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Abstract
Quasi-Spline Sheaves and their Contact Ideals

Timothy Hayes
Advisor: Patrick Clarke, Ph.D.

We research quasi-spline sheaves, which are an algebraic geometric generalization of spline

spaces. Spline spaces are vector spaces of splines that are defined over some polyhedral complex

in real space, and the dimension and basis for them are of interest. Billera found that certain spline

spaces are determined by ideals that are affine forms that vanish on the intersections of the maximal

faces of the complex. These ideals correspond to contact ideals of a quasi-spline sheaf, and we ask

if quasi-spline sheaves are determined by contact ideals in the same way. A quasi-spline sheaf or

spline space can be defined by identifying ideals, called ideal difference-conditions. We find that

the contact ideals are a canonical example of ideal difference-conditions for a quasi-spline sheaf.

Next, we ask how to find the contact ideals of a quasi-spline sheaf when only ideal difference-

conditions are given. Last, we find a complex for any quasi-spline sheaf and try to figure out when

this gives a resolution for the quasi-spline sheaf. If it is a resolution, it gives an alternative way to

compute the dimension of a quasi-spline sheaf, or any spline space.
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1. Introduction

My main research project involves studying quasi-spline sheaves, which are sheaves of splines,

using algebraic geometry and commutative algebra. Quasi-spline sheaves are generalizations of

spline spaces to algebraic geometry. Spline spaces are vector spaces of splines over a polyhedral

complex embedded in real space. Billera found that some splines are completely determined by

ideals in the base ring. We look at the these ideals in an algebraic-geometric setting of spline

sheaves, and find just how relevant these are.

A spline function is a piece-wise defined polynomial that satisfies smoothness conditions where

the polynomial pieces connect. Splines have the benefits of polynomials when it comes to approx-

imations of functions on a closed set, and being easy to store and manipulate using a computer.

Unlike polynomials, they do not exhibit the same kinds of wild ocillations. Splines have played a

central role in approximation theory and numerical analysis for many years. More recently, they

have been used in computer graphics and computer modeling. [Sch07] A particular basis of splines,

B-splines, are very useful in the finite element method in the field of partial differential equations

as they are used to approximate solutions over local regions. [Höl03]

A spline space is a vector space of splines that are continuously differentiable up to a particular

order defined over a region Ω ⊆ Rd. Let S r
m(∆) be the set of all piecewise polynomial functions on

∆ of degree at most m and smooth of order r. In another words, all functions f : ∆→ R such that

• f
∣∣∣
σ

is a polynomial of degree ≤ m, for each σ ∈ ∆ and

• f is continuously differentiable up to order r

[Bil88]

The most fundamental questions for spline spaces includes its dimension and basis. In Chapter

2 we discuss the past efforts for solving these problems.
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The univarite case is where the splines of the spline space are univariate, and the bivariate

case is when the splines are bivariate, and so on. The univarite case is solved for any polyhedral

complex ∆ ⊂ Rn, and the bivariate case has been worked on a while and there are many results.

When it comes to the trivariate case, things become much more difficult, and there aren’t many

results. When working with the bivariate or trivariate case, we find the the dimension of a spline

space depends on the degree d, the smoothness conditions denoted by r, and even the ’geometry’

of the space, or how it is embedded. In some cases, the dimension can depend on the location of

the vertices counterintuitively [Alf00]. It was first noted in [MS75] that the dimension depends on

the geometry of the triangulation.

Then we look at Billera’s work, the first algebraic treatment of spline spaces. The ideas here will

permeate through my own research. We find that when ∆ is a strongly connected d-complex such

that all links of simplices are strongly connected complexes, F ∈ S r
m(∆) if and only if `r+1|(p1 − p2)

as above for each pair σ1, σ2 of adjcacent d-simplices in ∆, where ` is any nontrivial affine form

which vanishes on τ and pi = F
∣∣∣
σi

, i = 1, 2. In this way, the affine spans of σi ∩ σ j for all

i, j, determine S r
d(∆). [Bil88, Theorem 2.4]. So in this sense, we can say two splines spaces are

isomorphic if they are determined by the same ideals `r+1
τ (see [KS14]).

Then we look at how the dimensions of spline spaces have been researched by mathematicians

like Billera, Alfeld, and others. After that, I give a summary of the homology and cohomology

theories for splines spaces.

Last, we look into a more modern approach done by Clarke and Foucart [CS13], using com-

mutative algebra to study spline spaces and find bases for them. In this paper, a spline space is

identified as an R-algebra, where R = R[x1, . . . , xn]. The spline space is shown to be an ideal in the

ring R[y1, . . . , ys]/〈y1, . . . , ys〉. We find the the generators of the splines spaces are actually coeffi-

cients of the yi-linear terms of the generating set for this ideal. The generating set can be computed

using a Gröbner basis. Using this, Clarke and Foucart were able to write code that gives a basis for

spline spaces, and other things like the Hilbert series for the spline space.
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Chapter 3 will go over the basics of algebra, sheaf theory, and scheme theory, that we use in

research. The idea here is to introduce whatever is necessary to discuss my research after quasi-

spline sheaves are defined. First we look into ring theory and the results we will need here, then

sheaf theory. Once in sheaf theory, we look into cohomology and introduce Čech cohomology,

which we emulate later on with quasi-spline sheaves. Last, we look into scheme theory.

In Chapter 4 we introduce quasi-spline sheaves and what contact ideals are. We look into

what has been done with quasi-spline sheaves so far, including work done by Clarke proving the

existence of the moduli space of quasi-spline sheaves amongst other things.

Let Y be a scheme and let s ∈ N. We define a quasi-spline sheaf S as a quasi-coherent

OY-subalgebra of Os
Y . We can take the global spectrum of S, Spec S, creating what is called a

quasi-spline scheme.

Let’s go over one example of a quasi-spline sheaf. Let Y = Spec R[x]. Then we can take the

sheaf associated with the R[x]-module

S = {(g1, g2) : g1 − g2 ∈ (x2)}

which is contained in (R[x])2. Geometrically, this can be thought of the splines with continuous

derivatives over the subdivision of R, (−∞, 0] ∪ [0,∞). [Cla15]

To any quasi-spline scheme X, there are subschemes Ki j ⊆ Y locally defined by the quasi-

coherent ideals

Ji j = 〈gi − g j | (g1, . . . , gs) ∈ S 〉.

We refer to them as the contact subschemes of X. In the example above, the contact ideals are all

equal to the ideal (x2).

The example above illustrated another way we can define quasi-spline sheaves, which is done

by giving ideal sheaves. Let S be a s-sheeted quasi-spline sheaf over a scheme Y . We say that S
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is determined by ideal-difference conditions (Ii j)i j, where Ii j are ideal sheaves over Y for each i, j

such that 1 ≤ i < j ≤ s, when S is locally defined as:

S = {(g1, . . . , gs) ∈ Os
Y : gi − g j ∈ Ii j}

The concept of ideal difference-conditions is not new, as it can be found in [Sch79]. We find

that ideal difference-conditions are the same thing as smoothness conditions in Clarke and Foucart’s

paper [CS13].

Typically when studying spline spaces, we are given a geometric object where the splines are

defined with smoothness conditions. Then we ask what the dimension of the entire vector space

of splines is, or what the basis is. We can reverse the question when working in great generality,

i.e scheme theory. Instead of working with splines on a given region, a region cut into pieces via

smooth conditions for the splines, we can ask what is the most optimal subdivision of the given

region, or for the best smoothness conditions. [Cla15]

This question can be rephrased as how to minimize a functional on Cr(Ω) where Ω is some

domain embedded in some base scheme Y . Each point of the moduli space cooresponds to a

subdivision of a region of Ω with a spline sheaf over that. The moduli space of spline schemes can

be thought as the set of all subdivisions of a region Ω. As these spaces become more understood,

techniques for optimal subdivisions of Ω could be found. Existence of these moduli spaces has

been proved in certain cases [Cla15].

In Chapter 5, I introduce my own research. Billera found that certain spline spaces are deter-

mined by ideals, these ideals correspond to contact ideals, so we ask if contact ideals determine

quasi-spline sheaves in the same way. We find that this isn’t necessarily true, and find an example

where it occurs.

For the rest of this thesis and every quasi-spline sheaf we work with, it will be assumed that

the quasi-spline sheaf is determined by its contact ideals unless specified. That is, a quasi-spline
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sheaf S, with contact ideals Ji j’s, will be locally defined as such:

S = {(g1, . . . , gs) ∈ Os
Y : gi − g j ∈ Ji j for all i, j}

Next, we look into ideal difference-conditions and discuss just how ideal difference-conditions

relate to the contact ideals of a quasi-spline sheaf. The contact ideals are the canonical ideals, the

smallest ideals, that generate a particular quasi-spline sheaf. After that, we look into when ideal

difference-conditions are precisly the contact ideals. We find that ideal difference conditions are

contact ideals when the conditions

Ji j ⊆ Jik +Jk j for all i, j, k

are satisfied for all ideals Ji j that give ideal difference-conditions to the quasi-spline sheaf. This

is fairly significant, because it gives us a certain way to determine when the ideals we have are

actually the contact ideals.

Next, we try to find a way to obtain contact ideals when all we have are ideal difference-

conditions. This is useful because its so much easier to give ideal difference-conditions. To do

this, we introduce a pinching operation, which seeks to find how contact ideals are changed when

one ideal difference-conditions is placed on the original quasi-spline sheaf. LetJi j’s be the contact

ideals for a s-sheeted quasi-spline sheaf S. Let Ip be an ideal sheaf, then we can pinch the spline

sheaf and create a new one that is locally defined as such:

S′ = {(g1, . . . , gs) ∈ S : ga − gb ∈ Ip}

when a, b ∈ {1, . . . , s}. We conjecture that the contact ideals for S′ are given by the formulas: for

all i, j

J ′ab = Jab ∩ JP
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J ′ai = Jai ∩ (Jbi +J ′ab)

J ′a j = Ja j ∩ (Jb j +J ′ab)

J ′bi = Jbi ∩ (Jai +J ′ab)

J ′b j = Jb j ∩ (Ja j +J ′ab)

J ′i j = Ji j ∩ (J ′ai +J ′a j) ∩ (J ′bi +J ′b j).

We find that these formulas are not true all the time. But by using code in Sage, these formulas

do seem to be true the a lot of the times. If the pinching formulas do work using all ideals that give

ideal difference-conditions for a quasi-spline sheaf, these formulas can be used to give recursive

procedure for finding what the contact ideals are.

After this, we look into other ways to solve the problem of finding the contact ideals when ideal

difference-conditions are given. Its easier to find closed formulas for the contact ideals when the

number of sheets is 3. Indeed, if the ideal difference-conditions for S are given by Ii j’s, the contact

ideals Ji j’s are exactly:

Ji j = Ii j ∩ (Iik + Ik j)

where k , i, j. But this proof can’t be generalized to larger values of s.

After this, we use what we have learned so far to conjecture some other formulas. As before,

let S be a s-sheeted quasi-spline sheaf with ideal difference-conditions given by Ii j’s. Then define

I1
i j = Ii j ∩

⋂
k

(Iik + Ik j)


and for any n ≥ 2, let In

i j be defined as:

In
i j = In−1

i j ∩

⋂
k

(In−1
ik + In−1

k j )
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Notice if this sequence of ideals stabilizes, that is, if Im
i j = Im+1

i j , it is necessarily the case that the

ideals Im
i j ’s satisfy the conditions above identifying that these ideals are actually the contact ideals

for S. I conjecture that this sequence will always stabilize before or at s − 2, so that the contact

ideals are

Ji j = I s−2
i j

I’ve used Sage and coded this up, and I haven’t found a counter example to this. Notice how it

works for s = 3.

Last, we define a complex for a quasi-spline sheaf based on the contact subschemes. We suggest

a method of proving that this complex is actually a resolution, but this only goes so far. This

complex is defined similarly to a Čech complex: for each p,

Cp(S) =
⊕

i0<···<ip

i∗OXi0 ,...,ip

where Xi0...ip = Ki0i1 ∩ Ki1i2 ∩ · · · ∩ Kip−1ip , an intersection of contact subschemes, and OXi0 ...ip
is the

structure sheaf of these closed subschemes.

We aim to prove that the complex

0→ S → C0(S)
d0
−→ C1(S)

d1
−→ C2(S)→ . . .

is a resolution to S, or that the sequence is exact. Notice that C0(S) = Os
Y and C1(S) =

⊕
i jOKi j ,

so that exactness at the first couple step implies that S is determined by its contact ideals. We’ve

shown this doesn’t always happen, so its not necessarily the case this complex is a resolution. But

we want to know if it is a resolution when S is determined by its contact ideals.

It is easy to see that im (di) ⊆ ker(di+1) for any i ≥ 0, but it is difficult to show the other

containment. We suggested a Chinese Remainder Theorem-esque argument, but this only goes so

far. We know for sure that the complex is a resolution for quasi-spline sheaves determined by their
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contact ideals when s = 3 and almost for s = 4.

For the future, I want to give more complete answers for the variety of conjectures I have about

the relationship that contact ideals have with quasi-spline sheaves. It would be nice to have a

complete answer for the pinching formulas, to know when the formulas are correct. Further, I’d

like to get a definite answer as to when my conjectured formulas for the contact ideal in terms of

ideal difference-conditions are actually the contact ideals. Last, I want to know if the complex of a

quasi-spline sheaf is actually a resolution.



9

2. Spline Spaces

Splines are piece-wise defined polynomials that satisfies certain smoothness conditions where

the polynomial pieces connect.

A spline function is piece-wise defined polynomial that satisfies certain smoothness conditions

where the polynomial pieces connect. Let

f (x) =


x : x ≥ 0

−x : x < 0

then this function is a C0 function on the real line. Indeed, f is continuous at the origin, the place

where the two polynomial pieces intersect. Notice that the two pieces, g1(x) = x and g2(x) = −x

are such that x divides g1(x) − g2(x). If we wanted the function to be a C1 function on the real line,

we would require that x2 divides g1(x) − g2(x), like if the spline function was

f (x) =


x2 : x ≥ 0

0 : x < 0

Algebraically speaking, if we want a C0 function, we want g1 − g2 ∈ (x), where (x) is the ideal of

R[x] generated by x. If we want a C1 function, we want g1 − g2 ∈ (x2).

Next, we can ask what vector spaces of these spline functions would look like. Take for exam-

ple, the vector space of splines functions that are C1 over the real line, where each spline function

is split into three pieces, where the first and second piece intersect at the origin, and the second

and third pieces intersect at the point 3 on the real line. This is equivalent to finding a three-tuple

(g1, g2, g3) where gi ∈ R[x] for all i, g1 − g2 ∈ (x2) and g2 − g3 ∈ ((x − 3)2).

First, there are traditional analytic techniques to work with splines, as can be seen in Schu-
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maker’s book [Sch07] . But here, we are more focused on the algebraic treatments of spline spaces.

This subsection is for studying spline spaces, which are vector spaces of spline spaces that are

usually over a polyhedral complex in real space. First we will discuss some of the prerequisites

to understanding splines spaces. We give a definition for spline space defined over a polyhedral

complex.

The most important questions when studying spline spaces is finding a basis for it and the

dimension for the spline space. There has been much work done in both of these when the splines

are bivariate and the problem is solved for when the splines are univariate. Research done on splines

spaces in three or more variables is relatively new and there isn’t too much that has been done here.

Next, we discuss the research that Billera had done over spline spaces. Billera was the first

mathematician to employ algebra and algebraic geometry, and other homological algebraic tech-

niques to studying spline spaces. After this, we discuss the homology and cohomology theories

for spline spaces. Last, we look at a more recent treatement of splines spaces using commutative

algebra, done by Clarke and Foucart.

2.1 Preliminaries for Spline Spaces

Spline spaces can be defined over many kinds of domains in real space, but typically they are

defined on a polyhedral complex in real space.

First, we will introduce a definition of spline space that is defined over ∆, a simplicial complex

in Rd found in Billera’s paper [Bil88]. Let ∆ be a finite, pure d-dimensional, strongly connected,

simplicial complex embedded inRd. After that, we show a definition of a spline space defined overa

polyhedral complex, a generalized version of the splines space defined on a simplicial complex.

We define what a simplex is, then a simplicial complex.

