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Numerical treatment of nonlinear optimal control problems

Reza Khoshsiar Ghaziani, Mojtaba Fardi and Mehdi Ghasemi

abstract: In this paper, we present iterative and non-iterative methods for the
solution of nonlinear optimal control problems (NOCPs) and address the sufficient
conditions for uniqueness of solution. We also study convergence properties of the
given techniques. The approximate solutions are calculated in the form of a conver-
gent series with easily computable components. The efficiency and simplicity of the
methods are tested on a numerical example.
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1. Introduction

Optimal control is a subject where it is desired to determine the inputs to a dy-
namical system that optimize (i.e., minimize or maximize) a specified performance
index while satisfying any constraints on the motion of the system. Optimal con-
trol theory has received a great deal of attention and has found applications in
many fields of science and engineering [20,22,23,15,16,17,18,21,24]. Because of the
complexity of most applications, optimal control problems are most often solved
numerically. Numerical methods for solving optimal control problems date back
nearly five decades to the 1950s with the work of Bellman [3,4,5,6,7,8]. From
that time to the present, the complexity of methods and corresponding complexity
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and variety of applications has increased tremendously making optimal control a
discipline that is relevant to many branches of engineering.

Numerical methods for solving optimal control problems are divided into two
major classes: indirect methods and direct methods. It is seen that indirect meth-
ods and direct methods emanate from two different approaches. On the one hand,
the indirect approach solves the problem indirectly (thus the name, indirect) by
converting the optimal control problem to a boundary-value problem. As a result,
in an indirect method the optimal solution is found by solving a system of differ-
ential equations that satisfies endpoint and/or interior point conditions [11,14,12].
On the other hand, in a direct method the optimal solution is found by transcribing
an infinite-dimensional optimization problem to a finite-dimensional optimization
problem [2,9,10,13].

The two different ideas of indirect and direct methods have led to a dichotomy
in the optimal control community. Researchers who focus on indirect methods are
interested largely in differential equation theory (e.g., see [1]), while researchers who
focus on direct methods are interested more in optimization techniques. These two
approaches have much more in common than initially meets the eye. Specifically,
in recent years researchers have deeply investigated the connections between the
indirect and direct forms. These two classes of methods are merging as time goes
by.

This paper is organized as follows. In Section 2, we define a nonlinear quadratic
optimal control problem. In Section 3, we establish existence and uniqueness of
the solution of the defined control problem. Stability of solution of the problem
is presented in Section 4. In Section 5, we present an iterative numerical method
and give convergence analysis of the introduced method. Section 6, provides a non-
iterative method and analyzes its convergence. Finally, in Section 6, we present
optimal control results for a test problem.

2. Nonlinear Quadratic Optimal Control Problem

We consider the nonlinear dynamical system of the form
{

ẋ(t) = f(t, x(t)) + g(t, x(t))v(t), t0 ≤ t ≤ tf ,

x(t0) = x0, x(tf ) = xf ,
(2.1)

where x(t) ∈ ℜn and v(t) ∈ ℜm are the state vector and control function, respec-
tively, and x0, xf are the initial and final states at t0, tf . Moreover, f(t, x(t)) ∈ ℜn

and g(t, x(t)) ∈ ℜn×m are two real-valued continuously differentiable functions and
have continuous first derivative with respect to x.
The objective is to find the optimal control law v∗(t) that minimizes the quadratic
objective functional

J [x(t), v(t)] =
1

2

∫ tf

t0

(xT (t)Qx(t) + vT (t)Rv(t))dt, (2.2)

subject to the control system (2.1), where Q is a symmetric positive semi-definite
n× n matrix and R is a symmetric positive definite m×m matrix.
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Consider Hamiltonian of the control system (2.1) as

H[t, x(t), v(t), k(t)]=
1

2
[xT (t)Qx(t)+vT (t)Rv(t)]+kT (t)[f(t, x(t))+g(t, x(t))v(t)],

where k(t) ∈ ℜn is known as co-state vector. According to the pontryagin’s max-
imum principle [32], the optimality condition for system (2.1) obtained by the
following nonlinear equations.




