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Transmission Capacity of Wireless Ad Hoc Networks
With Successive Interference Cancellation

Steven P. Weber, Member, IEEE, Jeffrey G. Andrews, Senior Member, IEEE, Xiangying Yang, Member, IEEE, and
Gustavo de Veciana, Senior Member, IEEE

Abstract—The transmission capacity (TC) of a wireless ad hoc
network is defined as the maximum spatial intensity of successful
transmissions such that the outage probability does not exceed
some specified threshold. This work studies the improvement in
TC obtainable with successive interference cancellation (SIC), an
important receiver technique that has been shown to achieve the
capacity of several classes of multiuser channels, but has not been
carefully evaluated in the context of ad hoc wireless networks. This
paper develops closed-form upper bounds and easily computable
lower bounds for the TC of ad hoc networks with SIC receivers,
for both perfect and imperfect SIC. The analysis applies to any
multiuser receiver that cancels the I’ strongest interfering signals
by a factor > € [0, 1]. In addition to providing the first closed-form
capacity results for SIC in ad hoc networks, design-relevant
insights are made possible. In particular, it is shown that SIC
should be used with direct sequence spread spectrum. Also, any
imperfections in the interference cancellation rapidly degrade its
usefulness. More encouragingly, only a few—often just one—inter-
fering nodes need to be canceled in order to get the vast majority
of the available performance gain.

Index Terms—Ad hoc networks, successive interference cancel-
lation, transmission capacity (TC).

1. INTRODUCTION

NDERSTANDING the performance limits of decentral-
Uized (“ad hoc”) wireless networks is a subject of much
recent work. Due to the difficulty of directly analyzing the ca-
pacity of an unconstrained n-node network [1], most recent
work has followed the lead of the seminal work of Gupta and
Kumar [2] and studies how the capacity scales with n under
a variety of different modeling and implementation scenarios

[31-18].

In contrast, other recent work by Baccelli et al., [9], [10],
Chan and Hanly [11], and the present authors [12] adopts a sto-
chastic geometric approach for studying the performance of ad
hoc networks. Stochastic geometric approaches for wireless net-
works can be traced back to seminal work by Sousa and Silvester
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[13], [14]. In particular, [12] develops an analytical framework
termed the transmission capacity (TC), the maximum allow-
able spatial density A of transmitters in an ad hoc network, as
a function of various parameters like transmit distance and re-
quired signal-to-interference-plus-noise ratio (SINR), such that
a specified outage probability e is met. Using this framework,
TC bounds are found for frequency hopping (FH) and direct
sequence (DS) code-division multiple access (CDMA) (with a
matched filter receiver) with the conclusion that in contrast to
centralized networks, FH is significantly superior in an ad hoc
network. In particular, our results predict a performance im-
provement on the order of M 1-2, where M is the spreading
factor and o > 2 is the path loss exponent. The conclusion is
that it is preferable to avoid interference by FH rather than to
suppress it through random spreading. Intuitively, most outages
are a result of an interfering node close to a receiver, and due
to the strength of this interference, these occurrences are better
addressed by using different channels as opposed to receivers
trying to suppress the interference.

A. Successive Interference Cancellation

Since outages are predominantly caused by just a few nearby
interfering users, an appealing alternative to interference avoid-
ance (which consumes resources such as time or frequency
slots) is interference cancellation. In fact, it is well known that
the matched-filter receiver considered in [12], while dominant
in commercial CDMA systems, is dramatically suboptimal in
theory relative to multiuser receivers, particularly in the pres-
ence of widely variant receiver powers [15], [16]. In general,
multiuser receivers achieve a performance gain by exploiting the
structure of the multiuser interference, rather than just treating it
as wideband noise. A particularly interesting type of multiuser
detection is successive interference cancellation (SIC), first sug-
gested in [17]; one form of SIC is shown in Fig. 1. The key idea
of SIC is that users are decoded sequentially, with the receiver
canceling interference after each user. For example, the decoded
data for the first user is re-encoded and by using accurate channel
knowledge, can be made to very closely resemble its received
signal. Hence, it can be subtracted out of the composite re-
ceived signal, and the second user to be decoded experiences
less interference than it would have otherwise. The process can
be continued for an arbitrary number of users.

In addition to its simplicity and amenability to implemen-
tation [18], SIC is well justified from a theoretical point of
view. Simple successive interference cancellation implementa-
tion with suboptimal coding was shown to nearly achieve the
Shannon capacity of multiuser additive white Gaussian noise
(AWGN) channels, assuming accurate channel estimation and a
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Fig. 1. Block diagram of successive interference cancellation.

large spreading factor [19]. Other more recent work has proven
that SIC with single-user decoding in fact achieves the Shannon
capacity region boundaries for both the broadcast (downlink)
and multiple-access (uplink) multiuser channel scenarios [20],
[21], as well-summarized in [22]. Quantifying SIC’s benefit
in ad hoc networks is naturally more problematic, but initial
evidence for its promise is given in [23]. Since it is well suited
to asynchronous signals of unequal powers [24], and has much
lower complexity than most other multiuser receivers, it ap-
pears to be a natural fit for a wireless ad hoc networks from the
standpoint of both theory and practice.

Accurately modeling and analyzing SIC in ad hoc networks
requires some nontrivial extensions from centralized networks.
For instance, it has been shown that a particular (unequal) distri-
bution of received powers is needed for SIC systems to perform
well, especially when the interference cancellation is imperfect
[25], [26]. Achieving such a distribution at each receiver in an
ad hoc network is impossible due to the random spatial charac-
teristics of the network. Related to this, to be realistic it should
be assumed that only strong signals can be canceled, hence, at
any given location in the network, only the nearby interferers are
cancelable. In order to accurately quantify SIC’s performance in
ad hoc networks, Section II will develop a realistic (but analyt-
ically tractable) model in view of such considerations.

B. Main Results and Insights

The principal contribution of this paper are closed-form (and
reasonably tight) upper and lower bounds on the TC for wireless
ad hoc networks for imperfect successive interference cancella-
tion, where a residual fraction z of the interference is left after
each stage. These results are obtained for a stochastic geometric
model of SIC which approximates the performance of an actual
SIC receiver. Results without SIC and for perfect SIC are first
derived for pedagogical purposes, and naturally are the special
(and analytically simpler) case where z goes to 0. Prior results
for wireless networks without SIC are also a special case where
z goes to 1. The model and results are general enough that any
multiuser receiver structure with residual cancellation error z on
the K closest nodes would be covered by our analysis.

The derivations and main results are organized as follows.
Section III presents three general theorems that are used as
building blocks. Sections IV, V, and VI then use those theorems
to develop the upper and lower bounds and both outage proba-
bility and TC. Section IV states for the case of no SIC Lemma
1 and Lemma 2, which, respectively, are the upper (lower) and

lower (upper) bounds on TC (outage probability). Similarly,
Section V comprises Lemmas 3 and 4 for the case of perfect
SIC, and Section VI comprises Lemmas 5 and 6 for the case
of imperfect SIC. The upper bounds on TC are closed form.
The lower bounds are not, but only require a straightforward
computation to be evaluated numerically.

The following are the key insights that can be gleaned from
our theoretical analysis. Note that many of these conclusions are
distinct from those for cellular/centralized networks.

e SIC is useful primarily in conjunction with spread spec-
trum. Due to the network geometry, the largest gains from
using SIC are when the target received signal-to-interfer-
ence ratio (SIR) # < 1. In fact, for imperfect SIC, no
gain is seen unless 23 < 1 because the farther away in-
terferers (that are not cancelable) can still cause an outage,
and the nearby interferers are not sufficiently suppressed.
Low target SIRs are viable only in the case of spread-spec-
trum signaling, where a spreading gain of M allows the re-
ceived SIR to decrease by a factor of about M while main-
taining a reasonable communication fidelity.