A simplex is a generalization of a triangle or tetrahedron to arbitrary dimensions. A k-simplex

is a k-dimensional polytope which is the convex hull of its k + 1 vertices. More formally, suppose
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the k+1 points x0, . . . xk ∈ R
n are affinely independent, which means u1−u0, . . . , uk−u0 are linearly

independent. Then the simplex determined by them is the set of points

∆ = {t0x0 + · · · + tkxk | θ0 ≥ 0, 0 ≤ i ≤ k,
k∑

i=0

ti = 1}

[Hat02] So a 0-simplex is a point, a 1-simplex is a line segment, 2-simplex is a triangle, and 3-

simplex is a tetrahedron.

Let ∆ be a finite d-dimensional simplicial complex embedded in Rd. The domain ∆ can be

thought of a triangulation of a compact region in Rd, where each simplex of ∆ is a convex hull of

its vertices. The domain ∆ is embedded in Rd, so we say ∆ ⊆ Rd. You can think of a triangulation

of a topological space to be a simplicial complex that is topologically homeomorphic to the original

topological space. [Bil88] Further, we assume ∆ is pure, which is to say, the maximal simplex has

dimension d. Also, we assume that ∆ is connected.

Then we have the definition of a spline space over that simplicial complex as it is written in

[Bil88]. Let S r
m(∆) be the set of all piecewise polynomial functions on ∆ of degree at most m and

smooth of order r. In another words, all functions f : ∆→ R such that

• f
∣∣∣
σ

is a polynomial of degree ≤ m, for each σ ∈ ∆ and

• f is continuously differentiable up to order r.

More generally, we can also build spline spaces on polyhedral complexes.

A polyhedral complex ∆ ⊆ Rd is a finite set of complex polytopes in Rd where any polytope

contains every face of it and any intersection of any two polytopes is a face of each. [Yuz92] [BR92]

A spline space can be defined on a polyhedral complex like this: let ∆ be a finite polyhedral

complex embedded in real spaceRd, then we define Cr(∆) to be the set of all piecewise polynomial

functions over ∆ which are smooth of order r. Then the spline space, S r
m(∆) denotes the subset of

Cr(∆) consisting of functions whose polynomials are of degree at most m. [BR91]



12

We assume a polydral complex ∆ will be purely embedded in Rd, meaning that all of its maxi-

mal polytopes have dimension d. [Yuz92]

2.2 Billera on Spline Spaces

Now we will look into how Billera worked with spline spaces. Again, he was the first to use

algebraic techniques to study these things.

Billera defines a spline space on a simplicial complex. Let ∆ be a finite, pure d-dimensional

simplicial complex embedded in Rd and is connected. [Bil88]

Let S r
m(∆) be the set of all piecewise polynomial functions on ∆ of degree at most m and smooth

of order r. In another words, all functions f : ∆→ R such that

• f
∣∣∣
σ

is a polynomial of degree ≤ m, for each σ ∈ ∆ and

• f is continuously differentiable up to order r.

These functions f are called splines. The set S r
m(∆) is a vector space over R. [Bil88]

When ∆ is a polyhedral complex, in [BR92] Billera/Rose show that Cr(∆) is a R-algebra with

some conditions for when Cr(∆) is free. This makes it easier to find the dimensions of subalgebras

S r
m(∆). If ∆ is a manifold with boundary then Cr(∆) will be free.

Next, Billera finds a way to determine S r
m(∆) by looking at the intersection of the maximal faces

of ∆. First, we discover that every spline of S r
m(∆) satisfies some algebraic conditions.

Lemma 1 (Lemma 2.2 of [Bil88]). Suppose F ∈ S r
m(∆) for some d-complex ∆ ⊂ Rd and r ≥ 0. Let

σ1, σ2 ∈ ∆ are two d-simplices such that τ = σ1 ∩σ2 has dimension d − 1. Then if ` is a nontrivial

affine form which vanishes on τ, we have

`r+1|(p1 − p2)

where pi = F
∣∣∣
σi

, i = 1, 2.
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Now we try to find sufficient conditions for a function to be in S r
m(∆). But to do this, we need

to define a link of a simplex in ∆.

Let a d-complex ∆ be strongly connected if for any d-simplices σ,σ′ ∈ ∆, there is a sequence

of d-simplices

σ = σ1, σ2, . . . , σk = σ′

such that for all i < k, σi ∩ σi+1 has dimension d − 1. Here, σi and σi+1 are said to be adjacent to

each other. [Bil88]

For every τ ∈ ∆, we define the link of τ, lk(τ) = {σ ∈ ∆ | σ ∩ τ = ∅, σ ∪ τ ∈ ∆}. Now we can

give sufficient conditions for a piecewise polynomial to be in a spline space.

Theorem 2 (Theorem 2.4 [Bil88]). Suppose ∆ is strongly connected d-complex such that all links

of simplices are also strongly connected complexes. Let F be a piecewise polynomial such that F
∣∣∣
σ

is a polynomial of degree ≤ m for each σ ∈ ∆. Then F ∈ S r
m(∆) if and only if `r+1|(p1 − p2) as

above for each pair σ1, σ2 of adjcacent d-simplices in ∆.

In this way, the affine spans of σi ∩ σ j for all i, j, determine S r
d(∆). [Bil88, Theorem 2.4]. So in

this sense, we can say two splines spaces are isomorphic if they are determined by the same ideals

`r+1
τ (see [KS14]). We will find later that two different sets of ideals might determine the same

spline space, even though their ideals are different.

There is a similar result when ∆ is a polyhedral complex, see [BR91], but it’s required that ∆

be hereditary. The forward direction, as in the Theorem below, is easy to show, but we need ∆

to be hereditary for the backwards direction. A polyhedral complex is a hereditary complex if for

all nonempty σ ∈ ∆, st(σ) is strongly connected. The star of σ in ∆ is defined to be the smallest

subcomplex of ∆ containing all faces that contain σ. A complex is said to be strongly connected

when the graph of it is connected. [BR92]
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2.3 Dimension of Splines Spaces

The fundamental problems regarding spline spaces is what is the dimension of them, and what

is the basis for the spline space. The problem was first discussed by Strange, in [Str73] and [Str74]

who was interested in its applications to PDE via the finite element method.

Let ∆ ⊂ Rn. When n = 1, all polynomials of S r
m(∆) are univariate, and when n = 2, all

polynomials of the spline space are bivariate. Alfeld wrote a paper [Alf86] that gives formulas for

the univariate case, some bivariate and trivariate cases.

The univarite case is solved, the bivariate case has been worked on a while and there are many

results. When it comes to the trivariate case, things become much more difficult, and there aren’t

many results.

In the univariate case, each p ∈ S r
m is defined on an closed interval of R, and any two faces

of ∆ will intersect at a point which may be the left or right point of the interval. The following

Proposition gives the formula for the dimension for a spline space when the splines are univariate.

Proposition 3. (Chapter 2 of [Alf86]) Let S r
m(∆) where ∆ ⊆ R, then

dim(S r
m) = m + 1 + (N − 1)(m − r)

where N is the number of 1-dimensional faces of ∆ (intervals).

In general, we find the the dimension of a spline space depends on the degree d, the smoothness

conditions denoted by r, and even the ’geometry’ of the space, or how it is embedded, but counter-

intuitively, it can depend on the location of the vertices. [Alf00] Indeed, the dimension of a spline

spaces can change after an arbitrarily small peturbation of a vertex. It was first noted in [MS75]

that the dimension depends on the geometry of the triangulation.

When jumping from the univariate case to the bivariate case, there is a complication. The

dimension of spline space can depend on the geometry of the triangulation. For example, the
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triangulation of a rectangle with two crossing diagonals has a dimension of C1
2(∆) one higher than

the combinatorically identical situation where the central point is the not the intersection of the

diagonals. The issue here is that each edge connected to the central point has the same slope as the

edge attached to the central point that is opposite to it. This hints to a fact that the dimension of a

spline space might jump when the vertices are altered by a small amount. [Bil88]

We find that some researchers like to restrict to easier situations to work with ∆’s. For exam-

ple, Farin works with ∆ that are unconstricted triangulations, which is when a triangulation has a

minimal amount of edges incident to boundary vertices. [Far06]

The bivariate case is much harder. Let’s take a look at the case when the spline space consists

of continuous piecewise linear functions, also known as the spline space denoted by S 0
1(∆). It isn’t

hard to show that the dimension of this spline spaces is precisely the number of vertices of ∆.

Indeed, a basis for the spline space is given by functions for each vertex, where on that vertex the

function is 1, and is 0 on the other vertices. The case S 0
m(∆) was done by Billera in [Bil89], which

consists in continuous piece-wise functions of degree up to m, we find that

dim S 0
m(∆) =

d∑
j=0

f j

(
m − 1

j

)

for any m, and f j is the number of j-dimensional faces of ∆.

Further, in [Alf86], Alfeld gives the dimension for spline spaces in the trivarite case when the

splines were first and second-order differentiable.

Back on to bivariate splines, looking at spline spaces whose functions are continuous and dif-

ferentiable, we’ve got Strang’s Conjecture where ∆ is a planar 2-manifold. The lower bound has

been proved by Billera in [Bil88].

Conjecture 4 (Strang’s Conjecture). For a generic embedding of a planar 2-manifold,

dim S 1
m(∆) =

(
m + 2

2

)
f2 − (2m + 1) f ◦1 + 3 f ◦0
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where f2 is the number of triangles of ∆, f ◦1 and f ◦0 the number of interior edges and vertices,

respecitively.

This was only hypothesized for generic embeddings, so that we miss out on defective arrange-

ments. Let ∆ be a simplical complex on n vertices. A property holds for generic embeddings of

∆ ⊂ R2, or generically, when the property is true for any embedding of ∆ in R2, where vertices are

located at (xi, yi) for i = 1, . . . , n and there is a nonzero real polynomial p of 2n variables such that

p(x1, y1, . . . , xn, yn) , 0 [Bil88]. In this way, the conjecture ignores cases where the embedding can

make a difference in the dimension of the spline space.

The most popular ways to find the dimension of a spline space include the Bézeir Bernstein

approach, which was first used in [Alf00]. This approach uses the Bézeir-Bernstein form of a

bivariate polynomial. Using this one can find a minimal determining set of points whose cardinality

gives an upperbound for the dimension of the spline space. This is used to find the dimension of

spline spaces with bivariate splines in [Alf00]

In [KS14], the Kolesnikov and Sorokina use algebraic geometric methods similar to those of

Billera that we’ve seen above, and Bernstein-Bezier techniques to find the dimensions of spline

spaces consisting of C1 smooth splines on the Alfled split of a simplex. An Alfeld split can be built

from a non-degenerate simplex, and they show that the space of splines over a particular Alfeld

split can be identified with the space of splines over another simplex, which they call the Alfeld

pyramid.

The Strang Conjecture was proved for cases m ≥ 5 in the paper [MS75] by Morgan and Scott.

The way this was proved also gives a basis for any subspace S 1
m(∆) where m ≥ 5. The result by

Morgan and Scott was shown to be a lower bound for the dimension of S 1
m(∆) for all m ≥ 2, and

also lower bound for the dimension of S r
m(∆) for m ≥ r + 1.

In Alfeld and Schumaker’s paper [AS90], then find the dimension of spline spaces S r
m when

r ≥ 1 and m = 3r + 1, and we find that the dimension of the spline space depends on the different

numbers of slopes of edges incident to a vertex.
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Morgan and Scott working out some dimensions of splines spaces in the bivariate case, giving

upper and lower bounds for spline spaces S r
m where d ≥ 5 and r > 1 including the case when r = 1

and d < 5 for arbitrary partitions for ∆. They also showed that the dimension of S 1
m(∆) is given by

Strange’s conjecture plus the number of rectangles triangulated by crossing diagonals. The proof

of this gives a way to find a basis for S 1
m(∆). [MS75]

Alfeld and Schumaker tried to extend these results in [AS87] by giving formulas for the dimen-

sions of spline spaces S r
m(∆) where d ≥ 4r+1. They were also able to prove the existence of locally

supported basis functions for S r
m(∆) when r ≥ 1 and d ≥ 4r + 1, and they were also able to find

bases of locally supported functions for cases r = 2 and r = 3. In another paper, with Alfeld, Piper,

and Schumaker, they were able to find explicit basis for C1 quartic bivariate splines. [APS87]

There have been several efforts to find when Cr(∆) is free. In [BR92], Billera/Rose show that

we can get a reduced basis for the spline space when Cr(∆) is free, and this freeness can be obtained

when ∆ is a manifold with boundary. In [SS97], Schenck and Stillman give a complex for a spline

space and find the cohomology of it. Let ∆̂ be ∆ that is joined with the origin in R3. They find that

Cr(∆̂) is free if and only if ∆ is genus zero and S r
m(∆) has the expected dimension for k = r + 1.

They define a complex R/J, and find that H1(R/J) is zero exactly when Cr(∆̂) is free. They also

give a simple non-freeness condition.

Alfeld and Shumaker extended the result from Morgan and Scott in [AS90], showing that it is

equal to the dim S r
m(∆) for all m ≥ 4r + 1.

The trivarite case is harder and there aren’t as many results for that case just yet. In [Alf86],

Alfeld gives the dimension for spline spaces in the trivarite case when the splines were C1 and C2.

Further, in [AS08], Alfeld and Schumaker gave bounds for trivariate spline spaces by giving upper

and lower bounds for how a dimension of a spline space can change when a tetrahedron is added

to ∆. To do this, they analyzed all kinds of different ways tetrahedrons can intersect and what this

does to the dimension of the spline space. This can be used to give upper and lower bounds for any

trivariate spline space.
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2.3.1 Homology and Cohomology Theories of S r
m

Homological methods gives a way to do a lot of linear algebra like computations in a very

neat and organized fashion. Look at Chapter 3 for a more categorical approach to homology and

cohomology, which will be useful later when discussing Čech cohomology. Homological methods

have proved useful for finding the dimensions of splines space and we go over the results of Billera’s

and Schenck’s work. Indeed, Billera had first used homological methods with spline spaces in

[Bil88] where he developed a homology theory for S r
k(∆) using ideals defined by splines that vanish

on certain faces of ∆, and proved the lower bound for the dimension of spline spaces for some cases

of the Strang’s Conjecture.

Schenck and Stillman also created a complex for spline spaces in [Sch97] and [SS97]. In

[Sch97], Schenck creates a complex R/J of graded modules on a d-dimensional simplicial complex.

The homology modules of this complex consist of splines of smoothness r on ∆. He also gives

bounds on the dimensions of the homology modules Hi(R/J). In the next paper with Stillman,

[SS97], they discuss how the space of bivariate splines S r
k(∆) for all k relates to the freeness of

Cr(∆). They also found that Cr(∆̂) is free if and only if the topology of ∆ is genus zero and S r
m(∆)

has the expected dimension for k = r + 1, when ∆̂ is ∆ joined with the origin in R3. They work

with the same complex defined in [Sch97], and find some basic properties of H1(R/J). They find

that H1(R/J) measures the deviation of the Hilbert series of Cr(∆̂) from the generic series, and that

H1(R/J) is zero exactly when Cr(∆̂) is free.

In another paper by Billera and Rose [BR92], aiming to find the dimension of S r
k(∆) as an

R-vector space where ∆ is some triangulated region of Rd, they started working on finding when

Cr(∆) is a free R-module, where Cr(∆) is the set of piecewise polynomial functions on ∆ that are

continuously differentiable up to order r.

Now Cr(∆) is a R-module and also a R-algebra. The elements of the spline spaces S r
k(∆)

are contained inside Cr(∆), so that understanding Cr(∆) will provide more information about how
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the spline spaces S r
k are related to each other over various values for k. In [BR92], Billera and

Rose looked for conditions on ∆, r, and d so that the freeness of Cr(∆) will be independent of the

embedding of ∆ in Rd.

One of the results is that when d = 2, Cr(∆) is free if and only if ∆ is a manifold. They find that

when d > 2 and r > 0, the freeness of Cr(∆) is dependent on the embedding of ∆ into Rd. Further,

Cr(∆) is free if and only if Cr(star(σ)) is free for all faces σ ∈ ∆.

