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Abstract 
Ultrasound-Mediated Leakage from DMPC-Cholesterol Model Membranes 

Stephanie Alyssa Carroll 
Advisor: Steven P. Wrenn 

 
 
 

 The application of ultrasound for targeted drug delivery offers a convenient, 

universal, and affordable method for drug delivery.  Targeted drug delivery through the 

use of lipid vesicles coupled with ultrasound is beneficial for the treatment of diseases 

because it reduces the amount of effective dosage necessary and toxic side effects 

compared to traditional systemic treatments.  Ultrasound-mediated leakage from model 

membranes occurs when the lipid vesicles are exposed to low ultrasound frequencies of 

approximately 20 kHz  which causes transient cavitation of gaseous voids in the sample.  

This work investigated a binary, DMPC-cholesterol, model membrane to study the 

effects of lipid composition and lipid phase behavior on vesicle leakage by ultrasound.  A 

self-quenching dye, calcein, was encapsulated within the aqueous core of lipid vesicles.  

These vesicles were exposed to ultrasound at a frequency of 20 kHz via a probe tip 

transducer in small intervals with resting time.  Steady state fluorescence spectroscopy 

was used to quantify the dye leakage resultant from the exposure to ultrasound.  Leakage 

profiles obtained indicate that different mole fractions of cholesterol have different 

effects on the membrane’s ability to resist leakage by ultrasound. 
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Chapter 1: Introduction 
 
 
 

 Cholesterol is the most abundant and widely distributed sterol in eukaryotic 

membranes [1].  This amphiphilic sterol can comprise of up to 0.50 of the total lipid 

composition of a membrane [2-5].  A physiological effect caused by cholesterol 

molecules in a membrane is increased bilayer cohesion where saturated lipids are present 

[2].  The study presented here investigates the contribution of this cholesterol effect on 

membrane strength by steady state fluorescence spectroscopy. 

 In past work, the orientation of cholesterol in a phospholipid bilayer has been 

shown to be similar to lipids.  Cholesterol will orientate with its polar headgroup towards 

the aqueous phase of a sample and its hydrophobic end becomes parallel with the 

adjacent phospholipid acyl chains [2].  Studies by Almeida et. al. investigated the 

behavior of sterol-phospholipid systems such as 1,2-Dimyristoyl-sn-Glycero-3-

Phosphocholine (DMPC) or 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) 

resulting in the creation of phase diagrams [3,5].     

 .  Liposomes, are membranes composed of a lipid bilayer.  Similar to cell 

membranes, a liposome membrane determines which molecules will diffuse through [6].  

Liposomes present many advantages for targeted drug delivery in treatment of diseases 

with toxic medicines [7].  Membrane integrity of liposomes is important for control of the 

diffusion of hydrophilic drugs, encapsulated in the aqueous core of the vesicles.  Recent 

studies have used calcein, a self-quenching fluorescent dye, to mimic drug release from 

lipid/cholesterol systems [8].  Many mechanisms for drug release from liposomes have 

been studied but ultrasound has recently come to the forefront of non-invasive release for 
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encapsulated drugs [7].  The exposure to ultrasound changes the membrane permeation, 

triggering leakage of the drug.  Targeted drug delivery using ultrasound as the release 

trigger can greatly reduce the amount of effective and toxic side effects [9-10].  It was 

this potential benefit to those taking dangerous medicines that motivated this study. 

 To optimize the application of drug delivery, further understanding of ultrasound 

and cell membrane interaction must be gained.  The number of variables that alter 

membrane properties such as protein and sterol content, have prevented many research 

groups from studying the interaction between ultrasound and cells [9].  To study this 

interaction, phospholipid vesicles, have been chosen as the membrane models because 

the structures are similar to cell membranes, can be prepared in laboratory environment 

and can be altered in a controlled manner.  These model membranes simplify the system 

allowing for investigation of key parameters influencing the effect of ultrasound field on 

membrane permeability.   

 This work investigated a binary (DMPC and cholesterol) model membrane system 

to study the effects of lipid composition and lipid phase behavior on vesicle leakage by 

ultrasound. 
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Chapter 2: Background 
 
 
 

2.1 Lipid Phase Behavior and Cholesterol Induced Phase Separation 
 

Glycolipids contain fatty chains that range from 14 to 24 carbons.  

