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All Rights Reserved



ON SOME CLASSES OF IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS

Halime Ömrüuzun
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Abstract

In this thesis we describe the work in literature on various aspects of the theory of

polynomials over finite fields. We focus on properties like irreducibility and divisibility.

We also consider existence and enumeration problems for irreducible polynomials of

special types. After the introductory Chapter 1, we collect the well-known results

on irreducibility of binomials and trinomials in Chapter 2, where we also present the

number of irreducible factors of a fixed degree k of xt − a, due to L. Redei. Chapter

3 is on self-reciprocal polynomials. An infinite family of irreducible, self-reciprocal

polynomials over F2 is presented in Section 3.2. This family was obtained by J. L.

Yucas and G. L. Mullen. Divisibility of self-reciprocal polynomials over F2 and F3 is

studied in Sections 3.3 and 3.4 following the work of R. Kim and W. Koepf. The last

chapter aims to give a survey of recent results concerning existence and enumeration

of irreducible polynomials with prescribed coefficients.
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Matematik, Yüksek Lisans Tezi, Ağustos 2016

Tez Danışmanı: Prof. Dr. Alev Topuzoǧlu

Anahtar Kelimeler: indirgenemez polinomlar, bölünebilirlik, öz-karşılıklı polinomlar,

saptanmış katsayılar.

Özet

Bu tezde sonlu cisimler üzerindeki polinomlar teorisinden bazı konulara dair literatürde

bulunan çalışmaları derleyerek detaylı biçimde açıkladık. Polinomların indirgenemezlik

ve bölünebilirlik gibi özellikleri üzerine yoǧunlaştık. Özel tip indirgenemez polinomların

varlık ve sayma problemlerini de ele aldık. Başlangıç bölümünden sonra, iki terimli ve

üç terimli polinomların indirgenemezliǧi hakkında iyi bilinen sonuçları topladık. 2.

Bölüm’de ayrıca xt − a polinomunun sabit bir k dereceli indirgenemez çarpanlarının

sayısını L. Redei’nin çalışmalarına dayanarak sunduk. Bölüm 3 öz-karşılıklı polinomlar

üzerinedir. Bölüm 3.2’de, F2 üzerinde indirgenemez, öz-karşılıklı polinomların sonsuz

bir ailesini sunduk. Bu aile J. L. Yucas and G. L. Mullen tarafından elde edilmiştir. 3.3

ve 3.4’üncü bölümlerde, F2 ve F3 üzerindeki öz-karşılıklı polinomların bölünebilirliğini

R. Kim ve W. Koepf’in çalışmaları ışıǧında ele aldık. En son bölüm saptanmış katsayılı

indirgenemez polinomların varlıǧı ve sayıları üzerindeki yeni sonuçlar hakkında genel

bir bakış açısı vermeyi amaçlamaktadır.
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CHAPTER 1

Introduction

1.1. Basic Concepts and Definitions

We first recall some basic concepts and fix the notation:

Throughout the thesis, Fq denotes the finite field with q elements, where q = pr,

r ≥ 0 and p is a prime number.

F∗q denotes the multiplicative group of Fq.

By TrF/K we denote the trace map from F = Fqn to K = Fq which is defined as

follows:

Let α ∈ F = Fqn . Then TrF/K(α) = α + αq + . . .+ αq
n−1

.

Let f(x) ∈ Fq[x], f(x) 6= 0. The polynomial f ∗(x) denotes the reciprocal of f(x)

and it is defined by f ∗(x) = xnf( 1
x
) where n is the degree of f(x). A polynomial

f(x) is called self-reciprocal if f ∗(x) = f(x).

For f(x) ∈ Fq[x], the order of the polynomial f(x) is the smallest positive integer

e such that f(x) | (xe − 1) in Fq[x]. We denote the order of f(x) by ord(f).

As usual φ denotes the Euler’s phi function. We recall that φ(n)= #{k: 1 ≤ k ≤
n, gcd(k, n) = 1}.

If a polynomial f(x) over Fq has exactly two non-zero coefficients, then it is called a

binomial. Similarly, a polynomial f(x) over Fq with exactly three non-zero coefficients

is called a trinomial.

We use the Möbius inversion formula, so we recall the Möbius function and the

formula for the additive case.
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The Möbius function µ is defined for a positive integer n as follows:

µ(n) =


1 if n = 1,

0 if n is divisible by the square of some prime number,

(−1)k if n = p1 . . . pk and pi’s are distinct primes.

Möbius Inversion Formula (additive case): Let f and F be two functions from N
into an additively written abelian group G. Then

F (n) =
∑
d|n
f(d) for all n ∈ N

if and only if

f(n) =
∑
d|n
µ(n/d)F (d) =

∑
d|n
µ(d)F (n/d) for all n ∈ N.

1.2. Overview

This thesis is organized as follows:

In Chapter 2, we consider binomials and trinomials over finite fields. In Section

2.1, we start with a well-known criteria on the irreducibility of binomials over Fq.
We also present an infinite family of irreducible binomials over Fq and this result can

be found as Corollary 3.2 in [22]. Section 2.2 is concerned with trinomials over Fq.
We consider irreducibility of special type of trinomials xp − x − a over Fq, where p

is the characteristic of Fq and this standard result can be found, for instance, in [22]

as Theorem 3.5 and it dates back to the 19-th century. We also present some results

about divisibility of trinomials of the form xas + xbt + 1 over F2 in Section 2.2, due

to R. Kim and W. Koepf [18]. In Section 2.3, we give enumeration results concerning

binomials and trinomials over Fq. The first result yields the number of the irreducible

factors of a fixed degree k of a binomial xt − a over Fq, due to L. Redei [25]. After

presenting this result, an example obtaining the irreducible factors of degree 1, 2, 3

and 4 of the binomial x5− 2 over F3 is given. The second main result of this section is

on the number of irreducible trinomials xn + axk + b over F3 following the work of O.

Ahmadi [1].

In Chapter 3, we consider self-reciprocal polynomials over finite fields. In Section

3.1, we study orders of self-reciprocal irreducible polynomials. In the same section, we

present a theorem which gives a classification of self-reciprocal irreducible polynomials

over Fq in relation to their orders. Then by using this classification theorem, we give

the number of self-reciprocal irreducible polynomials of degree n over Fq. In Section

3.2, by using the results in Section 3.1, a condition for the existence of an infinite family

of self-reciprocal irreducible polynomials over F2 is determined. The results in both
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Section 3.1 and Section 3.2 are from the paper of J. L. Yucas and G. L. Mullen [31].

Results in Section 3.3 are based on the paper [18] of R. Kim and W. Koepf, where

divisibility of self-reciprocal trinomials by irreducible polynomials over F2 is studied.

We also give a factorization of self-reciprocal trinomials over F2 in terms of cyclotomic

polynomials. For an irreducible polynomial f(x) of order e over F2, the number of

trinomials of degree less than e, which are divided by f(x) is studied in the same

section. In Section 3.4, by using the ideas in Section 3.3, we present some results

about divisibility of self-reciprocal trinomials by irreducible polynomials over F3.