Schenck had done similar work. To compute the dimension of S r
k(∆), he looked at Cr(∆̂), where

∆̂ is the joint of ∆ with the origin in Rd+1. Then Cr(∆̂) is a graded R[x1, . . . , xd+1]-module that is

finitely generated. The relationship between Cr(∆̂) and S r
d(∆) is quite clear, because Cr(∆̂)k is the

homogenizations of the elements of S r
k(∆). In this way, the dimension of S r

k(∆) can be studied by

looking at the Hilbert series of Cr(∆̂). [Sch97]

In both papers, [SS97] authored by Stillman and Schenck, and [Sch97] by Schenck, a short se-

quence of complexes based around ∆ is established. First, J is a complex of ideals on ∆, ideals that

vanish on particuliar faces of ∆, and R is the constant complex on ∆, so that R(σ) = R[x1, . . . , xd+1]

for all σ ∈ ∆, then there is a short exact sequence

0→ J → R→ R/J → 0.

Any short exact seqence gives way to a long exact sequence by taking the homology H∗(−) of each

of the complexes. So we get the long sequence:

0→ H2(R)→ H2(R/J)→ H1(J)→ H1(R)→ H1(R/J)→ H0(J)→ 0

The main result of Schenck and Stillman’s paper [SS97] is Cr(∆̂) is free if and only if |∆| has

genus zero and S r
k(∆) has the expected dimension for k = r + 1. In particular, C1(∆̂) is free if ∆ is

generically embedded in the plane. Later in the paper, we also find that Cr(∆̂) is free if and only if
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H1(R/J) is zero.

In this case, the Hilbert Series of Cr(∆̂) is determined by local data of ∆. Also when d = 2,

Cr(∆̂) can only be free if ∆ is a topoligical disk.

In another paper by Schenck, [Sch97], it is shown that Cr(∆̂) � Hd(R/J). They restrict to when

∆ is a topological d-ball, there is a spectral sequence relating Cr(∆̂) to the modules Hi(R/J) when

i < d.

2.4 Another Approach using Commutative Algebra

This next paper introduced a new computational method in spline theory for computing bases

for splines spaces, and also for computing the dimensions for spline spaces. This method done

by Clarke and Foucart used commutative algebra to work with spline spaces. Unlike other papers,

these methods are not dependent on bivariate, trivariate splines, or even on simplicial partitions.

This work gave way to new code written in SAGE which is used to give another perspecitve to

Rose’s freeness conjecture for spline spaces, verify dimensions formulas that have already been

proposed, and also to give new dimension formulas for triangulations with ’hanging vertices’.

[CS13]

For our sakes, we are interested in the implementation of commutative algebra for working with

spline spaces, and even the SAGE code that is written that gives informations about spline spaces,

including but not limited to, the bases and Hilbert series for the spline spaces.

The spline spaces are defined in [CS13] like this. Let Ω ⊆ Rn be a domain with fixed subdivision

Σ = {σ1, . . . σs} of Ω by closed sets. A spline over Ω with respect to Σ is an assignment of an n-

variable polynomial, g j, to each region σ j, so that there is a piecewise function Ω → R whose

value on σ j is g j. [CS13]

Now, we discuss the smoothness conditions for such splines. Let a point p ∈ Ω, we can look

at the splines on which any element of a given set Dp, of linear differential operators has a well-
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defined value. A choice of each point of Ω of linear differential operators is called a family of

smoothness conditions when it satisfies this property:

• Give a real-valued function h on Ω, whenever Dh is well defined for all p ∈ Ω and all

operators D ∈ Dp, then so is D( f · h) for any f ∈ R[x1, . . . , xn]. [CS13]

Example 5. Consider splines that are Cr functions on Ω. The operators at any given point are those

in the span of [CS13]:

{∂α1
x1
. . . ∂αn

xn

∣∣∣
p
, α1 + . . . αn ≤ r}

We work with the ring R[x1, . . . , xn] of n-variable polynomials denoted by R, and the set of

spline functions which satisfy a family of smoothness conditions by S. The set S is an R-algebra.

By adding formal variables y1, . . . , ys to the ring R, S can be described entirely of certain ideals in

R[y1, . . . , ys]. [CS13]

Let I(σ j ∩ σk) = { f ∈ R | f (p) = 0 for all p ∈ σ j ∩ σk} the set of polynomials that vanish on

the intersection of σ j and σk. These are the ’contact ideals’ if S where a quasi-spline sheaf.

The next Theorem shows that the smoothness conditions that determine a spline space are

equivalent to giving ideals Jk j.

Theorem 6. [CS13, Theorem 3.1] The set of splines satisfying a family of smoothness conditions

forms an R-algebra and there exists ideals J jk ⊆ I(σ j ∩ σk) such that a s-tuple of polynomials

G = (g1, . . . , gs) is in this ring if and only if

gi − g j ∈ J jk for all 1 ≤ j, k ≤ s (IC)

Conversely, given any family of ideals, Jk j such that Jk j ⊆ I(σ j ∩ σk), there is a corresponding

family of smoothness conditions whose splines are determined by the equations (IC)

We find that S can be identifed with an ideal of the ring R[y1, . . . , ys]/〈y1, . . . , ys〉
2.
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Theorem 7. [CS13, Theorem 3.2] The R-algebra S, as an R-module, is isomorphic to the module

M =
⋂

jk

(Jk j · 〈y j + yk〉 + 〈y1, . . . , ŷ j, . . . , ĵk, . . . , ys〉) ⊆ R[y1, . . . , ys]/〈y1, . . . , ys〉
2, (M)

where ˆ indicates omission of the variable.

Now we can work on trying to find the generators ofS as a R-module. That is, we want elements

G1 = (g11, g12, . . . , g1s),G2 = (g21, g22, . . . , g2s), . . . ,G` = (g`1, g`2, . . . , g`s) inside of S such that any

spline G ∈ S can be written like

G = c1G1 + c2G2 + . . . c`G` for polynomials c1, . . . , c` ∈ R.

Generators of S appear as the coefficient vectors of the yi-linear terms of a generating set for

M̃, where M = M̃/〈y1, . . . , ys〉
2. [CS13]

Lemma 8. [CS13, Lemma 4.1] Let B denote any generating set for the ideal M̃. For each element

b ∈ B, let b1 denote the y-linear term. Then the image of the set

{b1, b ∈ B}

under the map M̃ � M
∼
−→ S generates S as an R-module.

Essentially, Theorem 6 and Lemma 8 together imply that we can find a set of generators for S

by computing a Gröbner basis for the intersection

M̃ = 〈y1, . . . , ys〉
2 +

⋂
jk

(Jk j · 〈y j + yk〉 + 〈y1, . . . , ŷ j, . . . , ĵk, . . . , ys〉) ⊆ R[y1, . . . , ys] (M’)

where ˆ indicates omission of the variable.

Clarke and Foucart were able to write code in Sage, using the ideas above, that finds generators

for S when smoothness conditions are specified (see [CS13]). I use this code to work out some ex-
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amples of spline sheaves, which helped to disprove some hypotheses we had that will be addressed

in the next chapter.

Further in the paper [CS13], another way of computing the Hilbert series for S is introduced,

as the question now becomes that of finding the Hilbert series for an ideal. Clarke and Foucart

also wrote code to compute the Hilbert series as well. Last, there is more code written to address

whether a spline space S is free module or not.
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3. Spline Sheaf Preliminaries

3.1 Ring Theory

Any ring we work with will be commutative and with unity and we assume that the two binary

operations on a ring are addition and multiplication. The definitions of a ring and ring homomor-

phism can be found in [AM69] or [Lan93].

Definition 9. Let I be an ideal of R. Then I is a subset of R and satisfies the following properties:

• If r, s ∈ I, then r + s ∈ I.

• If r ∈ R and s ∈ I, then r · s ∈ I.

Let M be an R-module. This means that M is an abelian group and R is a ring, and we have an

action on M with R such that for all a, b ∈ R and x, y ∈ M, (a+b)x = ax+bx and a(x+y) = ax+ay.

Usually this is called a left R-module, but R is commutative so the notion of left and right modules

coincide.

Definition 10. Let M, M′ and M′′ be R-modules, then the sequence

0→ M
φ
−→ M′

ψ
−→ M′′ → 0

is an exact sequence if the following is true:

• φ is an injective map.

• ψ is a surjective map

• im (φ) = ker(ψ)
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Before moving on, we can show that, when I1 and I2 are ideals of a ring R, then the sequence is

exact:

0→ R/I1 ∩ I2 → R/I1 ⊕ R/I2 → R/I1 + I2 → 0.

This will be useful later on when working with a complex we find for a quasi-spline sheaf and we

need to prove exactness for it in certain cases. So the next couple results are simply to prove this

result.

Proposition 11. Let I be an ideal of R. Then the sequence of maps:

0→ I → R→ R/I → 0

where each map is the natural map, is an exact sequence.

Proof. Clearly the first map, φ1 is injective, and the second map, φ2 is surjective. It should also be

clear that im (φ1) ⊆ ker(φ2). Let a ∈ ker(φ2). This means that φ2(a) = 0, so that a ∈ I. Then we

have that φ1(a) = a, and a ∈ im (φ1). �

Let I1 and I2 be ideals of R, then we have an exact sequence

0→ I1 ∩ I2 → I1 ⊕ I2 → I1 + I2 → 0

where the first map sends a 7→ a ⊕ a and the second map sends a1 ⊕ a2 → a1 − a2.

This is an exact sequence because it should be clear that the first map, call it φ1, is injective

and the second map, φ2, is surjective. To see that im (φ1) = ker(φ2), it should be clear from the

definition of the maps that im (φ1) ⊆ ker(φ2). To see the other containment, let a1 ⊕ a2 ∈ ker(φ2).

This means that a1 − a2 = 0 in I1 + I2, which implies that a1 = a2. Now a1 ∈ I1 and a2 ∈ I2, so that

a1 ∈ I1 ∩ I2 and φ1(a1) = a1 ⊕ a2.
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Next, it should be clear that the sequence of maps

0→ R→ R ⊕ R→ R→ 0

where the maps are the same as the sequence before, gives an exact sequence of R-modules. This

will be claimed without proof, as the proof is very similar to the last claim.

Proposition 12 (Five-Lemma). [Lan93, p.169] Let the following be a complex of R-modules

0 A B C 0

0 A′ B′ C′ 0

←

→
←→ g

←

→
p

←→ f

←

→
q

←→ h

←

→

←

→

←

→
s ←

→
t ←

→

if the rows are exact sequences, and g and f are isomorphisms, then h is an isomorphism as well.

Proposition 13. Let I1 and I2 be ideals of R. Then the sequence of maps:

0→ R/I1 ∩ I2 → R/I1 ⊕ R/I2 → R/I1 + I2 → 0

is exact.

Proof. First, we have a large commutative diagram:

0 0 0

0 I1 ∩ I2 I1 ⊕ I2 I1 + I2 0

0 R R ⊕ R R 0

0 R/I1 ∩ I2 R/I1 ⊕ R/I2 R/I1 + I2 0

0 0 0

←→ ←→ ←→

←

→

←

→

←→

←

→

←→

←

→

←→

←

→

←

→

←→

←

→

←→

←

→

←→

←

→

←

→

←→

←

→

←→

←

→

←→
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We can compress this to the diagram:

0 0

(I1 ⊕ I2)/I1 ∩ I2 I1 + I2

(R ⊕ R)/R R

(R/I1 ⊕ R/I2) /(R/I1 ∩ I2) R/I1 + I2

0 0

←→ ←→

←→

←

→

←→

←→

←

→

←→

←→

←

→

←→

where the columns are exact sequence and the first two rows are isomorphisms. Then by the Five-

Lemma above, we know that the third row is an isomorphism, which means that the sequence in

question is exact. �

Theorem 14. Chinese Remainder Theorem: Let a1, . . . an be ideals of a ring A such that ai+a j = A

for all i , j. Given elements x1, . . . , xn ∈ A, there exists x ∈ A such that x ≡ xi(mod ai) for all

i.[Lan93]

Corollary 15. Let a1, . . . , an be ideals of A. Assume that ai + a j = A for i , j. Let

f : A→
n∏

i=1

A/ai = (A/a1) × · · · × (A/an)

be the map of A into the product induced by the canonical map of A onto A/ai for each factor. Then

the kernel of f is
⋂n

i=1 ai, and f is surjective, thus giving an isomorphism

A/
⋂

ai
�
−→

⋂
A/ai

[Lan93]
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Last, we define what an algebra over a ring is.

Definition 16 (algebra). Let A be a R-algebra. This means that A and R are both rings, and A acts

on R via a ring homomorphism f : R → A which defines an operation on A on R with the map

(r, a) 7→ f (r)a for all r ∈ R and a ∈ A. [Lan93]

3.2 Sheaf Theory

Next, we introduce some basic sheaf theory. My research is on a generalization of the spline

space to a sheaf, so we need to be familiar with these basics for sheaves. Our main object will be

a sheaf of subalgebras on a topological space. When we try to prove things about this sheaf, we

can prove things locally, or just on open sets of the topological space. This makes things easier,

because on certain open sets the sheaves are just algebras, instead of sheaves of algebras.

Definition 17. [Har77, II.1] Let X be a topological space. A presheaf F of rings on X consists of

the data:

• for every open set U ⊆ X, a ring F (U), and

• for every inclusion V ⊆ U of open subsets of X, a morphism of rings ρUV : F (U) → F (V),

subject to the conditions:

– F (∅) = 0 where ∅ is the empty set,

– ρUU is the identity map F (U)→ F (U), and

– if W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦ ρUV .

Definition 18. [Har77, II.1] A presheaf F on a topological space X is a sheaf if it satisfies the

following:

• if U is an open set, if {Vi} is an open covering of U, and if s ∈ F (U) is an element such that

s
∣∣∣
Vi

= 0 for all i, then s = 0.
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• if U is an open set, if {Vi} is an open covering of U, and if we have elements si ∈ F (Vi) for

each i, with the property that for each i, j, si

∣∣∣
Vi∩V j

= s j

∣∣∣
Vi∩V j

, then there is an element s ∈ F (U)

such that s
∣∣∣
Vi

= si for each i.

The first condition here implies that the ′s′ we get from the second condition is unique.

Definition 19. [Har77, II.1] If F is a presheaf on X, and if P is a point of X, we define the stalk

FP, of F at P to be the direct limit of the groups F (U) for all open sets U containing P, via the

restriction maps ρ.

An element of a stalk FP can be written as 〈U, s〉, wehre U is an open neighborhood of P, and s

is an element of F (U). Two such pairs 〈U, s〉 and 〈V, t〉 define the same element of FP if and only

if there is an open neighborhood W of P with W ⊆ U ∩ V , such that s
∣∣∣
W

= t
∣∣∣
W

. In this way, we can

talk about the elements of FP as germs of sections of F at the point P. [[Har77] II.1]

Definition 20. [Har77, II.1] If F and G are presheaves on X, a morphism φ : F → G consists of a

morphism of abelian groups φ(U) : F (U)→ G(U) for each open set U, such that wherever V ⊆ U

is an inclusion, the diagram below commutes:

F (U) G(U)

F (V) G(V)

←

→
φ(U)

←→ ρUV ←→ φ′UV

←

→
φ(V)

This definition of a morphism of sheaves induces a map on the stalks, denoted by φP : FP → GP.

A morphism will be an isomorphism if the morphisim has a two-sided inverse.

The next proposition can make working with sheaves easier than one might think. The stalks

of a sheaf, a sheaf of rings, looks like a local ring. So we prove exactness of a sequence of sheaves

can checking exactness on the stalks, so that a sufficient argument on local rings would work.

Proposition 21. [Har77, II.1] If φ : F → G be a morphism of sheaves on a topological space

X. Then φ is an isomorphism if and only if the induced map on the stalk φP : FP → GP is an
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isomorphism for every P ∈ X.

Definition 22 (restriction sheaf). [Har77, II.1] If U is an open set of X, which is a topological

subspace of X with the induced topology, then F
∣∣∣
U

is the restriction of F onto U, and F
∣∣∣
U

(V) =

F (U ∩ V) for any open set V ⊆ X so that F
∣∣∣
Z

is a sheaf on X. Note that as long as P ∈ U, the stalk

of F
∣∣∣
U

at P is the same as FP.

Definition 23 (subsheaf). [Har77, II.1] A subsheaf of a sheaf F is a sheaf F ′ such that for every

open set U ⊆ X, F ′(U) is a subring of F (U), and the restriction maps of the sheaf F ′ are induced

by those of F . It also follows that for every point P, the stalk F ′P is a subring of FP.

Definition 24 (kernel, image, cokernel). [Har77, II.1] If φ : F → G is a morphism of presheaves,

we can define the presheaf kernel of φ, the presheaf image of φ, and the presheaf cokernel of φ

to be presheaves given by the maps U 7→ ker(φ(U)), U 7→ im (φ(U)), and U 7→ coker(φ(U))

respectively.

