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Abstract This review outlines the effects of 1,2,3,4-tetra-

hydroisoquinoline (TIQ) and its derivative, 1-methyl-

1,2,3,4-tetrahydroisoquinoline (1MeTIQ), endogenous sub-

stances imbued with high pharmacological potential and

broad spectrum of action in brain. 1MeTIQ has gained spe-

cial interest as a neuroprotectant, and its ability to antagonize

the behavioral syndrome produced by well-known neuro-

toxins (e.g., MPTP; rotenone). This review is thus focused on

mechanisms of action of 1MeTIQ in behavioral, neuro-

chemical, and molecular studies in rodents; also, effects of

TIQ and 1MeTIQ on dopamine metabolism; and neuropro-

tective properties of TIQ and 1MeTIQ in vitro and in vivo.

Finally, antiaddictive properties of 1MeTIQ will be descri-

bed in cocaine self-administered rats. Findings implicate

TIQ and especially its methyl derivative 1MeTIQ in unique

and complex mechanisms of neuroprotection in various

neurodegenerative illnesses of the central nervous system.

We believe that MAO inhibition, free radicals scavenging

properties, and antagonism to the glutamatergic system may

play an essential role in neuroprotection. In addition, the

results strongly support the view that 1MeTIQ has a con-

siderable potential as a drug for combating substance abuse,

through the attenuation of craving.
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Introduction

1,2,3,4-Tetrahydroisoquinoline (TIQ) is a member of a

family of tetrahydroisoquinolines widespread in plant and

animal and human brains (McNaught et al. 1998; Rom-

melspacher and Susilo 1985). In most cases, tetrahydroiso-

quinolines can be formed as condensation products of

biogenic amines (i.e., phenylethylamines and catechola-

mines) with aldehydes or a-keto acids by the so-called Pic-

tet–Spengler reaction (Rommelspacher and Susilo 1985;

Zarranz de Ysern and Ordonez 1981; Nagatsu 1997;

McNaught et al. 1998), although some of them may be also

synthesized enzymatically (Yamakawa and Ohta 1997,

1999; Naoi et al. 2004). The tetrahydroisoquinoline family

can be divided into compounds with catechol- and non-cat-

echol structure. TIQ is the simplest representative of the

group of non-catechol tetrahydroisoquinolines which occur

naturally in plants and in a variety of food products (Makino

et al. 1988; Niwa et al. 1989) as well as in the brain of

humans, primates, and rodents (Kohno et al. 1986; Makino

et al. 1988; Niwa et al. 1987; Ohta et al. 1987; Yamakawa

et al. 1999).

For the first time, tetrahydroisoquinolines attracted con-

siderable attention of neurochemists and pharmacologists

when Davis and Walsh (1970) demonstrated that the alcohol

metabolite acetaldehyde promoted in vitro conversion of

[14C]dopamine into [14C]tetrahydropapaveroline (THP).

Simultaneously, THP was identified in the urine of parkin-

sonian patients on L-DOPA (3,4-dihydroxyphenylalanine)

medication (Sourkes 1971; Sandler et al. 1973; Matsubara

et al. 1992) and in the urine and brain of rats treated with L-

DOPA (Turner et al. 1974). Almost at the same time,

salsolinol (6,7-dihydroxy-1-methyl-1,2,3,4-TIQ), an adduct

of dopamine and acetaldehyde, was identified in the urine of

non-pathologic human volunteers, occurring at high
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concentrations in the urine of intoxicated alcoholics (Collins

et al. 1979) and in brains of rats treated with ethanol (Collins

and Bigdeli 1975). Although TIQ has been proposed to be

one of the etiological factors of Parkinson’s disease (PD), its

implication in the pathogenesis is not clear, in contrast to

other tetrahydroisoquinolines with rather neurotoxic mech-

anism of action in the brain, e.g., salsolinol or 1-benzyl-

1,2,3,4-TIQ (1BnTIQ).

Early studies on tetrahydroisoquinolines revealed their

neuroleptic-like properties (Ginos and Doroski 1979) and

our more recent results suggest that TIQ and its derivatives

are antagonists of agonistic conformation of the dopamine

D2 receptor (Antkiewicz-Michaluk et al. 2007; Vetulani

et al. 2001, 2003a). This explains why TIQ and its congeners

effectively block dopaminergic stimulation without affect-

ing much the basal locomotor activity. Pharmacologi-

cally tetrahydroisoquinolines aroused also an interest as

potential NMDA (N-methyl-D-aspartate) receptor antagonists

(Ortwine et al. 1992). Some of them were described as effec-

tive antagonists of the phencyclidine (PCP) site (Rogawski

et al. 1989). However, most tetrahydroisoquinolines do not

substitute for PCP (Nicholson and Balster 2003).

