐
𝑗
)}

= exp {−1
2
𝑎
𝑖𝑗
(𝑥
𝑖
− 𝑐
𝑖
) (𝑥
𝑗
− 𝑐
𝑗
)}

= 𝛼
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) (𝑖 < 𝑗) .

(45)

Therefore, the normal density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) is QP𝑇

𝑘

for 𝑘 = 1, . . . , 𝑇 − 1, without depending on the value of
(𝑐
1
, . . . , 𝑐

𝑇
) and on the values of parameters 𝜇 and Σ. Thus,

we see from Theorem 2 that, for 𝑘 fixed (𝑘 = 1, . . . , 𝑇 − 1),
the normal density function 𝑓(𝑥

1
, . . . , 𝑥

𝑇
) is PS𝑇 if and only

if 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) is MP𝑇

𝑘
. Therefore, we see that the normal

density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) is not PS𝑇 with respect to

the point (𝑐
1
, . . . , 𝑐

𝑇
)where (𝑐

1
, . . . , 𝑐

𝑇
) ̸= (𝜇
1
, . . . , 𝜇

𝑇
), and it is

PS𝑇 only with respect to (𝑐
1
, . . . , 𝑐

𝑇
) = (𝜇

1
, . . . , 𝜇

𝑇
) without

depending on the value of Σ. We see from Theorem 2 that
when the normal density function 𝑓(𝑥

1
, . . . , 𝑥

𝑇
) is not PS𝑇,

it is caused by the lack of the structure of MP𝑇
𝑘
.

5. Discussion

When a density function 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) is not point-

symmetric, Theorem 2 may be useful for knowing the
reason, that is, for 𝑘 fixed, which structure of quasi-point-
symmetry of order 𝑘 and marginal point-symmetry of order
𝑘 is lacking.

For symmetry of a multivariate distribution, there are
various kinds of symmetry such as spherical symmetry,
elliptical symmetry, and central symmetry (see, e.g., Kotz
et al. [10, pages 5338–5341], Fang et al. [11, Chapter 2],
Muirhead [12, pages 32–34], and Tong [13, Chapter 4]). The
PS𝑇 described in the present paper is equivalent to the central
symmetry. Also, for the 𝑇-variate spherical (elliptical) distri-
bution, the probability density function is PS𝑇 with respect
to the mean vector, although when the density function is
PS𝑇, the distribution is not always spherical (elliptical).Thus,
for the𝑇-variate spherical (elliptical) distribution, the density
function is QP𝑇

𝑘
and MP𝑇

𝑘
(𝑘 = 1, . . . , 𝑇 − 1) with respect to

the mean vector. We point out that, as described in Section 4,
for 𝑇-variate normal distribution, the density function is
QP𝑇
𝑘
(𝑘 = 1, . . . , 𝑇 − 1) with respect to the arbitrary point

(𝑐
1
, . . . , 𝑐

𝑇
) (not only mean vector (𝜇

1
, . . . , 𝜇

𝑇
)).

Testing spherical symmetry and elliptical symmetry is
described in, for example, Fang and Zhang [14, Chapter 5],
Muirhead [12, page 333], and Kotz et al. [10, pages 5341-
5342]. Heathcote et al. [15] gave a procedure for testing a
general multivariate distribution for symmetry about a point
which indicates that the imaginary part of the characteristic
function of centered variable vanishes identically. Although
the readers may be interested in seeing the comparison of
both approaches and the decomposition of PS𝑇 into QP𝑇

𝑘
and

MP𝑇
𝑘
, it seems difficult.
As (6), we have considered the multiplicative form of

probability density function by the terms of the odds, the
odds ratios, the ratios of odds ratios, and so on; as an analog
to the log-linear model for the analysis of categorical data
(Agresti [16, Chapter 9]). Although the readers also may be
interested in the additive form of density function for point-
symmetry, it seems difficult to consider it.