In Chapter 4, we study irreducible polynomials with prescribed coefficients. In Sec-

tion 4.1, we focus on questions on existence of irreducible polynomials with prescribed

coefficients. We state the well-known Hansen-Mullen conjecture. Then we give a brief

survey of works concerning existence problems. In Section 4.2, we focus on questions

on enumeration of irreducible polynomials with prescribed coefficients. One of the

problems is determining the number of monic irreducible polynomials of degree n and

with prescribed trace over Fq. This number was first obtained by Carlitz [2], then

Yucas [30] proved Carlitz’ result by using elementary techniques. In Section 4.2, we

present the proof due to Yucas. The question of estimating the number of irreducible

polynomials or their subclasses with several prescribed coefficients has been extensively

studied and there are still many open problems in this area.
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CHAPTER 2

On The Irreducibility of Binomials and Trinomials over Finite Fields

2.1. Binomials over Finite Fields

A binomial of the form axn + bxk in Fq[x] is divisible by xn−k and it is reducible.

Therefore, we can restrict ourselves to binomials of the form f(x) = axt+ b. Moreover,

we can assume that f(x) is monic and hence consider f(x) = xt − a with a 6= 0. The

following theorem, which is Theorem 3.75 in [21] gives a criteria for irreducibility of

binomials.

Theorem 2.1.1 Suppose that a ∈ F∗q is an element of order e, and t ≥ 2. Then the

binomial xt−a is irreducible over Fq if and only if the following conditions are satisfied:

(i) For any prime divisor r of t, we have r | e and r - (q − 1)/e,

(ii) If t ≡ 0 (mod 4), then q ≡ 1 (mod 4).

Before giving the proof of Theorem 2.1.1, we need the following theorem from [22].

Theorem 2.1.2 Let t ∈ Z+ and f(x) be an irreducible polynomial over Fq of degree n

and order e. Then f(xt) is irreducible over Fq if and only if the following conditions

are satisfied:

(i) gcd
(
t, q

n−1
e

)
= 1,

(ii) For any prime divisor r of t, we have r | e,

(iii) If t ≡ 0 (mod 4), then qn ≡ 1 (mod 4).

Proof of Theorem 2.1.1: Suppose that the conditions (i) and (ii) are satisfied.

Consider the polynomial f(x) = x − a. This is an irreducible polynomial of degree 1

and order e over Fq. By condition (i), any prime divisor of t divides e but not (q−1)/e.

Note that n = 1 in our case. So conditions (i) and (ii) of Theorem 2.1.2 are satisfied.

By assumption, if t ≡ 0 (mod 4), then q ≡ 1 (mod 4). So the third condition in
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Theorem 2.1.2 is also satisfied. Hence, the polynomial f(xt) = xt − a is irreducible

over Fq.
Now suppose the condition (i) is not satisfied. Then there exists a prime divisor

r of t that either divides (q − 1)/e or does not divide e. For the first case, we have

rs = (q − 1)/e for some integer s. Consider the subgroup of F∗q consisting of r-th

powers. This subgroup has order (q − 1)/r = es. So it contains the subgroup of order

e of F∗q generated by a. In particular, for some b ∈ F∗q, a = br and so xt − a = xt1r − br

has the factor xt1 − b. Therefore, the polynomial xt − a is not irreducible. For the

second case, r does not divide (q − 1)/e and also does not divide e. It follows that r

does not divide q − 1. Since r is a prime number, this means that gcd(r, q − 1) = 1.

Then r1r ≡ 1 (mod q − 1) for some integer r1, and then xt − a = xt1r − ar1r. So the

polynomial xt− a has the factor xt1 − ar1 . It follows that xt− a is not irreducible over

Fq. Now assume (i) is satisfied, but (ii) is not satisfied. We show that the binomial

xt − a can not be irreducible over Fq. By assumption t = 4t2 for some integer t2

and q 6≡ 1 (mod 4). By part (i), 2 divides e. So e ≡ 0 (mod 4) or e ≡ 2 (mod 4).

Since e is the order of element a in F∗q, we have e | (q − 1). But q 6≡ 1 (mod 4).

Therefore, we get e ≡ 2 (mod 4). Note that ae/2 = −1 since e is the order of a

in F∗q. So we have xt − a = xt + a(e/2)+1 = xt + ad, where d = (e/2) + 1 is even.

Note that e is even and divides q − 1 and then q is odd. Moreover, q ≡ 3 (mod 4).

Then ad = 4(2−1ad/2)2 = 4(2−1ad/2)q+1 = 4c4, where c = (2−1ad/2)(q+1)/4. We get the

following factorization: xt − a = x4t2 + 4c4 = (x2t2 + 2cxt2 + 2c2)(x2t2 − 2cxt2 + 2c2).

Hence, the binomial xt − a is not irreducible. This completes the proof. 2

The following result is Corollary 3.4.6 in [23] which follows from Theorem 2.1.1.

We give a proof for the sake of completeness.

Corollary 2.1.3 Let a ∈ Fq and t be an odd number. Then the binomial xt − a is

irreducible over Fq if and only if a 6= br for any b ∈ Fq and for any prime divisor r of

t.

Proof : Suppose that a is an r-th power in Fq for some prime divisor r of t. Then

there exists an element b ∈ Fq such that a = br. So we have xt − a = xt1r − br and

xt− a has the factor xt1 − b. For the converse, we use Theorem 2.1.1. Since t is an odd

number, we don’t need to check the second condition. Let e be the order of a in F∗q. To

show that (i) is satisfied, let r be a prime divisor of t. If r | (q − 1)/e, as in the proof

of Theorem 2.1.1, a is an r-th power. If r does not divide both (q− 1)/e and e, then r

does not divide q − 1 and so there exists an integer r1 such that r1r ≡ 1 (mod q − 1).

It follows that a = ar1r = (ar1)r and a is again an r-th power. 2

Example 2.1.1 Consider the finite field F3 and the polynomial x9 − 2 over F3. We

have 2 ≡ 23 (mod 3). So the element 2 is a 3-rd power of an element in F3 for the

prime divisor 3 of 9. By Corollary 2.1.3, the polynomial x9 − 2 is not irreducible over

F3. Indeed, we have the factorization x9 − 2 = x9 − 23 = (x3 − 2)(x6 + 2x3 + 1).

5



The following result is Corollary 3.2 from [22].

Corollary 2.1.4 Let e be the order of a ∈ F∗q and r be a prime factor of q − 1, where

r - (q − 1)/e. Suppose that q ≡ 1 (mod 4) if r = 2 and k ≥ 2. Then xr
k − a is

irreducible over Fq for any k ≥ 0.

Proof : We show the conditions in Theorem 2.1.1 are satisfied. The only prime

factor of rk is r and by assumption r | (q − 1) and it does not divide (q − 1)/e. It

follows that r | e. Therefore, the condition (i) is satisfied. We need to show that q ≡ 1

(mod 4) if rk ≡ 0 (mod 4). But it follows from the assumption. So the condition (ii)

is also satisfied. This completes the proof. 2

Example 2.1.2 Consider the polynomial x5
k − 2 over F11. The element 2 has order

10 in F∗11. Note that 5 is a prime divisor of q − 1 = 11− 1 = 10 and it does not divide

(q− 1)/e = (11− 1)/10 = 1. We don’t need the condition q ≡ 1 (mod 4) since r is not

equal to 2. So by Corollary 2.1.4, x5
k − 2 is irreducible over F11 for any non-negative

integer k.

