
A generic framework for semantic video indexing based
on visual concepts/contexts detection

Nizar Elleuch & Anis Ben Ammar & Adel M. Alimi

Published online: 25 April 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Providing a semantic access to video data requires the development of concept
detectors. However, semantic concepts detection is a hard task due to the large intra-class and
the small inter-class variability of content. Moreover, semantic concepts co-occur together in
various contexts and their occurrence may vary from one to another. Thus, it is interesting to
exploit this knowledge in order to achieve satisfactory performances. In this paper we present a
generic semantic video indexing scheme, called SVI_REGIMVid. It is based on three levels of
analysis. The first level (level1) focuses on low-level processing such as video shot boundary/
key-frame detection, annotation tools, key-points detection and visual features extraction tools.
The second level (level2) aims to build the semantic models for supervised learning of
concepts/contexts. The third level (level3) enriches the semantic interpretation of concepts/
contexts by exploiting fuzzy knowledge. The obtained experimental results are promising for a
semantic concept/context detection process.
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1 Introduction

Recent years have witnessed a rapid evolution of technology acquisition and diffusion of
multimedia data. The web, television channels and video blogs have led to the explosion of
audiovisual databases. This vast amount of audiovisual data currently represents the main
challenge research studies on the automatic information processing particularly in the repre-
sentation and indexing of video contents. The archive professionals need to index their digital
video bases for an effective access to video contents.
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Three main approaches have been proposed for content-based video indexing: text-based
approach, feature-based approach, and semantic-based approach. The text-based approach
focuses on using keywords or tags to describe the video content. However, these textual
descriptions do not reflect objectively the wealth of video content. The feature-based approach
aims to extract low-level features such as color, texture, shape and motion from the video data
and use them as indexing keys. However, these low-level features are generally complex and
not intelligible for ordinary users. To overcome the drawbacks of the text-based approach and
the feature-based approach, the semantic-based approach focuses on the automatic video
content annotation with their semantic meanings. As a consequence, many efforts have been
made in the multimedia field in order to define and unify a large lexicon called semantic
concept lexicon [36]. At the Large Scale Concept Ontology for Multimedia (LSCOM)
workshop a set of 3156 concepts is proposed. They are related to objects (eg. flower,
Airplane), specific objects (eg. Us_Flags, Infant), scenes (eg. Nighttime, Classroom, Doorway,
Cityscape) and events (eg. People_Marching, Swimmer).

The ground-truths show that the semantic concepts have a large intra-class and a small
inter-class variability of visual content. In addition, the same semantic concept may appear in
various contexts and its appearance may vary according to these contexts, on the one hand, and
concepts always coexist together, on the other hand. Therefore, the main problem of the
semantic-based video indexing is how to categorize effectively the semantic content and
exploit the semantic knowledge to overcome the semantic gap between data representation
and their interpretation by humans [44].

Nowadays, many efficient approaches for semantic content categorization lean on the
visual words and the construction of qualitative and compact codebooks in order to generate
a histogram of codeword counts, called bag-of-words (BoW). However, the BoW model
cannot describe objectively and discriminatively the content of an image and neglects the
spatial distribution of visual words, although it allows significant distinctiveness of the
representation. Thus, our approach joins with this tendency in order to overcome these
difficulties. We introduce a novel approach for semantic content categorization called visual
pseudo-sentences (PS) vocabulary. It invests in the integration of the spatial distribution of the
visual elementary words within their own context by grouping them together to provide visual
pseudo-sentences which are more informative and discriminative words.

In addition, indexing audiovisual documents based on the concept detector is limited by a
fundamental scalability problem. It requires a rather big number of training examples in order
to produce a generic indexing system. It also ignores the fact that concepts always coexist
together. For example, the concept sky frequently co-occurs with the concept Airplane flying.
Thus, the contextual information from Airplane flying is expected to help detect sky. Thus, we
try to extract, represent and store such information via a fuzzy ontology. Such ontology
represents the fuzzy relationships (roles and rules) among every context and its semantic
concepts. We use a deduction engine to handle richer results in our video indexing system by
running the proposed fuzzy ontology.

The remaining of our paper is organized as follows: In Section 2, we presented state-of-the-art of
the semantic video indexing approach. Section 3 described the proposed framework. In Section 4,
extensive experiments were presented and discussed, followed by conclusions in Section 5.

2 Related works and background

Semantic concept detection has captured extensive research attention in multimedia indexing
and retrieval, thanks to its promising capabilities to bridge the semantic gap. Many techniques
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have been developed and several image/video indexing systems have been built [1, 13, 38, 46].
Early systems, such as Informedia [13, 14] and MARVEL multimedia analysis engine [37],
proposed to combine the video modalities in order to enhance the video interpretation.
However, the majority of these systems have mainly focused on visual content processing.
The semantic pathfinder [46] explored different paths through three consecutive analysis steps:
content analysis, style analysis, and context analysis. In addition, other works have focused on
including spatio-temporal information into visual content processing in order to detect moving
objects and events [23, 53, 56]. However, other alternatives have focused on using semantic
knowledge to enhance the accuracy of concept detection [47].

These systems have a common approach: understanding the semantic in a multimedia
document is basically performed by building visual concept detectors in order to annotate
automatically the video shots with respect to a set of semantic concepts.

Building concept detectors is assimilated to the representation of the whole key frame of
each video shot and concepts detection is performed by conducting a learning process. In fact,
the semantic concept detection in an image/a video is perceived as a problem of content
representation and of a pattern classification. For instance, given pattern x, part of a key-frame
of a video shot Vsk, the aim is to obtain a probability measure P(Vsk|cx) , which indicates
whether the corresponding semantic concept cx is present in the key frame of each video shot.
So, such concepts are portrayed by a composition of the image as a whole, rather than
characterized by one specific part in the image. Furthermore, the background context of a
semantic concept can be more informative than the semantic concept itself and can provide
significant detection solutions. Therefore, it is very interesting to model the whole image for
the concepts categorization.

The codebook, or bag-of-visual-words, is one of the most useful techniques for the
modeling of image contents. It can be described as follows. First, a set of stable points or
regions are sampled from the input images. These stable points or regions which carry
important information are repeatedly found under transformations, including scale [26, 29],
rotation, and affine [28, 30] transformations. Next, feature descriptors are constructed using
local image information in the neighborhood of the feature points (or regions). The set of
features collected from each image is then clustered into k visual words. Thus, an image can be
represented as a k-dimensional histogram by counting the visual words occurrence in the
image. This fixed size vector representation of an image then serves as input to a classifier.