* The interference cancellation must be very accurate. Most
of the performance improvement obtainable through SIC
is gained by canceling just the single transmitter with the
largest interference level; canceling additional transmitters
carries a negligible benefit unless the cancellation is very
accurate, i.e., z — 0. This is again due to the network
geometry: even the residual interference of close-by inter-
ferers can often be the dominant interference source.

e The network density largely determines the efficacy of SIC.
‘When the network is too dense, the receiver becomes over-
whelmed. When the network is sparse, SIC’s effectiveness
is governed largely by the residual interference z. There ex-
ists a density “sweet spot” for SIC where the TC increases
additively with the number of cancelable nodes K.

The rest of this paper is organized as follows. Section II in-
troduces the mathematical model and notation. Section III gives
general results on the lower and upper bounds on the outage
probability and TC. Sections IV, V, and VI apply these gen-
eral results to the specific cases of no interference cancellation,
perfect cancellation, and imperfect cancellation, respectively.
Section VII presents numerical and simulation results and Sec-
tion VIII contains a conclusion. The proofs of the three theorems
from Section III are placed in the Appendix.
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II. MATHEMATICAL MODEL

A. Wireless Ad Hoc Network

Our model employs a homogeneous Poisson point process
(PPP) ® = {X;,i € N} on the plane R? to represent the loca-
tions of all nodes transmitting at some time instant ¢. Let | X
represent the distance from the location of transmitter ¢ to the
origin. The PPP model for terminal positions has proven very
accurate for CDMA cellular networks, and has produced ana-
lytical calculations for blocking probability that come within a
few percent of actual blocking rates for service providers [27].
The spatial density of the point process is denoted by A, giving
the average number of nodes attempting transmissions per unit
area

EflenAll _
|4

In prior work [12], we considered two models for power con-
trol: 1) all transmitters use the same transmission power, p, and
all transmission distances are over the same distance r, and ii)
transmitters vary their transmission power over variable dis-
tances to achieve a specified receive power. In that work, we
demonstrated the TC scales very similarly for both models, so
for analytical simplicity we use the first model in this paper. To
emphasize: we assume a constant transmission power of p, and
that each transmitter is separated from its next hop intended re-
ceiver by a distance of 7 meters.

Our channel model considers only path loss attenuation ef-
fects and ignores additional channel effects such as shadowing
and fast fading. Although these random channel effects may be
considerable particularly in the context of opportunistic sched-
uling, they do not have an especially large effect on capacity
scaling in the absence of channel information and opportunistic
scheduling [7], [10], [28], [29]. In particular, our channel model

is
_ =l fz[>1
hlle]) = {0, else

A, A C R (D

@

where p is the (normalized to || = 1) transmit power, o > 2
is the path loss exponent, and || is the distance from the trans-
mitter at location 2 € R? to the reference receiver at the origin.
The assumption that h(|z|) = 0 for all « in b(o, 1) is a math-
ematically convenient way to deal with the physically unrea-
sonable singularity that arises at the origin under power law at-
tenuation. We denote the SIR threshold required for successful
transmission as (3. One additional simplification employed in
this paper relative to [12] is that here we will assume the am-
bient (thermal) noise power is negligibly small, which is almost
always the case in interference-limited wireless networks. The
spatial interference model in this paper is general enough to in-
clude any randomly located radio frequency (RF) devices that
are generating moderate levels of in-band interference; they do
not need to be an explicit part of the ad hoc network per se.
The noiseless assumption is made to simplify the analysis and
resulting expressions, and is verified to be reasonable via simu-
lation.

Shot noise processes were introduced by Schottky [30] in
1918 to represent the cumulative effect at time ¢ of a sequence
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of shocks appearing at random times 7; < ¢, each attenuated in
time by an impulse function i(|t — T;|). Lowen and Teich pro-
vide a thorough characterization of the properties of power law
shot noise processes [31], i.e., when h(|z|) = |z|™%. Spatial
shot noise processes capture the cumulative effect at location x
of a set of random shocks appearing at random locations X,
where the impulse function A(|X; — z|) gives the attenuation in
space. It has long been recognized that the cumulative interfer-
ence seen by a receiver in a wireless network is a spatial shot
noise process, where the impulse function is determined by the
channel model, e.g., [14].

Definition 1: The normalized aggregate interference is the
shot noise experienced by the reference receiver at the origin

Y =X x sy A
1€P

A beneficial consequence of the Poisson assumption is that,
by Slivnyak’s theorem [32], the client-average outage proba-
bility may be found by evaluating the SIR seen by a receiver
located at the origin. Intuitively, the distribution of the point
process is unaffected by the addition of a receiver at the origin,
and this receiver is “typical” in the sense that evaluating the per-
formance seen at the origin gives the client-average performance
over all receivers. Measuring the performance at the origin is
often termed the Palm measure, and in keeping with standard
notation we will denote probability and expectation of func-
tionals of ® evaluated at the origin by P° and E°, respectively.
The outage probability p()) is the probability that the SIR seen
by the typical receiver at the origin is insufficient. The following
definition establishes that the outage probability may be ex-
pressed in terms of the complementary cumulative distribution
function (CCDF) of the shot noise.

Definition 2: The outage probability is the probability the
SIR experienced by the reference receiver at the origin is below
the threshold

p(\) = PY(SIR < )
o [PrT®
=" ( v ﬁ)
_ po L
_p (y>ma>. @

Note since we have neglected ambient noise, the outage prob-
ability is independent of the transmission power p. If the typical
outage probability must be below a specified threshold e, then it
is natural to inquire as to the maximum density of attempted
transmissions that will respect that bound. The optimal con-
tention density A(e) formalizes this notion: it is the maximum
intensity of attempted transmissions such that the typical node
will experience an outage probability no larger than e. The TC
c(e) is the corresponding maximum spatial throughput, found
by multiplying by the achievable data rate b, and thinning the
attempted transmissions by the success probability (1 — €).

Definition 3: The optimal contention density, \(e), is the
maximum spatial density of nodes that can contend for the
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channel subject to the constraint that the typical outage proba-
bility is less than € for some € € (0, 1):

A(e) = sup{A : p(A) < €} (5)

Note that the TC A(e) is monotone increasing in €; this is
a consequence of the fact that less stringent quality of service
(QoS) requirements (higher €) permit a greater degree of spatial
reuse.

Definition 4: The transmission capacity c(¢) is the density of
successful transmissions resulting from the optimal contention
density, multiplied by the achievable data rate b of a typical (i.e.,
average) successful (not in outage) transmission

c(e) = b(1 — e)A(e). (6)

The TC has units of bits per second per Hertz per area, or area
spectral efficiency. As in previous work [12], for simplicity in
this paper it is assumed henceforth that b = 1, so the focus is on
quantifying the number of successful transmissions, rather than
on the data rate of those transmissions. We note in general that
b « log(1 + (). Fixing b is appropriate in the context of this
paper since the motivation for multiuser receivers is to increase
the number of simultaneous users. The general definition allows
other transmission or receiver schemes to increase the data rate
for a fixed number of users and be credited appropriately in the
TC framework.

The key idea underlying our lower and upper bounds on
outage probability and TC is that of near and far fields.

Definition 5: The near field F,, C R? consists of locations in
space such that a single node at that location is capable of gener-
ating sufficient interference to cause an outage for the reference
receiver at the origin. The near-field interferers ®,, = ® N F,
are nodes in the near field. The near-field interference Y, is the
interference generated by the near-field nodes.