In this way, ker(φ) is a subsheaf of F , and im(φ) can be identified as a subsheaf of G.

If we are given a morphism of sheaves instead of presheaves, the presheaf kernel will auto-

matically be a sheaf, but the presheaf image and cokernel are usually not, so we use sheafification

to find the most appropriate sheaves to represent the image and cokernel which can be found in

[Har77, II.1 Definition 1.2].

Remark 25. Let φ : F → G be a morphism of sheaves. In [Har77, II.1 Exercise 1.2] we find

that the stalk of the kernel is the same as the kernel of the map on the stalks of the sheaves, that

is: (ker φ)P = ker(φP) for each point P. Further, the same things happens to the image sheaf:

(im φ)P = im (φP) for all points P.

Definition 26 (exact sequence). [Har77, II.1] A sequence

. . .F i−1 φi−1

−−→ F i φi

−→ F i+1 → . . .
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of sheaves and morphisms is exact if at each stage ker(φi) = im(φi−1).

Proposition 27. The exact sequence of sheaves and morphisms

. . .F i−1 φi−1

−−→ F i φi

−→ F i+1 → . . .

is exact if and only if for each P ∈ X the corresponding sequence of stalks is exact as a sequence of

rings. ([Har77, II.1, Ex 1.2])

First, exactness of that sequence is equivalent to showing that the appropriate kernels and im-

ages in 26 are isomorphic. Showing that the kernel and images are isomorphic is equivalent to

showing that they are isomorphic on the stalks 21. But by 25, showing they are isomorphic on the

stalks is equivalent to showing exact of the sequence of sheaves on their stalks 26.

Proposition 28. The exact sequence of sheaves and morphisms

. . .F i−1 φi−1

−−→ F i φi

−→ F i+1 → . . .

is exact if and only if for every P ∈ X, there is an open set U such that x ∈ U and

. . .F i−1
∣∣∣
U

φi−1

−−→ F i
∣∣∣
U

φi

−→ F i+1
∣∣∣
U
→ . . .

is an exact sequence.

This proposition is true because both conditions are equivalent to showing the exactness on all

of the stalks of the sheaves (27), and the stalk of F at P ∈ U is isomorphic to the stalk of the

restricted sheaf F
∣∣∣
U

(22).

The proposition above means that if we can show a sequence remains exact for any ring, that

will be enough to show that the sequecnce remains exact for any sheaves of rings.
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3.3 Homology and Cohomology

Finding a complex for a spline space, or spline sheaf, and proving that you’ve got a resolution

makes it so studying the spline space can be done by studying the complex. In this section, we

introduce how complexes, homology, and cohomology work. Then we look into sheaf cohomology

and one example which is Čech Cohomology.

In order to make any of these work, we will need to dive into some category theory, in particular,

we need to work with objects in an abelian category.

Definition 29. An abelian category is a category C such that: for every two objects A and B in

C,Hom(A, B) has a structure of an abelian group; the composition law is linear; finite direct sums

exist; every morphism has a kernel and a cokernel; every monomorphism is the kernel of its cok-

ernel, every epimorphism is teh cokernel of its kernel; and finally, every morphism can be factored

into an epimorphism followed by a monomorphism. [Har77, III.1]

Some examples of abelian categories include the category of abelian groups, the category of

modules over a ring, and the category of sheaves of OX-modules on a ringed space (X,OX). [Har77,

III.1]

Now we can review some homological algebra.

A complex Â in an abelian category C is a collection of objects Ai, i ∈ Z, and morphisms

di : Ai → Ai+1, such that di+1 ◦ di = 0 for all i. In most cases we work with, the objects Ai are

only specified up to a certain range, like i ≥ 0, so we say that Ai = 0 for all other i. A morphism

of complexes f : Â → B̂ is a set of morphisms f i : Ai → Bi for each i, which commute with the

boundary maps di. [Har77, III.1]

Then the ith cohomology object hi(Â) of the complex Â is defined to be ker(di)/im (di−1). If

f : Â → B̂ is a morphism of complexes then there is an induced map hi( f ) : hi(Â) → hi(B̂).

If 0 → Â → B̂ → Ĉ → 0 is a short exact sequence of complexes, then there are natural maps
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δi : hi(Ĉ)→ hi+1(Â) giving rise to a long exact sequence

· · · → hi(Â)→ hi(B̂)→ hi(Ĉ)
δi

−→ hi+1(Â)→ . . .

[Har77, III.1]

Two morphisms of complexes f , g : Â → B̂ are homotopic, written like f ∼ g, if there is a set

of morphisms ki : Ai → Bi−1 for each i such that f −g = dk +kd. The collection of morpshisms (ki)i

is called the homotopy operator. If f ∼ g, then f and g induced the same morphism hi(Â) → hi(B̂)

on the cohomology objects, for each i. [Har77, III.1]

Let F : C → C′ be a covariant functor from one abelian category to another. We say F

is additive if for any two objects A, B ∈ C, the induced map Hom(A, B) → Hom(FA, FB) is a

homomorphism of abelian groups. We say F is left exact if it is additive and for every short exact

sequence

0→ A′ → A→ A′′ → 0

in C, the sequence

0→ FA′ → FA→ FA′′

is exact in C′. If we can write 0 on the right side instead of the left, we say that F is right exact. If

F is both left exact and right exact, we say that F is exact. [Har77, III.1]

Next, we discuss resolutions and derived functors. The idea is that the original object we are

building a resolution for, can literally be replaced by the resolution, so that studying the object is

the same as studying the resolution. Functors will not always give an exact sequence when being

applied to an exact sequence. For example, the covariant Hom functor is left-exact. The derived

functors are ways to continue an exact sequence after applying a functor like that, into a longer

exact sequence.

We say an object I ∈ C is injective if the functor Hom(·, I) is exact. An injective resolution of
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an object A ∈ C is a complex Î, where Ii = 0 for i < 0, with a morphism ε : A → I0, such that Ii is

an injective object of C for each i ≥ 0, and the sequence

0→ A
ε
−→ I0 → I1 → . . .

is exact. [Har77, III.1]

If every object of C is isomorphic to a subobject of an injective object of C, we say that C has

enough injectives. In this case, every object of C has an injective resolution. [Har77, III.1]

Let C be an abelian category with enough injectives, and let F : C → C′ be a covariant left

exact functor. Then we construct right derived functors RiF, i ≥ 0, of F as such: for each object

A ∈ C, we choose just one injective resolution Î of A. Then we define RiF(A) = hi(F(Î)). [Har77,

III.1]

This next Theorem verifies that derived functors exist.

Theorem 30. [Har77, Theorem 1.1A] Let C be an abelian category with enough injectives, and let

F : C → C′ be a covariant left exact functor to another abelian category C′. Then

1. For each i ≥ 0, RiF is an additive functor from C to C′. Furthermore, it is independent (up to

natural isomorphism of functors) of the choices of injective resolutions made.

2. There is a natural isomorphism F � R0F.

3. For each short exact sequence 0→ A′ → A→ A′′ → 0, and for each i ≥ 0, there is a natural

morphism δi : RiF(A′′)→ Ri+1F(A′), such that we obtain a long exact sequence

· · · → RiF(A′)→ RiF(A)→ RiF(A′′)
δi

−→ Ri+1F(A′)→ Ri+1F(A)→ . . .

4. Given a morphism of the exact sequence of 3 above, to another 0 → B′ → B → B′′ → 0,
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then δ’s give a commutative diagram

RiF(A′′) Ri+1F(A′)

RiF(B′′) Ri+1F(B′)

←

→
δi

←→ ←→

←

→
δi

5. For each injective object I of C, and for each i ≥ 0, we have RiF(I) = 0.

Next, we can look into Cohomology theories for Sheaves. First, we find that the category

of sheaves of OX-modules where (X,OX) is a ringed space, is an abelian category with enough

injectives.

Proposition 31. [Har77, Proposition 2.2] Let (X,OX) be a ringed space. Then the category of

sheaves of OX-modules has enough injectives.

Letting OX be the constant sheaf of rings Z, then the category of OX-modules is the same as the

category of abelian groups over the topological space X.

Definition 32. [Har77, III.2] Let X be a topological space. Let Γ(X, ·) be the global section functor

from abelian groups over X to abelian groups. We define the cohomology functors Hi(X, ·) to be the

right derived functors of Γ(X, ·). For any sheaf F , the groups Hi(X,F ) are the cohomology groups

of F .

Next, we introduce the Čech cohomology for a sheaf. In particular, we construct Čech co-

homology groups for a sheaf of abelian groups on a topological space X with respect to an open

covering of X. We find that if X is a Noetherian seperated scheme, the sheaf is quasi-coherent, and

the open covering is of open affine subschemes, then the Čech cohomology groups are precisely

the cohomology groups for the sheaf identified above. Therefore, taking Čech cohomology gives a

practical way to compute the cohomology of a quasi-coherent sheaf on a scheme.

Definition 33. [Har77, III.4] Let X be a topological space, and letU = (Ui)i∈I be an open covering
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of X. Let I have a well-ordering. For a finite set of indices i0, . . . , ip ∈ I we write the intersection

Ui0 ∩ Ui1 ∩ · · · ∩ Uip as Ui0,...,ip .

Now let F be a sheaf of abelian groups on X. The complex C◦(U,F ) as follows: for each

p ≥ 0, let

Cp(U,F ) =
∏

i0<···<ip

F (Ui0,...,ip)

Thus an element α ∈ Cp(U,F ) is determined by giving an element αi0,...,ip ∈ F (Ui0,...ip) for each

(p + 1)-tuple i0 < · · · < ip of elements of I. Then we defined the coboundary map d : Cp → Cp+1

as follows:

(dα)i0...ip =

p+1∑
k=0

(−1)kαi0,...,îk ,...,ip+1

∣∣∣
Ui0 ...ip+1

.

where îk means to omit ik. Note that αi0,...,îk ,...,ip
is an element of F (Ui0,...,îk ,...,ip

), we can restrict to

Ui0...ip+1 to get an element of F (Ui0,...ip+1). You can easily check that d2 = 0.

Definition 34. [Har77, III.4] Let X be a topological space and letU be an open covering of X. For

any sheaf of abelian groups F of X, we defined the pth Čech cohomology group of F , with respect

to the coveringU, to be

Hp(U,F ) = hp(C◦(U,F ))

When it comes what we’ve done with quasi-spline sheaves, we try to use an altered version of

Čech cohomology, where instead of using open subschemes, we use closed subschemes.

3.4 Schemes

Next, we need to discuss a bit of scheme theory. We’ve addressed sheaves, which cover our

’sheaf of splines’, but we also look into what is called the ’quasi-spline scheme’, which includes

the topology that the splines are defined on together with the sheaf of splines.

Let A be a commutative ring with unity. We define Spec A to be the set of prime ideals of A.
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Let p ⊆ A be a prime ideal. That is to say, p is an ideal of A, and if x, y ∈ A and xy ∈ p, then it

is the case that x ∈ p or y ∈ p.

Let a ⊆ A be an ideal of A, we define V(a) ⊆ Spec A to be the set of all prime ideals that contain

a.

We define the topology on Spec A by taking sets of the form V(a) to be the closed subsets.

Notice that V(A) = ∅, V((0)) = Spec A, and the lemma below shows that all intersections and finite

unions of sets of that form remain of that form. Therefore, these closed sets make up a topology on

Spec A. This topology is usually known as the Zariski Topology and the next Lemma shows how

this satisfies the other axioms for a topology.

Lemma 35 ([Har77] II.2 Lemma 2.1). • If a and b are ideals of A, then V(ab) = V(a) ∪ V(b).

• If {ai} is any set of ideals of A, then V(
∑

i ai) =
⋂

V(ai).

• if a and b are any two ideals, V(a) ⊆ V(b) if and only if
√

a ⊇
√

b.

Here,
√

a means the radical ideal of a, which is:
√

a = {x : xn ∈ a for some n ∈ N}.

Now we can define the sheaf of rings on A, denoted by OSpec A. For any prime p ∈ Spec A, let

Ap denote the localization of A at p. Let U ⊆ Spec A be an open set, then we define OSpec A(U) to

be the set of functions s : U 7→
∐

p∈U Ap such that

• s(p) ∈ Ap for each p ∈ Spec A

• for each p ∈ Spec A, there is a open set V where p ∈ V and V ⊆ U, and elements a, f ∈ A,

such that for each q ∈ V , where f < q, and s(q) = a/ f ∈ Aq.

It should be clear that sums and products of these functions will give back these kinds of functions,

and that 1 ∈ Ap gives the identity. In this way, OSpec A(U) is a commutative ring with identity.

Further notice, that for open sets V ⊆ U, that natural restriction map OSpec A(U) → OSpec A(V) is a

homomorphism of rings. From this, it’s clear that OSpec A is a presheaf, and from the definition and

its local characteristics it can shown to be a sheaf. [[Har77] II.2 p. 70]
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Definition 36 ([Har77] II.2). Let A be a ring. The spectrum of A is the pair of the topological space

Spec A and the sheaf of rings OSpec A.

Definition 37 ([Har77] II.2). A ringed space is a pair (X,OX) where X is a topological space and OX

is a sheaf of rings on X. A morphism of ringed spaces from (X,OX) and (Y,OY) is the pair ( f , f #) of

a continuous map f : X → Y and a map f # : OY → f∗OX of sheaves of rings on Y . Notice that for

a open set U ⊂ Y , f∗OX(U) := OX( f −1(U)).

Definition 38 ([Har77] II.2). A ringed space (X,OX) is a locally ringed space if for every point

P ∈ X, the stalk OX,p is a local ring. A morphism of locally ringed spaces is a morphism ( f , f #) or

ringed spaces, such that for each point p ∈ X, the induced map of local rings f #
P : OY, f (p) → OX,p is

a local homomorphism of local rings.

To see how the local homomorphism f #
P : OY, f (p) → OX,p is induced check [[Har77] II.2 p.72-

73].

Last, we require that f #
P : OY, f (p) → OX,p is a local homomorphism. That is to say, if A and B are

local rings with ring homomorphism ρ : A → B, with mA and mb being their respective maximal

ideals, then ρ is a local homomorphism if ρ−1(mB) = mA. [[Har77] p.73]

Note that a morphism of locally ringed spaces will be an isomorphism if this morphism has

a two-sided inverse. In this way, the morphism ( f , f #) is an isomorphism if and only if f is a

homeomorphism and f # is an isomorphism of sheaves. [[Har77] II.2]

Definition 39 ([Har77] II.2 p.74). An affine scheme is a locally ringed space (X,OX) which is iso-

morphic to the spectrum of some ring. A scheme is a locally ringed space (X,OX) in which every

point has an open neighborhood U such that the topological space U, along with the restricted

sheaf OX

∣∣∣
U

is an affine scheme. We call the sheaf OX the structure sheaf of the scheme (X,OX). A

morphism of schemes is a morphism of locally ringed spaces, and isomorphism is a morphism with

a two-sided inverse.

Next, we can construct schemes from graded rings. Check [[Har77] II.2 p.76] for the construc-
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tion.

Example 40 ([Har77] II.2 Ex 2.5.1). Let A be a ring, then the projective n-space over A to the be

scheme Pn
A = Proj A[x0, . . . , xn].

Definition 41 ([Har77] II.2). Let S be a fixed scheme. A scheme over S is a scheme X, together

with a morphism X → S . If X and Y are schemes over S , a morphism of X to Y as schemes over

S , is a morphism f : X → Y which is compatible with the given morphisms to S . This makes a

category of schemes over S .

Before moving on, we need to discuss how to take a spec of a sheaf of algebras, which is called

the global spec of an algebra.

Definition 42 (global spec of sheaf of algebras). [Har77, II.6 Exercise 5.17] Let Y be a scheme and

letA be a quasi-coherent sheaf of OY-algebras. There is an unique scheme X, and a morphism f :

X → Y such that for every open affine V ⊆ Y , f −1(V) � SpecA(V), and for every inclusion U → V

of open affines of Y , the inclusion morphism f −1(U) → f −1(V) corresponds with a restriction

homomorphismA(V)→ A(U). The scheme X is SpecA.

Definition 43 ([Har77] II.3). A scheme X is locally noetherian if it can be covered by open affine

subsets Spec Ai where each Ai is a noetherian ring. We say that X is noetherian if it is locally

noetherian and quasi-compact.