Apart from TIQ, this group encompasses also, the

methyl derivative of TIQ, 1-methyl-1,2,3,4-TIQ (1MeTIQ),

is a neuroprotective compound. Among several endoge-

nous TIQs 1MeTIQ has a special position, as very early it

was described in the brain (Kohno et al. 1986; Makino

et al. 1990; Niwa et al. 1987; Ohta et al. 1987), and shortly

thereafter recognized as a potential antiparkinsonian

agent on the basis of reversal of bradykinesia induced

by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),

TIQ, or 1BnTIQ (Tasaki et al. 1991; Kotake et al. 1995).

1-MeTIQ was identified in normal rat brains in 1986

(Kohno et al. 1986), and subsequently found to be present

in foods rich in 2-phenylethylamine, from which it may

enter the brain (Makino et al. 1988). However, it is also

synthetized enzymatically in the brain from 2-phenethyl-

amine to pyruvate (Niwa et al. 1990; Tasaki et al. 1993;

Yamakawa and Ohta 1997). Having an asymmetric carbon

atom, 1MeTIQ may appear in the form of R- and S-ster-

eoisomers, and the product found in brain and in foods is a

racemate (Makino et al. 1990), although the stereoisomers

do not much differ in their biological actions (Abe et al.

2001; Wąsik et al. 2012). 1MeTIQ unlike several other

TIQs displays neuroprotective and antiaddictive properties

which will be particularly emphasized in this article

(Antkiewicz-Michaluk and Vetulani 2001; Antkiewicz-

Michaluk et al. 2003, 2004, 2006; Wąsik et al. 2007, 2010).

This article reviews some important aspects concerning

the chemistry, distribution, pharmacology, and mechanism

of action of TIQ and its methyl derivative, 1MeTIQ the

simplest representatives of the unsubstituted non-catechol

tetrahydroisoquinolines in the mammalian brain.

Synthesis of 1MeTIQ in the Brain

1MeTIQ was identified in normal rat brains by Kohno and

coworkers (Kohno et al. 1986), and subsequently found to

be present in foods rich in 2-phenylethylamine, which

readily penetrates into the brain across the blood–brain

barrier (Makino et al. 1988). 1MeTIQ may be also syn-

thesized enzymatically in the brain (Niwa et al. 1990). The

enzyme involved in that process called 1MeTIQase was

localized in the mitochondrial-synaptosomal fraction of rat

brain, isolated, and purified (Niwa et al. 1990; Tasaki et al.

1993). Its activity is spread throughout the brain, the

highest activity being observed in the dopaminergic areas

that are implicated in the etiology of PD [striatum and

substantia nigra (SN)] and in the cortex. During aging the

activity of 1MeTIQase falls (by approximately 40–50 %)

in the areas of its highest activity (Absi et al. 2002).

1MeTIQase may be important in the pathogenesis of PD.

The cerebral concentration of 1MeTIQ in normal rat brains

was recently determined as 3.5 ng/g tissue, exceeding

several times (three- to fivefold) the concentrations of other

simple tetrahydroisoquinolines (Inoue et al. 2008). Most of

the studies on 1MeTIQ were carried out on the brains of

rodents, but the results on monkeys demonstrate that the

regional distribution of 1MeTIQ, other simple tetrahydro-

isoquinolines, and 1MeTIQase activity are correlated

(Yamakawa et al. 1999).

It was also demonstrated that 1MeTIQ synthesis is

inhibited by agents that induce experimental parkinsonism

(Igarashi et al. 1999; Tasaki et al. 1991; Yamakawa and

Ohta 1999). Interestingly, the 1MeTIQ concentration in SN

declines in parkinsonian patients as well as in aged rats, by

as much as 50 % (Ayala et al. 1994). All those data indi-

cate that the change in 1MeTIQ content of brain may play

an important role in the pathogenesis of the toxin-induced

parkinsonism, and that the degeneration of dopaminergic

neurons may proceed as a result of the loss of neuropro-

tection afforded by 1MeTIQ. Thus, it seems that 1MeTIQ

is an endogenous substance that protects mainly dopamine

cells against free radical damage.

Neuroprotection

Free Radical Scavenging Properties Afforded by TIQ

and 1MeTIQ

To determine whether TIQ and 1MeTIQ may protect against

oxidative stress we investigated their capacity to inhibit

hydroxyl radical generation in vitro. Oxidative stress leads to

the production of reactive oxygen species (Harman 1981),

such as superoxide anion radical and hydroxyl radical

(�OH)—chemical species known to damage cellular
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macromolecules (e.g., lipids, sugars, proteins), and this

damage can lead to equally damaging secondary products

(Sayre et al. 2008). Based on these data, oxidative stress was

long regarded as a universal mechanism of inducing cell

death (Dykens 1999). In the brain, the main source of toxic
�OH formation and H2O2 generation is MAO, consequent to