2.2. Trinomials over Finite Fields

The following theorem is on the irreducibility of the trinomials xp − x− a in Fq[x],

where p is the characteristic of Fq. It is well-known and can be found, for instance,

in [22] as Theorem 3.5.

Theorem 2.2.5 Let Fq be a finite field with characteristic p and a ∈ Fq. Then xp−x−a
is irreducible over Fq if and only if TrFq/Fp(a) 6= 0.

Proof : Let q = pm and γ be a root of xp − x− a. Then we have

γp = γ + a

γp
2

= (γ + a)p = γp + ap = γ + a+ ap

...

γp
m

= (γ + a+ ap + . . .+ ap
m−2

)p

= γp + ap + ap
2

+ . . .+ ap
m−1

= γ + a+ ap + ap
2

+ . . .+ ap
m−1

= γ + TrFq/Fp(a).

It follows that γq = γ + TrFq/Fp(a) and so TrFq/Fp(a) = 0 if and only if γq = γ; that is

every root of xp − x− a is in Fq. This implies that xp − x− a splits into linear factors

over Fq if and only if TrFq/Fp(a) = 0.

Now suppose that θ = TrFq/Fp(a) 6= 0. Then θ ∈ Fp, and as above we get

γq
i

= γ + iθ, i = 1, 2, . . .

6



where γ is a root of xp − x − a. Therefore, γ has p distinct conjugates over Fq and

the minimal polynomial of γ over Fq has degree p. So the minimal polynomial of γ is

xp − x− a. Hence, xp − x− a is an irreducible polynomial over Fq. 2

Remark 2.2.1 Note that the polynomial f(x) is irreducible over Fq if and only if

f(bx) is irreducible over Fq, where b ∈ F∗q. Therefore, Theorem 2.2.5 yields a criteria

for bpxp − bx− a.

Now we present some results about divisibility of trinomials of the form xas+xbt+1

over F2. The following theorem can be found in [18] as Theorem 5.

Theorem 2.2.6 Suppose that f(x) is an irreducible polynomial over F2 with ord(f) >

1 and a, b, s, t ∈ Z+, where as > bt. If f(x) | (xas + xbt + 1), then e does not divide as,

bt and as− bt.

Proof : Let α be a root of f(x) in some extension of F2. Suppose that ord(f) = e |
as. Then we have αas = 1. Thus f(x) | (xas + 1). Since e > 1 and f(0) 6= 0, we have

that f(x) - xbt. Therefore f(x) can not divide the trinomial xas + xbt + 1. The case

where e | bt is very similar. Now assume that e | (as−bt). Then for any root α of f(x),

we have αas−bt = 1. Thus f(x) | (xas−bt+1). But then xas+xbt+1 = xbt(xas−bt+1)+1

is not divisible by f(x); otherwise f(x) | 1. 2

If a = b = 1 and f(x) = x2 +x+ 1, then the converse of Theorem 2.2.6 is also true.

Corollary 2.2.7 The polynomial x2 +x+ 1 divides the trinomial xn +xk + 1 of degree

n if and only if 3 does not divide n, k and n− k.

Proof : Note that the order of x2 + x + 1 is 3. So by Theorem 2.2.6, if x2 + x + 1

divides the trinomial xn + xk + 1, then 3 does not divide n, k and n− k. Conversely,

assume that n, k and n− k are not divisible by 3. Then we have two cases:

n ≡ 2 (mod 3), k ≡ 1 (mod 3), n− k ≡ 1 (mod 3)

or

n ≡ 1 (mod 3), k ≡ 2 (mod 3), n− k ≡ 2 (mod 3).

We give a proof for the first case and the second case is very similar. Suppose that

n ≡ 2 (mod 3), k ≡ 1 (mod 3), n− k ≡ 1 (mod 3) and let α be a root of x2 + x + 1.

By assumption n = 3n1 +2 and k = 3k1 +1 for some integers n1 and k1. Then we have

αn + αk + 1 = α3n1+2 + α3k1+1 + 1 = α2 + α + 1 = 0.

Since α was arbitrary, it follows that x2 + x+ 1 divides the trinomial xn + xk + 1. 2

7



2.3. Enumeration Results

2.3.1. Binomials

An interesting problem which has been only recently considered is estimating the

number of irreducible binomials over Fq. The recent work [16] of R. Heyman and I. E.

Shparlinski focuses on this problem. They considered the number N(t, q) of irreducible

binomials xt − a ∈ Fq[x]. This is the first study of the behaviour of N(t, q). Now, we

focus on a problem of different nature and give the number of irreducible factors of a

fixed degree k of a binomial xt − a over Fq. This result is due to Schwarz [27]. We

follow the shorter proof by L. Redei given in [25].

Lemma 2.3.8 Let m,n ≥ 1 be integers and a, b ∈ F∗q. Then gcd(xm− a, xn− b) in an

arbitrary field has degree 0 or d = gcd(m,n). Moreover, gcd(xm− a, xn− b) has degree

d = gcd(m,n) if and only if an/d = bm/d.

Proof : When m = n, the statement is obviously true. Hence, the statement holds

if m + n = 2, i.e., when m = 1 and n = 1. Now suppose m 6= n and m,n ≥ 1. We

proceed by induction on the degree of the sum of the binomials. Assume that the

statement is true for all couples of binomials with a sum of degrees < m+n. We show

that the statement holds when the sum has degree m+ n. Without loss of generality,

we can assume that m > n. From the equality

(xm − a)− xm−n(xn − b) = b
(
xm−n − a

b

)
we get

gcd(xm − a, xn − b) = gcd
(
xm−n − a

b
, xn − b

)
The sum of the polynomials xm−n− a

b
and xn− b has degree m− n+ n = m < m+ n.

So by the induction assumption the statement is true for these polynomials and note

that gcd(m− n, n) = gcd(m,n) = d . It follows that gcd(xm − a, xn − b) has degree 0

or d. Moreover, the polynomial gcd
(
xm−n − a

b
, xn − b

)
has degree d if and only if(a

b

)n/d
= b(m−n)/d.

Hence, the polynomial gcd(xm − a, xn − b) has degree d if and only if an/d = bm/d. 2

Theorem 2.3.9 Let Sk(t, q) be the set of all irreducible factors of degree k of xt − a
in Fq[x]. Put #Sk(t, q) = σk(t, q) and assume that the characteristic p of Fq does not

divide t. Then

σk(t, q) =
1

k

∑
l|k

µ

(
k

l

)
dl

where dl = gcd(t, ql − 1) and the sum is taken over all l satisfying ad
′
l = 1 with

d′l = ql−1
dl

.