Last, we want to introduce open subschemes and closed subschemes.

Definition 44 ([Har77] II.2 Exercise 2.2). An open subscheme of a scheme X is a scheme U, whose

topological space is an open subset X, and whose structure sheaf OU is isomorphic to the restriction

OX

∣∣∣
U

of the structure sheaf of X.

Definition 45 ([Har77] II.3). A closed immersion is a morphism f : Y → X of schemes such

that f induces a homeomorphism of sp(Y) onto a closed subset of sp(X), and the induced map

f # : OX → f∗OY of sheaves on X is surjective. A closed subscheme of a scheme X is an equivalence
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class of closed immersions, where we say f : Y → X and f ′ : Y ′ → X′ are equivalent if there is an

isomorphism i : Y ′ → Y such taht f ′ = f ◦ i.

Remark 46 ([Har77] II.3 Example 3.2.3). Let Y be a closed subscheme of an affine scheme X =

Spec A, then Y is also affine, and that there is an ideal a ⊆ A, such that Y is the image of the closed

immersion Spec A/a→ Spec A.

Next, we introduce a sheaf of modules.

Definition 47 ([Har77] II.5). Let (X,OX) be a ringed space. A sheaf of OX-modules is a sheaf F on

X, such that for each open set U ⊆ X, the group F (U) is an OX(U)-module, and for each inclusion

of open sets V ⊆ U, the restriction homomorphism F (U) → F (V) is compatible with the module

structures via the ring homomorphism OX(U) → OX(V). A morphism F → G of sheaves of OX-

modules is a morphism of sheaves, such that for each open set U ⊆ X, the map F (U)→ G(U) is a

homomorphism of OX(U)-modules.

Now, we introduce a little more about sheaves that will be relevant for defining quasi-splines

sheaves.

Definition 48 ([Har77] II.5). Let (X,OX) be a scheme. A sheaf of OX-modules F is quasi-coherent

if X can be covered by open affine subschems Ui = Spec Ai, such that for each i there is an Ai-

module Mi with F
∣∣∣
Ui
� M̃i. The sheaf F is coherent if F is quasi-coherent and each Mi can be

given as a finitely generated Ai-module.

Definition 49 ([Har77] II.5). Let (X,OX) be a scheme. A sheaf of ideals on X is a sheaf of modules

I which is a subsheaf of OX. In another words, for every open set U ⊆ X, I(U) is an ideal of

OX(U).
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4. Quasi-Spline Sheaves and Contact Subschemes

Given a base scheme Y , a quasi-coherent sheaf of OY-subalgebras S of the OY-algebra O
∏

s
Y is

called a sheaf of s-sheeted quasi splines over Y . We call the global spec

X = Spec S

an s-sheeted quasi-spline scheme over Y . [Cla15]

We have two maps homomorphisms locally given as π∗ : OY → S , g 7→ (g, . . . , g) and σ∗i :

S → OY , (g1, . . . , gs) 7→ gi. Each of which defines a morphism and s-sections

X
π
��

Y

σi

VV

σi’s that are closed immersions, and whose image is called the ith sheet of X, we denote by Xi. The

quasi-coherent sheaf of ideals defined the ith sheet is locally given by {(g1, . . . , gs) : gi = 0}.

To any quasi-spline scheme X, there are subschemes Ki j ⊆ Y locally defined by the quasi-

coherent ideals

Ji j = 〈gi − g j | (g1, . . . , gs) ∈ S 〉.

The closed subschemes Ki j is the same as Xi ∩ X j. We refer to them as the contact subschemes of

X.

The following are a couple examples of quasi-spline sheaves. To build a quasi-spline sheaf, we

can specifiy ideals, which we call later as ideal-difference conditions, and then build a quasi-spline

sheaf from those ideals like in this next example:
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Example 50. Let Y = Spec R[x]. The sheaf associated to the R[x]

S = {(g1, g2) | g1 − g2 ∈ (x2)} ⊆ (R[x])2

is a sheaf of quasi-splines of 2 sheets. You can think of this as the spline space of splines with

continuous first derivatives over the subdivision R = (−∞, 0] ∪ [0,∞). This example was given in

[Cla15]

In that last example, the contact ideal is equal to (x2), which geometrically correspondes to the

origin in the real line with an first order infinitesimal thickening.

Example 51. Let Y = Spec R[x]. The sheaf associated to the R[x]

S = {(g1, g2) | g1 − g2 ∈ (x2 + 1)} ⊆ (R[x])2

is a sheaf of quasi-splines of 2 sheets. This example was given in [Cla15]. Unlike the example

above, this one does not have an easy geometric description.

The contact ideals are not the only ideals that can determine a quasi-spline sheaf in this way.

There are a couple of examples that are given after the proof of that Lemma. Take for example, the

3-sheeted quasi-spline sheaf

S = {(g1, g2, g3) ∈ O3
Y | g1 − g2 ∈ (x2), g1 − g3 ∈ (x2), and g2 − g3 ∈ (x)}

Here, the contact ideals are all equal to (x2), there is no contact ideal equal to (x).

We can specify ideal sheaves Ii j ⊆ OY for each 1 ≤ i < j ≤ s and determine a s-sheeted quasi-

spline sheaf S using these ideals as below, and we say that S is given by ideal-difference conditions

Ii j’s.

Definition 52 (Ideal-Difference Conditions). Let S be a s-sheeted quasi-spline sheaf over a scheme
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Y . We say that S is determined by ideal-difference conditions (Ii j)i j, where Ii j are ideal sheaves

over Y for each i, j such that 1 ≤ i < j ≤ s, when S is the kernel of the map

Os
Y →

⊕
i j

OY/Ii j.

or in another words, S is locally defined as:

S = {(g1, . . . , gs) ∈ Os
Y : gi − g j ∈ Ii j}

Let Di j be the corresponding closed subscheme of Y whose ideal sheaf is Ii j.

Now we can describe how smoothness conditions can translate to information given by ideals.

We can require particular smoothness conditions on the Di j’s for any section g = (g1, . . . , gs) ∈ S.

Let b ∈ domain(g)∩Ω, then g ∈ Cr at b if for every i, j such that b ∈ Di j, gi − g j vanishes on the rth

order infinitesimal neighborhood of b in Y . This is the same thing as gi and g j have the same value

on Di j, and so do their ith derivatives for 0 < i ≤ r. This is the same as requiring that that contact

subscheme is contains the (r + 1)th order neighborhood of the reduction of the Di j, which is to say:

Ki j ⊇ (
√

Di j)(r+1).

This next section we go over research on splines using moduli theory done in Clarke’s paper

[Cla15]. This way, we can study sheaves of splines that depend on parameters. We can look into

the moduli space of quasi-spline sheaves, and the moduli space of ideal-difference conditions.

Typically when studying spline spaces, we are given a geometric object where the splines are

defined with their smoothness conditions, then we ask what the dimension of the entire vector space

of splines is, or other things concerned the splines. Working in such generality, we can, in a sense,

reverse the question. Instead of working with splines on a given region, a region cut into pieces via

smooth conditions for the splines, we ask what is the most optimal subdivision of the given region.
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[Cla15]

This question can be rephrased as how to minimize a functional on Cr(Ω) where Ω is some

domain. The points of the moduli space cooresponds to a subdivision of a region of Ω with a spline

sheaf over that. The moduli spaces of spline schemes can be thought as the set of all subdivisions

of a region Ω. As these spaces become more understood, techniques for optimal subdivisions of Ω

could be found. Existence of these moduli spaces has been proved in certain cases [Cla15].

Before discussing the moduli space of quasi-spline sheaves we have to define a family of quasi-

spline sheaves. Let Z be a Y-scheme. Then we can define a Z-family of quasi-splines sheaves

over Y as a

• a sheaf of quasi-splines S over Y such that

• for any morphism f : Z′ → Z, the pullback π∗BS is a sheaf of quasi-splines over Z′ ×Z B.

The way this is defined eliminates situations of sheaves S ⊂ Os
B whose inclusion map S → Os

B fails

to be an inclusion after fixing the values of the parameters. [Cla15]

Let T be a locally Noetherian scheme and Y ⊂ Pn
T be a closed subscheme, with Y is flat over

T . LetM be the moduli space of quasi-spline sheaves. The moduli spaceM represents the con-

travariant functor

QS(s)(Y/T )(Z) = {Z-families of quasi spline sheaves S ⊆ Os
Z×T Y}

in the category of locally Noetherian schemes [Cla15, Theorem 3.10]. A family of quasi-spline

sheaves is defined precisely in the way to make QS(s)(Y/T ) functorial. [Cla15]

The construction of the moduli space of quasi-spline sheaves QS (s)(Y/T ) it was assumed that

Y is flat. This means that the Hilbert polynomials of S is locally independent of the point in

QS (s)(Y/T ). [Cla15]
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5. Contact Ideals and Ideal-Difference Conditions

My research focuses on the contact ideals of a spline sheaf. At first, we hypothesized that every

quasi-spline sheaf is determined by is contact ideals. Let S be a s-sheeted quasi-spline sheaf with

contact ideals Ji j’s, then we hypothesized that the sequence below is exact:

0→ S → Os
Y →

⊕
i j

OY/Ji j

which is the same as saying that S be can described locally as such:

S = {(g1, . . . , gs) : gi − g j ∈ Ji j}

But we find that this isn’t true. You can think of quasi-spline sheaves that are not determined by its

contact ideals, as subsheaves of quasi-spline sheaves that are.

Next, we tried to find how contact ideals change when the ideal-difference conditions are

changed slightly. Let S be a s-sheeted quasi-spline sheaf with contact ideals Ji j’s, then we de-

fine S′ to be the s-sheeted quasi-spline sheaf

S′ = {g = (g1, . . . , gs) : g ∈ S and ga − gb ∈ IP}

where a, b ∈ {1, . . . , s}, and IP is an ideal sheaf of OY . Geometrically, S′ is the quasi-spline sheaf

resulting from pinching the sheets Xa and Xb of Spec S to a closed subscheme P of Y , where IP is

the ideal sheaf of P. We hypothesized that the contact ideals for S′, denoted by J ′i j, would be:

J ′ab = Jab ∩ JP
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J ′ai = Jai ∩ (Jbi +J ′ab)

J ′a j = Ja j ∩ (Jb j +J ′ab)

J ′bi = Jbi ∩ (Jai +J ′ab)

J ′b j = Jb j ∩ (Ja j +J ′ab)

J ′i j = Ji j ∩ (J ′ai +J ′bi) ∩ (J ′a j +J ′b j).

To prove this, we try to show that we can restrict to the case where S is 4-sheeted. The idea here

is that, the new parts that will be added to the contact ideals will be contained inside of Xa ∪ Xb, or

inside of P. Therefore, to find the contact ideal Ji j, we only need to see how things change for the

4-sheets Xa, Xb, Xi, and X j. This is not true all the time though.

These formulas seem to work for the majority of cases when Y = An
Q

for some n. But we find

another counterexample showing these formulas do not always work.

This prompted me to further my inquiry into what makes contact ideals special as compared

to any other set of ideals. Through the rest of my research I assume that the spline sheaves I’m

working with are determined by their contact ideals. I find conditions for when a set of ideals are

the contact ideals for a quasi-spline sheaf.

First, ifJi j’s are contact ideals for some quasi-spline sheaf S, thenJi j ⊆ Jik +Jk j for all i, j, k.

We find necessary and sufficient conditions for a set of ideals (Ji j)1≤i< j≤s to be the contact ideals

for some quasi-spline sheaf S that is determined by ideal-difference conditions. The conditions are

as such: let J = (Ii j)i j be ideal-difference conditions for a spline sheaf S. We say that J′ = (Ji j)i j

are contact ideals for S if and only if

• J′ satisfies the conditions Ji j ⊆ Jik +Jk j for all i, j, k

• Ji j ⊆ Ii j for all i, j

• if there is another J′′ = (J ′i j)i j that satisfies the inequalities above and J ′i j ⊆ Ii j for all i, j,
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then J ′i j ⊆ Ji j for all i, j.

This can be used to obtain formulas for certain contact ideals when the majority of contact ideals

are known.

We also look into ways to obtain new sets of ideals that satisfy the conditions Ji j ⊆ Jik + Jk j

from old sets that satisfy the same inequalities. Indeed, the counterexample for the pinching formu-

las show that the formulas given do not always give a set of ideals that satisfy those containments.

I hope this effort will give better insight into what the true pinch formulas may be.

Last, we try to work out a complex for a quasi-spline sheaf using the contact subschemes and

the intersections of contact subschemes. We assume the quasi-spline sheaf is determined by its

contact ideals, so that the first step of the sequence is exact. This complex looks very similar to a

Čech complex; but instead of open subschemes, we use closed subschemes. So far, we know this

complex is exact when s = 3, and it seems plausible that it is true for s = 4, but I suspect that it is

not always exact for any s.

In the case that this complex is a resolution for S, then we can use this to as an alternative way

to compute the dimension of S. We give a particular example of this when Y = A1
k

where k is a

infinite field.

5.1 Spline Sheaves Determined by Contact Subschemes

Earlier, we found that a spline space is determined by the intersections of its maximal faces. If

there is a smallest affine form `i j that for each i, j that contains σi ∩ σ j, then we can write:

S r
m(∆) = {F

∣∣∣
σi
−F

∣∣∣
σ j
∈ (`r+1) | F : ∆→ R, F ∈ Cr(∆), F

∣∣∣
σi

is a polynomial of degree ≥ m for all i}

If this result held for quasi-spline sheaves, that is, if the contact ideals of a quasi-spline sheaf



48

determine it, then we can a morphism:

M→
∏

i, j

Hilb

from the morphism of quasi-spline sheaves,M, and a product of Hilbert schemes, where the map

on the functors is S → {Ki j}i j where Ki j’s are the contact subschemes of S. We could prove this

by using the Valuative Criterion of Flatness to show that Xi ∩ X j has a locally constant Hilbert

polynomial. The Xi’s are the sheets of the quasi-spline scheme Spec (S), and the Xi’s always have

locally constant Hilbert polynomial, so we can use an exact sequence to show that Ki j must also

have locally constant Hilbert polynomial. Then there [Cla15, Lemma 4.7] to show that Ki j is flat

over the base scheme Y . This gives the morphismM→
∏

i j Hilb.

There is no an analogous result we have for quasi-spline sheaves. That is, it isn’t always the

case that the contact subschemes determine the quasi-spline sheaf in the way that

S � ker

Os
Y →

⊕
i, j

OY/Ji j


in terms of structure sheaves of contact subschemes.

The following is an example of two different quasi-spline sheaves that have the same contact

ideals, but are different sheaves of algebras. If all quasi-spline sheaves are determined by their

contact ideals, these two quasi-spline sheaves must be the same.

Example 53. Let Y be A2
k

for some infinite field k. Let S be a 3-sheeted quasi-spline sheaf over Y

that is generated by (1, 1, 1) and (0, x, y), so that S also a k[x, y]-module generated by (1, 1, 1), and

tuples of the form (0, xn, yn) for n ≥ 1. Note here that S has contact ideals: I12 = (x), I13 = (y), and

I23 = (x − y) and we let Ki j’s be the contact subschemes corresponding to Ii j.

We now argue that S ( ker(O3
Y →

⊕
i jOKi j). The kernel is also a 3-sheeted quasi-spline

sheaf with the same contact ideals as S. Now (xy, 0, 0) ∈ ker(O3
Y →

⊕
i jOKi j) but we claim that
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(xy, 0, 0) < S.

To see this, assume that (xy, 0, 0) ∈ S, then

(xy, 0, 0) = p0(1, 1, 1) + p1(0, x, y) + · · · + pn(0, xn, yn)

for pi ∈ k[x, y] for all i and some n ∈ N, so that

(xy, 0, 0) = p0(1, 1, 1) + p(0, x, y) = (p0, p0 + px, p0 + py)

where p ∈ k[x, y]. Then p0 = xy, so that (xy, 0, 0) = (xy, xy + px, xy + py), but there is no single

p that can make this happen. Therefore (xy, 0, 0) < S. This means that there are two different

quasi-spline sheaves that have the same contact ideals.

5.2 Ideal-Difference Conditions for a Quasi-Spline Sheaf

There is more than one way to describe a particular quasi-spline sheaf. This section is about

ideal difference-conditions, and how they compare with the contact ideals of a quasi-spline sheaf.