monoamine deamination (for review see Singer and Ramsay

1995). Similarly, excessive intraneuronal dopamine catabo-

lism by MAO augments the formation of free radicals in the

brain. A direct study on the free radical scavenging capacity

of other tetrahydroisoquinolines was carried out in vitro in

rodent brain. Both TIQ and 1MeTIQ, in contrast to other

tetrahydroisoquinolines (e.g., 1BnTIQ and salsolinol), inhi-

bit MAOA and MAOB activities and possess other antioxi-

dant properties (Patsenka and Antkiewicz-Michaluk 2004),

as indicated by the effects of TIQ and 1MeTIQ to inhibit free

radical formation and abolish dopamine generation of �OH

via the Fenton reaction (Antkiewicz-Michaluk et al. 2006).

Those results demonstrate that TIQ and 1MeTIQ, indepen-

dent of direct interaction with biological structures, possess

intrinsic antioxidant properties.

Neuroprotection in Relation to Dopaminergic

Mechanisms in In Vitro and Ex Vivo Studies

Interaction with presynaptic dopamine receptors was

investigated by studying 1MeTIQ-induced displacement of

dopamine receptor ligands from their binding sites. In gen-

eral, tetrahydroisoquinolines do not displace antagonistic

ligands bound to dopamine D2 receptors (Antkiewicz-

Michaluk et al. 2007; Vetulani et al. 2003a), the exception

being [11C]raclopride. Depression of binding of [11C]ra-

clopride may be interpreted as the sign of increased synaptic

dopamine concentrations, which competes with raclopride

at dopamine D2 receptor sites (Laruelle 2000). Tetrahydro-

isoquinolines were shown to displace [11C]raclopride, and

the (S)-enantiomers of TIQ and 1MeTIQ were most potent in

this respect. These findings suggest that tetrahydroisoquin-

oline analogs profoundly stimulate dopamine release,

resulting in the competitive inhibition of [11C]raclopride

binding to dopamine D2 receptors, but not loss of receptor

number (Ishiwata et al. 2001). The dopamine receptor ago-

nist [3H]apomorphine was another ligand displaced from

dopamine D2 receptors by tetrahydroisoquinolines (Ant-

kiewicz-Michaluk et al. 2007; Vetulani et al. 2003a). In

contrast to antagonists, an agonist radioligand binds pref-

erentially to the high-affinity state and is expected to have

greater sensitivity to dopamine, the endogenous agonist.

Thus, the experiments with [3H]apomorphine displacement

confirm that tetrahydroisoquinolines may release dopamine

from dopaminergic terminals. However, owing to their

MAO-inhibiting properties tetrahydroisoquinolines do not

cause neurodegeneration of dopaminergic neurons.

In biochemical studies, MPTP and pro-parkinsonian

b-carbolines potently inhibited the activity of 1MeTIQ-ase

(Yamakawa and Ohta 1999). It is well established by

behavioral, biochemical ex vivo but also in vivo microdi-

alysis studies, that both enantiomers (R)- and (S)- as well

as racemic (R,S)-1MeTIQ demonstrate neuroprotective

activity, as evidenced by their attenuation of the behavioral

and biochemical effects of dopaminergic neurodegenera-

tion induced by experimental neurotoxins such as: MPTP,

1BnTIQ, and rotenone (Antkiewicz-Michaluk et al. 2003,

2004, 2011; Kotake et al. 1995, 2005; Tasaki et al. 1991).

Several tetrahydroisoquinolines and their congeners,

including TIQ and 1MeTIQ, interfere with MAO activity,

indicating putative neuroprotection relating to the patho-

genesis of PD (Naoi and Maruyama 1993). Subsequently,

Thull et al. (1995) investigated 45 isoquinoline derivatives

and found most of them to be reversible inhibitors of MAOA

and MAOB, with preferential effects on the A form. Their

studies brought to the forefront the question of the physio-

logical significance of endogenous MAO inhibitors, and a

suggested role for endogenous tetrahydroisoquinolines in

the control of neurotransmitter function, and prevention of

neurotoxicity related to MAO activity in the brain.

The data from ex vivo neurochemical experiments have

shown stereospecificity of 1MeTIQ enantiomers, (R)- and

(S)- in respect of their effects on dopamine catabolism.

While both enantiomers increased the concentrations of

dopamine and its extraneuronal metabolite, 3-methoxytyr-

amine (3-MT) in rat striatum, they differently affected

dopamine catabolism. Thus, (R)-1MeTIQ increased both

the level of the final dopamine metabolite homovanillic acid

(HVA) (by about 70 %) and the rate of dopamine metabo-

lism (by 50 %), while (S)-1MeTIQ depressed the DOPAC

(3,4-dihydroxyphenylacetic acid) and HVA levels (by 60

and 40 %, respectively), and attenuated the rate of dopamine

metabolism (Antkiewicz-Michaluk et al. 2011). These data

suggest that the (S)-enantiomer may offer better and more

effective protection against neurotoxicity. It would be

important to mention that even after chronic administration

a high dose of 1MeTIQ never produced noxious effects on

dopamine neurons (Antkiewicz-Michaluk et al. 2001).