Accordingly, the performance of video indexation systems by visual concepts depends
essentially on the construction of the dictionary, on the one hand, and the structure that
represents the content on the other. Hence, several methods have been developed to construct
a small, compact, vocabulary that discriminates well between different concept categories.
These techniques can roughly be divided into two categories, namely a semantic approach
which relies on annotation and a data driven approach characterized by an unsupervised
clustering.

The first category is based on the principle of compositionality. An image can be derived
from the meaning of its constituent named patches. So, a semantic vocabulary is obtained by
manually assigning the meaningful labels to image patches [35, 38].

The second category tries to discriminate the continuous high-dimensional features space.
To achieve this goal, several algorithms and approaches are available in the literature. In fact,
among these approaches, the unsupervised clustering by K-means algorithm is the most
popular one which attempts to determine K partitions by minimizing the variance between
them. However, one of the main disadvantages of K-means is the fact of specifying the number
of clusters K as an input to the algorithm. Moreover, in K-means clustering the centers are
almost exclusively around the denser regions in high dimensional feature space and thus fail to
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decode other informative regions. For the above mentioned reasons, some other proposed
approaches recommend the use of RAdius-Based Clustering (RABC) to generate discrete
visual codebook [11, 18]. RABC sequentially seeks to detect new clusters by finding local
maxima of the density and clustering all data points within a fixed radius r. Thereby, the
clusters centroid represents the local maximum density and all clustered points are assigned to
the new cluster. Hence, the RABC algorithm yields an even distribution of visual words over
the continuous high dimensional feature space.

After discretization of the mentioned local features, the obtained codebook allows a visual
categorization by representing an image via a histogram of codeword counts. Therefore, an
image can be described as a BoW, but it suffers from some limitations. The main disadvantage
of BoW is the fact that it discards information about the spatial relations between visual words
in an image. So, the bags of words representation cannot describe objectively and discriminate
the content of an image. In fact, the ground truth shows that most visual words have some
mutual spatial dependencies in different degree. Therefore, a few recent works have proposed
methods to extend bags of words taking into consideration spatial information about the visual
words. The common approach is to employ graph-based representations that deal separately
with local patches (nodes of the graph) and spatial relations (arcs of the graph) [6, 15].

In [4], R. Behmo presented a new compact, self-contained representation of image content. It
consists in computing properties of a graph built on interest points of the image; interest points
are first collected in the image to constitute the set of nodes of what we call a “feature graph”.
Then the corresponding “collapsed graph” is built by associating each node of the feature graph
to an entry of a descriptor codebook. Finally the symmetric matrix of commute times between
the nodes of this collapsed graph is computed to obtain the final image representation which
encodes both the relative frequency of the codebook entries to which the features are associated,
as in the case of the bag of features representation. However, in addition to the quite high
computation time, the performance of the graph model depends on the image semantic context.
Therefore, we need to weight effectively the connections in the feature graph.

In [24], S. Lazebnik proposes a multiscale bag of features construction to capture the spatial
structure of features. An image is partitioned into increasingly fine sub-regions and for each
one the histogram of local features is computed. However, region-based representation can
generate problems of mismatching features in case the concept objects in the training images
are in different regions from those in the testing images. One more problem is the fact that
many objects may cross region boundaries. For resolving this issue, M. Marszalek employed
spatial relationships between features to reduce background clutter [27]. He strengthens the
weights of features that agree on the position and shape of the object and eliminates the
weights of the background features. However, the background context of an object can be
more informative than the object itself.

In [12], K. Grauman used the Earth Mover’s Distance (EMD) [41], which incorporates
spatial distances, for comparing images based on their discrete distributions (bags) of distinc-
tive local invariant features, without clustering descriptors. However, using the spatial infor-
mation only, the contents semantic is removed. Furthermore, the clustering process may
considerably reduce the computation time and treatment complexity.

In [2], J. Amores used a novel type of image representation: the Generalized Correlogram
(GC). For the image representation, the object is described as a constellation of GCs where
each one encodes information about some local patches and the spatial relations between these
patches to the others. Nevertheless, the performance of GC declines due to low-resolution
images and content transformation.

Though the concept detectors approach for semantic video indexing provides satisfactory
performance for some concepts, most of these concepts are still not easily detected. Thus, the
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typical concept detector approach alone is not efficient for multimedia processing, especially
for video indexing. In fact, the major drawback of this approach is the choice of the learning
machine and its parameters. Another drawback of this approach is that the concept detectors
are often developed independently, ignoring the fact that concepts always coexist together and
the training samples are naturally multi-labeled. Therefore, much new research has involved
the exploration of the semantic knowledge among concepts for video indexing. They partic-
ularly aim to develop a context-based concept fusion (CBCF) framework to enhance the
concept detection results [16, 17, 20, 45, 54, 57]. These approaches fall into two categories.

The first category is based on the exploration of pair-wise concept correlation [17, 54, 57]
that is generally determined by observation (e.g., from manual annotations or machine tagging
of the training data set). Based on the statistical principles and the manual annotation used to
approximate pair-wise concept relations, these previous approaches suffer from two major
drawbacks. First, such approximations may not be generally consistent when we have a limited
training data. Furthermore, it is difficult to obtain accurate statistics involving different generic
concepts in general video collections. Therefore, the relationship to other concepts is generally
ignored. Second, the manual annotation methods used for labeling semantic concepts are most
often incomplete. Thus, such missing information can lead to inaccurate approximations and to
misleading statistics.

Using multimedia ontologies based on logical roles is the most appropriate solution for
such drawbacks. Indeed, they formally allow the specification of the relationships between the
different concepts. So far, multiple ontologies have been proposed. The Large Scale Concept
Ontology for Multimedia (LSCOM) [17] proposes a hierarchical inter-concept relationships
such as “IS-A”. However, ImageNet [7] proposes several useful relations, which are inspired
from WordNet [31], such as “opposes”, “is_a_member_of”, “is_a_part_of”, etc. Since the
appearance of contexts as meta-information to describe a group of conceptual entities and to
partition a knowledge base into manageable sets, various conceptual ontologies have been
suggested. In fact, in [49], Spyrou et al. have introduced a visual context ontology which
contains various relations among different types of content entities, such as images, regions,
region types and high-level concepts. To model the topological relations between concepts, the
authors proposed “Adjacent”, “Inside”, “Outside”, “Above”, “Below”, “Left” and “Right”. In
[33], Mylonas et al. have proposed Fuzzy topological relations defined by domain expert in
order to model real-life information such as “Part”, “Specialization”, “Example”, “Instrument”,
“Location”, “Patient” and “Property”. However, in [35], the authors defined other relationships
incorporating fuzziness in their definition. They utilized a set of relations derived fromMPEG-
7 such as “Similar”, “Accompanier”, “Part”, “Component”, “Specialization”, “Generaliza-
tion”, “Example”, “Location” and “Property”. For each relation, they have associated a degree
of confidence.