Glycerophospholipids, which are commonly found in biological membranes, are 

structured with at two acyl chains that can be saturated, unsaturated, or one of each and a 

head group of either a phosphate group or an alcohol attached to a phosphate group [11].  

1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), is a glycerolphospholipid a 

choline head group and two fully saturated 14 carbon chains, shown in Figure 2.1a.   

 Lipids can be categorized by their melting temperature (Tm).  Below the Tm, lipids 

are in the solid phase (so), containing minimal cross sectional area and maximal bilayer 

thickness, reducing the movement of hydrocarbon chains.  Above the Tm, lipids are 

present in the liquid phase (l) where hydrocarbon chains are not as tightly packed or 

extended.   In this state, the cross sectional area of the lipid is increased and the bilayer 

thickness is decreased [11].  Lipids with a low Tm contain double bonds or short acyl 

chains that take less energy to order than longer acyl chains.  Lipids with high Tm have 

longer, saturated acyl chains.  The lipid used in this study, DMPC, is an example of a 

lipid with a high Tm of 23.9˚C that exists in the liquid phase at natural body temperature 

of 37˚C. 

 Lipid membranes undergo three different phases: a solid phase (so), also known as 

the gel phase, a liquid disordered phase (ldo) and a liquid ordered phase (lo).  Many 

studies have examined the properties of two component lipid bilayers, with special 
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interest in the region where two lipid phases can coexist at the same temperature and 

pressure [3,5,12].  The published phase diagrams are results of thermodynamic data 

which describe the molecular interactions that cause a particular phase behavior. 

 Binary mixtures with cholesterol as one component, have received much attention 

in the past [3,5].  Cholesterol, the most common sterol, is an important constituent of cell 

membranes [1].  Cholesterol has a planar structure with an OH as the polar head group, 

shown in Figure 2.1b.  The addition of cholesterol to the bilayer forces the neighboring 

lipid hydrocarbon tails to become fully extended which is known as the cholesterol 

condensing effect [7].  Vesicle aggregation, fusion, curvature, and interactions between 

lipids, change when cholesterol is incorporated [13].  The extent to which these behaviors 

change depends on the types of lipids in membrane. 

 ldo and lo coexist in the same region in binary mixtures of saturated lipids and 

cholesterol. The DMPC-cholesterol system phase diagram, from [5], is displayed in 

Figure 2.2.  DMPC packs well with cholesterol because of its two fully saturated acyl 

hydrocarbon chains.  As shown in the diagram, above the Tm, ldo and lo can coexist or 

outside the two phase region the bilayer exist either as ldo or lo depending on the 

cholesterol mole fraction [3,5,14].  At low cholesterol concentrations the membrane 

experiences high lateral mobility and lipids can “flip-flop” from one leaflet to another.  

This ldo phase is also characterized by disordered hydrocarbon chains.  As the cholesterol 

concentration is increased, more DMPC molecules are driven into the extended chain 

formation, which decreases the total surface area [7].  Therefore, as the cholesterol 

concentration is increased, pockets of liquid ordered are formed in a liquid disordered 

environment.  These pockets are known as rafts.  As the membrane transitions into the lo 
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phase, which is characterized by ordered hydrocarbon chains, lipids that are not fully 

extended will group together to form domains of ldo in a majority of lo [7,15].   The height 

difference between the two phases exposes parts of the acyl chains to water creating areas 

of line tension.  

2.2 Line Tension 
 
 Domains of the model membrane can be explained when compared to natural 

membranes through the explanation of line tension.  In these domains, lipids in lo are 

misaligned with lipids in ldo because of height difference, which is created by ordered and 

disordered hydrocarbon chains [16].  Line tension, which occurs at the edge of these 

domains, as shown in Figure 2.3a, is a result of the exposure of the hydrocarbon chains in 

lo exposed to water which creates an unfavorable interaction between the hydrophobic 

and hydrophilic molecules [7,16].  To reduce line tension, the domains coalesce together 

to form a minimum number of domains.  Natural membranes, as shown in Figure 2.3b, 

contain many phospholipids of different chain lengths and saturations which alleviate the 

line tension. In a multi-component system, the components with varying chain length act 

as lineactants to relieve line tension. 