Showing structural resemblance to MPTP, the potent

neurotoxin capable of producing persistent parkinsonism in

humans (Langston et al. 1983) and in laboratory animals

(Jenner and Marsden 1986), initially all tetrahydroisoquin-

olines were assumed to be neurotoxic to dopamine neurons.

In fact, the early studies reported that they generally are

neurodegenerating agents (Suzuki et al. 1990), the most

neurotoxic being 1BnTIQ, and N-methyl derivatives, (R)-

1,2-dimethyl-5,6-dihydroxy-TIQ, (R)-N-methyl-salsolinol,

and TIQ (Nagatsu 1997). This finding contrasted with an

earlier report which found no neurotoxicity of tetrahydro-

isoquinolines on nigrostriatal dopamine neurons (Perry et al.
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1988). The most recent studies, in which the actions of

1MeTIQ and TIQ were directly compared, suggest that TIQ,

in fact, produces some damage to dopaminergic neurons, as

reflected by a mild but significant decrease in the striatal

dopamine concentration in rats chronically administered

TIQ in high doses (50–100 mg/kg). In contrast, 1MeTIQ has

never been shown to produce a decline in dopamine in brain,

although both of these tetrahydroisoquinolines similarly

affect dopamine catabolism (Antkiewicz-Michaluk et al.

2000a; 2001; Antkiewicz-Michaluk and Vetulani 2001).

Neuroprotection of 1MeTIQ Against Rotenone

Rotenone, a natural compound, is a classical, lipophilic

inhibitor of mitochondrial complex I (Gutman et al. 1970;

Horgan et al. 1968), and selectively toxic to dopaminergic

neurons (Marey-Semper et al. 1993). Rotenone, an envi-

ronmental toxin induces the formation of Lewy bodies,

which are the most characteristic histopathological feature of

Parkinson’s disease (Betarbet et al. 2000), and may be used to

produce a parkinsonian syndrome more realistic from MPP?

animal modeling of PD. A defect of mitochondrial function

due to complex I inhibition was postulated to be the cause of

rotenone-induced neurodegeneration (Jenner 2001; Greena-

myre et al. 2001). Rotenone also causes dopamine release, as

evidenced by microdialysis and neurochemical data (Santi-

ago et al. 1995; Thiffault et al. 2000), and this may also

contribute to the degeneration of dopaminergic neurons. In

our studies, rotenone administered in a single dose did not

produce evident behavioral or biochemical effect. In con-

trast, repeated administration of rotenone (12 mg/kg s.c.)

causing abnormalities in general behavior produced consid-

erable mortality and dramatic increases in dopamine

metabolism, which may be ascribed to an increase in the

oxidative pathway, and strongly depressed the concentration

of the extracellular dopamine metabolite, 3-MT. These

behavioral and biochemical changes were effectively coun-

teracted by administration of 1MeTIQ before each dose of

rotenone (Antkiewicz-Michaluk et al. 2003). In addition,

rotenone administered intracerebrally to the left medial

forebrain bundle (MFB) produced neurodegeneration of

dopamine neurons in extrapyramidal system (a considerable

decrease in dopamine and its metabolite levels) without

affecting the serotonin system (Antkiewicz-Michaluk et al.

2004). Those changes were observed 21 days after the

intracerebral injection of rotenone, they suggest a durable

neurotoxic effect. Peripheral administration of 1MeTIQ

(50 mg/kg i.p.) before, and then daily for 21 days, signifi-

cantly reduced the fall of striatal dopamine concentration

(Antkiewicz-Michaluk et al. 2004). The above data suggest

that 1MeTIQ is able to counteract the damaging action of

dopaminergic neurotoxin, rotenone and seems to be a

potential neuroprotective agent.

Neuroprotection of 1MeTIQ Against Glutamate-

Evoked Neurotoxicity

Recently, it was demonstrated that 1MeTIQ shares many

activities with TIQ, and found that the compounds similarly

inhibit free radical generation in an abiotic system, as well as

indices of neurotoxicity (caspase-3 activity and lactate

dehydrogenase release) induced by glutamate in mouse

embryonic primary cell cultures (Antkiewicz-Michaluk et al.

2006). However, in granular cell cultures obtained from

7-day-old rats, 1MeTIQ (in concentration-related manner)

prevented glutamate-induced cell death and 45Ca2? influx,

whereas TIQ did not. Such profile of action of 1MeTIQ

suggested specific effects of this compound on an excitatory

amino acids receptor. In addition, it was shown in an in vivo

microdialysis experiment that 1MeTIQ prevents kainate-

induced release of excitatory amino acids from the rat frontal

cortex (Antkiewicz-Michaluk et al. 2006).