8



Proof : For convenience we put σk(t, q) = σk. Note that gcd(xt − a, xqk−1 − 1) =∏
h∈Sd(t,q)

d|k
h(x), since for an irreducible polynomial f(x) of degree m over Fq we have

that f(x) | (xqn−x) if and only if m | n. The polynomial xt−a has no multiple factors

since p - t and so ∑
l|k

lσl = deg(gcd(xt − a, xqk−1 − 1))

where deg denotes the degree of polynomial. Then, deg(gcd(xt − a, xqk−1 − 1)) = 0 or

deg(gcd(xt − a, xq
k−1 − 1)) = gcd(t, qk − 1) = dk by Lemma 2.3.8. The second case

occurs if and only if the equality ad
′
k = 1 holds, where d′k = qk−1

dk
. Now let

χk =

 1 if ad
′
k = 1, where d′k = qk−1

dk
,

0 otherwise.

So we have

deg(gcd(xt − a, xqk−1 − 1)) =
∑
l|k

lσl = dkχk.

Using the Möbius inversion formula, we get

kσk =
∑
l|k

µ

(
k

l

)
dlχl.

So,

σk =
1

k

∑
l|k

µ

(
k

l

)
dlχl.

This is equivalent to what we wanted to prove. 2

Example 2.3.3 Let q = 3. Note that the characteristic of the field is 3. Consider the

binomial x5 − 2 ∈ F3[x]. With the notation of Theorem 2.3.9, we have t = 5, a = 2

and 3 - 5. By Corollary 2.1.3, the binomial x5 − 2 is irreducible over F3 if and only

if 2 is not an r-th power of an element in F3 for any prime divisor r of 5. In this

case r can only be 5. So to check the irreducibility of the binomial x5 − 2 over F3, it

suffices to check whether 2 is a 5-th power of an element in F3 or not. We have 25 ≡ 2

(mod 3). It follows that 2 is a 5-th power in the field F3. Hence, x5 − 2 is reducible

over F3. Indeed, we have the factorization x5−2 = (x−2)(x4 +2x3 +x2 +2x+1). The

polynomial x4 + 2x3 + x2 + 2x + 1 has no root in F3. Moreover, one can easily show

that x4 + 2x3 + x2 + 2x + 1 can not be written as a product of two polynomials which

have both degree 2. It follows that x4 + 2x3 + x2 + 2x + 1 is irreducible over F3. Now

let us find the number of irreducible factors of x5 − 2 of degree 1 and degree 4 just by

using the formula stated in Theorem 2.3.9. The number of irreducible factors of degree

1 of the polynomial x5 − 2 is given by

1

1

∑
l|1

µ

(
1

l

)
dl.

9



We have d1 = (5, 31 − 1) = 1 and d′1 = 2. Note that 2d
′
1 = 22 = 1. Hence, we get

1

1

∑
l|1

µ

(
1

l

)
dl = µ(1)d1 = 1.

Now we will find the number of irreducible factors of degree 4 of the polynomial x5 − 2

in F3[x]. This number is given by

1

4

∑
l|4

µ

(
4

l

)
dl.

By an easy computation, we see that d2 = 1, d4 = 5, d′2 = 8 and d′4 = 16. Then we get

2d
′
2 = 1 and 2d

′
4 = 1. Finally,

1

4

∑
l|4

µ

(
4

l

)
dl =

1

4
(µ(4)d1 + µ(2)d2 + µ(1)d4) =

1

4
(0− 1 + 5) = 1.

In the same way one can find the number of irreducible factors of degree 2 or 3 of x5−2

and see that those numbers are equal to 0.

2.3.2. Trinomials

Now we give some results about the distribution of irreducible trinomials over F3.

We start by the Corollary 2 in [1] which follows from Theorem 2.1.2.

Corollary 2.3.10 Let f(x) ∈ Fq[x] be a polynomial of degree n, where n is odd and

q ≡ 3 (mod 4). Then f(x2
r
) is reducible over Fq for any r ≥ 2.

Proof : We can assume that f(x) is an irreducible polynomial; otherwise we take

an irreducible factor of f(x) with odd degree. We show that the condition (iii) in

Theorem 2.1.2 is not satisfied. Since t = 2r and r ≥ 2, 4 | t. But 4 - (qn− 1). Because,

qn − 1 ≡ 3n − 1 ≡ 3 − 1 = 2 (mod 4) since n is an odd number. Therefore, the

polynomial f(x2
r
) is reducible over Fq. 2

Lemma 2.3.11 Suppose that f(x) is an irreducible polynomial over Fq of degree n and

let θ ∈ F∗qn be such that f(θx) ∈ Fq[x]. Let β be a root of f(x) in a certain extension of

Fq. Then f(θx) is irreducible over Fq if and only if θ−1β is not in any proper subfield

of Fqn.

Proof : Suppose that f(θx) is irreducible over Fq. Observe that f(θx) has degree

n and θ−1β is a root of f(θx), since β is a root of the polynomial f(x). It follows that

θ−1β is not in any proper subfield of Fqn .

Conversely, suppose that f(θx) is reducible. Let g(x) be a monic irreducible factor

of f(θx) of degree m < n and suppose that this irreducible factor has root θ−1β. So
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g(x) is the minimal polynomial of θ−1β over Fq. We have the chain of finite fields

Fqn ⊇ Fq(θ−1β) ⊇ Fq. It follows that [Fqn : Fq] = [Fqn : Fq(θ−1β)][Fq(θ−1β) : Fq]. But

[Fqn : Fq] = n and [Fq(θ
−1β) : Fq] = m. So we get m | n. Then Fqm is a proper subfield

of Fqn and it contains θ−1β. 2

Now we state two lemmas, Lemma 4 and 5 in [1], which will be used to prove the

results that follow.

Lemma 2.3.12 Assume that q is odd, n = 2rn′, where n′ is odd and r ≥ 1. Then 2r+2

divides qn − 1 and 2r divides qn−1
q−1 .

Lemma 2.3.13 Assume that q is odd and n = 2rn′, where n′ is odd. Let r ≥ s ≥ 0.

Then for any α ∈ F∗q there exists θ ∈ Fqn such that θ2
s

= α.

The following theorem is Theorem 6 in [1].

Theorem 2.3.14 Let n = 2rn′ and k = 2sk′, where n′ and k′ are odd, r > s ≥ 0. Let

q be odd and α ∈ F∗q. Then xn + axk + b ∈ Fq[x] is irreducible over Fq if and only if

α2r−sn′xn + aαk
′
xk + b ∈ Fq[x]

is irreducible over Fq.

Proof : Assume that f(x) = xn + axk + b ∈ Fq[x] is irreducible over Fq. By

Lemma 2.3.13, there exists θ ∈ F∗qn such that θ2
s

= α. We show that g(x) = f(θx) =

α2r−sn′xn + aαk
′
xk + b ∈ Fq[x] is irreducible over Fq. By Lemma 2.3.11, it suffices to

show that θ−1β is not in any proper subfield of Fqn , where β is a root of f(x) in Fqn .