Definition 6: The far field Fy = R?\(b(0,1)UF,,) consists of
locations in space such that a single node at that location is not
capable of generating sufficient interference to cause an outage
for the reference receiver at the origin. The far-field interferers
®; = &\ @, are nodes in the far field. The far-field interference
Y; = Y —Y,, is the interference generated by the far-field nodes.

The terms near and far field should not be confused with
their use in the channel modeling literature. For convenience,
we summarize in Table I most of the notation used in the paper.

III. GENERAL RESULTS

In this section, we derive lower and upper bounds on the
outage probability and TC using the concept of near- and far-
field regions and interferers. These general bounds will be ap-
plied to the three cases of no SIC, perfect SIC, and imperfect
SIC in the sequel.

Theorem 1: A lower bound on the outage probability is given
by

pi(A) = 1 —exp{—Xv(F,)} (7)
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TABLE 1
SUMMARY OF MATHEMATICAL NOTATION
TAY min{z,y}
a(o,r1,m2)  {x:r1 <|z| < ra}, ie., an annulus between 71 and ro
« path loss exponent (v > 2)
b(o, ) {z : |z| <r}, ie., aball of radius r centered at origin
1] target (required) SIR
c(e) transmission capacity, c(e) = A(e)(1 — €)
W—K>\ AT cancellation radius
€ required outage probability, i.e., p(A) < e € (0,1)
Fn,Fy the near and far fields: Fy, U Fy =R? \ b(o, 1)

maximum number of cancelled users, K € N
A transmission density, intensity of PPP &

A(e) optimal contention density, obeys p(A(¢)) = €
p(N) outage probability PO(SIR < 3)

® ={X;}  the PPP of intensity A denoting transmitter locations
Dy, Py transmitters in the near and far fields

r transmit distance

P transmit power

Y normalized aggregate interference seen at the origin
Y, Yy interference from the near and far field transmitters
z residual interference after cancellation, (z € [0, 1])
iSIC specifies imperfect SIC, i.e., K > 0 and z € (0, 1)
nSIC specifies no SIC, ie., z=1o0or K =0

pSIC specifies perfect SIC, i.e., K >0 and z =0

A Dub(A

i A
Aib(€) A(€) Aub(€)
Fig. 2. Lower and upper bounds on the optimal contention density Aj,(e) <

A(€) < Aub(€) are obtained by inverting lower and upper bounds on the outage
probability pi,(A) < p(A) < pun(A).

where v(A) is the area of the set A C R?. Provided v(F,,) > 0,
this lower bound may be used to obtain an upper bound on the
TC by solving pi,(A) = € for A

The proof is found in the Appendix. The theorem establishes
a lower bound that depends upon the area of the near field. In
essence, the result follows from the facts that i) the outage prob-
ability due to aggregate interference exceeds the outage proba-
bility due to near-field interference, and ii) by construction, the
event of a near-field outage is the same as the event of there
being one or more near-field interferers. The probability of one
or more near-field interferers is a geometric quantity: it is one
minus the void probability for a Poisson point process, which
may expressed in terms of its intensity and the area of the near
field. The authors establish that this lower bound is asymptoti-
cally optimal as y = gia — oo in [29].

The lower bound on the outage probability yields an upper
bound on the optimal contention density, as illustrated in Fig. 2.
In the simple case, where the near field is independent of ), the
upper bound on the optimal contention density is

hn0) = EL ®
however, we will in general consider models where the appro-
priate near-field does depend on A.

The upper bound on the outage probability is based on the

Chernoff bound on the far-field interference, combined with the
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lower bound given above. The Chernoff bound on the far-field
outage probability is given in Theorem 2 below, for a general
interference model which includes regions of partially canceled
nodes. We let a(o, 1, r2) denote the annulus with radii 71 < ro
centered at the origin, o. The interference model assumed in the
theorem is chosen to be able to calculate the far-field outage
probability under the imperfect SIC model discussed in Sec-
tion VL.

Theorem 2: Consider a far field consisting of two bands
a(o, s,t) and a(o,u,0) for 1 < s < t < w. Suppose inter-
ference generated by nodes in a(o, s,t) is partially canceled
by a factor z € [0, 1], while interference generated by nodes
in a(o,u,00) is not canceled. The Chernoff bound on the
probability of outage generated by far field interference is

1
P (Yr> 5 ) < en{-4°(Fy) ©
where
A*(Ff) = su {1—270\
7 02% pre

X {/Tw (eem_a — 1) dz
+/mm(Jm“—Qd4}. (10)

This bound holds for all

(a—2)
27 fre

1

)\< (u2—a +Z(82—a_t2—a))7 )

Y

The proof is found in the Appendix. The function inside the
supremum is convex in § (since A*(Ff) is a Chernoff bound rate
function), and as such the optimal 6 is the solution of

1 ¢ —a > —a
727”\57& :z/s plmef dx—l—/" 2% da. (12)

This is found by differentiating with respect to  and setting the
resulting expression equal to zero. The constraint on A is found
by solving z%- > E[Y}] for A, where

2w\

— 2(u27a + 2(32704 _ t27a))

E[Yy] =

13)

which is easily computed from Campbell’s theorem [32]. With
the Chernoff bound on the far-field interference in hand, we
again apply the near- and far-field paradigm to obtain an upper
bound on the outage probability.

Theorem 3: An upper bound on the outage probability is
given by

Pub(A) =1 — (1 — exp{—A"(Ff)}) exp{=v(F,)} (14)
where e~ (F¥) is the Chernoff upper bound on the probability
of a far-field-induced outage event from Theorem 2. Provided

A*(Ff) > 0, this upper bound may be used to obtain a lower
bound on the TC by solving p,1,(A) =€ for A.
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The proof is found in the Appendix. The upper bound is more
unwieldy than the lower bound as the rate function in the Cher-
noff upper bound requires computation of the optimal value of
6. Although this is straightforward to do numerically, it is dif-
ficult to say anything qualitatively about how the optimal § de-
pends upon the parameters s, ¢, u, z. As such, we will base our
discussion of the structural properties of the model on the lower
bound on outage probability. The lower bound on the TC is ob-
tained from the upper bound on outage probability as illustrated
in Fig. 2.

IV. NO SUCCESSIVE INTERFERENCE CANCELLATION

First, we give lower and upper bounds on the outage proba-
bility and the TC for the base case where no interference cancel-
lation is applied, denoted as nSIC to mean “no SIC.” These re-
sults are obtainable from our earlier work [12] with a spreading
factor M = 1. To apply the general results of the previous sec-
tion it is necessary to identify the near and far fields.

Lemma 1: Without SIC, the lower bound on outage proba-
bility is

PSIC\) = 1 — exp{—An(Bar% = 1)}. (15)

The upper bound on the TC is
—(1—¢€)log(1 —¢
o = o Jlsll =9 (16)
m(Bar? —1)

Proof: The near field is computed by finding the largest
distance such that a single interfering node at that distance can
by itself generate sufficient interference for the reference re-
ceiver at the origin to cause an outage. Using the specified path
loss attenuation channel model, we can solve for the near-field
radius as

pr—?
pd=“

=pf=d=pr (17)
The near field without SIC is therefore F"S™C = q(o0,1, Ba7).