On discrete probability, the concept of odds ratio is
important. Also it is important to use the odds ratio on
probability density function (corresponding to a continuous
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random variable). For example, for bivariate probability
density function 𝑓(𝑥, 𝑦), the odds ratio

𝛽
12
(𝑥
1
, 𝑥
2
) =

𝑓 (𝑥
1
, 𝑥
2
) 𝑓 (𝑐
1
, 𝑐
2
)

𝑓 (𝑥
1
, 𝑐
2
) 𝑓 (𝑐
1
, 𝑥
2
)

(46)

equals 1 for any 𝑥
1
, 𝑥
2
and fixed 𝑐

1
and 𝑐
2
, if and only if two

variables are independent. So we are interested in how the
structures of odds ratios, the ratios of odds ratios, and so on,
of probability density function, are, for example, the point-
symmetry. Note that Holland and Wang [17], Kotz et al. [18,
page 74], and Tong [13, Chapter 4] discuss the properties of
bivariate probability density function using the odds ratios,
for example, as the local dependence function and the totally
positive of density function, although the details are omitted.

In Section 4, we have shown that, for the𝑇-variate normal
distribution, the density function is always QP𝑇

𝑘
but not MP𝑇

𝑘

(thus not PS𝑇) with respect to the arbitrary point (𝑐
1
, . . . , 𝑐

𝑇
)

where (𝑐
1
, . . . , 𝑐

𝑇
) is not equal tomean vector (𝜇

1
, . . . , 𝜇

𝑇
).The

readers may be interested in the probability density function
such that it is not QP𝑇

𝑘
but it is MP𝑇

𝑘
. Consider the following

density function:

𝑓 (𝑥
1
, . . . , 𝑥

𝑇
)

=
1

𝐶(2𝜋)
𝑇

[
[

[

𝑇

∑

𝑘=1

(

𝑇

∏

𝑖=1

𝑖 ̸= 𝑘

𝑥
𝑖
) cos𝑥

𝑘
+ 𝐶

]
]

]

,

(47)

for −𝜋 ≤ 𝑥
𝑖

≤ 𝜋 (𝑖 = 1, . . . , 𝑇) with 𝐶 satisfying
𝑓(𝑥
1
, . . . , 𝑥

𝑇
) > 0. When 𝑇 is odd, the density function is

PS𝑇 with respect to the point (0, . . . , 0) because 𝑓(𝑥∗
1
, . . . , 𝑥

∗

𝑇
)

equals 𝑓(𝑥
1
, . . . , 𝑥

𝑇
) for 𝑥∗

𝑖
= −𝑥
𝑖
(𝑖 = 1, . . . , 𝑇). Thus, from

Theorem 2, when 𝑇 is odd, this density function is QP𝑇
𝑘
and

MP𝑇
𝑘
(𝑘 = 1, . . . , 𝑇 − 1). However, when 𝑇 is even, the density

function (47) is not PS𝑇. Also, for 𝑘 = 1, . . . , 𝑇 − 1, the
marginal density function of (𝑋

𝑖
1

, . . . , 𝑋
𝑖
𝑘

) is

𝑓 (𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑘

) =
1

(2𝜋)
𝑘

(−𝜋 ≤ 𝑥
𝑖
𝑙

≤ 𝜋; 𝑙 = 1, . . . , 𝑘) .

(48)
Namely, this is the uniform distribution. Therefore, the
density function (47) is always MP𝑇

𝑘
(𝑘 = 1, . . . , 𝑇 − 1)

with respect to the point (0, . . . , 0) without depending on
whether 𝑇 is odd or even. In addition, when 𝑇 is even,
the density function (47) is not QP𝑇

𝑘
(𝑘 = 1, . . . , 𝑇 −

1), because then 𝛼
𝑖
1
⋅⋅⋅𝑖
𝑇−1

(𝑥
∗

𝑖
1

, . . . , 𝑥
∗

𝑖
𝑇−1

) ̸= 𝛼
𝑖
1
⋅⋅⋅𝑖
𝑇−1

(𝑥
𝑖
1

, . . . , 𝑥
𝑖
𝑇−1

)

and 𝛼
1⋅⋅⋅𝑇

(𝑥
∗

1
, . . . , 𝑥

∗

𝑇
) ̸= 𝛼
1⋅⋅⋅𝑇

(𝑥
1
, . . . , 𝑥

𝑇
) for 𝑥∗

𝑚
= −𝑥
𝑚
(𝑚 =

1, . . . , 𝑇).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would like to thank two referees for their many
helpful comments.

References
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