To the contrary, suppose that (θ−1β)q
l−1 = 1, where l is a proper divisor of n, and

let l = 2vl′, where v ≤ r and l′ | n′. By Lemma 2.3.12, we have 2v | ql−1
q−1 . If v ≥ s, then

2s | ql−1
q−1 and we get

βq
l−1 = θq

l−1 = θ2
s(q−1)t = 1

for some t, and this yields a contradiction since β can not be in any proper subfield of

Fqn . Suppose v < s and let w = s−v. We have ql−1 | q2wl−1. Since βq
l−1 = θq

l−1, we

have βq
2wl−1 = θq

2wl−1 = θq
2sl′−1 = θ2

s(q−1)t′ = 1 for some t′, and then n | 2wl. But we

have r > s. This is a contradiction. Observe that f(x) = g(θ−1x) and θ−2
s

= α−1 ∈ F∗q.
So the proof of the converse is similar and the result follows. 2

Corollary 2.3.15 Suppose that n, k, r, s are as in Theorem 2.3.14. Then xn+axk+b

is irreducible over Fq if and only if xn − axk + b is irreducible over Fq.

Proof : Take α = −1 in Theorem 2.3.14. 2

Corollary 2.3.16 The trinomial xn − xk + 1 of degree n is reducible over F3, where

n ≡ 0 (mod 4).

11



Proof : Suppose that n = 2rn′ and k = 2sk′, where n′ and k′ are odd numbers and

s ≥ r. Consider the polynomial g(x) = xn
′ − x2s−rk′ + 1. Then g(x) is a polynomial

of odd degree and by Corollary 2.3.10, g(x2
r
) = xn − xk + 1 is reducible over F3. Also

note that the assumption q ≡ 3 (mod 4) in Corollary 2.3.10 holds. If r > s, consider

the polynomial xn + xk + 1. This is a reducible polynomial over F3, since it has 1 as a

root. By Corollary 2.3.15, f(x) = xn − xk + 1 is also reducible over F3. 2

The following is Theorem 11 in [1].

Theorem 2.3.17 Let xn+axk+b ∈ F3[x] be irreducible over F3, where n ≡ 0 (mod 4).

Let n = 2rn′ and k = 2sk′, where n′ and k′ are odd numbers. Then we have r > s.

Proof : Let xn + axk + b ∈ F3[x], where n = 2rn′ and k = 2sk′, n′ and k′ are

odd numbers, and s ≥ r ≥ 2. Then if we let f(x) = xn
′

+ ax2
s−rk′ + b, we have

xn+axk+b = f(x2
r
) and from Corollary 2.3.10, it follows that xn+axk+b is reducible

over F3. 2

The following theorem is about the number of irreducible trinomials over F3 and is

given in [1] as Theorem 12.

Theorem 2.3.18 Let m ∈ Z+ be fixed, a, b ∈ F3, l ∈ {0, 4, 8} and 0 ≤ c ≤ 5. Let S1 be

the set of all irreducible trinomials xn + axk + b ∈ F3[x], where n ≡ l (mod 12), k ≡ c

(mod 6), and n ≤ m and S2 be the set of all irreducible trinomials xn+axk+b ∈ F3[x],

where n ≡ l (mod 12), k ≡ l − c (mod 6) and n ≤ m. Then #S1 = #S2.

Proof : When a, b = 1 we have the trinomial xn+xk+1 over F3. But this trinomial

is always reducible over F3 since it has 1 as a root. Thus suppose that a = 1, b = −1.

The other cases are very similar. Let xn + xk − 1 be an irreducible trinomial over F3,

where n ≡ l (mod 12), k ≡ c (mod 6) for given l ∈ {0, 4, 8} and 0 ≤ c ≤ 5. Then by

Theorem 2.3.17, the largest power of 2 which divides n is greater than the largest power

of 2 which divides k. Thus by Corollary 2.3.15, xn−xk− 1 is irreducible over F3. Now

the reciprocal −xn−xn−k+1 of xn−xk−1 is also irreducible over F3. Then xn+xn−k−1

is irreducible over F3. But in this case we have n ≡ l (mod 12) and n−k ≡ c (mod 6).

Since n ≡ l (mod 12), we have n ≡ l (mod 6). Then k ≡ n− c ≡ l − c (mod 6). This

gives a bijection between S1 and S2, hence the result follows. 2
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CHAPTER 3

On Some Classes of Self-reciprocal Polynomials over Finite Fields

We recall that for a polynomial f(x) of degree n over Fq, the reciprocal of f(x) is

the polynomial f ∗(x) of degree n over Fq given by f ∗(x) = xnf( 1
x
), and a polynomial

f(x) is called self-reciprocal if f ∗(x) = f(x). We note that f(x) is irreducible over

Fq if and only if the reciprocal polynomial f ∗(x) is irreducible over Fq. Moreover, if

f(x) ∈ Fq[x] is monic, irreducible and self-reciprocal of degree n ≥ 2, then n has to be

even, since the set of all roots of f(x) is closed under taking inverses.

Self-reciprocal polynomials have many applications in coding theory, they are also

used in combinatorics. We start with the orders of self-reciprocal irreducible polyno-

mials over finite fields. Results in Section 3.1 and Section 3.2 are based on the paper

of J. L. Yucas and G. L. Mullen [31].

3.1. Orders of Self-reciprocal Irreducible Polynomials

We denote the set of all monic polynomials of degree n in Fq[x] byMn(q) and denote

the set of all irreducible polynomials in Mn(q) by In(q). Throughout this section, we

assume that n = 2m. We begin by presenting some elementary number-theoretic

results.

Proposition 3.1.1 Let a ∈ Z+, where a > 2 and suppose that a | (qt + 1) for some

t ∈ Z+. Let s be such that a | (qs + 1), but a - (qk + 1) if k < s. Then we have:

(i) a divides qu + 1 if and only if u = u′s, where u′ is an odd integer.

(ii) a divides qu − 1 if and only if u = u′s, where u′ is an even integer.

Proof : Since s is the smallest positive integer such that a | (qs + 1), i.e., qs ≡ −1

(mod a), the multiplicative order of q mod a is 2s.

To prove (i), assume that a divides qu+1. Then we have qu ≡ −1 (mod a). Clearly,

u can not be an even multiple of s. Otherwise, we get qu ≡ 1 (mod a), so 1 ≡ −1

(mod a). But this is impossible since a > 2. To prove the converse, suppose that
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u = (2j+1)s for some non-negative integer j. Then we have qu+1 = q(2j+1)s+1 ≡ qs+1

(mod a). Since a | (qs + 1), the result follows.

To prove (ii), assume a | (qu − 1). Then qu ≡ 1 (mod a). Since the order of q mod

a is 2s, it follows that (2s) | u. Hence, u = u′s, where u′ is an even integer. Conversely,

assume that u = u′s, where u′ is an even integer. Then (2s) | u, so qu ≡ 1 (mod a)

and a | (qu − 1). 2

Proposition 3.1.2 Let a ∈ Z+. Suppose that there exist r, k ∈ Z+, where r is even,

such that a | (qr − 1) and a | (qk + 1). Then a | (qr/2l + 1) for some l ∈ Z+.