Definition 54 (Ideal-Difference Conditions). Let S be a s-sheeted quasi-spline sheaf over a scheme

Y . We say that S is determined by ideal-difference conditions (Ii j)i j, where Ii j are ideal sheaves

over Y for each i, j such that 1 ≤ i < j ≤ s, when S is the kernel of the map

Os
Y →

⊕
i j

OY/Ii j.

This is the same as saying that locally speaking,

S = {(g1, . . . , gs) : gi − g j ∈ Ii j}
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Let Di j be the corresponding closed subscheme for Ii j.

Remark 55. Note that by definition of contact ideals, the contact ideals of a quasi-spline sheaf also

give ideal difference-conditions for the quasi-spline sheaf.

Lemma 56. Let S be a s-sheeted quasi-spline sheaf given by ideal difference conditions (Ii j)i j and

contact ideals Ji j. Then Ji j ⊆ Ii j for all i, j.

Proof. First, the inclusion of ideal sheaves can be written as an exact sequence, and by using Prop

28 proving the claim locally when the ideal sheaves are ideals of a ring will prove the Lemma. So

let p ∈ Y where Y is the base scheme for S, then we can find an open set U such that p ∈ U where

S(U) is an algebra, OY(U) is a ring, Ii j(U) and Ji j(U) are ideals because S is quasi-coherent.

Let c ∈ Ji j. there exists a section in S, that locally looks like (g1, . . . , gs) and gi − g j = c. Now

S is determined by the ideals Ii j’s, so that (g1, . . . , gs) satisfies the properties that gi − g j ∈ Ii j for all

i, j. This implies that c = gi − g j ∈ Ii j, which gives the containment we need. �

Geometrically, this means that Ki j ⊇ Di j for all i, j.

The following is an example where the ideal-difference conditions for a quasi-spline sheaf are

not the contact ideals.

Example 57. Let Y = Spec R[x]. The sheaf associated to the R[x]-module,

{(g1, g2, g3) ∈ R[x]3 : g1 − g2 ∈ (x2), g1 − g3 ∈ (x2), and g2 − g3 ∈ (x)}

is a sheaf of quasi-splines. Notice that g1 = g2 at the origin and their first derivatives at the origin

are equal too, and the same goes for g1 and g3. Therefore, the same must hold for g2 and g3, so the

contact ideal here is (x2), not (x).

For the rest of this chapter, we will only work with quasi-spline sheaves that are determined

by their contact ideals. Next, we try to find a way to calculate the contact ideals of a quasi-spline

sheaf when only ideal-difference conditions are given. This is important because it is so much
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easier to give just any ideal-difference conditions for a quasi-spline sheaf. The contact ideals are

the canonical example of ideals that give ideal-difference conditions for a quasi-spline sheaf, and

give special geometric information about the quasi-spline sheaf.

Later, we will give equivalent conditions for ideal-difference conditions to actually be the con-

tact ideals: (Ii j)i j are the contact ideals if and only if Ji j ⊆ Jik + Jk j for all i, j, k. See Corollary

65.

5.3 Necessary and Sufficient Conditions for Contact Ideals

We start this section with another suggested conjecture of contact ideals:

Definition 58. Let J = (Ji j)i j be a tuple of ideal sheaves. We say that J satisfies the IDC inequalities

if

Ji j ⊆ Jik +Jk j for all i, j, k

The IDC stands for ideal difference-conditions. Then we’ve got some more notation:

Definition 59. Let J = (Ji j)i j and J′ = (J′i j)i j. Then we say J′ ⊆ J if for all i, j, J′i j ⊆ Ji j. We also

say J′ ( J if J′ ⊆ J and there exists a i, j such that J′i j ( Ji j.

Definition 60. Let J = (Ji j)1≤i< j≤s. Let S J be the quasi-spline sheaf that is given by ideal-difference

conditions Ji j’s.

Lemma 61. Let J = (Ji j)i j and J′ = (J′i j)i j be ideals such that J ⊆ J′. Then S J ⊆ S J′ .

Proof. First assume that J ⊆ J′. Then let (g1, . . . , gs) ∈ S J. Then since J ⊆ J′, we know that

Ji j ⊆ J′i j for all i, j. Then gi − g j ∈ J′i j for all i, j so that (g1, . . . , gs) ∈ S J′ .

�

Conjecture 62. Let J = (Ji j)i j be ideal-difference conditions for a spline sheaf S. We say that

J = (Ji j)i j are contact ideals for S if and only if
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• J satisfies the IDC inequalities

• J ⊆ J

• if there is another J′′ that satisfies the IDC inequalities above and J′′ ⊆ J, then J′′ ⊆ J .

We can prove this. It should be clear that contact ideals for a quasi-spline sheaf will satisfy all

those properties.

Proposition 63. Let S be a s-sheeted quasi-spline sheaf with ideal-difference conditions I = (Ii j)i j.

Let J be a set of ideals that satisfies the conditions above. Then J are the contact ideals for S.

Proof. Note that J ⊆ I, this implies that S J ⊆ S I � S by Lemma 61.

Let J be the contact ideals of S, so that S � SJ . By the properties of J, we know that J ⊆ J,

which implies that S � SJ ⊆ S J.

After proving both containments, its clear that S � S J. �

Lemma 64. Let S be a s-sheeted quasi-spline sheaf with ideal-difference conditions I = (Ii j)i j, and

let (Ji j)i j,kl be contact ideals for S. Say that we do not know what the contact ideal Jkl is. Then

we can show

Jkl = Ikl ∩

⋂
j

Jk j +J jl


Proof. Let J = {(Ji j)i j,kl,Jkl}. Let J′kl be the true contact ideal for Kkl ofS and let J′ = {(Ji j)i j,J

′
kl}.

Then we know that J ′kl ⊆ Jkl.

Next, we can show J satisfies the inequalities contacts should. Indeed, Jkl ⊆ Jk j + J jl for

all j from the definition of Jkl, and J jk ⊆ Jkl + J jl and J jl ⊆ Jkl + J jk for all k, because

J jk ⊆ J
′
kl + J jl ⊆ Jkl + J jl and J jl ⊆ J

′
kl + J jk ⊆ Jkl + J jk since J ′kl and (Ji j)i j,kl are contact

ideals. Then J satisfies the inequalities because all other containments for ideals that don’t involve

the ideal Jkl are satisfied. Then from the Proposition 63, S J must be the same as S. �
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Using this Lemma, once we do a pinch, we only need to know that ideals Jak and Jbk for

k ∈ {i, j}, because we can use the Lemma above to find Ji j.

Corollary 65. Let S be a s-sheeted quasi-spline sheaf over Y given by ideal-difference conditions

(Ii j)i j. Then the set of ideals (Ii j)i j are the contact ideals of S if and only if Ii j ⊆ Iik + Ik j for all i, j

and k , i, j.

Proof. First, we’ll do the forward direction. Assume that (Ii j)i j are the contact ideals for S. Let i, j

be given and let c ∈ Ii j. Then there exists g = (g1, . . . , gs) ∈ S such that gi − g j = c. Now let k , i, j

be given. Then c = gi − g j = (gi − gk) − (gk − g j) ∈ Iik + Ik j. This means that Ii j ⊆ Iik + Ik j, which

completes the forward direction.

Second, we do the backwards direction. It should be clear that the Ii j’s satisfy the all conditions

in 84 because it satisfies the containment conditions and also serves as ideal-difference conditions.

This implies from Proposition 63 that the Ii j’s are contact ideals.

�

Remark 66. The only contact ideals one will need for finding Ji j using the Lemma above are Jik

and Jk j for all k. When s = 3, J12 requires knowledge of all other contact ideals. When s = 4, we

need all contact ideals except J12 and J34. I think for s = 5, there are 3 contact ideals we can use

the Lemma for once we know all the others.

After realizing that the pinch formulas fail and do not always give contact ideals, I have tried to

find operations amongst sets of ideals that send contact ideals to other contact ideals. We’ve already

shown that contact ideals are those ideal difference-conditions that satisfy the IDC inequalities

(Corollary 65).

We aim to prove the following about contact ideals, as described above: Let J = (Ji j)i j be a set

ideals that satisfy the IDC inequalities.

• Let J1 and J2 satisfy the IDC inequalities. Then J1 + J2 satisfy the IDC inequalities.
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• Let c ∈ R where S is over the ring R. Then c · J satisfy the IDC inequalities.

• Let φ : R→ R′, then φ(J)e satisfy the IDC inequalities.

• Let ψ : R′′ → R, then ψ−1(J) are satisfy the IDC inequalities when ψ is surjective.

I conjecture that ψ−1(J) always satisfies the IDC inequalities, but it is only clear to me that its

true when ψ is a quotient map.

It may be difficult to see that there would be only one tuple of ideals that represents the contact

ideals, or just one largest tuple of ideals that satisfies the IDC inequalities and is contained in the

ideal-difference conditions. The next Proposition will make this more clear.

Proposition 67. Let J1 = (J(1)
i j )i j and J2 = (J(2)

i j )i j be tuples of ideals that satisfies the inequalities.

Then tuple of ideals J1 + J2 = (J(1)
i j + J(2)

i j )i j also satisfies the IDC inequalities.

Proof. We will just one of the inequalities. Let i, j, k be given. Since J1 and J2 satisfies the IDC

inequalities, we know that J(1)
i j ⊆ J(1)

ik + J(1)
k j and J(2)

i j ⊆ J(2)
ik + J(2)

k j . Therefore,

J(1)
i j + J(1)

i j ⊆ (J(1)
ik + J(2)

ik ) + (J(1)
k j + J(2)

k j )

�

Corollary 68. Let J1 and J2 both be contact ideals for the spline sheaf S with ideal-difference

conditions J in the sense above. Then J1 + J2 is also contact ideals for S.

Proof. Note that if J(1)
i j ⊂ Ji j and J(2)

i j ⊆ Ji j, then J(1)
i j + J(2)

i j ⊆ Ji j. �

Proposition 69. Let J be set of ideals that satisfy the inequalities such that Ji j ⊆ R. Let c ∈ R, then

c · J also satisfies the IDC inequalities.

Proof. Let g′ ∈ c · Ji j, this implies g′ = cg for g ∈ Ji j. We just need to show that g ∈ c · Jik + c · Jk j.

We know that Ji j ⊆ Jik + Jk j so that g = g1 + g2 where g1 ∈ Jik and g2 ∈ Jk j. This means that

g′ = c(g1 + g2) = cg1 + cg2 ∈ c · Jik + c · Jk j. �
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Definition 70. Let I be an ideal of R and let φ : R→ R′ be a ring homomorphism. Then φ(I)e is the

ideal generated by all elements in φ(I). If φ(I) is already an ideal, then φ(I)e = φ(I).

Proposition 71. Let φ : R → R′, and let J be ideals of R that satisfy the IDC inequalities. Then

φ(J)e satisfies the IDC inequalities in R′.

Proof. Let c ∈ φ(Ji j)e. Then c =
∑n

i=1 digi where di ∈ R′ and gi ∈ φ(Ji j). Now Ji j ⊆ Jik + Jk j implies

that φ(Ji j) ⊆ φ(Jik + Jk j) = φ(Jik) + φ(Jk j). So for each gi, there exists hi ∈ φ(Jik), h′i ∈ φ(Jk j) and

gi = hi + h′i . Therefore, c =
∑

i digi =
∑

di(hi + h′i) =
∑

dihi +
∑

dih′i ∈ φ(Jik)e + φ(Jk j)e. �

Proposition 72. Let ψ : R′′ → R be a surjective ring homomorphism, and let J be ideals of R that

satisfy the IDC inequalities. Then ψ−1(J) satisfies the IDC inequalities.

Proof. Let bi j ∈ ψ
−1(Ji j) where ψ(bi j) = ci j ∈ Ji j, and ci j = cik + ck j ∈ Jik + Jk j. Choose bik = c2

where ψ(c2) = cik. Then we claim that bi j − bik ∈ ψ
−1(Jk j).

To see this, ψ(bi j − bik) = ψ(c1 − c2) = ψ(c1) − ψ(c2) = ci j − cik = ck j ∈ Jk j.

Then bi j = bik + (bi j − bik) where bi j ∈ ψ
−1(Ji j), bik ∈ ψ

−1(Jik), and bi j − bik ∈ ψ
−1(Jk j). �

5.4 Pinch Operation to Find Contact Ideals

This section, we try to find a recursive procedure to find the contact ideals of a quasi-spline

sheaf using its ideal difference conditions.

We start by asking the question, “What happens to the contact ideals of a quasi-spline sheaf

if one more ideal-difference condition is added to S?” This is to say, given a quasi spline sheaf S

given by ideal difference conditions (Ii j)i j, what are the contact ideals of the quasi-spline sheaf S′

locally described by

S′ = {(g1, . . . , gs) : (g1, . . . , gs) ∈ S and ga − gb ∈ JP}.



56

where JP is an ideal sheaf. Geometrically speaking, there are two closed subschemes Xa and Xb

of X such that Xa ∩ Xb = Kab. Adding the ideal difference condition ga − gb ∈ JP means we are

pinching Xa and Xb to the closed subscheme P of Y , so that the contact subscheme Kab gets larger

by P.

Solving this problem would give the recursive step in the algorithm to find the contact ideals of

any quasi-spline sheaf. Indeed, starting with the quasi-spline sheaf with empty contact subschemes,

we add one ideal-difference condition at a time, computing the new contacts after each time. We

add every ideal difference condition that give the quasi-spline sheaf whose contact ideal we want

to find. The last contact ideals we compute will be the contact ideal for the quasi-spline sheaf.

Definition 73. (pinch) Let S be a s-sheeted quasi-spline scheme over a scheme Y , with contact

ideals (Ji j)i j. Let S′ be a s-sheeted quasi-spline scheme over a scheme Y that results from imposing

one new ideal-difference condition on S, say JP, for a closed subscheme P of Y , so that S′ can be

locally described as

S′ = {(gi)i : gi − g j ∈ Ji j for all 1 ≤ i < j ≤ s and ga − gb ∈ JP}.

We can also say that S′ is the result of pinching the ath and bth sheets of S to JP.

Before moving on to show how contact ideals change after pinching, ideal-difference will be

discussed more to make the following proofs easier.

This first Lemma gives ideal-difference conditions for the image of π : S → Op
Y , that forgets

s− p coordinates, none of which are a or b. This alone simplifies the problem to finding the contact

ideals of s-sheeted quasi-spline sheaves for s ≤ 4.

Notation. Let I = {i1, . . . , ip} ⊂ {1, . . . , s}. Let SI denote the image of the map S → Op
Y that projects

on coordinates i1, . . . , ip.

To try to show what the contact ideals of S′ are after pinching, we thought we could restrict

to a subset of sheets. If we want to find the contact ideal J ′i j and the pinch occured amongst the
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sheets Xa and Xb, then we thought we could restrict to the sheets Xa ∪ Xb ∪ Xi ∪ X j and solve the

problem there. But its not quite clear what the ideal-difference conditions for those 4-tuples should

be. Geometrically, we think any new part of K′i j should be inside of P ⊂ Xa ∪ Xb, so that finding

what K′i j on the 4 sheets should give us exactly what K′i j is on the original quasi-spline sheaf. In the

same way, it should appear that the ideal difference-conditions for the 4-sheets should be the same

for S′.

Next, we suggest what the ideal difference-conditions for S′ should be when we’ve restricted

onto those 4-sheets. Let I ⊆ {1, . . . , s} such that a, b ∈ I. Then

S′I = {(gi)i∈I : gi − g j ∈ Ji j for i, j ∈ I and ga − gb ∈ JP}.

This guess seems to make sense because looking back at the definition of the ’pinch’, this is

exactly what the ideal difference-conditions should be for S′I if we started with the coordinates I in

the first place. If this guess is wrong, it seems like there should be something nonintuitive going on,

like K′i j gets something new outside of P. Something like, the pinching causes the space to wrinkle

in a sort of way, causing the sheets Xi and X j to intersect outside of P ⊆ Xa ∪ Xb.

We find that this guess for S′I is incorrect, and we’ve got a counterexample. The code given in

[CS13] was used to find and show that this example is a counterexample.