The second category is based on learning techniques [16, 20, 45]. In [45], the contextual
relationship is modeled by SVM. Firstly, the Discriminative Model Fusion (DMF) method
generates a model vector aggregating the detection score of all the individual detectors. After
that, an SVM is learned in order to refine the detection of the original concepts. Although some
performance improvement is reported in [16, 45], there are major drawbacks. First, these
approaches are fully supervised and require explicit knowledge of the target semantic concept
and ground-truth labels such as the ontology hierarchy and the Bayesian networks (manually
constructed in most cases). Second, the number of correlated concepts for a given concept is
generally small, compared to the un-correlated ones; thus using all the concepts as in [45] will
significantly affect the performance. Third, some detectors may provide inaccurate probability
estimation, especially for the concepts with very few positive training samples. Therefore, such
detectors will have a significantly detrimental impact on the learning relation.
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3 Overview of the semantic video indexing system: SVI_REGIMVid

In this section, we present an overview of our semantic video indexing system, called
SVI_REGIMVid. The Fig. 1 presents the main system components. SVI_REGIMVid is based
on three levels of analysis. The first level (level1) focuses on low-level processing such as
video shot boundary/key-frame detection, annotation tools, key-points detection and visual
features extraction tools. The second level (level2) aims to build the semantic models for a
supervised learning of the concepts/contexts. The third level (level3) enriched the semantic
interpretation of concepts/contexts by exploiting the fuzzy knowledge.

3.1 Level1:low-level processing

3.1.1 Video shot boundary/key-frame detection

Shot boundary detection (SBD) is the process of automatically detecting the boundaries
between shots in a video. From 2001 to 2007, automatic SBD was one of the main tasks for
the TRECVid evaluation campaign [43]. There was a large variety of approaches proposed.
We adopt the shot boundary detection system proposed by Fraunhofer HHI [39]. For each
video shot, the middle image is selected as a key-frame.

3.1.2 Annotation tools

The semantic video indexing systems learn the concepts that will be detected from a large
collection of positive and negative examples which are manually annotated. This need of
knowledge has raised a new challenge for several competitions such as TRECVID and
ImageCLEF Photo Annotation. In this context, various annotation tools have been proposed
such as Efficient Video Annotation (EVA) system [52], VideoAnnEx [25], TRECVID 2007
Collaborative Annotation system [3], etc. These annotation tools try to specify with a binary
label whether an image contains a given concept or not. However, these training images are
not, in all cases, relevant to a target concept. Thus, it is inescapable to define new strategies to
select a set of deterministic and relevant knowledge for each concept.

To this end, we have developed our own semi-automatic soft collaborative annotation
system [22]. As shown in Fig. 2, it aims to aggregate the training data at three relevance levels
or classes, namely “Highly Relevant” (TP), “Relevant” (P) and “Somewhat Relevant” (PP). In

Fig. 1 Overview of the SVI_REGIMVid system
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fact, we have proposed a Fuzzy annotation, a modeling of the user’s judgments and an
evaluation of the annotation quality. In addition, we have introduced a relevance feedback
process by jointly exploiting annotated and unannotated data.

3.1.3 Key-points detection

A very large set of interest point detectors have been already proposed in the literature. This
wide variety of detectors is mainly due to a lack of a definition of the concept of the interest
points. However, most of these works basically assume that key points are equivalent to
corners or more generally speaking to points of the image that are characterized by a
significant gradient amount in more than one direction. Obviously, a differential framework
results from these definitions.

Studies on visual attention, more related to the human vision, propose very different
models. The basic information is still the variation in the stimuli but it is no longer taken into
account in a differential way but mainly as an energy point of view [42]. According to [5], our
approach joins with the last purpose [10]. The main idea is to exploit a detector based on
luminance and variation of the edge orientation. As luminance variations occur at almost every
scale in an image, we have to use multi-resolution and multi-orientation frameworks (8
orientations and 4 scales). In fact, a pixel is considered as an interest point if its luminance
is significantly higher than those of its neighbors or it changes the orientation of the edge.
When extracted at a low level in the pyramid, this pixel is related to a local luminance. When
extracted at a higher level in the pyramid, this pixel is related to a region luminance. These
pixels luminance are then combined in a top-down scheme in a pyramid yielding a final
representation where both local and global information are taken into account.

3.1.4 Visual feature extraction

The aim of feature extraction is to derive compact descriptions and represent the interest
pattern. Hence, we use a set of different visual descriptors at various granularities for each
representative key-frame of video shots on a neighborhood of each detected key-point. In fact,
we use several visual descriptors of different modalities (color, texture and shape) as Color
Histogram, Co-occurrence Texture, Gabor, etc. [8, 19].

After extracting the visual features, we proceed to the early fusion step. We combine a
selection of the feature vectors resulting from visual feature extraction. We adopt the method
proposed in [48], using vector concatenation to unify the features representation. After feature
normalization, which is performed for each feature vector before fusion through applying the
L2 normalisation, we obtain an early fusion vector. This vector serves to extract codebook
information for semantic concepts retrieval. Then, a set of Self-Organizing Maps (SOMs) is
trained on these features to provide a common indexing structure across the different
representations.

3.2 Level2:high-level processing

3.2.1 Codebook construction through Kohonen maps

One of the most important constraints of discrete visual codebook generation is the uniform
distribution of visual words over the continuous high-dimensional feature space. Self-
OrganizingMaps (SOM) proved their performance in so doing. In fact, it has been successfully
utilized for indexing and browsing by projecting the low-level input features to the two-
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dimensional grid of the SOM map [21]. Thus, to generate a codebook of prototype vectors
from the above features, we utilize the SOM-based clustering.

The SOM is basically an unsupervised and competitive learning algorithm. Relying on a
grid of artificial neurons whose weights are adapted to match input vectors in a training set,
SOM finds the optimal set of prototypes. It is basically made up of two layers: an input layer
which corresponds to a set of input neuron vectors and a competitive output layer which
corresponds to a set of M connected neurons Ne={Ne1,Ne2,…,NeM}. Every input N-
dimensional vector x={x1,x2,…,xN} is connected to N neurons of the map through weightsWi.

After the learning process, we tried to discover the optimal number P of clusters. In fact,
when the number of SOM units is large, similar units need to be grouped, i.e., clustered, to
facilitate quantitative analysis of the map and the data. This is due to the topological ordering
of the unit maps. Thus, after the learning process of the SOM map, we grouped the similar
units using the partitive clustering applying the K-means introduced by J. Vesanto and E.
Alhoniemi [51] as it allows very fast clustering with an acceptable accuracy.