Proof : When a = 1 or a = 2, the result is obviously true. We can assume a > 2.

Let s be the smallest positive integer such that a | (qs + 1). Such an s exists since

a | (qk+1) for some k ∈ Z+ by assumption. By Proposition 3.1.1, r is an even multiple

of s. Write r = 2lts for some l, t ∈ Z+, where t is odd. By Proposition 3.1.1, a | (qts+1)

since ts is an odd multiple of s. Also note that ts = r/2l. This completes the proof. 2

Proposition 3.1.3 Let f(x) ∈ In(q) be a self-reciprocal polynomial. Then ord(f) |
(qk + 1) for some positive integer k dividing m.

Proof : Let α ∈ Fqn be a root of f(x). Then f(1/α) = 0 since f(x) is self-reciprocal.

Note that 1/α is a conjugate of α, so we can write 1/α = αq
t

for some t ∈ Z+. Then

αq
t+1 = 1 and thus ord(α) | (qt + 1). Since α ∈ Fqn , ord(α) | (qn − 1). By Proposition

3.1.2, ord(α) | (qn/2l + 1) for some l ∈ Z+. We have (n/2l)2l−1 = m and (n/2l) | m. So

just take k = n/2l. 2

Now, we introduce the set Dm = {r ∈ Z+ : r | qm+1, but r - qk+1 for 0 ≤ k < m}.
We recall that n = 2m. Observe that 1, 2 /∈ Dm for anym. Also, if f(x) is an irreducible

polynomial of degree n ≥ 2, then ord(f) 6= 1, 2.

Proposition 3.1.4 Let f(x) ∈ In(q) be a self-reciprocal polynomial and let α ∈ Fqn
be a root of f(x). Then α is a primitive d-th root of unity for some d ∈ Dm.

Proof : Firstly, we prove that if k | m and ord(α) | (qk +1), then k = m. Note that

ord(α) divides q2k − 1 = (qk − 1)(qk + 1). Then we get αq
2k−1 = 1 and thus α ∈ Fq2k .

Now suppose that f(x) =
∏n−1

i=0 (x−αqi) = g(x)h(x), where g(x) =
∏2k−1

i=0 (x−αqi) and

h(x) =
∏n−1

i=2k(x− αq
i
).

For 1 ≤ j ≤ n− 1, consider the map Tj : Fq2k → Fq defined by

Tj(α) =
∑

0≤i1<i2<...<ij<2k−1

αq
i1αq

i2 . . . αq
ij
.

The coefficients of g(x) are determined by Tj(α) and so g(x) ∈ Fq[x]. Also we have

f(x) ∈ Fq[x]. It follows that h(x) ∈ Fq[x]. This shows that if k < m, f(x) has a

non-trivial factorization, i.e., f(x) is reducible over Fq.
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Now we prove the proposition. By Proposition 3.1.3, ord(α) | (qk + 1) for some

k ∈ Z+, where k | m. By the fact above ord(α) | (qm+1). We show that ord(α) ∈ Dm.

Let s be the smallest positive integer such that ord(α) | (qs + 1). By Proposition 3.1.1,

m is an odd multiple of s and then s | m. Therefore, we have s = m and ord(α) ∈ Dm.

2

Corollary 3.1.5 Let f(x) ∈ In(q) be a self-reciprocal polynomial. Then ord(f) ∈ Dm.

Proposition 3.1.6 Suppose that d ∈ Dm and β is a primitive d-th root of unity. Then

βq
i

is a primitive d-th root of unity for each i ∈ {0, 1, . . . , n − 1}. Moreover, if i 6= j,

then βq
i 6= βq

j
.

Proof : Let 0 ≤ i ≤ n − 1. Since d ∈ Dm, d | (qm + 1), (d, qi) = 1 and so βq
i

is a primitive d-th root of unity. If βq
i

= βq
j

for some 0 ≤ i < j ≤ n − 1, then

βq
j−qi = 1 and so d divides qj − qi = qi(qj−i − 1). Since d and qi are relatively prime,

d | (qj−i − 1). By Proposition 3.1.1, j − i = km for some even positive integer k. But

then j = km+ i ≥ 2m+ i ≥ 2m = n. A contradiction to 0 < j ≤ n− 1. 2

Proposition 3.1.7 Let d ∈ Dm and β be a primitive d-th root of unity. Consider the

polynomial fβ(x) defined by fβ(x) =
∏n−1

i=0 (x − βq
i
). Then fβ(x) is a self-reciprocal

element of In(q) with ord(fβ) = d.

Proof : We have d ∈ Dm. Then d | (qm + 1), so we have βq
m+1 = 1. Hence,

βq
i
βq

m+i
= 1 for 0 ≤ i ≤ n− 1 and

∏n−1
i=0 β

qi = 1. By using these facts we get:

xnfβ

(
1

x

)
= xn

n−1∏
i=0

(
1

x
− βqi

)
=

n−1∏
i=0

(1− xβqi)

=

(
n−1∏
i=0

βq
i

)(
n−1∏
i=0

(
1

βqi
− x
))

=
n−1∏
i=0

(βq
m+i − x) =

n−1∏
i=0

(x− βqm+i

)

=
n−1∏
i=0

(x− βqi) = fβ(x).

Therefore, xnfβ
(
1
x

)
= fβ(x) and fβ(x) is a self-reciprocal polynomial. Now we

show that fβ(x) is an irreducible polynomial over Fq. Let g(x) be an irreducible factor

of fβ(x) of degree r, where 1 ≤ r ≤ n. Let γ be a root of g(x). Since g(x) is an

irreducible polynomial over Fq of degree r, we have γ ∈ Fqr . It follows that γq
r−1 = 1.

Since γ is a root of g(x) and g(x) is a factor of fβ(x), γ is also a root of the polynomial

fβ(x). Hence, γ is a primitive d-th root of unity. Consequently, d | (qr − 1). But

d ∈ Dm, so by Proposition 3.1.1, r is an even multiple of m and r ≥ 2m. On the other

15



hand, r ≤ n = 2m and we get r = 2m = n. Therefore, the polynomial fβ(x) itself

is an irreducible polynomial over Fq. Note that fβ(x) has order d, since its roots are

primitive d-th roots of unity. 2

The following theorem gives a classification of the self-reciprocal irreducible poly-

nomials in relation to Dm.

Theorem 3.1.8 Let f(x) ∈ In(q). Then the following statements are equivalent:

(i) f(x) is self-reciprocal.

(ii) ord(f) ∈ Dm.

(iii) f(x) = fβ(x) for some primitive d-th root of unity β, where d ∈ Dm.

Proof : By Corollary 3.1.5, (i) implies (ii). Part (iii) implies (i) follows from Propo-

sition 3.1.7. Now we prove that (ii) implies (iii). Suppose that ord(f) ∈ Dm. Let α be

a root of f(x). It follows that ord(α) ∈ Dm. By Proposition 3.1.6, α, αq, . . . , αq
n−1

are

all distinct primitive d-th roots of unity, where d = ord(α). Since α, αq, . . . , αq
n−1

are

all roots of f(x), we get f(x) = fα(x). 2

We recall that n = 2m for the following theorem.