ẋ(t) = f(t, x(t)) + g(t, x(t))[−R−1gT (t, x(t))k(t)],

k̇(t)=−(Qx(t)+(∂f(t,x(t))
∂x

)Tk(t)+
∑n

i=1 ki(t)[−R−1gT (t, x(t))k(t)]T ∂gi(t,x(t))
∂x

),
x(t0) = x0, x(tf ) = xf , t0 ≤ t ≤ tf ,

(2.3)

where k(t) = [k1(t), k2(t), ..., kn(t)]
T and g(t, x(t)) = [g1(t, x(t)), g2(t, x(t)), ...,

gn(t, x(t))]
T with gi(t, x(t)) ∈ ℜm.

Also the optimal control law is given by v(t) = −R−1gT (t, x(t))k(t).
For the sake of simplicity, let us define the right hand sides of (2.3) as follows





φ1(t, x(t), k(t)) = f(t, x(t)) + g(t, x(t))[−R−1gT (t, x(t))k(t)],

φ2(t, x(t), k(t)) = −(Qx(t) + (∂f(t,x(t))
∂x

)T k(t)

+
∑n

i=1 ki(t)[−R−1gT (t, x(t))k(t)]T ∂gi(t,x(t))
∂x

).

(2.4)

Because the initial value of k(t) is not known, thus system (2.3) leads to




ẋ(t) = φ1(t, x(t), k(t)),

k̇(t) = φ2(t, x(t), k(t)),
x(t0) = x0, k(t0) = β, t0 ≤ t ≤ tf ,

(2.5)

where φ1 ∈ ℜn and φ2 ∈ ℜ are two functions and β ∈ ℜ is an unknown parameter.
In order to obtain an approximate solution of system (2.5), let us integrate the
system (2.5) with respect to t, using the initial condition we obtain

{
x(t) = x0 +

∫ t

t0
φ1(s, x(s), k(s))ds,

k(t) = β +
∫ t

t0
φ2(s, x(s), k(s))ds, t0 ≤ t ≤ tf .

(2.6)

We consider (2.6), which in turn can be written as

Z(t) = Z0 +

∫ t

t0

Q(s, Z(s))ds, t0 ≤ t ≤ tf , (2.7)

where
Z(t) = (Z1(t), Z2(t), ..., Zn+1)

T :=
(
x(t), k(t)

)T
∈ ℜn+1,

Z0(t) = (Z01(t), Z02(t), ..., Z0n+1
(t))T :=

(
x0(t), k0(t)

)T
∈ ℜn+1,

and

Q(t, Z(t)) = (Q1(t, Z(t)),Q2(t, Z(t)), ...,Qn+1(t, Z(t)))T

:=
(
φ1(t, x(t), k(t)), φ2(t, x(t), k(t))

)T
∈ ℜn+1.



198 Reza Khoshsiar Ghaziani, Mojtaba Fardi and Mehdi Ghasemi

3. Existence and Uniqueness of The Solution

First, we want to find the sufficient conditions for the uniqueness of solution
in the space C([t0, tf ] → ℜn+1) of real-valued continuous functions on the interval
[t0, tf ].
Here, we will use the infinity-norm ‖.‖∞, that is given

‖Z‖∞ = max
1≤i≤n+1

{|Zi|}. (3.1)

Theorem 3.1. Let Q : [t0, tf ] × ℜn+1 → ℜ be continuous and there exists a
positive constant 0 < L, such that

‖Q(t, Z)− Q(t, Z)‖∞ ≤ L‖Z − Z‖∞, ∀t ∈ [t0, tf ], (3.2)

then, the problem (2.7) has a unique solution.
Proof. We introduce an operator Φ, acting on C([t0, tf ] → ℜn+1), defined by

(ΦZ)(t) = Z0 +

∫ t

t0

Q(s, Z(s))ds, t0 ≤ t ≤ tf , . (3.3)

Observe that the right hand side of (3.3) is a continuous function on the interval
[t0, tf ], in other words, Φ maps C([t0, tf ] → ℜn+1) into itself.
Next we define the weighted norm ‖.‖θ, where θ > 0, on C([0, T ] → ℜn+1) as the
following

‖Z‖θ = max
t∈[t0,tf ]

e−θLt‖Z‖∞ (3.4)

where L is constant.
Our proof is proceed as follows:
Step 1. We know that Q is continuous, then the operator Φ : C([t0, tf ] → ℜn+1) →
C([t0, tf ] → ℜn+1) is continuous.
Step 2. We can show that Φ maps bounded sets into bounded sets in C([t0, tf ] →
ℜn+1). Let Br ⊂ C([t0, tf ] → ℜn+1) be bounded; i.e., there exists a positive
constant r such that ‖Z‖θ ≤ r, ∀Z ∈ C([t0, tf ] → ℜn+1). In this step, we show
Φ(Br) ⊂ Br. To this end, we choose r, such that e−θLt0 [‖Z0‖∞ + M(tf − t0) +
r
θ
(eθLtf − eθLt0)] ≤ r, where M = ‖Q(t, 0, 0)‖∞.