At this stage, each image can be described by a set of visual elementarywords by assigning each
region descriptor of the image to the nearest cluster in the description space. We obtain a histogram
model ignoring the spatial relationships linking all the visual elementary words. Thus, after
extracting BoW, we interpret the dispersion of different words in images to further discriminate
the concepts categorization. In the next section, we present how to build visual PS vocabulary.

3.2.2 Spatial information representation

Spatial information is very important in image retrieval [24, 55]. Thus, to incorporate such
information, we use a grouping of the visual words to describe this model. We assumed that each
visual word is spatially dependent on others to form a given pattern. As an image is considered a
set of patterns, we group together the visual elementary words to yield visual pseudo-sentences
which are more informative words. Thus, our approach is based on the assumption that the visual
words with their locations are represented on the basis of exact coordinates. There are spatial
relations between visual words which are metric (distance) or ordinal distance (direction).

Although the detected key points are invariant to rotation, scale and geometric partial distor-
tions, the spatial relationships between visual words are not invariant. Thus, we should use ametric
that ensures the invariance of the spatial relationship. In [40], P. Punitha proposed a novel data
structure called relative spatial distance (RSD) matrix, which is used for the representation of
symbolic images. RSD matrix is built using the relative Euclidean distances (RED) between the
iconic objects in the symbolic image and is also invariant to all the 2-dimension transformations
such as rotation, translation, scaling and composite transformations like flipping and reflection.
Therefore, we adopt RED to count spatial relations between all visual words for each image.

Given an image I which containsM visual words. Each visual wordVi, in this image, is identified
by its Cartesian coordinates (xi,yi). The pseudo-sentences algorithm can be summarized as follows:

1. Calculate the matrix of dimension M2 which represents a RED between each visual word
and others according to:

RED Vi;V j

� � ¼
0 ∀ i; jð Þ∈ 1;…;Mf g2; i≤ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi=
ffiffiffiffiffiffiffiffiffiffi
x2i þy2i

p Þ− x j=
ffiffiffiffiffiffiffiffiffiffi
x2jþy2j

p �� �2
þ ðyi=

ffiffiffiffiffiffiffiffiffiffi
x2i þy2i

p Þ− y j=
ffiffiffiffiffiffiffiffiffiffi
x2jþy2j

p �� �2""vuut
8>><
>>:

ð1Þ
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2. For each visual word, find the closest visual word Vmin. This can be done by looking up
relative Euclidean distance which satisfies equation below.

V i −V i mink k2 ¼
M

argmin
j ¼ 1

V i −V j

�� ��
2

	 

ð2Þ

3. Find all very close pair of visual word satisfying this condition:

IF V i has a minimum distance to V j

AND V j has a minimum distance to V i

THEN V i;V j

� �
is a very close pair of visual word

The result is a set of visual words, each of which containing two words (at most 3 in
case of a tie) with the smallest relative Euclidean distance, that could be subsequently
merged.

4. Merge the two visual words Vi and Vj to one word Vij
*.

5. Calculate the new Cartesian coordinates of the merged words Vij
* or Vijt

* (in case of a tie).
This can be done by the below equation.

V �
ij ¼

xi þ x j
2

;
yi þ y j

2

� �

V �
ijt ¼

xi þ x j þ xt
3

;
yi þ y j þ yt

3

� �
8>><
>>: ð3Þ

6. Repeat only once the steps 1–5, taking into consideration the merged and unmerged
words.

The result of this combination is a new set of visual words, each of which containing at
most 9 elementary words. With a set of 9 words, we can built 362880 (9!) PS. Thus, we have
to analyze the arrangement of different elementary words to distinguish between them. In fact,
for each set merged, we project its different visual elementary words on an axis Δ to identify
the sequence of visual words: PS. The Δ equation is defined as follows:

Δ : Y ¼ aþ b*X ð4Þ
Where:

a ¼
X

yi −B *
X

xi

	 
,
n1

n1 : dimension of set merged V �

b ¼ n1

X
xi * yi −

X
xi *

X
yi

	 
,
n1�

X
xi2 −

X
xi

	 
2

Once the equation of the axis is determined, we use an orthogonal projection of different
visual words to determine the syntax of this pseudo-sentence. The syntax of each pseudo-
sentence is determined according to a fixed direction. We have chosen arbitrarily the direction
from top to bottom and left to right.

Finally, our method allows generating a new codebook which represents pseudo-sentences
that are based on the grouping of visual elementary words. Although we used only two stages
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of spatial clustering, the size of the new codebook is very large compared to the elementary
codebook. The size of the obtained codebook allows having more discriminative models, but
also a need for the memory, storage and the computing time to train a much more important
classifier. Therefore, we perform a refinement step to reduce the size of the obtained pseudo-
sentences codebook.

The pseudo-sentence refinement process: The refinement process is likened to a problem of
optimization of the pseudo-sentences construction. For example, let be a pseudo-sentence
V12345
* which consists of a chronological grouping of 5 visual words (V1V2V3V4V5) with just

one occurrence in the image collection to categorize, contrariwise another pseudo-sentence V34
*

which consists of a chronological grouping of 2 visual words (V3V4) with very large occur-
rence in the same image collection. Therefore, the pseudo-sentence V12345

* only increases the
size of the codebook. Thus, it would be very interesting to subdivide the pseudo-sentence. To
achieve this goal, two steps are considered: the analysis of syntax and the occurrence of all
constructed pseudo-sentences and the subdivision of low occurrence pseudo-sentences.

The syntax analyzing process The most natural way of representing a dictionary is through
building a tree. The tree creation is based on the share of the common prefixes. Thus, to
analyze the syntax of all the created pseudo-sentences, we use an M-ary tree.

In our context, the M-ary tree will have 8 levels and each node will have at most M children
(size of elementary codebook). The construction of this M-ary tree is based on the following
principles:

& For each node, we associate a visual elementary word, a boolean variable that indicates if
the pseudo-sentence is complete and an integer variable to calculate the occurrence of each
pseudo-sentence in the image collection to categorize.

& The first level of the M-ary tree will be represented by all the visual elementary words.
& To add a sentence in the tree, we use a recursive procedure. Indeed, we add, firstly in the

M-ary tree, each pseudo-sentence that is formed by 2 and next by 3 visual elementary
words. The addition principle procedure consists in adding word by word starting from the
root and going down gradually from one level to another. The break condition is reached
when we no longer have words to add in the tree. In this case, the boolean variable value of
the current node is modified to true and also the integer variable is incremented by 1. Also,
while going through the tree, node by node to insert a new pseudo-sentence, the value of
the integer variable of each node is incremented by 1 if the boolean variable value is equal
to true. Secondly, every pseudo-sentence that are formed by 4 or 5 or 6 or 7 or 8 or 9 visual
elementary words are then added by applying the same addition procedure. Furthermore,
for each of these pseudo-sentences, we will apply the following strategy, n – 2 times for
each pseudo-sentence (where n is the number of visual elementary words in the pseudo-
sentence). Whenever we remove the first visual elementary word encountered in the
pseudo-sentence: we check whether the new pseudo-sentence, obtained after the removal,
is already in the M-ary tree. In this case, we increment the integer variable by 1. Otherwise
we move to the next iteration until we finally obtain two visual elementary words in the
pseudo-sentence.