The area associated with the near field is v(F2SIC€) =
2
m(Bar?—1). O

Lemma 2: Without SIC, the far field is F }‘SIC =
a(o, Bar, 00) which corresponds to setting s =t = u = Bar
in Theorem 2. The upper bound on outage probability is

P (A) =1 = (1= exp {-A" (F}¥)})

X exp {—)\l/ (F:;SIC)} . (18)

The corresponding lower bound on the TC is obtained by
solving p2PTC(A\) = e for A.

Proof: Note that for § > 1, the near field extends beyond
r, the transmission radius, while for 8 < 1, the near field has
a smaller radius than the transmission radius. Looking at the
definition of the parameters s, t,u, z in Theorem 2, it is clear
that the appropriate selection for the parametersis s =t = u =
I} rand z = 1 (although when s = t the dependence on z
vanishes). O

In our previous work [12], we employed both Markov and
Chebychev inequalities to obtain the upper bound on the outage
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probability. This approach has the strength that it yields closed-
form expressions for the upper bound on outage probability (and
hence closed-form expressions for the lower bound on the TC).
Applying the Markov and Chebychev bounds for the more com-
plicated models with perfect and imperfect interference can-
cellation, however, is much more involved, and often closed-
form expressions are not available. Moreover, the Markov and
Chebychev bounds are often not as tight as the Chernoff bound.
For these reasons, we present all our outage probability upper
bounds using Chernoff bounds.

V. PERFECT SUCCESSIVE INTERFERENCE CANCELLATION

Successive interference cancellation allows users to be de-
coded one at a time, and then subtracted out from the composite
received signal in order to improve the performance of subse-
quently decoded users. In practice, this corresponds to decoding
the strongest user first, since it will experience the best SIR and
hence be the most accurately decoded, which is a prerequisite
for accurate interference cancellation. More generally, by sim-
ilar reasoning, users should be decoded in order of their received
powers [19], [33] (even though this is not always the preferred
order from an information-theoretic viewpoint [22]). In an ad
hoc network with a path loss channel model, this corresponds
to canceling the interference from nodes closer to the receiver
than the desired transmitter.

An accurate characterization of the performance gains due
to SIC should be based on a plausible interference cancellation
scenario; otherwise, the results can in fact be quite optimistic
and misleading. Particularly, an accurate model would capture
that an SIC-equipped receiver is able to reduce the interference
power of up to K nearest interfering nodes by a factor 1 — z
(i.e., residual interference power of z), assuming these nodes
are closer than our desired transmitter. However, it is difficult
to work with this exact model in a mathematical framework,
since it requires a characterization of the joint distribution of
the distances of the K nodes nearest to the origin, see [34].

Instead of pursuing this exact approach, we utilize a closely
related SIC model that is more amenable to analysis. In partic-
ular, define the cancellation region as the set of locations around
the reference receiver such that the receiver is capable of re-
ducing the interference power by z of any and all transmitters
located in that region. The cancellation region will be a disk, and
the radius of the disk is chosen so that there are on average K
interfering nodes in the cancellation region. Since the average
number of points in a Poisson process of intensity A falling in
a circle of radius d is Awd?, we find the appropriate cancella-

\/% by solving Ard? = K for d. It is normally
only feasible to cancel the interference from those nodes whose
interference power measured at the receiver exceeds the signal
power. In the absence of channel fades, our deterministic path
loss model implies that received interference power levels de-
pend only upon the distance of the interferer from the origin.
It follows that only nodes in b(o,r) are eligible for cancella-
tion, where 7 is the transmission radius between transmitters and
their intended receivers. Combining these two concepts leads to

a cancellation radius of 4/ % AT,

tion radius is
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Definition 7: A (K, z) SIC receiver operating in a network
with a transmission density of ) is capable of reducing the inter-
ference power by a factor 1 — z for all interfering nodes within

distance % A r. An imperfect SIC receiver has a cancella-

tion effectiveness of z € (0, 1), while a perfect SIC receiver has
cancellation effectiveness of z = 0 (no residual interference for
cancelled nodes).

Note that setting z = 1 or K = 0 recovers the no SIC model
covered previously. The cancellation radius is r for A < 5,
and is decreasing in A for A > % Viewed as a function of ),
the cancellation radius is independent of A for A small, and is
decreasing in A for A large. Intuitively, if A is small then there are
few interferers on average, and the cancellation effectiveness is
limited by the requirement that interference power exceed signal
power. If X is large, on the other hand, there are many nodes to
select from, and the cancellation effectiveness is limited by the
requirement that at most K signals may be processed.

To apply the general results for the perfect SIC model we must
identify the appropriate near- and far-field regions. Please see
Fig. 3. The figure shows the near-field annulus for each possible
A, for the cases § > 1 (top) and < 1 (bottom). Recall that
in studying the no SIC model it was determined that the near
field consisted of the annulus a(o, 1, B= r). The near field under
perfect SIC is simply all locations lying in the no SIC near field
but outside the cancellation region. When (3 > 1, the near-field
radius is always larger than the cancellation radius, and so the
near field is always well defined. When § < 1, however, the
near field is empty for all

wBar?

(this expression is obtained by solving (3 ar= \/% for ). The
absence of a near field leads to a trivial lower bound on outage
probability of 0, and a trivial upper bound on the TC of infinity.
The fact that the cancellation region is a superset of the near
field for this region means that an outage can only occur through
the confluence of far-field interferers. The following theorem
applies the results from Fig. 3 to the general results on the lower
bound in Theorem 1; the proof is immediate from the figure.

Lemma 3: Consider perfect SIC. For 8 > 1, the lower bound
on the outage probability is

B 1—exp{—/\7rT2 (,[3% —1)}, A< %

pSIC
Py, (A) = > (19)
b 1—exp {—/\7rﬂ3r2 + K} , else.
and the upper bound on TC is
pSIC _(lze()alig(11_€)’ e <1
o (e) = mro (P - (20)
b (1—e)(— 10%(1—€)+K)7 else.
wBa r2
For 3 < 1, the lower bound on the outage probability is
sic 0 A< ;f 2
p w3 ars
P A) = ‘
() 1 —exp{—)nr,[i%Tz—i—K}, else.
2D
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Fig. 3. Illustration of the near-field region (shaded) for the perfect cancellation
model. The w-axis is the spatial density of attempted transmissions (A) and the
y-axis is the distance from the origin d. The shape of the near field depends
upon whether 5 > 1 (top) or 3 < 1 (bottom). Note that for A small, the
SIC range is r as the dominant constraint is that interfering nodes have smaller
signal strengths, while for A large, the SIC range is \/ /K /(7w A) as the dominant
constraint is the bound, K, on the number of cancelable nodes. The function
I /(7 X) is sketched as linear decreasing in A for simplicity of exposition.

and the upper bound on TC is

(—log(l —e)+ K)(1 — e)

pSIC, \ _
Cy € (22)
S0 = i
Proof: Looking at Fig. 3, the near field for § > 1 is
a (07 73,8% 7“) ,
FPSIC = . (23)
a (0, W—I&,[ﬁr) , else
for all )\, with associated area
ﬂTz(ﬂ%—l)7 A< B
(FESIC) wr (24)
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The near field for 6 < 1is
A< 55—
FSIC = = o R @)
a (o, ﬁ,[)’Er) , else
with associated area
0, A< —5—
Z/(FTI;SIC) _ 7B r? (26)

w(ﬁarz 5\), else.

The outage probability and TC bounds given in the lemma are
immediate from these expressions. O

The following lemma identifies the far-field region for all the
cases indicated in Fig. 3, and gives the corresponding selection
of s,t,u for Theorem 2.