2.3 Stable and Transient Cavitation 
 
 In recent years, the use of ultrasound as a diagnostic imaging modality has 

continued to grow [17,18].  Since targeted drug delivery methods are limited by passive 

diffusion across membranes, ultrasound is becoming the preferred method to increase 

membrane permeability [19].  The application of ultrasound for targeted drug delivery 

offers a convenient, universal, and affordable method for drug delivery [14,17].  Briefly, 
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a transducer emits a short pulse sound wave through the human body that is absorbed by 

some tissues, scattered by others, and reflected by boundaries between tissues of different 

sound speeds [7].  The mechanism by which ultrasound temporarily increases membrane 

permeability is suspected to be acoustic cavitation [20,21].  There are two types of 

acoustic cavitation; transient and stable [22,23].  In both stable and transient cavitation, 

gas filled bubbles injected into the blood stream of a patient, known as contrast agents, 

oscillate non-linearly because of ultrasound radiation [7,10,17,24].   

 Stable and transient cavitation depends on frequency, exposure time, temperature 

and pressure [20,22].  Bubble oscillation can be described by the following Rayliegh-

Plesset-Noltingk-Neppiras-Poritsky (RPNNP) equation: 

)(1122{1
2
3 3

2 tRR
RR

S
R

P
R
R

RRR a
o

Pov
o

go ρδωρσρρ
ρ

ρ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−+⎟

⎠
⎞

⎜
⎝
⎛=+

Γ

&&&&      (1) 

where ρ is the density of the surrounding medium, Γ is the polytropic exponent of the 

gas, ω is the driving frequency, and δ is the total damping parameter which is equal to the 

summation of viscous damping, reradiation damping, thermal conduction damping, and 

friction damping.  R is the instantaneous radius of the bubble, Ro is the equilibrium 

bubble radius, Po is the static pressure of the surrounding medium, σ is the surface 

tension, pv is the vapor pressure, pgo is initial internal pressure of the bubble and Sp is the 

shell stiffness parameter.  Sp and pgo are defined by the following equations respectively: 
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where E is young’s modulus, hs is the shell thickness and ν is the Poisson ration which is 

roughly 0.500 for lipid shells [7,25].  
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  In stable cavitation, contrast agents sustain stable oscillations.  Studies from 

Wamel et. al. explain that contrast agents experiencing stable cavitation generate fluid 

movement around them, known as microstreaming.  Microstreaming applies shear stress 

on any surface within the boundary layer of moving fluid [7,22,26].   Although stable 

cavitation does not collapse the bubble, studies have proved that leakage from liposomes 

can be induced.    

 Another form of stable cavitation is transient cavitation in which the bubble 

collapses.  Transient cavitation is the result of the bubble’s kinetic energy exceeding the 

instantaneous surface energy of the bubble [7,27].  In transient cavitation, the bubbles are 

exposed to two types of pressure cycles known as rarefraction (negative pressure) and 

condensation (positive pressure) [7,22].  The rarefraction pressure forces the bubble to 

expand through gas diffusion, which then enters the condensation pressure cycle.  The 

condensation pressure cycle occurs when the volume of the gas bubble contracts due to 

positive pressure applied to the system.  Eventually the bubble will collapse once it 

reaches its critical radius [7].  Transient cavitation can be prevented by increasing the 

intensity frequency which reduces the time between pressure cycles thus decreasing the 

amount of diffusion into the bubble in each cycle.  Therefore, low frequencies were used, 

approximately 20 kHz, to produce transient cavitation which allows leakage for vesicles 

[7].  This suggests that ultrasound-induced permeation of membranes is a promising 

method to enhance drug delivery from liposomes [14,20,28-30].   

2.4 Fluorescent Assays 
 
 Leakage of the encapsulated fluorophores from the aqueous core of the vesicle 

can be measured by fluorescence spectroscopy [7,22].  Encapsulation of a self-quenching 
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dye, such as calcein, enables the fluorescence spectrometer to better detect the increase of 

fluorescence intensity as leakage increases.  Calcein has been used in previous 

experiments, at a concentration of 70mM or higher because of its ability to self-quench 

through collision transfer at these concentrations [7].  When calcein is encapsulated 

within the aqueous core of the vesicle, it is unable to fluoresce.  As the calcein is released 

from the liposome, due to the application of ultrasound, the molecules are able to spread 

out and fluoresce.  It is this fluorescence that is measured by the fluorescent spectrometer.  