For each image in the dataset, the same procedure is performed simultaneously in order to
categorize their content later on.

The subdivision process The purpose of the subdivision process is to reduce the obtained
codebook size by analyzing the syntax of every pseudo-sentence having a visual elementary
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words count strictly upper to 3. It involves removing some pseudo-sentences that have an
occurrence less than or equal to a threshold th (we fixed th to 5) from the codebook and to
replace them with other elementary pseudo-sentences. The choice of one or more elementary
pseudo-sentences that will replace a generic pseudo-sentence is treated as a problem of
maximization of the size of the elementary pseudo-sentences. Thus, we proceed as follows:

& We select all the pseudo-sentences which will be eliminated from the pseudo-sentences
codebook to be replaced afterwards.

& We sort out all the selected pseudo-sentences in a descending order according to the
number of visual elementary words that they contain.

& For each of these pesudo-sentences, we determine the set of its sub-pseudo-sentences that
are defined in the dictionary. Thus, we replace each of them by the longest sub-pseudo-
sentence or by a combination of two sub-pseudo-sentences.

After the subdivision process, the generated visual pseudo-sentences vocabulary can be
effectively utilized as a codebook of visual concepts for image encoding and representation.

3.3 Concepts/contexts learning

The classification plays an important role to bridge the semantic gap. In our work, we use the
LIBSVM implementation (for more details see http://www.csie.ntu.edu.tw).

In order to decrease the influence of the imbalance of different distributions of relevance
classes, we propose to generate three repartitions of the training database. Indeed, the first
considers the examples annotated “Highly Relevant” as positive examples and the other
represents the negative ones. The second merges the two classes “Highly Relevant” and
“Relevant” in a positive class and others are considered as negative examples. The third
considers the examples of “Highly Relevant”, “Relevant” and “Somewhat Relevant” as
positive examples, and examples of “neutral” and “irrelevant” as negative examples.

Once the repartitions for all the training images are built, the classifiers are learnt for each
repartition to build concept models. So, for each concept, three classifiers are simultaneously
learnt. Generally, the models are built through a process of supervised learning. A supervised
learning algorithm is run with a set of training data, containing both positive images and
negative ones from the visual concept to learn and provides the model. This algorithm needs to
find the most discriminative information to represent concepts later. We employ Support
Vector Machines (SVMs) as our base learning algorithm for their effectiveness in many
learning tasks. The primary goal of an SVM is to find an optimal separating hyper plane that
gives a low generalization error while separating the positive and negative training samples.

SVMs return binary output yi for each test image, yi∈{−1,1}. To fit the SVM binary
outputs into probabilities, we use Platt’s method that produces a probabilistic output using a
sigmoid function:

P y
��� f	 


¼ 1

1þ exp Af þ Bð Þ ð5Þ

Where A and B are estimated by training using the maximum likelihood estimation from
the training data set and f=f(x) is defined as follows:

f xð Þ ¼
XN−1

i¼0

αiyiK x; xið Þ þ b ð6Þ
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Where N is the dimension of x, K(.,.) is a radial basis kernel function, K(x,xi)=

exp(−γ‖x−xi‖2), ∑
N−1

i¼0
αiyi ¼ 0 , αi is the learned weight of the training sample xi,, αi>0

and γ is a kernel parameter to be tuned for the best accuracy, γ>0.
Once the three classifiers are learnt with probabilistic SVM, we merge the three outputs by

calculating the weighted average to obtain the final model using this equation:

C ¼ δ*Ctp þ β *Ctpþp þ ε*Ctpþpþpp ð7Þ

Where δ,β and ε are predefined by experts on the SVM training. These averages are then
ordered to select the examples. Accordingly, each video shot Vsk is ranked with a probabilistic
measure P(Vsk|ci) or P(Vsk|tj).

3.4 Level3: semantic interpretation

The contextual information is an ambiguous term. It has been defined and interpreted in
several ways in different domains. In the multimedia literature, visual context was introduced
in [32, 34, 50], as an extra source of information for both object detection and scene
classification.

Accordingly, the context may provide an important cue in order to enrich the semantic
interpretation and further enhance the performance of semantic indexing and multimedia
retrieval content systems. Thus, we model the contextual information in order to exploit and
understand the high-level content efficiently. The context information modeling consists of
three steps: semantic knowledge representation/interpretation, semantic concept/context cate-
gorization and refinement process. The semantic knowledge representation focuses on building
the context space that represents the relationships (roles and rules) among every context and its
semantic concepts. Such information is extracted, represented and stored via a proposed fuzzy
abduction engine mated with an inference engine. More specifically, the inference engine
provided by fuzzy description logics (fDLs) is used for context ontology construction that
links each context space with its semantic concepts. The second step, semantic concepts/
contexts categorization, focuses on the construction of a small, compact, vocabulary that
effectively discriminates concepts and contexts. Based on this vocabulary, semantic concepts/
contexts models are trained via an SVM classifier. The third step, refinement process, aims to
enrich and enhance the semantic interpretation of our video indexing system. Based on fuzzy
rules defined in our fuzzy ontology, a deduction engine is used to handle new richer results.

To specify the proposed ontology to describe the semantic knowledge, a less expressive
fuzzy description logic is applied to facilitate fast computations. We detail how we constructed
a contextual knowledge model for semantic interpretations below. In this field, our fuzzy
ontology O f is modeled as O f={T,C,Rtc

f ,Rct
f ,Rcc|t

f ,Q} where:

& T={t1,t2,…,tn} is a set of n contexts
& C={c1,c2,…,cm} is a set of m concepts
& Rf

tic j
: TxC→ 0; 1½ �; i∈ 0;…; nf g and j∈ 0;…;mf g; is a fuzzy rule that the context ti

performs for the concept cj
& Rf

cit j
: CxT→ 0; 1½ �; i∈ 0;…;mf g and j∈ 0;…; nf g; is a fuzzy rule that the concept ci

performs for the context tj
& Rf

cic jjtk : CxC→ 0; 1½ �; i∈ 0;…;mf g; j∈ 0;…;mf g and k∈{0,…,n}; is a fuzzy rule that

the concept ci performs for the concept cj within the context tk
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& Q is a set of fuzzy qualifiers. In O f, we define two qualifiers: “weak” and “strong” (Fig. 3).