Comparing the chemical structure of 1MeTIQ with other

known compounds containing TIQ skeleton and their

molecular mechanism of action, one can find similarities

between 1MeTIQ and these derivatives which are non-

competitive AMPA/kainate receptor antagonists that protect

animals in the maximal electroshock seizure, pentylenetet-

razole and audiogenic DBA/2 mouse seizure models (Ferreri

et al. 2004; Gitto et al. 2003). In fact, 1MeTIQ exerts anti-

convulsant effects, increasing the threshold for electrocon-

vulsions and potentiation of the antiseizure action of

carbamazepine and valproate against maximal electroshock

(Luszczki et al. 2006). In the light of all these experiments,

1MeTIQ offers a unique and complex mechanism of neu-

roprotection in which inhibitory effect on MAO connected

with free radicals scavenging properties, and antagonism to

the glutamatergic system seems to play a very important role.

Addiction

Addiction is a complex disease process of the brain which

results from recurring drug intoxication and is modulated by

genetic, experiential, and environmental factors. Drug

addiction is one of the most difficult medical and social

problems, as no effective pharmacotherapy has been avail-

able so far. Until recently, it was believed that addiction was

associated with neuroplasticity in the cortico-striatal brain

circuitry, which is important for adaptive behavior and

predominantly involved reward processes mediated by

limbic circuits, whereas results from recent neuroimaging

studies have implicated additional brain areas, especially the

frontal cortex (Goldstein and Volkov 2002). Drug addiction

is often defined by the pharmacological terms: tolerance,

sensitization, dependence, and withdrawal. Tolerance refers

to the phenomenon where repeated administration of a drug
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at the same dose causes a diminishing effect or a need for an

increasing drug dose to produce the same effect. Sensitiza-

tion refers to the opposite condition where repeated

administration of the same drug dose produces an escalating

effect. Interestingly, the same drug can simultaneously

evoke tolerance and sensitization to its numerous diverse

effects (e.g., in the case of morphine, tolerance to its anal-

gesic effect and sensitization to its locomotor effect).

Dependence is defined as a need for continual drug exposure

to avoid a withdrawal syndrome which is characterized by

physical or motivational disturbance when the drug is

withdrawn.

The neurobiological changes that accompany drug

addiction have not been understood so far; however, drugs

of abuse are unique in terms of their reinforcing properties.

Dopaminergic mechanisms are a traditional target in the

field of addiction, as the acute rewarding effects of

addictive drugs are mediated by enhancing dopamine

transmission; moreover, dopamine release reinforces

reward learning (Berridge and Robinson 1998; Kelley

2004a, b). A question arises about the neurobiological

substrate of reward. The nucleus accumbens (NAc) as a

ventral striatum is considered to be a crucial point of

integration of information by receiving emotional and

cognitive inputs, and by projecting to motor output regions

(Mogenson et al. 1980; Kelley 2004a). The NAc, along

with the hippocampus, frontal cortex (FCx), and basolat-

eral amygdala, receives dopamine input from the ventral

tegmental area (VTA); furthermore, as it has been shown

by many others, the majority of dopamine neurons that

innervate the forebrain are located in the midbrain, spe-

cifically in the VTA and SN (Fallon and Loughlin 1995;

Pitkanen 2000). The SNc innervates the dorsal striatum

(caudate–putamen), whereas the VTA provides an input to

the rest of the forebrain, including the ventral striatum

(NAc), FCx, amygdala, and hippocampus. Early theories

on drugs of abuse and natural rewards suggested that

activation of dopamine neurons in VTA, and the release of

dopamine in target structures signaled reward, especially in

the NAc (Di Chiara 2002; Ungless 2004). However, aver-

sive stimuli also increase dopamine release in a variety of

brain structures, which indicates a role of dopamine beyond

reward (Inglis and Moghaddam 1999). It is noteworthy that

some evidence points to differential dopamine responses to

aversive versus rewarding stimuli (Schultz 2002, 2010).

Some recent studies have also shown that the glutamate

system and its release is an important factor in drug

addiction, and that imbalance in glutamate homeostasis

engenders changes in neuroplasticity, which impair com-

munication between the prefrontal cortex and the NAc

(Kalivas 1995; Ma et al. 2006; Nagy 2004; Popik et al.

1998). In a clinical setting, neuroimaging studies have

shown that cue or drug exposure increased the activity of

FCx and NAc, as well as self-reported drug craving in

cocaine addicts (Goldstein and Volkov 2002). In animal

models, a challenge of cocaine or heroin increases the

synaptic release of glutamate in cocaine- or heroin-with-

drawn rats as a result of the activation of corticostriatal

pathways; and on the other hand, inactivation of the cor-

ticostriatal pathway has been shown to be effective in

inhibiting cocaine- or heroin-induced drug seeking behav-

ior (Kalivas et al. 2005).