For each Z ∈ Br, we have

‖ΦZ‖∞ ≤ ‖Z0‖∞ + ‖[

∫ t

t0

(|Qj(s, Z(s))−Qj(s, 0, 0)|+ |Qj(s, 0, 0)|)ds]
n+1
j=1 ‖

≤ ‖Z0‖∞ + ‖[

∫ t

t0

L|Zj(s)|ds]
n+1
j=1 ‖+M(tf − t0). (3.5)



Numerical treatment of nonlinear optimal control problems 199

Since, Q is continuous, we have

‖ΦZ‖θ = e−θLt‖ΦZ‖∞

≤ e−θLt(‖Z0‖∞ +M(tf − t0)) + e−θLt‖[

∫ t

t0

L|Zj(s)|ds]
n+1
j=1 ‖

≤ e−θLt[‖Z0‖∞ +M(tf − t0) + Lr

∫ t

t0

eθLsds] (3.6)

= max
t∈[t0,tf ]

{e−θLt[‖Z0‖∞ +M(tf − t0) +
r

θ
(eθLt − eθLt0)]} ≤ r,

thus Φ maps Br into itself.
Step 3. We prove that Φ is a contraction map.
Let Z,Z ∈ C([0, T ] → ℜn+1), then we obtain

‖ΦZ − ΦZ‖θ

≤ ‖[

∫ t

t0

[Qj(s, Z(s))−Qj(s, Z(s))]ds]n+1
j=1 ‖

≤ ( max
t∈[t0,tf ]

{Le−θLt

∫ t

t0

e+θLsds})‖Z − Z‖θ. (3.7)

Because

max
t∈[t0,tf ]

{Le−θLt

∫ t

t0

e+θLsds}

= max
t∈[t0,tf ]

{
1

+θ
(1− e−θL(t−t0))}

=
1

+θ
(1− e−θL(tf−t0)). (3.8)

Then

lim
θ→∞

[ max
t∈[t0,tf ]

{Le−θLt

∫ t

t0

e+θLsds}] = 0. (3.9)

Hence, by choosing θ sufficiently large, we make

[ max
t∈[t0,tf ]

{Le−θLt

∫ t

t0

e+θLsds}] < 1. (3.10)

Hence for the chosen value of θ, the operator Φ is a contraction map.
Now, by application of the Contraction Mapping Theorem Φ has a unique fixed
point in C([0, T ] → ℜn+1), which is also the unique solution of the problem.

4. Stability of Solution

In this section, we discuss stability of solution for (2.7) by using the concept of
stability. First, we give the definition of the stability of solution for (2.7).
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Definition 4.1. A solution Z(t) to (2.7) is said to be stable on the interval [t0, tf ]

if for every ǫ > 0 there exists δ > 0 such that for all Ẑ satisfying ‖Z(t0)− Ẑ‖∞ < δ

the solution W (t) for following problem satisfies ‖Z(t) −W (t)‖∞ < ǫ for all t in
[t0, tf ],

W (t) = Ẑ +

∫ t

t0

Q(s,W (s))ds, t0 ≤ t ≤ tf . (4.1)

Theorem 4.1. Assume that Q(t, Z(t)) is a continuous vector function on

U = {(t, Z(t))|t0 ≤ t ≤ tf , ‖Z(t)− Z0(t)‖∞ ≤ r}, (4.2)

Suppose also, that there exists a positive constant L such that,

‖Q(t, Z(t))− Q(t, Z(t))‖∞ ≤ L‖Z(t)− Z(t)‖∞ (4.3)

holds whenever (t, Z(t)) and (t, Z(t)) lie in the rectangle U , and let ‖Q(t, Z(t))‖∞ ≤
M for some real number M on U . Then the solution Z(t) is stable on the interval
[t0, tf ].
Proof. Since