Lemma 4: Consider perfect SIC. The far field for § > 1 is
FPSIC = a(o,ﬂi r,00) which corresponds to setting s = ¢t =
u=. &7 in Theorem 2. The far field for B <1lis

a(o,r,00), A< mz
pSIC _ K
FPSIC — a(o,,/;x,oo), @
a(o, Bar, 00), else
which corresponds to setting
r, A< WI:,’Q
s=t=u= £, §§§A<ﬂ£ﬁ (28)
16} N r, else

in Theorem 2. The upper bound on outage probability with per-
fect SIC (pSIC) is

B0 =1 1o 0 (57}
X exp { — )\V(FPSIC)}_ (29)

The corress?ondmg lower bound on the TC is obtained by
solving ptp = ¢ for \.

Proof. Recall that F,,UF;Ub(0,1) = R?, i.e., the near- and
far-field partition the plane, excluding the automatically can-
celed region b(o, 1). With this in mind it is straightforward to
identify the far field as the complement of the near field in Fig. 3.
It is then simply a matter of selecting the parameters s, ¢, u in
Theorem 2 to match the far field. For example, for 5 > 1, the
far field is the region a(o, 8 = 00). Nodes in this region are not
subject to cancellation, and as such the appropriate selection is
s=t=u=0 ar. O

Discussion: In Lemma 3, the TC upper bounds are the same
for the cases of 3 > 1 and § < 1 except when the network
density is low relative to the transmission range and number of
cancelable users, i.e., A < — 5. Why?

‘When the network density is relatlvely low, the received power
constraint dominates the performance; in other words, no matter
how many nodes between (1,r) are canceled, the uncancellable
nodes that are farther than the desired transmitter dominate the
outage probability. Therefore, this case is independent of K. In
the case of a high-SIR requirement, any node in a(o, 1, 8% )
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causes an outage, whereas with a relaxed SIR requirement no
outage can occur from a single node in the near field.

On the other hand, when the network density is high, the pro-
cessing constraint on the number of cancelable interferers domi-
nates the performance. Due to complexity or latency constraints,
only K interferers can be canceled, although more than K nodes
are likely to be in a(o0, 1, 7) and thus cancelable. As can be seen
in Fig. 3, the effective area of the near field decreases linearly
with K, this causes the TC upper bound to increase additively
with K. Note, however, that if K becomes sufficiently large, the
outage probability lower bound can switch back into the regime
that is independent of K. On the other hand, as long as A is in-
creased at the same rate as K, TC can increase linearly with K
without limit in the perfect interference cancellation scenario as
long as § < 1.

These dependencies will be further explored and quantified
in the numerical and simulation results section along with the
lower bounds on TC for pSIC.

VI. IMPERFECT SUCCESSIVE INTERFERENCE CANCELLATION

The imperfect SIC model is a generalization of the pSIC
model to capture the fact that not all interference power is
removed under cancellation. The parameter z € (0, 1) gives the
residual interference for a canceled node, so that the interfer-
ence is reduced by a factor of 1 — z. Although each interferer
may be subject to a slightly different average cancellation
error depending on its distance from the receiver, this model is
adopted for simplicity in order to concretely consider the affect
of varying levels of cancellation error.

Under imperfect SIC there are three regions:

o perfect cancellation within b(o, 1);

* imperfect cancellation within a(o, 1,
z € (0,1);
* no cancellation in a(o, \/ £ A r,00).
We define the cancellation region to be

£ Ar) by a factor

| K
C:a(o,l, —/\7") (30)
A
and the uncanceled region to be
| K
E:a(o, —/\r,oc). a3
A

Note that C N E = {. It is possible under imperfect SIC for
the near field to consist of both partially canceled as well as
uncanceled locations

F,={z €R?: z|z| *locc + |2| ™ “1oer > B} (32)
Similarly, the near- and far-field interference may consist of
contributions from both partially canceled and uncanceled
nodes

Y, ==z Z | X~ + Z | X~
1i€PNF,NC 1€PNF,NE

Yi=z Y X[T 4+ > T 33)
i€®NF;NC i€EQNF;NE
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As z € [0, 1], there are three possible arrangements for z/3, 3,
and 1:1) 1 < 208 < (,ii) 28 <1 < B, oriii) z8 < f < 1. See
Fig. 4. The figure is similar to Fig. 3 in that the shaded regions
denote the near field as a function of the transmission density
A. The light shaded region is the near field lying outside of the
cancellation region, and the dark shaded region is the near-field
region lying inside the cancellation region. In particular, under
imperfect cancellation, a single interfering node can be partially
canceled but is still capable causing an outage. In several cases
shown in the figure, the near field consists of an inner partially
canceled annulus, and an outer uncanceled annulus. This obser-
vation is the motivation behind the particular parameterization
used in Theorem 2.

Since an understanding of Fig. 4 is a prerequisite to under-
standing the subsequent lemmas, we briefly describe the regions
in each of the three cases. First, the case 1 < 2z < [ can
be interpreted as the worst case in terms of outage, since either
z is large (poor cancellation efficiency) or g is large (high re-
quired SIR). In fact, in this case interference cancellation does
not improve the lower bound on outage probability, since even a
single partially canceled node still has sufficient power to cause
an outage because (z/3) ar o> r,1.e., the needed separation (even
with some interference cancellation) is greater than the commu-
nication range. In the middle graph, z3 < 1, so this more ac-
curate interference cancellation improves the lower bound for
users farther away than (z(3)= r; this is the unshaded wedge in
this graph, which may be quite large as z — 0. The bottom
graph benefits both from interference cancellation in the range
[(zB8)=r, =) and from a lax SIR requirement in the range
[, 00).

The following Lemma gives the lower bound on outage prob-
ability and corresponding upper bound on the TC by applying
Theorem 1 to each of the near fields shown in Fig. 4; the proof
is immediate from the figure.

Lemma 5: Consider imperfect SIC. For 1 < z8 < f3, the
lower bound on the outage probability is

pIC(N) =1 —exp {—)ﬂr (ﬂ‘%rg - 1)} (34)
and the upper bound on TC is
: —(1—¢)log(1 —e¢
CiEIC(e) — ( ) g( ) (35)

™ ([3%7“2 - 1)

For z3 < 1 < (3, the lower bound on the outage probability is
shown in (36) at the top of the following page, and the upper
bound on TC is

( —(1—¢) log(1—¢)

2 2 ’
W(Tz(ﬁ: (z:—f—l)—l -1)
1—e)(—1 1— K
(?( og(‘2 )+K) Ko<a< K
| Bar2l| za +1 —1)

—(1—¢)log(1—¢)

ﬂ(ﬂ%r2—1) '

A1) =

(37
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Fig. 4. Tllustration of the near-field region (shaded) for the imperfect cancella-
tion model. The z-axis is the spatial density of attempted transmissions () and
the y-axis is the distance from the origin d. The light shaded region is the near
field lying outside of the cancellation region, while the dark shaded region is the
near field lying inside the cancellation region. The shape of the near field de-
pends upon whether 1 < z3 < 3 (top), 23 < 1 < 3 (middle),orz3 < 3 <1
(bottom). Note that for A small, the SIC range is r as the dominant constraint is
that interfering nodes have smaller signal strengths, while for A large, the SIC
range is /K /(7)) as the dominant constraint is the bound, K, on the number
of cancelable nodes. The function /K /(7)) is sketched as linear decreasing
in A for simplicity of exposition.
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For z3 < [ < 1, the lower bound on the outage probability
is shown in (38), also at the top of the following page, and the
upper bound on TC is

( —(1—¢) 120g(1—5)’ A< Ié
ﬂ((zﬁ)3r2—l) B r?