Steady state fluorescence spectroscopy measures the intensity of light emitted by a 

fluorophore as it returns to the ground state energy level after being excited by a laser 

[7,31].  The fraction of dye released is determined by: 

                             Fraction Release (%) %100
int

int ×
−
−

=
FF
FF

TX

obs                                  (3)                   

where Fobs is the observed fluorescence after ultrasound has been applied, Fint is the initial 

fluorescence before the application of ultrasound (0% leakage), and FTX in the intensity 

after a detergent, Triton X, has been added (100% leakage).  Triton X-100 is a surfactant 

which, owing to its small hydrophobic tail, can partition readily into lipid membranes 

which causes a destabilization of the membrane [9].  At concentrations greater than 0.3 

mole%, Triton X-100 has been found to cause catastrophic solubilization of the 

membrane [9].  Based on this knowledge, the fluorescence measured after Triton-X is 

assumed to be 100%. 
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Figure 2.1 Chemical structures of DMPC and cholesterol (a) is a phospholipids with 
a choline headgroup and two fully saturated 14-carbon chains [11].  Cholesterol (b) is a 
planar structure with a hydroxyl headgroup. 
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Figure 2.2 DMPC-cholesterol phase diagram [5].  At 30˚C, the two phase region, the 
ldo and lo phase, exist approximately between 8% and 28%.  The outside regions exist 
either in the ldo or the lo phase.  
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A. 

 
 
 
B. 

 
 
Figure 2.3 Cartoons of line tension of phase boundaries in a binary system (a.) and 
“Lineactants” which alleviate line tension.  Lineactants are found in multicomponent 
systems [32].    
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Chapter 3: Research Goals 
 
 

 
 The purpose of this work was to investigate whether lipid composition and 

therefore lipid phase behavior, influence the membranes susceptibility to leakage with 

application of ultrasound.  The two phase region, where ldo and lo phases coexist, was the 

primary focus and a range of cholesterol compositions were used to obtain the different 

phase.  The extend of the cholesterol condensation effect in a binary membrane was also 

studied.   

 Model membrane systems consisting of various concentrations of DMPC and 

cholesterol were studied.  Calcein fluorescence was used to detect leakage from the 

liposome.  Steady state fluorescence spectroscopy was used to quantify the leakage.   
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Chapter 4: Materials and Methods 
 
 
 

 The model membranes, phospholipid vesicles consisting of DMPC and 

cholesterol were extruded to create large unilamellar vesicles.  The model membrane 

preparation and analysis is described below. 

4.1 Chemicals 
 
 NaCl, EDTA (anhydrous), cholesterol, calcein, Triton X-100, and Sephadex G-50 

were purchased from Sigma Aldrich (St. Louis, MO).  Tris base salt was purchased from 

Fisher Scientific Inc. (Fair Lawn, NJ).   1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine 

(DMPC) was purchased from Lipoid LLC. (Newark, NJ).  Drain disks 25mm PE and 

poly carbon filters 0.4μm and 0.2μm pores were purchased from Nuclepore, Whatman 

Inc. (Clinton, NJ).   

4.2 Model Membrane Preparation Method 
 
 Model membranes were created in the lab through a technique in which various 

lipid mixtures are exchange from chloroform into an aqueous buffer solution [11].  Lipid 

and cholesterol components are stored in chloroform.  The buffer solution will contain 

multilamellar vesicles (MLV) and is pressure extruded though polycarbon filters to make 

large unilamellar vesicles (LUV). 

4.3 Rapid Solvent Exchange 
 
 To create MLVs, the rapid solvent exchange method (RES) is used [33].  This 

method is used to replace the cholorform from the stoke solutions with aqueous calcein 
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buffer (150mM NaCl, 10mM Tris, 1mM EDTA and 70mM calcein; pH = 7.4).  The 

calcein fluorophore used is shown in Figure 4.1.  By using this method the lipid mixture 

can be directly transferred from the organic to aqueous phase [11].  In RES, 3mL of 

aqueous calcein buffer, heated to 60˚C, is added to the lipid mixture.  The buffer is heated 

to 60˚C so the MLVs that are created are in the liquid phase.  This mixture is then vortex-

mixed while, simultaneously, a vacuum is pulled.  As the chloroform solvent evaporates, 

lipids are transferred into the calcein buffer where MLVs are formed.  The solution is 

then diluted with an additional buffer [11].   