Theorem 3.1.9 (i) There are φ(d)/n self-reciprocal polynomials in In(q) of order d

for each d ∈ Dm.

(ii) The number of self-reciprocal polynomials in In(q) is

1
n

∑
d∈Dm φ(d).

Proof : There are φ(d) primitive d-th roots of unity. It follows that there are

φ(d)/n distinct polynomials fβ(x) and by Theorem 3.1.8, any self-reciprocal irreducible

polynomial of degree n and order d, where d ∈ Dm corresponds to some fβ(x). This

proves part (i). Part (ii) follows from counting the distinct fβ(x) for each d ∈ Dm. 2
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3.2. An Infinite Family of Self-reciprocal Irreducible Polynomials over F2

We recall that In(q) is the set of all monic irreducible polynomials of degree n in

Fq[x]. The following theorem shows the existence of an infinite family of self-reciprocal

polynomials in In(2) under some conditions.

Theorem 3.2.10 Let m ≥ 3 be an odd integer, n = 2m and f(x) ∈ In(2), where

ord(f) = 2m + 1. Define fj(x) = f(x3
j
) for integers j ≥ 0. Then {fj(x)}j is an

infinite family of self-reciprocal polynomials in In(2).

Proof : Since ord(f) = 2m + 1, we have ord(f) ∈ Dm. So by Theorem 3.1.8, f(x)

is self-reciprocal. Note that fj(x) is a polynomial of degree n3j. Then we have

f(x) = xnf

(
1

x

)
= f ∗(x), and so

f(x3
j

) = (x3
j

)nf

(
1

x3j

)
, which implies that

fj(x) = xn3
j

fj

(
1

x

)
= f ∗j (x).

Therefore, fj(x) is self-reciprocal for each j. Now we show that fj(x) is an irreducible

polynomial over F2 for each j. We use Theorem 2.1.2. We just take t = 3j. Since m

is an odd integer, 2m ≡ 2 (mod 3) and then 3 divides 2m + 1 and 3 does not divide

(2n− 1)/(2m + 1) = 2m− 1. By Theorem 2.1.2, fj(x) is an irreducible polynomial over

F2. 2

Now we present some results about divisibility of self-reciprocal trinomials by irre-

ducible polynomials over F2 and F3. The results in Section 3.3 are based on the paper

of R. Kim and W. Koepf [18]. In Section 3.4, we study divisibility of self-reciprocal

trinomials by irreducible polynomials over F3 by using the results in Section 3.3.

3.3. Factorization of Self-reciprocal Trinomials by Irreducible Polynomials

over F2

It can be easily checked that a self-reciprocal trinomial over F2 must be of the form

x2m + xm + 1, where m ∈ Z+. We begin with a lemma which is used in the proof

of the theorem, which gives a characterization of irreducible factors of self-reciprocal

trinomials over F2. This characterization is in terms of the orders of irreducible factors.
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Lemma 3.3.11 Let f(x) be an irreducible polynomial with ord(f) = e and assume

that f(x) divides the self-reciprocal trinomial x2m +xm + 1. Then there exists a unique

self-reciprocal trinomial of degree < e and is divisible by f(x).

Proof : Let α be a root of f(x) in some extension of F2. Since f(x) divides the

trinomial x2m+xm+1, α is also a root of this trinomial. Hence, we have α2m+αm+1 =

0. Let m = eq+ r, where q, r are integers and 0 < r < e. Observe that r can not be 0;

otherwise we get α2m +αm + 1 = 1 + 1 + 1 = 3 = 0 which is not possible. Suppose that

2r < e. Then x2r + xr + 1 is a self-reciprocal trinomial of degree < e and f(x) divides

this trinomial since α2m + αm + 1 = α2r + αr + 1 = 0. Now assume that 2r > e. Let

r1 = 2r − e. Then 0 < r − r1 = e− r < r and

0 = α2m + αm + 1 = αr + αr1 + 1.

Also, we have

0 = (α−1)2m + (α−1)m + 1 = α−r + α−r1 + 1.

Then multiplying by αr both sides of the equation α−r + α−r1 + 1 = 0, we have

αr + αr−r1 + 1 = 0. So we have αr−r1 = αr1 . From this we get αr−2r1 = 1. Since

the order of α is e, it follows that e | (r − 2r1). But r − 2r1 = r − (4r − 2e) =

2e− 3r < e. Hence r− 2r1 = 0 and r = 2r1. Therefore, f(x) divides the self-reciprocal

trinomial x2r1 + xr1 + 1 and this polynomial has degree 2r1 = r < e. Moreover, since

α2r1 +αr1 +1 = 0, we have α3r1 = 1 which implies that e | (3r1). On the other hand, we

have 2r1 < e, so e = 3r1. Now, we show the uniqueness. Suppose that m1 is another

integer such that f(x) divides α2m1 + αm1 + 1, where 2m1 < e. Then by the same

discussion we get e = 3m1. Therefore, e = 3r1 = 3m1 and r1 = m1. 2

The following theorem characterizes irreducible divisors of self-reciprocal trinomials

over F2, based on ord(f).

Theorem 3.3.12 Let f(x) be an irreducible polynomial over F2. Then f(x) divides a

self-reciprocal trinomial over F2 if and only if ord(f) is divisible by 3.

Proof : Suppose that f(x) divides the self-reciprocal trinomial x2m + xm + 1. By

Lemma 3.3.11, f(x) divides a self-reciprocal trinomial x2r + xr + 1 which has degree

2r < e, where e is the order of f(x). Let α be a root of f(x). Since f(x) divides

x2r + xr + 1, we have α2r + αr + 1 = 0. As in the proof of Lemma 3.3.11, we get

e = 3r. Hence e is a multiple of 3. Conversely, suppose that e is a multiple of 3.

Let e = 3r for some r ∈ Z+. If α is a root of f(x), then αe = α3r = 1; that is

0 = α3r − 1 = (αr − 1)(α2r + αr + 1). Note that αr − 1 6= 0 since r < e. Therefore,

we get α2r + αr + 1 = 0. This means that f(x) divides the self-reciprocal trinomial

x2r + xr + 1. 2

Example 3.3.4 Consider the polynomial x4 + x3 + x2 + x + 1 ∈ F2[x]. This is an

irreducible polynomial over F2 of order 5. Then the order of this polynomial is not a
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multiple of 3. By Theorem 3.3.12, x4 + x3 + x2 + x+ 1 can not divide a self-reciprocal

trinomial x2m + xm + 1. To see this more clearly, suppose that x4 + x3 + x2 + x + 1

divides a self-reciprocal trinomial x2m + xm + 1, where 2m < 5. Let α be a root

of x4 + x3 + x2 + x + 1. Note that the order of α is 5. By assumption, we have

α2m + αm + 1 = 0. It follows that α3m = 1. Then we have 5 | (3m). In particular,

5 ≤ 3m. It follows that 5 = 3m, which is not possible.

The following theorem gives a factorization of self-reciprocal trinomials over F2.