Z(t) = Z0 +

∫ t

t0

Q(s, Z(s))ds, t0 ≤ t ≤ tf , (4.4)

W (t) = Ẑ +

∫ t

t0

Q(s,W (s))ds, t0 ≤ t ≤ tf , (4.5)

it follows that

‖Z(t)−W (t)‖∞ ≤ ‖Z0 − Ẑ‖∞ + L

∫ t

t0

‖Z(s)−W (s)‖∞ds, t0 ≤ t ≤ tf . (4.6)

Now set Φ(t) = ‖Z(t)−W (t)‖∞ and λ = ‖Z0− Ẑ‖∞; then, (4.6) can be written as

Φ(t) ≤ λ+ L

∫ t

t0

Φ(s)ds, t0 ≤ t ≤ tf . (4.7)

Multiplying (4.7) by exp(−Lt), we find that

d

dt
[exp(−Lt)

∫ t

t0

Φ(s)ds] ≤ λexp(−Lt). (4.8)

Integrating the inequality (4.8), we deduce that

L

∫ t

t0

Φ(s)ds ≤ λ(exp(L(t0 − t))− 1), j = 1, 2, ..., n+ 1. (4.9)

From (4.7) (4.9), we have

Φ(t) ≤ λ exp(L(t0 − t)). (4.10)

Thus, given ǫ > 0 as the above definition, we choose δ = ǫ exp(L(t0 − tf )) and the
proof is completed now.
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5. Iterative Method (IM)

In this section, we apply an iterative method to solve the optimal control system
problem.
We consider (2.6) which can be written as

x(t) = x0 + F (t, x(t), k(t)), F (t, x(t), k(t)) =

∫ t

t0

φ1(s, x(s), k(s))ds, (5.1)

k(t) = β +G(t, x(t), k(t)), G(t, x(t), k(t)) =

∫ t

t0

φ2(s, x(s), k(s))ds. (5.2)

We shall look for series solution to (5.1) and (5.2) as

x(t) = x0(t) + x1(t) + x2(t) + ..., (5.3)

k(t) = k0(t) + k1(t) + k2(t) + ..., (5.4)

and define the partial sums

xn(t) =
n∑

i=0

xi(t), kn(t) =
n∑

i=0

ki(t), (5.5)

and the following sequential method





x0(t) = x0, k0(t) = β,

x1(t) = F (t, x0(t), k0(t)), k1(t) = G(t, x0(t), k0(t)),

xi+1(t) = F (t,xi(t),ki(t)) − F (t,xi−1(t),ki−1(t)), i = 1, 2, ...,

ki+1(t) = G(t,xi(t),ki(t)) −G(t,xi−1(t),ki−1(t)), i = 1, 2, ...,

(5.6)

so that




xi+1(t) = x0(t) + F (t,xi(t),ki(t)) = x0(t)

+F (t,
∑i

j=0 xi(t),
∑i

j=0 ki(t)), i = 0, 1, 2, ...

ki+1(t) = k0(t) +G(t,xi(t),ki(t)) = k0(t)

+G(t,
∑i

j=0 xi(t),
∑i

j=0 ki(t)), i = 0, 1, 2, ...

(5.7)

From (5.6), we have

{
xi+1(t) = F (t,xi(t),ki(t)),

ki+1(t) = G(t,xi(t),ki(t)).
(5.8)

Now, we consider

Z(t) = Z0 +

∫ t

t0

Q(s, Z(s))ds, t0 ≤ t ≤ tf . (5.9)
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Therefore, we have

Z0(t) = Z(t0), (5.10)

Z1(t) = Z0 +

∫ t

t0

Q(s, Z0(s))ds, (5.11)

Zi+1(t) =

∫ t

t0

[Q(s,Zi(s))− Q(s,Zi−1(s))]ds, (5.12)

where

Zn(t) =

n∑

i=0

Zi(t). (5.13)

5.1. Convergence Analysis of IM

In the following, we provide sufficient conditions for the convergence of IM
solution series.
Theorem 5.1. Assume that Q(t, Z(t)) is a continuous vector function on

U = {(t, Z(t))|0 ≤ |t− t0| ≤ r1, ‖Z(t)− Z0(t)‖∞ ≤ r2}, (r1, r2 > 0). (5.14)