(1—e)(—log(l—e)+K) K K

iSIC = -z
Cb (6) =19 gar2(zo41 _1>7 wpa w(28) % r2
—(1—e6)1 _
—(=e)logize) 2 os( 5)7 else.
w(ﬂETQ—l)
\
(39

Proof: The near field for 1 < z3 < 3 consists of

FSIC — (o, 1, ﬂér) (40)
with associated area
v (FiS°) =« (ﬁ%rz _ 1) . (41)

The near field for z3 < 1 < 3 is shown in (42) at the top of
the following page,with associated area shown in (43), also at
the top of the following page. The near field for z0 < § < 1is
shown in (44) at the top of the following page, with associated
area as in (45), at the top of the following page.

The outage probability and TC bounds given in the lemma
are immediate from these expressions. O

Lemma 6: Consider imperfect SIC. The far field for 1 <
2B < Bis FP'C = a(o, 3= r, 00) which corresponds to setting
s=t=u= ﬂér in Theorem 2. The far field for z5 < 1 <
[ is given in (46) at the bottom of the following page, which
corresponds to setting

s=(zf)srt=ru=psr /\<%
s= (At =/u=prr fr <A< (@)
s:t:u:,@ir, else

in Theorem 2. The far field for z3 < 8 < 1 is as shown in (48)
at the top of the subsequent page, which corresponds to setting,
shown in (49), also at the top of the subsequent page, in The-
orem 2. The upper bound on outage probability with imperfect
SIC is

PSCN) =1 - (1 — exp {—A* (F}SIC)})
x exp {—Av (EP19)} . (50)
The corresponding lower bound on the TC is obtained by
solving piSI€(N\) = ¢ for .
Proof: The far field for the imperfect SIC model may be
identified from Fig. 4, just as was done for the perfect SIC model
using Fig. 3. O

Discussion: In Lemma 5, seven different TC upper bounds
were given for the different relative values of z(3, 3, and 1, and
also depending on the network density A in relation to other
parameters. These seven bounds can be grouped into three
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2 2
i — AT &2 (70< +1)—1)+K
P N =1 ¢ (ﬁ R (P (P (36)
i m(8) 2 r?
—Am (ﬁirz—l)
1—e , else
1 — o= Ar((zB) e 1% -1) A< K
’ w3 r2
ISIC(\) — Am(BE 2 (27 +1)—1)+K K K 38
P (AN =1-e , L <A< —B (38)
) wBa r2 w(zB)ar?
1 — e Am(Bar?-1) else
a(o,l,(zﬂ)ir)Ua(owﬂﬁiT), A< %
FiSIC — 0(0717(25)5") Ua(‘% f—wﬁﬁr)? Lo <a< # 42)
a (o,l,ﬂir) , else

7r(r2 [iﬁ(zé—i—l)—l)—l), )\<752
p(FSI) = 7 (Er2GE 4~ 1) = K, <A< Ao 3)
T (ﬁérz -1}, else
a (07 1, (zﬂ)ir) A< wﬂgﬁ
FiSIC = a(o.l, z iT)Ua(o, X ir), K<< —E 44
1, (=) wx P wBar2 w(z8)a r2 )
a (071,657”)7 else
2
T ((2,8)&7'2 B 1) A< ﬂﬁl%(Tz
T (N 202(,2 1) K E_ < — K
T (S I R
s (651”2 — 1) , else.

different classes as follows, for better comprehension of their
meaning.

1) No explicit dependence on z or K. Three of these upper
bounds exist and are identical: for 1 < z8 < (3, and for
high A in the other two cases. Here, interference cancella-
tion has no measurable effect on the capacity upper bound
due to a combination of poor cancellation accuracy (high
z), high required SIR, low number of cancelable users K,

2)

and/or a high network density A relative to the aforemen-
tioned parameters. Note that although the TC in this regime
does not depend on the values of z or K, the regime itself
is defined in part by z and K.

Dependence on z butnot on K. This occurs twice, and is the
case for low network density and reasonably accurate inter-
ference cancellation (low z). Intuitively, in this regime there
are not enough interferers to cause the processing constraint

F}SIC =a (0, (zB)=r, \/g) Ua (mﬂir, oo) B << K (46)
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1 K
a (0./ (zB)ar, 7‘) Ua(o,r, 00 A< =
N .
a(o.(zﬂ)Er.q/%)Ua(o %OO), Lo << &
. ’ ’ ™ ) r < o
FisIC _ mhert (48)
f - 1 K 1 K K
alo, (20)=r, /2% ) Yalo, f=T,00), — <A< —8—
4 T3 r2 7(zB3)« r2
1
a (o, Bar, oo) , else
L .
s=z0/art=u=r A< B
1
s=(zB)art=u= /&, K<< &
AT r B r?
,6 L K 31 K A ’ K (49)
s=(zp)ar,t =/ =x,u=p=r, <AL ——5—
( ) ) Y B=r, wﬁ%ﬂ = w(z5)§r2
1
s=t=u=pfar, else

to become an issue. The capacity upper bound does in-
crease as the cancellation accuracy improves, however.

3) Dependence on both z and K. This also occurs twice, in a
moderate density regime where cancellation helps (i.e., z is
sufficiently small), and the more users that can be canceled
the better. Once the network density increases, there is likely
to be a strong user that cannot be sufficiently canceled due
to high z or low K, so we are back to scenario 1), above.

These dependencies will be further explored and quantified
in the next section along with the lower bounds on TC, which
are not available in closed form so not discussed here.

VII. NUMERICAL AND SIMULATION RESULTS

All numerical results are computed using Mathematica; all
simulation results are obtained from a Perl program written by
the authors. Simulations are run until a 95% confidence intervals
with relative error of at most 5% is achieved. In all cases, the
error bars denoting the confidence interval are no wider than
the symbol used to indicate the location of the point estimator,
and are therefore not shown.

Itis important to note that the simulation results are for the ac-
tual SIC system, not the approximate system. In particular, the
simulated (K, z) SIC receiver cancels up to the first K interferers
withinradius r by a factor of 1 — z (as opposed to the approximate
system that cancels al/lnodesina(o, 1,/ K/(w\) Ar)by 1 — 2).
The simulation results for the approximate system all lie between
the given bounds and are not shown. The simulation results that
are shown do not in all cases lie between the bounds: this is be-
cause the numerical bounds hold for the approximate SIC model,
not the actual SIC model. The numerical results will illustrate
when the approximate SIC model is good and when it fails to
capture the performance of the actual SIC model.

All simulation results include ambient (thermal) noise corre-
sponding to a signal-to-noise ratio (SNR) of 100 (20 dB), i.e.,

—Q

P _100= 2= L

SNR = .
o2 1007«

(D

For the default values of p = 1 W, r = 10 m, and @ = 4 we
obtain a noise power of 02 = 107 W. Both p and o2 should
technically be attenuated by the measured path loss at d, =

1 m, a quantity that is close to ﬁ, where c is the speed of

light and f. is the carrier frequency. Neglecting this effect does
not change the SNR. The noise has a negligible impact on the
simulation results.

Here and throughout this section we consider two fun-
damentally different scenarios: a small SIR requirement
(8 = 1/10 < 1) and alarge SIR requirement (3 = 10 > 1).
We will often speak of the small SIR requirement scenario as the
spreading case, since spreading reduces the SIR requirement by a
factor of M. If the nominal SIR requirement is 10 then we obtain
B = 1/10 by spreading with M = 100. A prominent theme
throughout our discussion will be that SIC and spreading work
well together, and that SIC without spreading may be ineffective.