We have also defined some roles between concepts and contexts {Generalization,
IsRelatedTo, IsPartOf, Includes}. Their interpretation is rather simple and detailed in Table 1.
The choice of these specific roles is motivated by the generic reasoning scenarios designed to
improve concept detection. However, these roles can be further enriched depending on referred
applications.

Based on probabilistic scores of concepts and contexts provided by the indexing
process, a fuzzification step is performed. This step aims to handle the imprecision
and inexactness of concepts and contexts detectors, on the one hand, and to generate
the fuzzy inputs required by fuzzy rules on the other. Thus, we consider a concept ci
or a context tj “Relevant” in a video shot Vsk if P(Vsk|ci) respectively P(Vsk|tj) is
greater than 0.7. However a concept ci or a context tj is qualified by “Not-Relevant”
in a video shot Vsk if P(Vsk|ci) respectively P(Vsk|tj) is between 0.3 and 0.7. These
two intervals are empirically chosen according to expert observations and the proba-
bilistic mesures provided by concept detectors.

Based on these fuzzy inputs, the deduction engine explores all the defined rules in order to
infer the most appropriate ones and thus generates an optimal score for the target rule output.
In this field, two cases arise: when a fuzzy rule is qualified as “Strong” or “Weak”.

In the first case, the deduction engine proceeds as follow: Let Rk
f be a fuzzy rule defined as :

Rk
f :ci is Strong RelatedTo cj within tk0 and let P(Vsi|ci) and P Vsijtk0

� �
be, respectively, a

Fig. 2 REGIMVid Semi-Automatic Collabrative Annotation tools

Fig. 3 Two Fuzzy βeta function
to represent Of qualifiers
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score detection of concept ci and context tk0 in the same video shot Vsi. The optimal score, or
the deduced relevance degree, of the fuzzy rule Rk

f outputs, denoted as αk
' (cj), is computed as

follow:

α
0
k c j
� � ¼ μk max P Vsk

���ci	 

; P Vsk

���tk0	 
n o	 

*μStrong αkð Þ ð8Þ

Where μk and αk are, respectively, the βeta membership function and the confidence
degree of the kth fuzzy rule according to the role “IsRelatedTo”.

In the second case, the deduction engine applies the following equation.

α
0
k c j
� � ¼ μk min P Vsk

���ci	 

; P Vsk

���tk0	 
n o	 

*μWeak αkð Þ ð9Þ

The same approach is built by the deduction engine for the other rules according the role
“IsPartOf”, “Includes” and “Generalisation”.

4 Experiments

The main goal of our experimentation is, first to check the effectiveness of the
semantic concepts categorization using pseudo-sentences (PS), and, second, test the
added value of the context space for semantic concept detection. Hence, we first
present the experimental setup and the obtained results of the SVI_REGIMVid within
TREC Video Retrieval Evaluation (TRECVID) 2010 at the Semantic Indexing task.
Second, we examine the performance for representation of the image contents obtain-
ed in the space of the semantic concepts categorization induced by pseudo-sentences,
multiscale bag-of-words and graphs. Third, we compare the effectiveness of our fuzzy
ontology O f for the enhancement of the semantic concept detection to existing
techniques. Finally, the scalability of the proposed approach is discussed.

We use the inferred average precision (infAP), the precision (P) and the recall (R) as a
performance metric and the best scores which are reported in Tables 3, 4 and 5 are given in bold.

4.1 TRECVID 2010 evaluation

In order to check the SVI_REGIMVid scalability on the detection of a large set of concepts,
the experimentations are mainly conducted with different scale and difficulties on TRECVID
2010 benchmark data set.

Table 1 Semantic relationships between concepts and contexts

Name Symbol Meaning TxT CxC CxT TxC Definition

Generalization ti:tj The concept ti is the generalization of
the concept tj

X LSCOM

IsRelatedTo ci|tk→cj The concept ci is related to the concept
cj within tk

X Learning

IsPartOf {ci}∈tj A set of concept ci is a part of the context tj X Learning

Includes ti⊃cj The context ti includes the concept cj X Expert
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4.1.1 Data sets

At TRECVID 2010 Semantic Indexing task there are two data sets provided by the National
Institute of Standards and Technology (NIST): a test and a development data set. The
development data set IACC.1.tv10.training contains 3200 Internet Archive videos (50GB,
200 h) while the test data set IACC.1.A contains approximately 8000 Internet Archive videos
(50GB, 200 h). IACC.1.A is annotated with 130 semantic concepts.

4.1.2 Experimentation setup

We have participated with two instances of SVI_REGIMVid system: SVI_REGIMVid_1 and
SVI_REGIMVid_2 [10]. The first system integrates only the first and the second level of
analysis while the semantic interpretation process is incorporated within SVI_REGIMVid_2.
We note that the results given by TRECVID 2010 are limited to the detection of 30 among 130
semantic concepts which were initially suggested. The set of 30 semantic concepts is reported
in Table 2.

The experimental findings of SVI_REGIMVid_1 and SVI_REGIMVid_2 at TRECVID
2010 are shown in Fig. 4. SVI_REGIMVid_2 achieves the best mean inferred average
precision (infAP=0.089) among SVI_REGIMVid_1 where the infAP is 0.085. Also, we
observe from the results that the SVI_REGIMVid achieved a good performance to detect
the high level features in video data. In fact, most of the infAP scores are on the top of the
median curve. In addition, for some concepts such as Bicycling, Singing, Telephones and
Car_Racing SVI_REGIMVid fulfilled the best results. Moreover, our novelty stems from the
fact that is now clearly noticeable that the use of the semantic interpretation process allows
improving semantic concept detection. The infAP score of 3 among 30 concepts (Animal,
Boat_Ship, and Vehicle) increased since a small number of rules (268 among 2 876 rules
defined in Of) was inferred at the semantic refinement for the 30 concepts.

Table 2 TRECVID 2010: high-level features

ID ID_TREC High level features ID ID_TREC High level features

1 004 Airplane_Flying 16 052 Female_Human_Face

2 006 Animal 17 053 Flowers

3 007 Asian_People 18 058 Ground_Vehicles

4 013 Bicycling 19 059 Hand

5 015 Boat_Ship 20 081 Mountain

6 019 Bus 21 084 Nighttime

7 022 Car_Racing 22 086 Old_People

8 027 Cheering 23 100 Running

9 028 Cityscape 24 105 Singing

10 029 Classroom 25 107 Sitting_Down

11 038 Dancing 26 115 Swimming

12 039 Drak_skinned_People 27 117 Telephones

13 041 Demonstration_or_Protest 28 120 Throwing

14 044 Doorway 29 126 Vehicle

15 049 Explosion_Fire 30 127 Walking
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4.2 Impact of pseudo-sentences on semantic content categorization

To highlight the effectiveness of using the context space for semantic concept detection, we
have run more experiments. We extended our interest to deal with other concepts and data sets
mainly the Caltech data set.