4.4 Pressure Extrusion and Size Exclusion Chromatography 
 
 In pressure extrusion, the MLV solution, held at 30˚C, is forced through two 

stacked polycarbonate filters in an extruder.  The solution is first passed through 0.4μm 

pores five times followed by five times through 0.2μm pores to create LUVs.  The LUVs 

are then passed through a Sephadex G50-packed column to remove unencapsulated 

calcein dye.  The LUVs were washed through with an ultrasound buffer solution (150mM 

NaCl, 10mM Tris and 1mM EDTA) and samples were collected.   

4.5 Preliminary Analysis 
 

4.5.1 Dynamic Light Scattering 
 
 Vesicle diameter sizes were analyzed using a Brookhaven 90Plus dynamic light 

scattering (DLS) apparatus. This system consists of a 15 mW, solid-state laser operating 

at a 678 nm wavelength and a BI-9000AT digital autocorrelator. The measured 

autocorrelation functions were analyzed for the first and second cumulants of a cumulant 

fit, which provide measures of the apparent diffusivity and the polydispersity, 

 



 15

respectively.  Table 4.1 displays the average vesicle diameters of each sample.  The data 

are given in terms of an effective diameter using the Stokes-Einstein equation: 

    Effective diameter 
D

TkB

πη3
=                                     (4) 

where kB is the Boltzmann constant, T is the temperature (25 B C), is the solvent 

viscosity, and D is the diffusivity from the first cumulant. 

4.5.2 UV VIS Spectrometer 
 
 Turbidities were measured as absorbance (or optical density) at 600 nm using a 

Perkin-Elmer BUV40XWO UV-visible absorbance spectrometer.  The UV Vis 

Spectrometer was used to indicate which samples would be run on the DLS.  

4.6 Sonication 
 
 The ultrasound source used was a commercial (Misonix Inc., XL 2020 model 

from Farmingdale, NY) 20 kHz unit with a 3.18mm (diameter) transducer (Misonix Inc., 

model 419 from Farmingdale, NY).  The microtip was inserted into a cuvette containing 

3 mL of vesicle solution, and was sonicated in a cold water bath to reduce the thermal 

effects from the ultrasound.  The vesicle solution was sonicated in intervals of thirty 

seconds with three minutes between intervals until a total sonication time reached twenty 

minutes.  The setting for the ultrasound experiments using 20 kHz was 40% of the duty 

cycle and 25 Watts.  Additional parameters are listed in Table 4.2. 

4.7 Fluorescence Spectroscopy 
 
 Fluorescence Spectroscopy involves emission of light from single excited states.  

A fluorescence molecule will first be excited to a higher energy level during a process 
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called absorption. Next, the molecule will return to its ground state energy level during 

processes called internal conversion and vibrational relaxation.  Energy is released as the 

molecule returns to the ground energy level in the form of light.  The emission light from 

the fluorophore, in this case calcein, is detected by the fluorescence spectrometer.  

Samples were analyzed using a fluorescence spectrometer after the application of 

ultrasound to measure the leakage from liposomes.  Fluorescence intensities were 

measured using a Photon Technology International, Inc., A-710 steady-state fluorescence 

spectrometer.  This technique produced a release profile of the fluorophore, calcein [11].  

The release profile was created as more calcein leaks from the vesicle and fluoresces, 

causing the emission intensity to increase over time.  The excitation wavelength of 

calcein was 470 nm with an emissions range from 485nm to 530nm.  The emissions 

intensity used to determine fraction of leakage from liposomes was 514 ± 1nm.   
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Figure 4.1 Chemical structure of a calcein molecule, which is the fluorescent assay 
for these experiments [34]. 
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Table 4.1 Average vesicle diameters with standard deviation for each mole fraction 
of cholesterol. 

mole fraction of cholesterol Average Diam (nm) stdev (nm) 
2.5 163.2 2.11 
5 153.9 25.8 
10 130.2 21.7 
15 130.6 13.2 
20 143.1 4.3 
25 154.7 32.8 
30 167.4 1.8 
35 172.1 0.12 
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Table 4.2 Setting and parameters of ultrasound transducer: setting of 2 
out of 5 was used during the experiments and setting 5 out of 5 is the max 
setting for the sonicator. 