Unless stated otherwise, all results employ a path loss attenu-
ation constant of @ = 4 and a transmission distance of » = 10 m.
The notation UB and LB denotes the upper and lower bound on
the corresponding y-axis quantity. For clarity of presentation,
simulation results are shown for only a subset of the plots.

Fig. 5 contains five plots of the TC, ¢(e), versus € and one
plot of the outage probability, p(\), versus A (top left). The top
row shows results for the no SIC model, the middle row shows
results for the perfect SIC model, and the bottom row shows
results for the imperfect SIC model.

The top row in Fig. 5 gives p()\) and ¢(¢) for the no SIC case
for both 5 = 1/10 and 8 = 10. The bounds are seen to be
reasonably tight for both p(A) and ¢(€). Moreover, the impact
of spreading (reducing (3) is apparent: for small A, the outage
probability is decreased by an order of magnitude, and c(e) is
increased by the same factor. The simulation results lie between
the bounds.

The middle row in Fig. 5 gives results for the perfect SIC
case. The left graph shows the TC bounds and simulation re-
sults for K = 1 and 8 = 1/10, 10, while the right shows the
TC for K = 10 and 8 = 1/10, 10. Note that the approximate
SIC model captures the behavior of the actual (simulated) SIC
model for all cases except when 3 = 1/10 and K = 1. Thus,
the approximate SIC model is a poor model for perfect SIC and
small K. There are two contributions to this performance dis-
crepancy. First, recall from Fig. 3 that there is no reliable lower
bound event for # < 1 and A small. Second, in perfect SIC with
K = 1, the actual SIC model cancels the sole dominant inter-
fererin a(o, 1,r) (if there is one), while the approximate model
cancels all nodes in a(o, 1, r) (for A small). This approximation
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Fig. 5. Outage probability p(X) versus A (top left), and TC c(e) versus e (all other plots). The top row gives results for no SIC, the middle row for perfect SIC,

the bottom row for imperfect SIC.

is clearly rather poor in the regime where there is on average
more than one node in a(o, 1, 7).

Comparing the perfect SIC results for 3 = 10 and K = 1,10
with the nSIC results for 5 = 10 we see all three plots coin-
cide. This is because, as shown in Fig. 3, the lower bound on
outage probability is independent of K for > 1. This is the
first result supporting the claim that SIC should be coupled with

spreading. In particular, using SIC without spreading means the
SIR requirement may be high enough such that the dominant
SIC constraint is the power constraint, rather than the bound
on the number of cancelable nodes (K'). More concretely, the
problem with SIC when § > 1 is that the SIC region covers only
a (possibly negligibly) small portion of the near field (which
dominates p(\)). For 8 > 1, the near field has area approx-
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Fig. 6. Left: outage probability, p(\), versus transmission density, A. Right: TC,

imately 7(3 =72 while the cancellation region has areas mr2.

Thus, the fraction of the near field covered by cancellation is
/3_5; in the case of § = 10 and a = 4 this is 1/\/E ~ 1/3,
i.e., only one third of the near-field region is addressed by can-
cellation, regardless of K.

The bottom row of Fig. 5 gives results for the imperfect
SIC case. The left graph shows the TC bounds and simulation
results for 5 = 1/10,K = 1, and z = 1/100,1/2, while
the right graph shows the TC for § = 1/10, K = 10, and
z =1/100, 1/2. The bounds are accurate for all three cases ex-
cept for K = 1 and z = 1/100. This is natural given the discus-
sion of the perfect SIC case with K = 1 above since z = 1/100
is very close to perfect SIC of z = 0. The most significant point
to note is the large sensitivity to z for small € and 5 = 1/10
and K = 10. In particular, at ¢ = 0.001 the TC for perfect SIC,
B =1/10, K = 10 is roughly 100 times that of imperfect SIC
with z = 1/100, which is in turn roughly 10 times the TC with
z = 1/2. On the other hand, looking at the case 3 = 1/10 and
K =1, we see the TC under imperfect SIC with z = 1/100 is
very close to that of perfect SIC.

Not shown are imperfect SIC results for # = 10. These are
very similar to the results for perfect SIC and no SIC for 8 = 10;
in the high-( regime, the TC is relatively insensitive to cancel-
lation (both K and z).

Fig. 6 contains two plots showing the lower bound on p(\)
versus A (on the left), and the upper bound on ¢(e) versus € (on
the right), all for the case of 8 = 1/10. As expected, the perfect
SIC curve always has a lower p(A) than the imperfect SIC case
(forall z and fixed K'), which in turn always has alower p(\) than
the no SIC case. Similarly, ¢(e) for perfect SIC is always higher
than ¢(e) for imperfect SIC (for all z and fixed K), which in turn
is always higher than the no SIC case. The results highlight that
for § = 1/10 there is great sensitivity to z but small sensitivity
to K. Atz = 1/2, there is no appreciable reduction in p(\) or
increase in ¢(e) (compared with the nSIC case), butat z = 1/100
the increase and decrease is about a factor of 10.

Not shown are the corresponding results for the case when
[ = 10. Due to the limited dependence on z, K, there is almost
no distinction between the lower bounds on p(\) for no SIC and
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transmission capacity versus outage probability requirement (g = 1/10)
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¢(e), versus the QoS requirement e. Both plots are for 3 = 1/10.

the lower bounds on p(A) for perfect SIC. The same is true for
the upper bound on ¢(¢€). As shown in Fig. 4, the near field for
imperfect SIC when 1 < z0 < [ is the same as the near field
without SIC. It follows that there can be little impact of applying
SIC when 8 > 1.

Fig. 7 contains four plots varying four other model parameters
besides A and e. The top left graph shows the outage probability
versus the path loss exponent & > 2. Shown are lower and upper
bounds for both nSIC and imperfect SIC with K = 10,z =
1/100, and imperfect SIC with K = 10, z = 1/10. The bounds
are seen to be reasonably tight, and the tightness improves as
« increases. This is attributable to the fact that for large «, the
outage probability is dominated by near-field interferers, so that
the looseness of the Chernoff bound on the far field p()\) has a
negligible impact.

The top right graph shows the upper bounds on the TC (for
€ = 0.1) versus the transmission radius r, for nSIC, pSIC (K =
10), and imperfect SIC (K = 10,z = 1/100 and K = 1z =
1/100). Spreading is assumed, so that 3 = 1/10. As expected
the TC for nSIC is at the bottom. Note the dramatic increase in
c(e€) obtained by adding a single cancelable node (K = 1), and
the additional dramatic increase in ¢(e) obtained by increasing
up to K = 10 cancelable nodes. Also interesting is that for
K = 1 using z = 1/100 nets most of the increase in TC, while
for K = 10, using z = 1/100 is effectively the same as using
K = 1. This can be understood by appealing tothe z3 < < 1
panel in Fig. 4. The lesson learned is that both K and z can have
dramatic or negligible impacts on performance depending upon
the the transmission density A and the SIR requirement [3.