Cocaine Addiction: The Effect of 1MeTIQ

Regardless of the mechanism of action of drugs of abuse,

the essential role of the mesolimbic dopaminergic system

in addiction has been well established (Goldstein and

Volkov 2002; Grimm et al. 2003; Moore et al. 1998a, b); to

this end, several antidopaminergic drugs were tested as

potential anti-abuse agents (Berger et al. 1996; Smelson

et al. 2004). Although neuroleptics were previously found

not to be useful in this respect, partial agonists of the

dopamine D2 and D3 receptor aroused some hopes

(Campiani et al. 2003; Le Foll et al. 2005; Mach et al.

2004). Furthermore, a dopamine reuptake inhibitor could

be expected to partially substitute for cocaine and other

drugs of abuse, hence self-administration would be

diminished and craving minimized (Ritz et al. 1987; Wil-

cox et al. 2000; Carroll et al. 2004). This type of substi-

tution pharmacotherapy has been found to be highly

effective in the treatment of nicotine and heroin addiction

(methadone). Hence, studies of partial agonists with an

antidopaminergic profile of action different from that of

classic neuroleptics seem justified. In the light of the above

data, 1MeTIQ is an interesting candidate for future clinical

studies.

A vast body of evidence indicates that, apart from the

dopaminergic system, also the glutaminergic system is

involved in the addiction to drugs of abuse. Hence, of

special interest are the observations that 1MeTIQ antago-

nizes the kainate-induced release of glutamate and aspar-

tate in rat FCx and shows neuroprotection against the

excitotoxicity produced by glutamate in cultured cells

(Antkiewicz-Michaluk et al. 2006). In addition, 1MeTIQ

antagonizes the MK-801-produced behavioral and neuro-

chemical effects (Pietraszek et al. 2009) and shares toler-

ance to excitotoxicity in rat with some well-established

uncompetitive NMDA receptor antagonists (Kuszczyk

et al. 2010). The latest results reveal a new mechanism of

the 1MeTIQ-evoked neuroprotection based on the induc-

tion of neuronal tolerance to excitotoxicity.

It is well known that acute administration of the drugs of

abuse: cocaine, amphetamine (psychostimulants), and

opiates increases the locomotor activity of animals. Repe-

ated administration of the drug of abuse induces

Neurotox Res (2014) 25:1–12 5
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neurobiological changes, such that after 10 days of with-

drawal, acute administration of the drug produces an even

greater increase in locomotor activity, a process called

sensitization. Both behavioral sensitization, self-adminis-

tration, and drug-reinstatement of seeking behavior are the

major models of drug addiction (Pierce and Kalivas 1997).

The compounds which antagonize locomotor sensitization

and self-administration in animals may demonstrate anti-

addictive properties in a clinic (Narayanan et al. 1996).

Exogenously applied 1MeTIQ significantly antagonized

cocaine-induced locomotor sensitization, cocaine self-

administration, and cocaine-induced reinstatement of seek-

ing behavior (Filip et al. 2007; Wąsik et al. 2010). The

phenomenon is of interest, as it might be caused by the same

mechanisms as those responsible for psychoses or craving

for drugs of abuse in humans abusing cocaine or other psy-

chostimulants (Robinson and Berridge 1993; Segal et al.

1981). Both clinical and preclinical studies indicate that the

behavioral response to cocaine, including the discriminative

stimulus and rewarding effects as well as reinstatement of

cocaine seeking behavior, depends on the drug’s ability to

block the dopamine transporter (Di Chiara 1995; Heidbreder

and Hagan 2005). As 1MeTIQ produced parallel decreases in

cocaine self-administration and cocaine-induced relapse, the

compound may suppress the motivation for drug seeking by

decreasing the reinforcing effects of cocaine, and generally

by attenuation of the reinforcing effect of drugs of abuse. In

fact, activation of both the dopaminergic and the glutamin-

ergic systems has significance in altering the maintenance of

cocaine self-administration (Cornish et al. 1999; Pulvirenti

et al. 1992), and drug-priming-induced reinstatement of

cocaine seeking (Ito et al. 2002; Kalivas and McFarland

2003).

1MeTIQ’s inhibitory mechanism on cocaine maintained

responding and relapse may include complex interactions

with both dopaminergic and/or glutaminergic transmission.