Example 74. Let S be a 4 sheeted quasi-spline sheaf over A3
R in variables x, y, z, determined by

ideal-difference conditions given by:

• I01 = (x)

• I02 = (y)

• I03 = (x + z)2

• I12 = (y)
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• I13 = (x2 − z2)

• I23 = (z2)

We can use Clarke/Foucart code to find that the contact ideals are:

• J01 = (x2y + xyz)

• J02 = (yz2, x2y + 2xyz)

• J03 = (x2y + 2xyz + yz2, x3z2 + x2z3 − xz4 − z5)

• J12 = (yz2, x2y)

• J13 = (x2y − yz2, x3z2 + x2z3 − xz4 − z5)

• J23 = (yz2, x3z2 + x2z3 − xz4 − z5)

The generators of S are:

• (0, 0, 0, x3z2 + x2z3 − xz4 − z5),

• (0, 0, x3y + x2yz, x3y + x2yz − xyz2 − yz3),

• (0, x2y + xyz, 1/2x2y + xyz, 1/2x2y + xyz + 1/2yz2),

• (0, 0, yz2, 0),

• (1, 1, 1, 1)

Now let S′ be the resulting spline sheaf after pinching shets X0 and X1 of S to JP = (x2). We

find that contacts for S′ are:

• J ′01 = (x3yz + x2yz2)

• J ′02 = (yz2, x3y + x2yz)
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• J ′03 = (x3y + x2yz − xyz2 − yz3, x2yz2 + 2xyz3 + yz4, x3z2 + x2z3 − xz4 − z5)

• J ′12 = (yz2, x3y + x2yz)

• J ′13 = (x3y + x2yz − xyz2 − yz3, x2yz2 − yz4, x3z2 + x2z3 − xz4 − z5)

• J ′23 = (yz2, x3z2 + x2z3 − xz4 − z5)

To see this, S′ is generated by:

• (0, x3yz + x2yz2, 0, 1/2x2yz2 + xyz3 + 1/2yz4),

• (0, 0, 0, x3z2 + x2z3 − xz4 − z5),,

• (0, 0, x3y + x2yz, x3y + x2yz − xyz2 − yz3)

• (0, 0, yz2, 0),

• (1, 1, 1, 1)

Now, we’ll restrict to S′I first, then find the contact ideals, where I = {0, 1, 2}. Then the contact

ideals for S′I are

• I′01 = (x3yz + x2yz2)

• I′02 = (yz2, x2yz, x3y)

• I′12 = (yz2, x2yz, x3y)

To see this, S′I is generated by:

• (0, x3yz + x2yz2, 0),

• (0, 0, x3y),

• (0, 0, x2yz),
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• (0, 0, yz2),

• (1, 1, 1)

As you can see, the contact ideals for S′ are not the same as the contact ideals for S′I .

We haven’t spoken of what we thought are the contact ideals for S′ after the pinch. This last

example just goes to show that the problem is a bit more nonintuitive than we thought at first.

The following is the Conjecture we tried to prove, that gives formulas for the contact ideals of

S′. As far as computing example in Sage, these tend to work in the majority of examples we tested

using Sage.

Conjecture 75. Let S be a s-sheeted quasi-spline sheaf over Y with contact ideals (Ji j)i j. Let S′ be

the s-sheeted quasi-spline sheaf over Y resulting from pinching ath and bth sheets of S to P, with

contact ideals (J ′i j)i j. Then for all i, j:

J ′ab = Jab ∩ JP

J ′ai = Jai ∩ (Jbi +J ′ab)

J ′a j = Ja j ∩ (Jb j +J ′ab)

J ′bi = Jbi ∩ (Jai +J ′ab)

J ′b j = Jb j ∩ (Ja j +J ′ab)

J ′i j = Ji j ∩ (J ′ai +J ′a j) ∩ (J ′bi +J ′b j).

The next proposition shows that if we can prove the formulas forJ ′ak andJ ′bk for k ∈ {i, j}, then

we get J ′i j for free.

Proposition 76. Let S be a s-sheeted quasi-spline sheaf, with contact ideals Ji j’s, and S′ is the

quasi-spline resulting from pinching Xa and Xb of S to P, and let J ′i j’s be the contact ideals of S′.
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Say we know all contact ideals of S′ except J ′i j. Then:

J ′i j = Ji j ∩
⋂

k

(J ′ki +J ′k j).

Proof. This is a direct result of Lemma 64. �

Remark 77. When s = 4, the formula for Ji j is precisely what we predicted above.

Remark 78. If the Conjecture were true for certain cases, it would give a way of computing the

contact ideals of a quasi-spline sheaf S whose ideal-difference conditions given by (Ii j)i j. The

algorithm below describes how to find contact ideals of S given by ideal-difference conditions

(Ii j)i j:

Let S0 := Os
Y with contact ideals I0

i j = (1) for all i, j;

n = 0;

for each Iab ∈ (Ii j)i j do

Sn+1 = {(g1, . . . , gs) : (g1, . . . , gs) ∈ Sn and ga − gb ∈ Iab};

Use Theorem to find contacts, (In+1
i j )i j for Sn+1 using contacts (In

i j)i j of Sn;

++n;

end

After running through every ideal-difference condiion Iab, the last sheaf will be S, as it satisfies

the same ideal-difference conditions, along with its contacts ideals calculated.

Next, there is an example where the pinching formulas do not give contact ideals, and we can

see this because the resulting ideals do not satisfy the conditions Ji j ⊆ Jik +Jk j for all i, j, k, like

any contact ideals should.

Example 79. Let S be a 4 sheeted quasi-spline sheaf over A3
R in variables x, y, z, determined by

ideal-difference conditions given by:

• I01 = (x)
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• I02 = (y)

• I03 = (x + z)2

• I12 = (y)

• I13 = (x2 − z2)

• I23 = (z2)

We can use Clarke/Foucart code in [CS13] to find that the contact ideals are:

• J01 = (x2y + xyz)

• J02 = (yz2, x2y + 2xyz)

• J03 = (x2y + 2xyz + yz2, x3z2 + x2z3 − xz4 − z5)

• J12 = (yz2, x2y)

• J13 = (x2y − yz2, x3z2 + x2z3 − xz4 − z5)

• J23 = (yz2, x3z2 + x2z3 − xz4 − z5)

Then we pinch Jp = (z2), at X0, X1, and the contact ideals become

• J ′01 = (x2yz2 + xyz3)

• J ′02 = (yz2, x3y + x2yz)

• J ′03 = (x3y + x2yz − xyz2 − yz3, x2yz2 + 2xyz3 + yz4, x3z2 + x2z3 − xz4 − z5)

• J ′12 = (yz2, x3y + x2yz)

• J ′13 = (x3y + x2yz − xyz2 − yz3, x2yz2 − yz4, x3z2 + x2z3 − xz4 − z5)

• J ′23 = (yz2, x3z2 + x2z3 − xz4 − z5)
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generated by:

• (0, 0, 0, x3z2 + x2z3 − xz4 − z5),

• (0, x2yz2 + xyz3, 0, 1/2x2yz2 + xyz3 + 1/2yz4),

• (0, 0, x3y + x2yz, x3y + x2yz − xyz2 − yz3)

• (0, 0, yz2, 0),

• (1, 1, 1, 1)

We find that the issue is, the pinch formulas do not give a set of ideals that satisfies the inequalities

it should that contact ideals would. The computed pinch ideals are:

• I′01 = (x2yz2 + xyz3)

• I′02 = (yz2, x2yz, x3y)

• I′03 = (x3y + x2yz − xyz2 − yz3, x2yz2 + 2xyz3 + yz4, x3z2 + x2z3 − xz4 − z5)

• I′12 = (yz2, x2yz, x3y)

• I′13 = (x3y + x2yz − xyz2 − yz3, x2yz2 − yz4, x3z2 + x2z3 − xz4 − z5)

• I′23 = (yz2, x3z2 + x2z3 − xz4 − z5)

Indeed, working with the ideals we get from the pinch formulas, we find that I′02 = (yz2, x2yz, x3y),

and I′02 ∩ (I′03 + I′23) = (yz2, x3y + x2yz) so that I′02 is not contained in I′03 + I′23.

Also with, I′12 = (yz2, x2yz, x3y), I′12∩ (I′13 +I′23) = (yz2, x3y + x2yz) so that I′12 is not contained

in I′13 + I′23.

Both of these facts goes against Corollary 65, so that the pinch formulas do not give the contact

ideals. We can also verify this just by looking at the ideals computed using the code, the other J ′

ideals above.
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Now, if we apply the pinch formulas on the Ii j ideals and pinch on the same location so that

Jp = (z2), then we get the actual contact ideals. So it seems that if we continue to reapply the

formulas and recalculate the ideals, after some amount of iterations we should reach the contact

idelas. We explore this idea further in the next section.

5.5 Closed Formulas for Contact Subschemes

First, we find easy formulas for contact ideals in terms of ideal-difference conditions given for

S when s = 3. After that, we try to suggest other formulas that may be the contact ideals. A

first one we had conjectured, but found a counterexample. Another one, I still believe may be the

contact ideals. Again, to check to see if these are contact ideals for some quasi-spline sheaf, we

only have to check the the IDC inequalities: Ji j ⊆ Jik +Jk j for all i, j, k.

Proposition 80. Let S be a 3-sheeted quasi-spline sheaf with ideal difference conditions (Ii j)i j.

Then the contact ideals of S, denoted by (Ji j)i j are

Ji j = Ii j ∩ (Iik + Ik j)

for all i, j, k.

Proof. Let c ∈ Ji j. There exists a (gi)i ∈ S such that gi−g j = c. Then gi−g j = (gi−gk)− (gk−g j) ∈

Iik + Ik j, and clearly gi − g j ∈ Ii j.

For the right containment, let c ∈ Ii j ∩ (Iik + Ik j). Then c = a− b where a ∈ Iik and b ∈ Ik j. Then

(0, a, b) ∈ O3
Y , is actually a section of S. Indeed, 0 is the kth coordinate, a is the ith coordinate, and

b is the jth coordinate, so that section satisfies ideal-difference conditions for S. �

I’d like to find a way to generalize this kind of argument. But things become much more difficult

when the number of sheets increases to 4 or more. To illustrate how the case s = 4 is harder, we can

guess at what the formula for J12 could be. Assume the formula was J12 = I12 ∩ (
⋂

k I1k + Ik2). Let
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c ∈ I12, then we can find a g3 ∈ I13 such that c − g3 ∈ I23 so that (0, c, g3) satisfies ideal difference-

conditions involving Ii j where i, j , 4. We also find that J12 ⊂ I12 ∩ (I14 + I24) so that we can find

a g4 ∈ I14 such that c − g4 ∈ I24. But we don’t know if g4 − g3 ∈ I34 so (0, c, g3, g4) isn’t necessarily

in S.

We know that for any contact ideal Ji j, we need Ji j ⊆ Jik + Jk j for any i, j, k, and also that

Ji j ⊂ Jik0 + Jk1k2 + · · · + Jkp j for any i, j, ki ∈ {1, . . . , s}. Using these facts, we thought that these

next formulas would give contact ideals.

Let S be a s-sheeted quasi spline sheaf with ideal difference conditions J = (Ii j)i j and let (Ji j)i j

be its contact ideals. The conjecture states that

Ji j = Ii j ∩

 ⋂
i,e1,...em, j

Iie1 + Ie1e2 + · · · + Iem j

 for all i, j, k such that 1 ≤ i, j, k ≤ s. (5.1)

where the big intersection spans over sequences containing elements of {1, . . . , s} that start at i, and

end at j.

But there is a counterexample to this. This was easy to find when Y = Spec Z[x]. This example

was found using sage. There were many others.

Example 81. Let s = 4. Let I12 = (x), I13 = (x), I14 = (x − 2), I23 = (x − 4), I24 = (x), and

I34 = (x − 2). Now we will compute the conjecture ideals. So

J12 = I12 ∩ (I13 + I23) ∩ (I14 + I24) = (x) ∩ (x, x − 4) ∩ (x − 2, x) = (x)

J13 = I13 ∩ (I12 + I23) ∩ (I14 + I34) = (x) ∩ (x, x − 4) ∩ (x − 2) = (x2 − 2x)

J23 = I23 ∩ (I12 + I13) ∩ (I24 + I34) = (x − 4) ∩ (x, x) ∩ (x, x − 2) = (x2 − 4x)



66

Some of the conjectured ideals, written as Ji j’s, are:

J12 = (x) J13 = (x2 − 2x) J23 = (x2 − 4x)

Then J13 + J23 = (x2 − 2x, x2 − 4x) = (x2, 2x), so that J12 * J13 + J23 so that these couldn’t

possibly be the contact ideals for the quasi-spline sheaf determined by ideals Ii j’s (Corollary 65).

Next, we suggest another kind of formula that may give contact ideals. But before that, we need

to know that these next formulas will give ideal difference-conditions for a quasi-spline sheaf.

Lemma 82. Let S be a s-sheeted quasi-spline sheaf with ideal difference conditions (Ii j)i j. Let

Ji j = Ii j ∩

⋂
k

Iik + Ik j

 .
Then J = (Ji j)i j gives ideal-difference conditions for S.

Proof. Let S J be the quasi-spline sheaf that has ideal-difference conditions given by Ji j’s. Then we

want to show that S = S J.

Showing that S ⊆ S J is the same as showing Ji j ⊆ Ji j where (Ji j)i j are the contact ideals of

S. First, we know that Ji j ⊆ Ii j for all i, j because the Ii j give ideal difference-conditions for S.

Let i, j be given and let c ∈ Ji j so there exists (gi)i ∈ S such that gi − g j = c. Notice that for all k,

c = (gi − gk) + (gk − g j) ∈ Iik + Ik j so that Ji j ⊆ Ji j.

To see that S J ⊆ S, just notice that Ji j ⊆ Ii j. Indeed, for any element of S J which necessarily

satifies the ideal-difference conditions given by the Ji j’s must satisfy the ideal-difference conditions

given by the Ii j’s, so that this is also an element of S. �

Notation. Let I1
i j be defined as:

I1
i j = Ii j ∩

⋂
k

(Iik + Ik j)
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For any n ≥ 2, let In
i j be defined as:

In
i j = In−1

i j ∩

⋂
k

(In−1
ik + In−1

k j )


We will now conjecture the contact ideals of S using these new ideals described above, depend-

ing on what s is. Let (Ji j)i j be the contact ideals of S.

When s = 2, note that Ji j = Ii j. When s = 3, we’ve proved that Ji j = I1
i j in Prop 80

We’ve run many examples of quasi-spline sheaves over Sage, and it appears that when m = s−2,

these ideals stabilize or have stabilized for as value m < s − 2, in the way that Im
i j = Im+1

i j , which is

equivalent to saying that the I s−2
i j are the contact ideals for these quasi-spline sheaves.

Proposition 83. Let S be a s-sheeted quasi-spline sheaf given by ideal-difference conditions (Ii j)i j.

Assume that there exists an m ∈ N such that

Im
i j = Im+1

i j

where Ik
i j is defined as above. Then Im

i j are the contact ideals of S.

Proof. Using Corollary 65 Im
i j are the contact ideals if and only if Im

i j ⊆ Im
ik + Im

k j for all i, j, k. Let i, j

be given. Then from the definition of Im+1
i j , Im+1

i j ⊆ Im
i j and Im+1

i j ⊆ Im
ik + Im

k j for all k. But Im+1
i j = Im

i j so

we get the containments we need to say that Im
i j ’s are contact ideals of S. �

Last, I propose a conjecture for when these ideals are the contact ideals.

Conjecture 84. Let S be a s-sheeted quasi-spline sheaf with s ≥ 3, given by ideal difference

conditions (Ii j)i j and contact ideals Ji j. Then

Ji j = I s−2
i j

Note that we have already proved that this true for s = 3.
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5.6 Resolution of Quasi-Spline Sheaf

This section, we construct a complex for a quasi-spline sheaf using the structure sheaves for the

contact subschemes, and intersections of contact subshcemes.

Proving that this is a resolution gives a way to compute right derived functors for S once we

know the contact ideals for S. In the case where X is affine, they can be calculated directly from

the cohomology of the complex. When X is not affine, using an affine cover of Y , take the Čech

cohomology of the complex C•(S). The total complex can be calculated, and the right derived

functors can be computed.

Last, we can compute the Hilbert series of S using the resolution above. This gives a alternative

way to compute the dimension of spline spaces. This will be discussed more later.