The bottom left graph shows upper bounds on TC (for ¢ =
0.01 and 8 = 1/10) for nSIC, pSIC, and imperfect SIC as z is
logarithmically varied from 0 to 1. Of course the nSIC and pSIC
p(A) are independent of z; the plot confirms the desired behavior
that the imperfect SIC outage probability switches from pSIC
(z = 0) tonSIC (z = 1). It is striking how fast TC is lost as z
is increased. By z = 0.01 nearly two orders of magnitude are
lost; this is very distinct from cellular systems with centralized
power control, where even with z = 0.5 achieving about half
the gain of pSIC is possible [26].
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outage p ility vs. path loss (B=1/10)

1 T T T T T T T T
01
2z
o
4
8
g oot}
[}
i=2]
£
3
=l
0.001 |
no SIC, LB —»—
no SIC, UB —x—
imperfect SIC, LB, K= 10, z= 1/100 —8—
i fect UB, K=10, z=1/100 —&—
imperfect LB, K=10,z=1/10 —e—
imperfect UB, K=10,z=1/10 —e—
0.0001 1 L 1 1 1 L
2 25 3 3.5 4 4.5 5 55 6 6.5
path loss attenuation constant (o)
transmission capacity versus maximum number of cancellable nodes (§ = 1/10)
T T T T
0.1 | 4
g
> 0.01 B
8
g no SIC, UB —»—
S perfect SIC, UB, K=10 —&—
_5 imperfect SIC, UB, K= 10 —o—
8
£
7}
§ 0.001 |- —
0.0001 | B
1 L L 1
0.001 0.01 0.1 1
flect (@)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

transmission capacity versus dit P and (p=1/10)
1 T T T
no SIC, UB ——
perfect SIC, UB, K=10 —x—
perfect SIC, UB, K=1 —x—
imperfect UB, K= 10, z=1/100 —&—
imperfect UB, K=1,z=1/100 —=—
01
g
2
g
c 001
2
8
£
@
§
5
0.001 |
0.0001 1 1 L
5 10 15 20 25
Distance from their il (r) (meters)
transmission capacity versus maximum number of cancellable nodes (B = 1/10)
1
" noSIC,uB —— '
perfect SIC, UB —x—
imperfect SIC, UB, z = 1/500 —x—
imperfect SIC, UB, z= 1/100 —&—
imperfect SIC, UB, z=1/10 —=—
imperfect SIC, UB, z=1/2 —e—
01 F E
s
2z
8
Q
8
c 0.01 F E
2
8
£
2
S
0.001 4
0.0001 . L L

[ 5 10 15 20

Maximum number of cancellable nodes (K)

Fig. 7. Top left: outage probability versus the path loss exponent «v. Top right: TC versus the transmission radius ». Bottom left: TC versus the cancellation
effectiveness parameter z. Bottom right: TC versus the number of cancelable nodes /<.

The bottom right graph shows c¢(€) (for ¢ = 0.1) versus
the number of cancelable nodes, K. The no SIC c(e) is the
bottom curve, and of course is independent of K. The pSIC
c(e€) is the upper curve. The imperfect SIC ¢(e) is shown for
z = 1/500,1/100,1/10,1/2. Clearly, reducing z achieves a
higher TC. What is interesting to note is that, confirming the
discussion in the top right of Fig. 7, the region where z affects
the c(e) depends upon K. In particular, for K small, ¢(e) is
highly sensitive to z, while for K large, c(e) is less sensitive. We
also note that unless the cancellation is extremely accurate, i.e.,
z < 0.01, there is no appreciable gain to canceling more than
one interferer. These results might be of interest to SIC hard-
ware designers as they identify how reducing z or increasing K
will or will not affect the performance of the transceiver.

VIII. CONCLUSION

The primary contribution of this work is a tractable frame-
work for analyzing the performance improvement obtainable
through the use of successive interference cancellation in wire-
less ad hoc networks. Through the use of stochastic geometric
models and analysis we are able to obtain (in most cases) rea-
sonably tight closed-form expressions for the TC in terms of
the fundamental SIC parameters, i.e., the number of cancelable
nodes K and the cancellation effectiveness z. Our analysis and

simulation results support the claims that i) SIC is most effective
when coupled with spreading to reduce the SINR requirement,
and ii) performance is often highly sensitive to the cancellation
effectiveness parameter but less sensitive to the number of can-
celable nodes.

APPENDIX
PROOF OF THEOREM 1

The proof runs as follows:

p(\) =P° (Y > B%)

1
)
=1-P%(®NF, =0
=1—exp{-\(F,)}.

> PO (Yn >

(52)

The inequality follows from the fact that Y = Y, + Y} im-
plying Y > Y,,. The event {Y,, > ﬁ%} is the same as the
event {® N F,, # (0} (the event that there are one or more near
field interferers) since the normalized interference contribution
of any near-field node is at least % by construction. The final
equality is obtained by noting that the number of nodes of a
Poisson field ® lying in a bounded region A C R? is a Poisson
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random variable with parameter Av(A). In this case, the proba-
bility that there are no nodes in F), is e~ **(F»), O

PROOF OF THEOREM 2

The following proof finds the moment generating function
(MGF) of the far-field interference lying within the disk b(o, v)
for v > wu, then finds the MGF for the entire plane by letting
v — o0. This same technique is applied by Sousa and Silvester
in [14] in a distinct but related context.

Let NV = |® N b(o,v)| ~ Poisson(Arv?) be the number of
nodes in b(o,v), for v > wu. Recall that the distribution of the
distance from the origin of a node placed uniformly at random
in b(o,v) is

N 2
P(X|<allX|<v)=(2),  o0<e<ve ($3)
The corresponding density is z—’f The far-field interference seen
at the origin is

N°* N*
Y;) = ZZ |Xi|_als<|Xi\§t + Z |X7'f|_a1u<|Xi|§v~ (54)
im1 i=1

The MGF of the random variable Yf” is
MY; () = E[(E[GXP{0Z|X|_Q15<|X\§
+ 01X Lucix <o D]

°2 b2
:[EK/ —fdx+/ = 2y
o U s v

g Va2 O\
+ —zda: + e —2d:17 . (55
Jt v Ju v

The expectation is with respect to the Poisson distribution of
N7; the resulting expression is simplified by using the series

X
e” = > pep %7 as shown below.
’ o)

B ez (TAVR)E f 2z
My (0) = Ze T\ v—zdx

k=0

t u
—a 2 2
—I—/ el —§d$+/ —de
s v t v
k
v a2
+/ e —gdx)
u v
9 9 5 2z
=expq —TAV" + TAv —dz
o U
t u
a2 2
+/ e?#® —fda:—i—/ —fdx
s v t v
v —a 2
—l—/ ef* —Zd:v)}
Ju U
:exp{27r)\ <—/ xdx—l—/ xdx
Jo 0
t W u
+/ ef#” xdx—l—/ zdz
s t
+/ e Iamdm)}
u . ’
= exp {27r)\ (/ (eg’” — 1) zdz

6
¥ / (e"f” - 1) a:dx) } (56)

2813

Taking the limit as v — oo yields

My, (0) = exp {27r)\ [/tx (eez””fa — 1) dx
¥ /Oo 2 (ee-"f“ _ 1) dx} } .57

The expression for the Chernoff bound is straightforward once
the MGF is obtained: the rate function is the convex dual of the
log MGF. O

PROOF OF THEOREM 3

The proof is a simple conditioning argument on the two

events {Y,, > y} and {Y,, <y}, where y = 5=

p(A) =P(Y >y)
=PY > y|V, > y)P° (Y, > )
+ PO(Y > y|Yn < y>PO(Yn < y)
=PV, > y) + PO (Yy > y)P(Y, < )
=1-P%Y, <y)+P°(Y; > y)P°(Yy <)
=1—(1=P°(Y; > )PV, <)
<1 = (1 = exp{=A"(Fy)}) exp{—\v(F,)}

—AN(Fy)

(58)

where e is the Chernoff upper bound on the probability
of a far-field-induced outage event. The third line is obtained
from the second by recognizing thati) P°(Y > y|Y,, > y) = 1,
and i) PO(Y > y|Y, < y) = P(Ys > y) (since the events
{Y, < y} and {Y,, = 0} are equivalent). From here the re-
maining lines are simple rearrangements. O
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