       
Setting    

(out of 5) 
Microtip 
Probe 

Tip Diam 
(mm) 

Max Amp 
(μm) 

Amplitude 
(μm) 

Power 
(W) 

Acoustic Power 
Density (W/cm^2) 

2 419 3.2 240 96 25 310.8 
       
Setting    

(out of 5) 
Microtip 
Probe 

Tip Diam 
(mm) 

Max Amp 
(μm) 

Amplitude 
(μm) 

Power 
(W) 

Acoustic Power 
Density (W/cm^2) 

5 419 3.2 240 240 60 746 
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Chapter 5: Ultrasound-Mediated Leakage Studies 
 
 
 

5.1 Introduction 
 
 Understanding how lipid composition and lipid phase behavior influence the 

susceptibility to leakage with the application of ultrasound is key in the design of a 

triggered drug delivery method.  The set of experiments that follow investigated how 

various cholesterol compositions in model membrane systems influenced membrane 

phase behavior, as well as the interaction of ultrasound and the membrane. 

5.2 Theory 
 
 As mentioned previously, cholesterol has a unique effect on lipid membranes 

known as the cholesterol condensing effect [7].  Previous studies in this lab have 

investigated model membranes for ultrasound-mediated leakage.  These studies used 

fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt ANTS and its 

quencher, p-xylene-bis-pyridium bromide DPX in a model membrane with 1,2-

Dipalmitoyl-sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene glycol) 

(DPPE-PEG) and cholesterol [9,22].  Pong et. al. determined that as PEG concentrations 

increase, the membrane becomes less stable and more receptive to leakage.  These studies 

indicate that 5 mol% PEG and 8 mol% PEG using a 20 kHz transducer showed no 

difference in leakage profile [22].  Although this pair has been successful, calcein has 

been selected to replace ANTS-DPX because it is more cost effective and is self-

quenching at concentrations of 70mM or higher [7].  A model membrane system 

containing DMPC-cholesterol has been chosen because the phase diagram is well 
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established [3,5] and the lipids are in the liquid phase at room temperature.  This model 

membrane was studied to determine how cholesterol impacts the membrane phase 

behavior.     

5.3 Experimental Setup 
 
 Calcein was used as the encapsulated fluorescent dye in a DMPC-cholesterol 

model membrane.  Eight vesicle solutions were created with varying concentrations, (2.5, 

5, 10, 15, 20, 25, 30, 35 mole%) of cholesterol and DMPC.  The LUVs are passed 

through size exclusion chromatography column.  Each vesicle sample was sonicated with 

a 20 kHz transducer in intervals of thirty seconds with three minutes of off time until total 

sonication time reached twenty minutes.  In between measurements the vesicle solution 

was placed in a circulating water bath to maintain sample temperature at 30 ± 0.5˚C.  The 

samples were excited at 470 nm and the emissions scans were measured from 485 to 

530nm.  The experiments were repeated and the data was smoothed and averaged for 

analysis.  The sample sets used in this study are summarized in Table 5.1.         

5.4 Analysis of Experimental Data 
 
 Figure 5.1 is an example of an intensity profile of a LUV sample subjected to 

ultrasound by a 20 kHz transducer.  The graph reveals an increase in intensity as 

sonication time increases.  Maximum intensity was reached after the addition of Triton 

X-100.  The maximum intensity for the data series seen in this figure was at a wavelength 

of 514 nm.  Figure 5.2 compares the emissions of a sample sonicated with a 20 kHz 

transducer to the control sample which was not subjected to a 20 kHz transducer.  Once 

again, the maximum was at a wavelength of 514 nm.  This figure clearly shows how the 
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application of ultrasound permeates the membrane which results in the release of calcein 

dye.  In this figure, the control sample was also stored in the circulating water bath at 

30˚C, and shows no photobleaching has occurred.  The set of experiments were analyzed 

using the emission intensity at a wavelength of 514 ± 1nm to determine the fraction of 

release from the liposomes.   

 The results of the ultrasound-mediated study in this DMPC-cholesterol model 

membrane are shown in Figure 5.3, Figure 5.4 and Figure 5.5.  As mentioned above, the 

fraction of release was calculated with emissions intensity located at 514 ± 1nm.  Figure 

5.3 and shown again in Figure 5.4 with error bars, shows the release profile of 

ultrasound-induced leakage from DMPC-cholesterol LUVs with varied mole fraction of 

cholesterol.  Figure 5.5 shows the fraction of release from DMPC-cholesterol LUVs as a 

function of cholesterol mole fraction.  The general trend shows that ultrasonically 

induced leakage reached maximum values near the phase boundaries, at 10 mol% 

cholesterol, 15 mol% cholesterol and 30 mol% cholesterol.  The minimum leakage 

occurred outside the two phase region, at values of 2.5 mol% cholesterol and 35 mol% 

cholesterol.  Within the two phase region, there was a local minimum at 20 mol% 

cholesterol. 