Definition 85. (the complex C•(S)) Set a well-ordering of the index set I. For each p ≥ 0, let

Cp(S) =
⊕

i0<···<ip

i∗OXi0 ,...,ip

for each (p + 1)-tuple i0 < · · · < ip of elements of I and where i : Xi0...ip ↪→ X. Here Xi0...ip =

Xi0 ∩ Xi1 ∩ · · · ∩ Xip where Xi ∩ X j = Ki j, and OXi0 ...ip
is the structure sheaf of OXi0 ...ip

. Let the

co-boundary map dp : Cp(S)→ Cp+1(S) be defined

(dα)i0,...,ip+1 =

p+1∑
k=0

(−1)kαi0,...,îk ,...ip+1

∣∣∣
Xi0 ,...,ip+1

where the notation îk means to omit ik. This works because αi0,...,îk ,...ip+1
is an section of Si0,...,îk ,...ip+1

,

which naturally maps into Si0,...,ip+1 . It is easy to see that dp+1 ◦ dp = 0, so C•(S) a complex.

In this section, we assume that any quasi-spline sheaf will be determined by its contact ideals

so the first step of the sequence is assumed to be exact. Clearly when a quasi-spline sheaf is not

determined by its contact ideals, this complex will not be a resolution. We try to prove this gives a
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resolution of S when it is determined by its contact ideals, or in another words, that the sequence

of maps is an exact sequence. It is easy to show that the image of Cp−1(S) → Cp(S) is contained

in the kernel of the map Cp(S) → Cp+1(S). The last step is to show it the other way, which proves

to be difficult. The next two lemma s helps us to prove the reverse containment, but only in certain

situations.

Conjecture 86. We conjecture that the following sequence

0→ S → C0(S)
d0
−→ C1(S)

d1
−→ C2(S)→ · · · → C s−1(S)→ 0

is exact when S is determined by its contact ideals.

It is not accidental that this is reminiscent of a Čech complex, as it arises from a Mayer-Vietoris-

type complex on X. This is a new contribution to the complexes already introduced to study spline

functions by Billera [BR91] and later Schenck [SS97], and is closely related to the Čech construc-

tion used by Yuzvinsky [Yuz92].

The next couple Lemmas demonstrate a strategy we used to try to prove exactness of the com-

plex, but this only goes so far, and we show just how far this can be used. At the end, we find that the

resolution is exact when S is a 3-sheeted quasi-spline sheaf, and almost for 4-sheeted quasi-spline

sheaves.

Lemma 87. Let

α =
∑

i0<···<ip

αi0,...,ip

∣∣∣
Xi0∩···∩Xip

∈ Cp

be closed, and αi0,...ip = 0 whenever i0 < `, Assume we can find,

α̃ =
∑

i1<···<ip

α̃i1,...,ip

∣∣∣
Xi1∩···∩Xip

∈ Cp−1

such that
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• α̃i1,...,ip

∣∣∣
X`∩Xi1∩···∩Xip

= α`,i1,...,ip and

• α̃i1,...,ip

∣∣∣
Xλ∩Xi1∩···∩Xip

= 0 for all λ < `

then

α − d(α̃)

is closed, and αi0,...,ip = 0 whenever i0 ≤ `.

Proof. The closure claim is immediate because α is assumed closed, and d(α̃) is a boundary and so

closed.

The vanishing of the coefficients with i0 ≤ ` fall into two cases. The difference α − d(α̃) can be

simplified to ∑
i0<···<ip

(
αi0,...,ip − α̃i1,...,ip

∣∣∣
Xi0∩···∩Xip

) ∣∣∣
Xi0∩···∩Xip

.

Indeed, α̃`,i0,...,îk ,...,ip

∣∣∣
Xi0∩···∩Xip

= 0 for k , 0 for both cases. When i0 < `, this follows from the second

property for α̃. When i0 = `, this follows because two indices are the same and αi0,k,...k = 0

If i0 < `, then both terms vanish by hypothesis. If i0 = `, then the definition of α̃ guarentees the

terms cancel with each other. �

The complicated part of this is proving the existence of α̃.

Remark 88. Let C1 and C2 be two closed subschemes of X, then

0→ OC1∪C2 → OC1 ⊕ OC2 → OC1∩C2 → 0

This can be proved by looking at the case when all of these are affine schemes. If I1 and I2 are the

ideal sheaves of C1 and C2, and R is the affine scheme for X, then this can be proved by showing

that the sequence

0→ R/(I1 ∩ I2)→ R/I1 ⊕ R/I2 → R/(I1 + I2)→ 0
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is exact. This follows from Prop 13.

We will find that the existence of α̃ is bound by the use of Remark [? ] above. In that case, we

can’t have a section of α̃i1,...,ip

∣∣∣
Xλ∩X`∩Xi1∩···∩Xip

= 0 for all λ < ` when ` ≥ 2. Indeed, using Remark [?

], we can only extend

Lemma 89. Let

α =
∑

i0<···<ip

αi0,...,ip

∣∣∣
Xi0∩···∩Xip

∈ Cp

be closed, and αi0,...ip = 0 whenever i0 < ` and ` < 3, then we can find,

α̃ =
∑

i1<···<ip

α̃i0,...,ip

∣∣∣
Xi1∩···∩Xip

∈ Cp−1

such that

• α̃i1,...,ip

∣∣∣
X`∩Xi1∩···∩Xip

= α`,i1,...,ip and

• α̃i1,...,ip

∣∣∣
Xλ∩Xi1∩···∩Xip

= 0 for all λ < `.

Proof. Note the conditions on α̃ can be expressed purely in terms of the first bullet point as

α̃i1,...,ip

∣∣∣
Xλ∩Xi1∩···∩Xip

= αλ,i1,...,ip for all λ ≤ `. This is the point of view we take here.

Our hypothetical object α̃i1,...,ip is a function on Xi1∩· · ·∩Xip and we are interested in its behavior

on the closed subschemes Xλ ∩ X` ∩ Xi1 ∩ · · · ∩ Xip when λ ≤ `. So we consider the map

OXi1∩···∩Xip
→

⊕
λ≤`

OXλ∩Xi1∩···∩Xip

and the element (αλ,i1,...,ip)λ,i1,...,ip in the codomain.

The possibility of applying Remark 88 is encouraged by the fact that each map OXi1∩···∩Xip
→

OXλ∩Xi1∩···∩Xip
is surjective. It remains to check the agreement of α`,i1,...,ip and 0 on

Xλ ∩ X` ∩ Xi1 ∩ · · · ∩ Xip .
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for all λ < `

Consider the boundary term of α sitting in OXλ∩X`∩Xi1∩···∩Xip

α`,i1,...,ip − αλ,i1,...,ip +

p∑
i=1

(−1)k+1αλ,`,i1,...îk ,...,ip

 ∣∣∣Xλ∩X`∩Xi1∩···∩Xip
= 0.

By hypothesis, λ < `, so that all terms αλ,... = 0 which means only one term is not equal to 0 in the

sum above, we means we’ve got this left:

(α`,i1,...,ip)
∣∣∣
Xλ∩X`∩Xi1∩···∩Xip

= 0.

which is precisely what we wanted.

Last, we need to use the Remark 88 to be sure α̃ exists. Now λ < ` < 3 which implies that

λ < 2 so that λ can only take on one value, which is 1. Therefore, we need a section α̃i1,...,ip that

satisfies the two conditions in the description of this Lemma. We know that

α`,i1,...,ip

∣∣∣
Xλ∩X`∩Xi1∩···∩Xip

= 0

So, we can let C1 = X` ∩ Xi1 ∩ · · · ∩ Xip with section α`,i1,...,ip defined on it, and C2 = Xλ ∩ Xi1 ∩

· · · ∩ Xip with the section 0, then α`,i1,...,ip = 0 on C1 ∩ C2, so we can use the Remark 88 to extend

both of these sections to one on C1 ∪C2, and since C1 ∪C2 is a closed section of Xi1 ∩ · · · ∩ Xip we

can find a section on the latter and this will be α̃i1,...,ip . �

So long as α̃ exists for each α ∈ Cp(S), the sequence will remain exact. The only limitation is

that we require that ` < 3. That is, let S be an s-sheeted quasi-spline sheaf, so long as there are

α ∈ Cp(S) for any p such that α =
∑

i0<···<ip
αi0,...ip where i0 < 3.

If there is a p such that α ∈ Cp(S) and α =
∑

i0<···<ip
αi0,...,ip and i0 ≥ 3 for some αi0...ip , then we

have to have an alternate way to prove the existence of some α̃.
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Now, we prove its exactness for s = 3 and we get very close to proving existence for s = 4.

The next Lemma describes just how useful the the last couple Lemmas are in showing that the

complex is exact.

Lemma 90. Let S be a s-sheeted quasi-spline sheaf that is determined by its contact ideals (Ji j)i j.

Then the sequence of maps as they are described above

Cp−1(S)
dp−1
−−−→ Cp(S)

dp
−→ Cp+1(S)

is exact if s − p < 3.

Proof. To prove exactness at this step we need to show that im (dp−1) = ker(dP). It should be clear

that im (dp−1) ⊆ ker(dP).

To show the other direction, we choose α ∈ ker(dp), so α ∈ Cp(S) and d(α) = 0. The existence

of α̃ in the above Lemmas will guarentee that α ∈ im (dp−1).

The one stipulation for the existence of α̃ is that ` < 3. Now ` is described as i0, for each section

of α on Xi0,...,ip . That is, α ∈ Cp(S) and αi0...ip is the section of α on Xi0...ip where i0 < i1 < · · · < ip,

and α̃ is guarenteed to exist if i0 < 3.

There are two variables in involved, s and p. Consider some section αi0...ip of α on Xi0...ip . Now

each ik ∈ {1, . . . , s}, and clearly, the largest possible value for ip is s. The largest possible value for

ip−1 = s − 1, and continuing this, the largest possible value for i0 = s − p. Going back to Lemma

89, the variable ` will be i0 for each αi0...ip , and if i0 ≥ 3, the existence of α̃ cannot be guarenteed.

Last, we assume that s − p < 3, which guarentees that for every αi0...ip , ip = s − p < 3. Then

using Lemma 89, there exists a α̃ so that d(α̃) = α, so that the sequence is exact at that step. �

Proposition 91. Let S be a 3-sheeted quasi-spline sheaf that is determined by its contact ideals.
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Then the following sequence is exact:

0→ S → C0(S)
d0
−→ C1(S)

d1
−→ C2(S)

d2
−→ 0.

Proof. We assume that S is determined by its contact ideals, so that the first step is exact. This

means that we are only looking for exactness at the steps

Cp−1(S)
dp−1
−−−→ Cp(S)

dp
−→ Cp+1(S)

when p ≥ 1. Now s − p = 3 − p ≤ 3 − 1 = 2, so we can use Lemma 90 to prove exactness at every

step. �

For s = 4, I can reduce the exactness of the sequence to showing that an element (0, . . . , 0, h34) ∈

ker d1 is also in the im (d0).

Proposition 92. Let S be a 4-sheeted quasi-spline sheaf that is determined by its contact ideals.

Then the following sequence is exact:

0→ S → C0(S)
d0
−→ C1(S)

d1
−→ C2(S)

d2
−→ C3(S)

d3
−→ 0.

if we can assume that for every element h = (0, . . . , 0, h34) ∈ ker(d1), h ∈ im(d0).

Proof. We assume that S is determined by its contact ideals, so that the first step is exact. This

means that we are only looking for exactness at the steps

Cp−1(S)
dp−1
−−−→ Cp(S)

dp
−→ Cp+1(S)

when p ≥ 1.

First, lets assume that p ≥ 2. Then s − p = 4 − p ≤ 4 − 2 = 2, so we have exactness at every
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step p ≥ 2.

For p = 1, s− p = 3 so we can’t completely prove exactness at this step. First, we can consider

α ∈ C1(S), α ∈ ker(d1) and where α = (h12, h13, h14, . . . ). We can use Lemmas 87, and 89 to find a

α̃ so that d0(α̃) − α = (0, 0, 0, h23, h24, . . . ) because ` = 1 here. Next, we can use the same Lemmas

to find a α̃1 so that d0(α̃1) − (d0(α̃) − α) = (0, 0, 0, 0, 0, h34) because ` = 2 here. Last, from the

hypothesis of this Proposition, there exists a α2 so that d0(α2) − (d0(α̃1) − (d0(α̃) − α)) = 0, which

shows that α ∈ im (d0). �

I could imagine other ways to prove the existence of some α̃. We had thought of a sort of,

multiple-Chinese Remainder Theorem, something like this: let C1, . . . ,Cn be closed subschemes of

X, then the following sequence is exact

0→ O⋃
i Ci →

⊕
i

OCi →
⊕

i< j

OCi∩C j

But if this is true, then every quasi-spline sheaf will be determined by its contact ideals. But we

know this isn’t true: Example 53.

5.6.1 Using the Resolution for Quasi-Spline Sheaves

Usually we are working with splines over a field, like R or C, in the form of spline spaces.

This means that the modules we are working with like S are vector spaces over a field k. So the

resolution of S, a s-sheeted quasi-spline sheaf:

0→ S → C0(S)→ C1(S)→ · · · → C s−1(S)→ 0,
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each Cp(S) is a k-vector space, and these can be used to calculate the dimension of S over k. Using

the Rank Nullity Theorem for vector spaces over a field k,

dimk(S) =

s−1∑
i=0

(−1)i dimk(Ci(S))

It seems to me that it may be difficult to prove the formulas for dimk S, but certainly possible.

Recall that for any s ∈ S, s
∣∣∣
T
∈ Pd where Pd is the

(
d+2

2

)
linear space of polynomials in 2

variables up to degree d. This means that

dimk(C0(S)) = N ·
(
d + 2

2

)

where N is the total number of triangles.

In more generality, for the k-module k[x1, . . . , xn], where Pn
d is the k module of polynomials

with degree ≥ d,

dimkP
n
d =

(
n + d

n

)
It may be the situation that Ki j is a line, something like y − f (x) = 0 where f (x) is just a linear

function in x. Then

dimkOKi j = dimk

(
Pn

d/(y − f (x))
)

= dimkP
n−1
d =

(
n − 1 + d

n − 1

)

In the situation that Ki j is a point, something like
∑

i(xi − pi), then

dimkOKi j = dimk

(
Pn

d/(xi − pi)i
)

= dimk k = 1

Now we will use the formula for the dimension of S, which would work if the complex for S

is a resolution, to rediscover the dimension of a spline space where each spline is univariate.

Let Ti’s be the 1-simplexes. In this situation, the Ti’s will be intervals over k. They partition an
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interval, say [a, b], where Ti = [xi−1, xi] for i = 1, 2, . . .N, and a = x0 < x1 < · · · < xN = b. The

space of splines is

S
r,d
1 = {p ∈ Cr[a, b] : p is a polynomial of degree d on each [xi−1, xi]}

All intervals are 1-simplices. The intersection of any of these will be 0-simplices, or points. So

Ii,i+1 = (xi − pi)r+1
i , and only Ii j , (1) when i < j and j = i + 1.

This means that the Ii j’s are actually the contact ideals, even if r > 0.

Proposition 93. In this situation that the complex for S is a resolution,

dimSr,d
1 = d + 1 + (N − 1)(d − r)

Proof. This is all being done on a line, so that Ti ∩ T j ∩ Tk = ∅. This means that

dimSr,d
1 = dim C0(Sr,d

1 ) − dim C1(Sr,d
1 )

using the resolution.

First note that dim C0(Sr,d
1 ) = N ·

(
d+1

1

)
= N(d + 1).

Second we will find dim C1(Sr,d
1 ), but to do that we need to find the dimension of each Ti∩Ti+1.

Note that Ti ∩ Ti+1 will be a point. Without loss of generality assume this point is the origin. We

require that for s ∈ S, define s
∣∣∣
Ti

= si for all i, then we require that

dn(si − si+1)
dxn = 0

for all n ≤ r from the definition of Sr,d
1 . This means that we have to look at the (r + 1)th order
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neighborhood of the origin. So Ii j = (x)r+1 = (xr+1) as an ideal of k[x]. As a submodule of k[x],

this means that Ii j = (xr+1, xr+2, . . . , xm). Then dimk(OTi∩Ti+1) = dimk k[x]/Ii j = dimk(1, x, . . . , xr) =

r + 1.

There are N − 1 of these intersections between the intervals. Therefore

dimSr,d
1 = N(d + 1) − (N − 1)(r + 1) = (d + 1) + (N − 1)(d + 1 − r − 1) = (d + 1) + (N − 1)(d − r)

�
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