Neurochemical Changes Produced by 1MeTIQ

in Cocaine-Dependent Rats

Cocaine, a potent inhibitor of monoamine transporters,

belongs to the most powerful addictive substances in humans

and its abuse has a high risk of relapse (Gawin 1991). Studies

on the involvement of biogenic amines in cocaine addiction

have shown a contribution of dopamine and serotonin to the

maintenance of cocaine self-administration, extinction, and

reinstatement of drug-seeking behavior. Dopamine was the

amine investigated the most extensively, possibly because of

its assumed role as the main neurotransmitter of reward (Di

Chiara et al. 2004). It was demonstrated by several authors

during cocaine self-administration, that extracellular con-

centrations of dopamine and serotonin in the striatum

increase (Di Ciano et al. 1995; Gratton and Wise 1994;

Wąsik et al. 2010), but the rate of monoamines metabolism

and the concentrations their metabolites in brain structures

decrease (Antkiewicz-Michaluk et al. 2006). The functional

significance of the observed depression of the level of

monoamine metabolites requires explanation. The determi-

nation of changes in metabolism rate yields information

about efficiency of the neurotransmitter system. Depending

on the state of receptor and the rate of synthesis of a neuro-

transmitter, the changes in metabolite levels in the same

direction may have different consequences. Activation of a

receptor (e.g., dopamine receptor) during stabilized self-

administration of cocaine would result in a feedback inhi-

bition of neurotransmitter release by activation of autore-

ceptors, and the depression of neurotransmitter metabolites

without significant changes in neurotransmitter concentra-

tion in the neuron. This is reflected by a decrease in the

neurotransmitter metabolism index. As the stimulation is

indirect, through inhibition of neurotransmitter reuptake, the

interaction between the neurotransmitter and receptor is

enhanced rather than depressed. On the contrary, during

cocaine withdrawal, dopamine and noradrenaline concen-

trations as well as concentration of their metabolites were

diminished, suggesting cocaine-induced impairment in the

function of catecholamine neurons, and a consequent

decrease in the synthesis and release of neurotransmitters

(Parsons et al. 1995; Weiss et al. 1992; Antkiewicz-Mich-

aluk et al. 2006).

While catecholamines seem to be involved in cocaine

addiction, the role of serotonin seems to be limited. Spe-

cific serotonin agonists do not seem to have significant

reinforcing efficacy (Locke et al. 1996). Clinical findings

also indicate inefficiency of serotonergic manipulation in

combating cocaine dependence (Lima et al. 2003).

Although, serotonin metabolism is inhibited in the presence

of cocaine, in contrast to alterations in catecholaminergic

system, the change was transient.

Basically, a chronic cocaine self-administration simi-

larly to passive administration suppresses the metabo-

lism—both synthesis and release of monoamines in several

brain structures (Karoum et al. 1990; Trulson and Ulissey

1987; Antkiewicz-Michaluk et al. 2006). The changes in

catecholamine metabolism persist for a considerable period

after cessation of cocaine self-administration, suggesting a

long-lasting functional impairment of dopamine and nor-

adrenaline systems. In contrast, changes in the serotonergic

system are transient, showing the lack of involvement of

serotonin in long-term consequences of cocaine exposure

(Antkiewicz-Michaluk et al. 2006).

It is suggested that 1MeTIQ is a potential anti-abuse agent,

as the drugs which reduce cocaine seeking behavior also

reduce cocaine craving (Fuchs et al. 1998; Baker et al. 2001).

The possible anti-abuse properties of 1MeTIQ are particularly

interesting, as the compounds of this group are proposed to act
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as regulators of brain homeostasis (Antkiewicz-Michaluk

et al. 2000a, b; Vetulani 2001). The question arises whether

1MeTIQ can reach the brain in concentrations producing

pharmacological effects? In contrast to catechol TIQs (e.g.,

salsolinol), non-catechol TIQs such as TIQ and 1MeTIQ

penetrate to the brain easily and induce a variety of central

effects. No direct measurements of 1MeTIQ concentration in

the brain after peripheral administration of the compound

have been carried out, but its close congener, TIQ after

administration of 40 mg/kg reached the concentration of

250 nmole/g in rat (Lorenc-Koci et al. 2004).

In cocaine-dependent rats receiving a priming dose of

cocaine in the presence of previously administered 1MeTIQ,

the concentration of dopamine in limbic structures was sig-

nificantly higher than in rats receiving cocaine alone. It

might be assumed that the blockade of reinstatement by

1MeTIQ is related to this effect (Antkiewicz-Michaluk et al.

2007). There is the long established view that depression of

dopaminergic activity in the limbic structures may be

responsible for craving (Rossetti et al. 1992; Little et al.

1996). Because 1MeTIQ elevates the concentration of

dopamine preferentially in limbic structures (NAc) in

cocaine-dependent rats, and at the same time inhibits dopa-

mine metabolism in structures containing cell bodies (SN,

VTA), 1MeTIQ may be responsible for its inhibition of

reinstatement (Antkiewicz-Michaluk et al. 2007).