5.5 Results and Discussion 
 
 The goal of targeted drug delivery through the use of ultrasound and liposomes is 

beneficial for the treatment of diseases because it reduces the amount of effective dosage 

necessary and toxic side effects [9,10].  The binary system of DMPC-cholesterol was 

selected for this ultrasound-mediated leakage study.  The results indicate that different 

mole fractions of cholesterol have different effects on the membrane strength.  The effect 
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that cholesterol has on a DMPC-cholesterol membrane can be explained by referring to 

Figure 2.2 and Figure 5.5.   

 As seen in Almeida’s phase diagram, ldo and lo coexist in the same region roughly 

between 8 mol% and 28 mol% cholesterol at 30˚C.  These phase boundaries are 

important in the investigation of the unique trend of the fraction of release as a function 

of cholesterol mole fraction.  Experiments performed with membranes in the ldo region, 

2.5 mol% and 5 mol% cholesterol, do not result in a high fraction of release.  The 

addition of cholesterol to the system, in this case, does not perturb the vesicles from the 

ldo phase because the membrane is so fluid in this stage.   

 Additional cholesterol is added to the system and the membrane transitions from 

the ldo region to the ldo and lo region. It is at this first phase boundary that the fraction of 

release increases as shown in the experiment containing 10 mol% cholesterol.  At the 

phase boundary, cholesterol has formed lo domains, known as rafts.  The membrane was 

easily disturbed by the 20 kHz applied ultrasound.  This may be caused by the presence 

of line tension.  In these domains, lipids in lo are misaligned with lipids in ldo because of 

height difference, which is created by the straightening of some of the hydrocarbon 

chains [16].  As the cholesterol concentrations increase, lo rafts are formed and the 

fraction of release decreases.  Although additional rafts were formed, the driving force to 

coalesce was able to overcome the polar head group’s expansion force.  At lower 

cholesterol percentage, the driving force was not strong enough allowing for an increase 

in line tension. 

 As seen in Figure 5.5, the fraction of release decreases at 20 mol% cholesterol.  

On Almeida’s phase diagram, 20 mol% cholesterol is roughly the center of the tie line in 
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the ldo and lo region in which the membrane is 50/50 ldo and lo.  The minimum fraction of 

release may be a result of the rafts tightly coalescing because of the natural driving force 

to reduce tension.  When this occurs, the total vesicle parameter and line tension are 

reduced resulting in a membrane that is more stable.  Previous studies, by this group have 

investigated a dehydroergosterol (DHE)/1-myristoyl-2-[12-[(5-dimethylamino-1-

naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (DAN-PC) Förster 

resonance energy transfer (FRET) pair in a DMPC-cholesterol system at 30˚C [16].  

Brown has concluded, as seen in Figure 5.6, that the minimum efficiency of energy 

transfer value was observed to be in the two phase region at 20 mol% cholesterol, 

meaning the largest rafts were present at this cholesterol concentration.  This analysis 

agrees with the minimum found via fraction of release and further strengthens the 

conclusions made.   

 Detailed investigation of this study, within the two phase region, indicates an 

increase in the fraction of release at 25 mol% and 30 mol% cholesterol.  These 

compositions surround the phase transition from two phases to lo phase.  Around the 

phase boundary, the total vesicle parameter increases because more ldo pockets are 

formed that are unable to coalesce.  As the mole fraction of cholesterol is further 

increased, the membranes enter the single lo phase.  In this phase, as previously 

mentioned, the hydrocarbon chains are fully extended because of the cholesterol 

condensing effect.  It is within this lo phase that a decrease in the fraction of release 

occurs, as shown by the release results at 35 mol% cholesterol.  Therefore, as the 

membrane becomes cholesterol-enriched, it is more cohesive and less easily disturbed 

than the membrane with concentrations at the phase boundaries. 
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Table 5.1 Binary mixtures of DMPC-cholesterol samples 

2.5% Chol 97.5% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 97.5% 165.2 
Cholesterol 0.5 2.5% 1.9 
    
5% Chol 95% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 95% 161.0 
Cholesterol 0.5 5% 3.9 
    