In Caltech-101, we have used 10 different object classes, notably Airplanes (800),
Motorbikes (798), Car_side (123), Sunflower (085), Leopards (200), Ketch (114), Heli-
copter (88), Schooner (063), Water_lilly (037) and Cougar_body (047). For each class, a
third of these images are randomly picked for learning process and the reaming two third
for the testing.

We ran experiments for SVI_REGIMVid_1 at TRECVID and Caltech. The obtained results
are reported in Tables 3 and 4. Considering the achieved findings, we can make the following
comments:

& Our PS approach clearly outperforms the SVM classifiers in terms of inferred
average precision classification performance. In fact, for most concepts, the PS
process was able to improve the semantic categorization (eg. crowd, car_side
concepts) better than multiscale bag-of-words and graphs. For some other concepts
such as water_lilly and sunflower the improvement is even clearer and more
significant. This improvement is due to the PS codebook model that yields a
distribution over codewords that represents the whole image, making this model
well-suited for describing the context.

& The experimental results show that, the PS codebook model can be well categorized
between the semantic concepts and more particularly between the concepts that are
visually similar. In fact, our contribution achieves the best inferred average precision for
(Water_lilly, Sunflower), (Cougar_body, Leopard) and (Suburban, Building). This im-
provement is due to the PS codebook model investigated using the background context.
In fact, our method of key-points detection tries to extract significant patches from the
object and the background.

& For Caltech 101 subset, the feature graph perform almost as well as BoW, while
with TRECVID 2010 subsets BoW are at least 17 % better, because the number
of concept categories increases and category size decreases. In addition, the
experimental results show that the feature graph performance is closely dependent
on the image resolution. For instance, in Caltech 101 the feature graph achieves

Fig. 4 TRECVID 2010: SVI_REGIMVid evaluations
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the best inferred average precision for Airplane (infAP=0.35), contrary to
TRECVID 2010 dataset, where the inferred average precision for the same
concept is 0.023.

4.3 Impact of contextual information on semantic content indexing

In order to emphasize the efficiency of the use of the context space for semantic concept
detection, our attention was focused on other sets of high-level features (6 contexts and 11
concepts) defined below in Fig. 5.

Table 3 Concept retrieval perfor-
mance (infAP in %) of different
methods on TRECVID 2010 data
sets

Method

Semantic concepts SVI_REGIMVid_1 Lazebnik
[20]

R.Behmo [4]

Airplane_Flying 0.102 0.031 0.023

Animal 0.169 0.008 0.012

Asian_People 0.054 0.002 0.004

Bicycles 0.142 0.070 0.001

Birds 0.151 0.042 0.032

Building 0.022 0.002 0.003

Car 0.075 0.018 0.005

Charts 0.030 0.003 0.018

Cheering 0.068 0.129 0.064

Cityscape 0.116 0.001 0.002

Crowd 0.025 0.012 0.013

Dancing 0.079 0.030 0.037

Daytime_Outdoor 0.250 0.068 0.021

Dogs 0.012 0.045 0.046

Entertainment 0.031 0.019 0.023

Female_Person 0.147 0.077 0.049

Female-Human-
Face-Closeup

0.049 0.041 0.014

Greeting 0.099 0.117 0.066

Ground_Vehicles 0.043 0.025 0.012

Motorcycle 0.059 0.200 0.114

News_Studio 0.039 0.055 0.051

Office 0.030 0.028 0.021

Roadway_Junction 0.060 0.026 0.011

Shopping_Mall 0.171 0.016 0.052

Single_Person 0.000 0.000 0.005

Suburban 0.348 0.032 0.243

Teenagers 0.058 0.003 0.004

Tent 0.006 0.016 0.002

Vegetation 0.100 0.103 0.055

Vehicle 0.016 0.032 0.033
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As shown in Fig. 5, the produced hierarchy is a M-ary tree such-structure, where leaf nodes
(pink ellipses) are the contexts which are recovered from LSCOM based on the role “Gener-
alization”, while their concepts (blue octagons) are integrated based on Experts observations
through the role “Includes”. The M-ary hierarchy has a crucial role on the O f evolving.

The obtained results are reported in Table 5 and three illustrative examples are presented in
Fig. 6. Relying on the obtained results, we can make the following comments:

& The effectiveness of video indexing systems is clearly improved when a knowledge-based
approach is integrated. In fact, when the LSCOM ontology is incorporated, the precision
improvement of semantic concept detection is around 11 %. However, we have obtained
21 % via our ontology O f. This variation is mainly due to the hierarchical roles of each
one. The LSCOM ontology, based on “Generalization” roles, provides enrichment only for
the concepts of a higher level. However, the O f ontology expounds other roles such as
“IsPartOf”, “Includes” and “IsRelatedTo”. These allow us to highlight the relationship
between a context and its concepts and concept-concept within a target context space. In
fact, as shown in the first example of Fig. 6, the role “Includes” has reduced the detection
score of the concept “Mountain” however the detection score of the concept “Tree” has

Table 4 Concept retrieval performance (infAP in %) of different methods on Caltech 101 data set

Semantic concepts Method

SVI_REGIMVid_1 Lazebnik [20] R. Behmo [4]

Airplane 0.310 0.151 0.35

Motorbike 0.152 0.131 0.234

Car_side 0.182 0.171 0.174

Sunflower 0.27 0.2 0.117

Leopard 0.229 0.162 0.078

Kitchen 0.136 0.17 0.095

Helicopter 0.272 0.093 0.275

Schooner 0.182 0.2 0.098

Water_lilly 0.28 0.183 0.136

Cougar_body 0.234 0.131 0.098

Fig. 5 Partial view of concepts/contexts relationships
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improved due to “Landscape Strong Includes Tree” and “Landscape Weak Includes
Mountain”. In addition, the role “IsRelatedTo” has performed the detection of “Sky”.
Moreover, we can note the effectiveness of the “IsPartOf” role to enhance the detection of
contexts within the third example.

& The proposed approach improves not only the precision of contexts detection, but also
concepts detection. In fact, our ontology O f performs the best precision scores for 16 (6
context and 10 concepts) out of 17 high level features. This result is rather obvious: the
proposed ontology O f tries to represent the context space; with 4 roles (“Generalization”,
“IsPartOf”, “Includes” and “IsRelatedTo”); using an Abduction Engine [9]. It automati-
cally generates fuzzy rules and optimizes them. These fuzzy rules, that represent the
ground truth, further improve the effectiveness of video indexing systems.