Another neurochemical action of 1MeTIQ, possibly

related to its anticraving effect, is activation of the norad-

renergic system in the brain. This effect may be related to

the antagonistic action of 1MeTIQ on alpha-2-adrenocep-

tors. Such an activity was described previously for other,

closely related TIQs (Michaluk et al. 2002; Vetulani et al.

2003a, b). The ability of 1MeTIQ to increase the level of

the main metabolite of noradrenaline in CNS, 3-methoxy-

4-hydroxyphenylglycol (MHPG), as well as its extraneu-

ronal metabolite normetanephrine (NM), reflects the

antagonistic effect of 1MeTIQ on the alpha-2-adrenoceptor

(Antkiewicz-Michaluk, unpublished data). Inhibition of

alpha-2-adrenoceptors would result in an increase in nor-

adrenaline release from the nerve endings, and conse-

quently activation of the noradrenergic system.

In the light of the recent experimental data it looks as

though serotonin plays a less important role in the phe-

nomenon of cocaine reinstatement. It was shown that

cocaine depresses serotonin metabolism only transiently,

and that the changes do not persist throughout the with-

drawal period, in contrast to dopamine and noradrenaline

systems (Antkiewicz-Michaluk et al. 2007).

Morphine Addiction and the Effect of 1MeTIQ

Morphine acts through activation of opioid l-receptors and

produces the antinociceptive effect called analgesia. It is well

known that activation of opioid l-receptors is closely related

with inhibition of calcium uptake and this process is respon-

sible for opioid-induced analgesia (Kamikubo et al. 1983;

Chapman and Way 1982). 1MeTIQ administered alone was

shown to have a slight antinociceptive effect in the ‘‘hot-plate’’

test in rats, but co-administration of morphine strongly

potentiated its analgesia (Wąsik et al. 2007; Vetulani et al.

2003a, b). Moreover, 1MeTIQ applied before each morphine

injection completely inhibited the development of morphine

tolerance, and prevented naloxone-induced precipitation of the

abstinence syndrome (head-twiches and body weight loss) in

morphine-dependent rats (Wąsik et al. 2007). A question arises

as to the mechanism responsible for 1MeTIQ-induced poten-

tiation of morphine-analgesia, prevention of morphine-pro-

duced tolerance, and abstinence syndrome. Some have

postulated that the activity of MAO, the enzyme crucial for

monoamine and special dopamine catabolism, and the pro-

duction of free radicals, play an important role in opiate

analgesia, tolerance, and dependence (Garzon et al. 1979;

Grassing and He 2005). In fact, the irreversible MAOB

inhibitor deprenyl and other antioxidants such as vitamin C

produced an increase in morphine antinociception and pre-

vention of the development of morphine tolerance and physical

dependence in rodents (Sánchez-Blázquez et al. 2000; Khanna

and Sharma 1983). 1MeTIQ, a neuroprotective substance,

inhibits MAO and possesses free radical scavenging properties

(Antkiewicz-Michaluk et al. 2006). This mechanism would be

partially responsible for its antinociception and antiaddictive

effects. In addition, it has been shown that 1MeTIQ is also

effective in prevention of morphine-induced place preference

and alcohol intake (Antkiewicz-Michaluk et al. 2005).

Moreover, others have shown that morphine did not effec-

tively trigger the processes leading to development of tolerance

and dependence when administered during Ca2? channel

blockade. Blockade of the voltage-dependent L-type Ca2?

channels effectively facilitates the analgesic action of mor-

phine and prevents the behavioral and neurochemical signs of

naloxone-precipitated abstinence syndrome (Contreras et al.

1988; Del Pozo et al. 1987; Michaluk et al. 1998). NMDA

glutamate receptor activation and associated Ca2? influx may

also be involved in the induction of morphine sensitization

(Vanderschuren and Kalivas 2000). It should be taken into

account that 1MeTIQ prevented glutamate-induced cell death

and 45Ca2? influx in granular cell cultures (Antkiewicz-

Michaluk et al. 2006). Thus, 1MeTIQ besides the inhibitory

influence on the activity of MAO and free radical scavenging

properties possesses mild activity at NMDA receptors.

Conclusions

The experimental data assembled in this review allow for a

more precise characterization of the activity of the
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exogenous 1MeTIQ in the mammalian brain, especially in

the nigrostriatal dopaminergic system. On the basis of these

studies, the following conclusions may be drawn:

• exogenous 1MeTIQ has high affinity for brain tissue

• 1MeTIQ is a partial dopamine agonist

• 1MeTIQ reversibly inhibits MAOA and MAOB:

in vitro and in vivo studies

• 1MeTIQ is a scavenger of free radicals

• 1MeTIQ expresses neuroprotective properties

• 1MeTIQ demonstrates antiaddictive potency

This ability of 1MeTIQ may be of clinical importance

and raises hope for its application in neurodegenerative

diseases (e.g., Parkinson’s disease) and addiction evoked

by drugs of abuse.
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