Assume also that Q(t, Z(t)) satisfies a uniform Lipschitz condition with respect to
Z(t) on U with Lipschitz constant γ, i.e.,

‖Q(t, Z(t)) − Q(t, Z(t))‖∞ ≤ γ‖Z(t)− Z(t)‖∞, (5.15)

for all t ∈ [t0, tf ], and all Z(t) and Z(t), and let ‖Q(t, Z(t))‖∞ ≤ M , for some real
number M on U .
Then the IM series solution converges to the solution of (2.1) on I = [t0, t0 + χ],
where

χ = min{r1,
r2

M
}, (5.16)

Proof. The assumptions imply the following estimations

‖Z0(t)‖∞ = ‖Z(t0)‖∞, (5.17)

‖Z1(t)‖∞ ≤

∫ t

t0

‖Q(s, Z0(s))‖∞ds ≤ M(t− t0) ≤ Mχ ≤ r2, (5.18)

‖Zi+1(t)‖∞ ≤

∫ t

t0

‖Q(s,Zi(s))− Q(s,Zi−1(s))‖∞ds (5.19)

≤ γ

∫ t

t0

‖Zi(s)− Zi−1(s)‖∞ds = γ

∫ t

t0

‖Zi(s)‖∞ds, (5.20)

≤
M

γ

γi+1

(i+ 1)!
(t− t0)

i+1 ≤
M

γ

(γχ)i+1

(i + 1)!
, (5.21)
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From (5.17), we have

‖ lim
n→∞

Zn(t)‖∞ ≤

∞∑

i=0

‖Zi(t)‖∞ ≤

∞∑

i=0

M

γ

γi

(i)!
(t− t0)

i ≤
M

γ
exp(γχ), (5.22)

therefore the sequence
∑∞

i=0 Zi(t) is absolute convergence.

6. Non-Iterative Method (NIM)

By considering (2.7), operators L and N can be defined in the following way

L(Z) = Z, N(Z) = −

∫ t

t0

Q(s, Z(s))ds.

We choose Z0(t) = Z(t0), as an initial approximation guess. By using the above
definition, we construct the following homotopy

H(Z, p) = Z(t)− Z0(t) + p[Z0(t)−

∫ t

t0

Q(s, Z(s))ds− Z(t0)], (6.1)

where p ∈ [0, 1] is the so-called homotopy parameter, Z(t, p) : [t0, tf ] × [0, 1] →
ℜn+1, and Z0 defines the initial approximation of the solution of (2.7).
Let the solution of (6.1) be in the form

Z = Z0 + pZ1 + p2Z2 + p3Z3 + · · · . (6.2)

In order to determine the functions Zj, j = 1, 2, ..., we substitute (6.2) into Equation
H(Z, p) = 0 and collect terms of the same powers of p, to obtain

{
Z0(x) = Z(t0),

Zj(x) =
∫ t

t0
Sj−1(s)ds, j ≥ 1,

(6.3)

where




S0

S1

S2

S3

S4

...




=




1 0 0 0 0 . . .

0 Z1 0 0 0 . . .

0 Z2
1
2!Z

2
1 0 0 . . .

0 Z3 Z1Z2
1
3! 0 . . .

0 Z4
1
2!Z

2
2 + Z1Z3

1
2!Z

2
1Z2

1
4!Z

4
1 . . .

...
...

...
...

... . . .







G̃[Z0]

G̃
′

[Z0]

G̃
′′

[Z0]

G̃
(3)[Z0]

G̃
(4)[Z0]

...




,

and

G̃
(n)[Z0] = G

(n)[Z0 +
∞∑

m=1

Zmpm|p=0], n = 0, 1, 2, . . . . (6.4)
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Then, the solution of (5.9) has the form

Z(t) =

∞∑

j=0

Zj(x). (6.5)

If it is difficult to determine the sum of series (6.2) for p = 1, then as an approximate
solution of the equation, we approximate the solution Z(t) by the truncated series

Zn(t) =

n∑

j=0

Zj(t). (6.6)

6.1. Convergence analysis of NIM

In the following, we provide sufficient conditions for the convergence of SM
solution series.
Theorem 6.1. Consider the optimal control system that is rewritten as

Z(t) = Z0 +

∫ t

t0

Q(s, Z(s))ds, t0 ≤ t ≤ tf . (6.7)