& The context-based concept fusion framework enhances the high level feature detection. In
fact, the recall is improved for 6 (Outdoor, Vegetation, Landscape, Vehicle,
Ground_Vehicle, Airplane-Flying) out of 17 high level feature. We can see that the
enrichment has only targeted the context. Despite this recall improvement (about 2 %),
precision has declined. The origin of this degradation is its requirement of an explicit
knowledge about contextual space that is provided manually based on intuition and human
knowledge. In addition when a detector provides inaccurate probability (e.g. Sky, truck,
bus, road), the effectiveness is low (the precision improvement of Vehicle is 10 %). In
these fields, O f reached a rate of about 50 %.

Table 5 Concept retrieval performance (Inferred Average Precision infAP, Precision P and Recall R) for
different Concept detection methodologies applied on TRECVID 2010 data set

Concept detection methodologies

High level features SVI_REGIMVid_1 SVI_REGIMVid_2 with
LSCOM

SVI_REGIMVid_2
with Of

CBCF with
SVM

InfAP P R infAP P R P R P R

Outdoor – 0.52 0.59 – 0.88 0.77 0.9 0.82 0.42 0.71

Vegetation 0.1 0.74 0.68 0.1 0.74 0.68 0.93 0.87 0.56 0.7

Landscape – 0.6 0.79 – 0.6 0.79 0.7 0.82 0.52 0.8

Sky – 0.66 0.9 – 0.66 0.9 0.85 0.95 0.66 0.9

Trees – 0.62 0.72 – 0.62 0.72 0.73 0.82 0.62 0.72

Mountain – 0.68 0.8 – 0.68 0.8 0.83 0.85 0.68 0.8

Vehicle 0.016 0.22 0.5 0.103 0.7 0.77 0.72 0.78 0.32 0.6

Ground_Vehicle 0.043 0.3 0.66 0.18 0.6 0.73 0.69 0.75 0.4 0.69

Road – 0.43 0.6 – 0.43 0.6 0.88 0.9 0.43 0.6

Car 0.075 0.42 0.64 0.17 0.58 0.73 0.79 0.83 0.42 0.64

Bus – 0.52 0.73 – 0.52 0.73 0.52 0.73 0.52 0.73

Bicycles 0.142 0.67 0.92 0.185 0.82 0.97 0.83 0.97 0.67 0.92

Emergency Vehicle – 0.9 0.83 – 0.9 0.83 0.9 0.83 0.9 0.83

Building 0.022 0.18 0.22 0.1 0.5 0.43 0.55 0.45 0.18 0.22

Truck – 0.35 0.37 – 0.35 0.37 0.35 0.37 0.35 0.37

Airplane flying 0.102 0.8 0.78 0.102 0.8 0.78 0.83 0.79 0.82 0.79

Airplane – 0.5 0.6 – 0.5 0.6 0.71 0.69 0.5 0.6

Total: 0.071 0.53 0.66 0.134 0.64 0.71 0.74 0.77 0.52 0.68
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4.4 SVI_REGIMVid scalability

In this section, we address the problem of SVI_REGIMVid scalability. We focus on the scalability
of the indexing process through a large set of concepts detection, on the one hand, and the scalability
of the refinement process through a large number of relationships, on the other hand.

The semantic concepts/contexts detection process is performed on all video shots individ-
ually and independently. The average execution times per key-frames for this process within
TRECVID 2010 benchmark (146788 key-frame) took about 22.235 s on using a WINDOWS
PC with 980 MHZ INTEL(R) CORE(TM) 2 CPU and 2 GB RAM. This large computing time
versus the semantic Pathfinder [46] (about 1 s), invites us to parallelize the concept detection
process or to use a GPU computing. However, within the refinement process, the fuzzy role are
inferred simultaneously. To evaluate the scalability of the refinement process, we plot the
execution times versus the number of fuzzy rules inferred for all key-frames of the TRECVID

Groundtruth :

Bicycles – Tree – Landscape –
Sky - Vegetation - Outdoor

Bus – Road - Ground_Vehicles –
Vehicles - Outdoor

Airplane – Sky – Airplane-Flying 
– Vehicle - Outdoor

Concept detectors output :

Mountain : 0.534 – Landscape : 
0.821 – Tree : 0.712 – Vege-

tation :0.9

Bus : 0.633 – Road : 0.715 -
Ground_Vehicles : 0.82 – Land-

scape : 0.22

Airplane : 0.812  – Sky :0.971 –
Bird :0.12

Includes Role

Mountain : 0.124 – Landscape : 
0.821 – Tree : 0.789 – Vege-

tation :0.9

Bus : 0.621 – Road : 0.715 -
Ground_Vehicles : 0.82 – Land-

scape

Airplane : 0.812  – Sky : 0.971 –
Bird

IsRelatedTo Role

Mountain : 0.124 – Landscape : 
0.821 – Tree :0.789 – Sky : 0.802 -

Vegetation :0.9

Bus : 0.69 – Road : 0.715 -
Ground_Vehicles : 0.82

Airplane : 0.812  – Sky : 0.971

IsPartOf Role

Mountain : 0.124 – Landscape : 
0.821 – Tree : 0.789 – Sky : 0.802 -

Vegetation :0.9

Bus : 0.69 – Road : 0.715 -
Ground_Vehicles : 0.82

Airplane : 0.812 – Sky : 0.971 –
Airplane-Flying : 0.9531

Generalization Role

Mountain : 0.124 – Landscape : 
0.821 – Tree : 0.789 – Sky : 0.802 –

Vegetation : 0.9 – Outdoor : 0.9

Bus : 0.69 – Road : 0.715 -
Ground_Vehicles : 0.82 –

Vehicles : 0.82 – Outdoor : 0.82

Airplane : 0.812 – Sky : 0.971 –
Airplane-Flying : 0.9531 –

Vehicle : 0.9531  - Outdoor : 
0.9531

Fig. 6 Illustrative examples of semantic concepts detection based on SVI_REGIMVid
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2010 benchmarks in Fig. 7. We note that, the number of the fuzzy rules defined in our ontology
O f for the 130 high-level features is 2 876 rules. However the maximal number of the inferred
rules for each key-frame is 23.

As shown in the Fig. 7, the computational time is approximately linear to the number of the
inferred fuzzy rules in all visual content. Thus, we can confirm that the refinement process is
scalable.

5 Conclusion and future works

In this paper we presented the semantic video indexing system of REGIMVid group for semantic
access to multimedia archives, called SVI_REGIMVid. The SVI_REGIMVid is a generic
approach for video indexing. It exploits the spatial information in visual content categorization
and the contextual knowledge in concept detection enrichment to bridge the semantic gap. Its
effectiveness in terms of precision and recall was proved on diverse concepts and data sets.

Future works will consist in improving the indexing process scalability, integrating the
spatial coherence between the context space with the exploration of cross-concept correlation
and inter-shot dependency.
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