10% Chol 90% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 90% 152.5 
Cholesterol 0.5 10% 7.7 
    
15% Chol 85% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 85% 144.1 
Cholesterol 0.5 15% 11.6 
    
20% Chol 80% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 80% 135.6 
Cholesterol 0.5 20% 15.5 
    
25% Chol 75% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 75% 127.1 
Cholesterol 0.5 25% 19.3 
    
30% Chol 70% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 70% 118.6 
Cholesterol 0.5 30% 23.2 
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Table 5.1 (Continued) 

35% Chol 65% DMPC   

Lipid
Molarity 
(mM) Mol %

Vol Needed 
(μL)

DMPC 0.5 65% 110.2 
Cholesterol 0.5 35% 27.1 
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Calcein leakage from DMPC: Chol (5%) with 30s @ 20kHz
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Figure 5.1 Intensity profile of calcein leakage from DMPC-cholesterol:  A LUV 
sample subjected to ultrasound by a 20 kHz transducer.  The graph reveals an increase in 
intensity as sonication time increases.  The maximum intensity was reached, after the 
addition of Triton X-100. 
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DMPC-cholesterol LUVs sonicated compared with the 
control held at 30 degrees celsius

0

5000

10000

15000

20000

25000

30000

35000

0 200 400 600 800 1000 1200 1400

Time (seconds)

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Sonicated 514nm
Control 514nm

 
Figure 5.2 DMPC-cholesterol LUVs sonicated compared to control:  Emissions of a 
sample sonicated sample with a 20 kHz transducer compared to the control sample which 
was not subjected to a 20 kHz transducer.  Once again, the maximum intensity for the 
data series was located at a wavelength of 514 nm. 
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Release Profile of Ultrasound induced leakage from 
DMPC:Cholesterol LUVs with varied mole fraction of cholesterol
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Figure 5.3 Release profile of DMPC-cholesterol LUVs:  Maximum values at 10, 15, 
and 30 mol% cholesterol.  The minimum leakage occurred at values of 2.5 mol% 
cholesterol, 20 and 35 mol% cholesterol. 
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Release Profile of Ultrasound induced leakage from
DMPC:Cholesterol LUVs with varied mole fraction of cholesterol
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Figure 5.4 Release profile of DMPC-cholesterol LUVs with error bars:  Maximum 
values at 10, 15, and 30 mol% cholesterol.  The minimum leakage occurred at values of 
2.5 mol% cholesterol, 20 and 35 mol% cholesterol. 
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Fraction of Release From DMPC:Cholesterol LUVs
as a Function of Cholesterol Mole Fraction
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Figure 5.5 Fraction of release as a function of cholesterol mole fraction:  This figure 
clearly shows increases of leakage from 2.5 mol% to 15 mol% and 25 mol% to 30 mol%, 
with decreases of leakage at 20 mol% and 35 mol% cholesterol.     
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Figure 5.6 DAN-PC/DHE FRET in DMPC- cholesterol system:  A 1-myristoyl-2-
[12-[(5-dimethylamino-1-naphthalenesulfonyl)amino]dodecanoyl]-sn-glycero-3-
phosphocholine (DAN-PC)/ dehydroergosterol (DHE) Förster resonance energy transfer 
(FRET) pair in a DMPC-cholesterol system at 30˚C.  The minimum efficiency of energy 
transfer value was observed to be in the two phase region at 20 mol% cholesterol [16].   
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Chapter 6: Conclusions and Recommendations 
 
 
 

 The goal of this work was to determine whether lipid composition and lipid phase 

behavior, in a binary system, influence the membrane susceptibility to leakage with the 

application of ultrasound.  The results, as discussed in Chapter 5 indicate that membrane 

systems with mole fractions of cholesterol near the phase boundaries result in maximum 

ultrasound-induced leakage due to maximal line tension.  The results also indicate that a 

local minimum in leakage within the two phase region occurs near the 50/50 

composition.  Since the results have such a unique trend, influence of the phospholipid 

composition should be investigated.  In ternary systems, with the addition of cholesterol, 

the membrane may become more resistant to ultrasound induce leakage [7].  This 

phenomenon if it is found true might occur due to the reduction of line tension because 

the third lipid can act as a lineactant.  For this reason, ternary model membranes in 

conjunction with ultrasound need to be studied, both in the effect of cholesterol 

composition and the effect of different lipids   
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