Suppose that the following conditions are satisfied.
1. Z0 ∈ Ur(Z) where Ur(Z) = {Z ∈ C([t0, tf ])|‖Z − Z‖∞ < r}.
2. The nonlinear terms Q(t, Z(t)) is Lipschitz continuous with

‖Q(t, Z(t)) − Q(t, Z(t))‖∞ ≤ γ‖Z(t)− Z(t)‖∞. (6.8)

Then the SM solution series is absolutely convergent.
Proof:
Define the sequence of partial sums {Zk(x)}∞k=0. Now, we are going to prove that

{Zk(t)}∞k=0 is absolute convergence.

Let Zk(t) be an arbitrary partial sums, subtract Z(t) from Zk(t), we have

Zk(t)− Z(t) =

∫ t

t0

(

k∑

j=1

Sj−1(x) − Q(x, Z(x))dx

=

∫ t

t0

(Q(x,Zk−1(x)− Q(x, Z(x))dx. (6.9)

Proceeding by induction we obtain

‖Z1(t)− Z(t)‖ ≤ γ(t− t0)‖Z
0(t)− Z(t)‖,

‖Z2(t)− Z(t)‖ ≤ γ2 (t− t0)
2

2!
‖Z0(t)− Z(t)‖,

...

‖Zn(t)− Z(t)‖ ≤ γn (t− t0)
n

n!
‖Z0(t)− Z(t)‖. (6.10)

Since the series of
∑∞

n=0 γ
n (t−t0)

n

n! ‖Z0(t) − Z(t)‖ = exp(t − t0)‖Z
0(t) − Z(t)‖ is

convergent, therefore the series
∑∞

j=0 Zj(x) is absolute convergence.
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Figure 1: The mean absolute error for IM and NIM solutions with n = 8.

7. Illustrative Example

In this section, an illustrative example is considered to examine the effective-
ness and the accuracy of the proposed methods for solving NOCPs. All of the
computations have been performed by using the Maple software package.
In this example, we report mean-absolute error which is defined as:

En =
1

2
(|x(t) − xn(t)| + |k(t)− kn(t)|). (7.1)

where (x(t), k(t))T is the exact solution and (xn(t),kn(t))T is the approximate
solution.
Example 1. (see [33]) Consider the following optimal control problem

minimize J [x(t), v(t)] =

∫ 1

0

(x(t)−
1

2
v2(t))dt, (7.2)

subject to ẋ(t) = v(t)− x(t), (7.3)

with boundary conditions

x(0) = 0, x(1) =
1

2
(1−

1

e
)2, (7.4)

where x(t) ∈ ℜ and v(t) ∈ ℜ.
The exact solution of this problem is

x(t) = 1−
1

2
et−1 + (

1

2e
− 1)e−t, (7.5)
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method n = 6 n = 8 n = 10 n = 12

IM 0.6321598101 0.6321213443 0.6321240915 0.6321208366
NIM 0.6321823899 0.6321240961 0.6321278613 0.6321209503

Table 1.The approximation values of β.

v(t) = k(t) = 1− et−1. (7.6)

IM and NIM solutions: According to (5.10)-(5.13) and (6.3)-(6.6), one can
obtain the approximation Zn(t) of Z(t). For identifying of β, by considering the
final condition x(1) = 1

2 (1 −
1
e
)2 we should have xn(1, β) − 1

2 (1 −
1
e
)2 = 0. Table

1 shows the approximation values of β by using IM and NIM solution for different
values of n.
For Examples 1, the mean-absolute errors obtained by IM and NIM have been
illustrated in Fig. 1. From Fig. 1 we can see that the approximate solutions
obtained by proposed methods are in prefect agreement with the exact solution.
The obtained errors also show that the accuracy of the IM is slightly better.

8. Conclusions

There are some main goals that we aimed by this work. The first is to present
two methods, namely iterative an noninteractive methods, to derive approximate
analytical solution for NOCPs. The second is to address the sufficient conditions
for uniqueness of solution and to study the stability of the solutions. Furthermore,
a numerical test is presented to show the accuracy of the proposed methods. The
numerical results demonstrate the relatively rapid convergence of the proposed
methods. We should also point out that the illustrative example studied in the
paper show that the methods are very effective and convenient for solving NOCPs.
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