Theorem 3.3.13 For any given odd number m, we have

x2m + xm + 1 =
∏
n|m
3n-m

Q3n (3.1)

where Q3n denotes the 3n-th cyclotomic polynomial over F2.

Proof : Assume that n | m but 3n - m. Note that Q3n is the product of all

irreducible polynomials of order 3n. Let f(x) be an irreducible polynomial of order

3n and let α be a root of f(x). Thus we have α3n = 1 and since 3n | 3m, we get

α3m = 1. It follows that (αm − 1)(α2m + αm + 1) = 0. Since 3n - m, αm − 1 6= 0 and

α2m + αm + 1 = 0. So f(x) divides the trinomial x2m + xm + 1. Since any irreducible

factor of Q3n divides x2m + xm + 1, Q3n divides x2m + xm + 1. So it suffices to show

that both sides of the equation (3.1) have the same degree; that is∑
n|m
3n-m

φ(3n) = 2m.

By using the formula
∑

d|m φ(d) = m for the Euler’s function φ, we get∑
n|m
3n-m

φ(3n) =
∑
n|m

φ(3n)−
∑
3n|m

φ(3n)

=
∑
3n|3m

φ(3n)−
∑
3n|m

φ(3n)

= 3m−m = 2m.

2

Example 3.3.5 Consider the self-reciprocal trinomial x42 + x21 + 1. By Theorem

3.3.13, we have

x42 + x21 + 1 =
∏
n|21
3n-21

Q3n.

Positive divisors of 21 are 1, 3, 7 and 21. Because of the condition 3n - 21, we just take

the divisors 3 and 21. So we have the factorization:

x42 + x21 + 1 = Q9Q63.
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Note that the degree of x42 + x21 + 1 = φ(9) + φ(63) = 6 + 36 = 42, where φ(9) + φ(63)

is the degree of the polynomial Q9Q63.

Corollary 3.3.14 If m is an odd number and m = 3kn, 3 - n for k ≥ 0, then x2m +

xm + 1 is divisible by the self-reciprocal irreducible trinomial x2.3
k

+ x3
k

+ 1.

Proof : The trinomial x2.3
k

+ x3
k

+ 1 has order 3k+1 and it is irreducible over F2.

Since Q3k+1 is the product of irreducible polynomials of order 3k+1, it follows that

x2.3
k

+ x3
k

+ 1 divides Q3k+1 . Observe that 3k | m but 3k+1 - m. By Theorem 3.3.13,

Q3k+1 divides the trinomial x2m + xm + 1, thus x2.3
k

+ x3
k

+ 1 divides x2m + xm + 1. 2

Example 3.3.6 Let m = 32.5 = 45. Then m is odd, n = 5 and 5 is not divisible by

3. Note that k = 2. Then by Corollary 3.3.14, the self-reciprocal irreducible trinomial

x2.3
2

+ x3
2

+ 1 = x18 + x9 + 1 divides the trinomial x90 + x45 + 1. Indeed, we have the

factorization

x90 + x45 + 1 = (x18 + x9 + 1)(x72 + x63 + x45 + x36 + x27 + x9 + 1).

Remark 3.3.1 Theorem 3.3.13 can be generalized for an arbitrary m in the following

way: Let m = 2kn, where 2 - n. Then we have

x2m + xm + 1 =

∏
n1|n
3n1-n

Q3n1


2k

.

Lemma 3.3.15 Let f(x) be an irreducible polynomial of order e over F2. Assume that

f(x) divides a trinomial xn + xk + 1. Then it divides at least one trinomial of degree

< e.

Proof : Assume that f(x) divides xn + xk + 1. Let α be a root of f(x). Then

αn + αk + 1 = 0. Since αe = 1, this gives αn
′
+ αk

′
+ 1 = 0, where n ≡ n′ (mod e) and

k ≡ k′ (mod e). So we can choose n′ and k′ on the range from 0 to e−1. Observe that

n′ and k′ can not be 0. If both n′ and k′ are 0, we get 1 = 0. Now suppose that n′ = 0

but k′ 6= 0. If α is a root of f(x), then we get 1 + αk
′
+ 1 = 0. It follows that α = 0.

It is impossible since f(x) is an irreducible polynomial and it divides a trinomial. The

case k′ = 0 and n′ 6= 0 is similar. So f(x) divides the trinomial xn
′
+ xk

′
+ 1 and this

trinomial has degree less than e. 2

Theorem 3.3.16 Suppose that f(x) is an irreducible polynomial of order e over F2

and f(x) divides at least one trinomial over F2. Then

Nf =
1

2
deg(gcd(1 + xe, 1 + (1 + x)e))

where Nf denotes the number of trinomials of degree less than e, which are divided by

f(x).
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Proof : Let 1 +xe = g1(x)g2(x) . . . gt(x) be a product of all irreducible polynomials

which have order dividing e. By substituting 1 + x to x, we get

1 + (1 + x)e = g1(x+ 1)g2(x+ 1) . . . gt(x+ 1).

Let α be a root of f(x). Then 1, α, α2, . . . , αe−1 are roots of g1(x), g2(x), . . . , gt(x).

Thus 0, 1 + α, 1 + α2, . . . , 1 + αe−1 are roots of g1(x + 1), g2(x + 1), . . . , gt(x + 1). By

assumption f(x) divides at least one trinomial over F2; that is there exists at least

one pair (i, j) such that 1 ≤ i, j < e, where i 6= j and αi = αj + 1. The number of

such pairs is equal to the number of common roots of 1 + xe and 1 + (1 + x)e. This

number is equal to the degree of the polynomial gcd(1 + xe, 1 + (1 + x)e). Note that

gcd(1 +xe, 1 + (1 +x)e) does not have any multiple roots. The different pairs (i, j) and

(j, i) correspond to the same trinomial, so the result follows. 2

The case Nf = 1 yields an interesting result.

Theorem 3.3.17 If Nf = 1, then f(x) divides a self-reciprocal trinomial over F2.

Proof : Let e = ord(f). By Theorem 3.3.12, it suffices to show that e is a multiple

of 3. To the contrary, assume that e is not a multiple of 3 and f(x) divides the trinomial

xn + xk + 1, where n < e. Then since e is not a multiple of 3, xn + xk + 1 can not be

self-reciprocal; that is n 6= 2k. Let α be a root of f(x). Then α−1 is a root of f ∗(x).

Since f ∗(x) divides xn + xn−k + 1, we have

α−n + α−(n−k) + 1 = 0.

It follows that

αe−n + αe−n+k + 1 = 0.

Note that 0 < e − n, e − n + k < e, e − n 6= e − n + k. Therefore f(x) divides the

trinomial xe−n + xe−n+k + 1. Since e is odd, e − n 6= n. Now assume that e − n = k.

Then we have αn+k = αe = 1. If we multiply both sides of the equation αn+αk+1 = 0

by αk, we have

α2k + αk + 1 = 0.

Since α was arbitrary, this means that f(x) divides the self-reciprocal trinomial x2k +

xk + 1. That contradicts to the assumption that e is not a multiple of 3. Therefore

e − n 6= k. Thus f(x) divides xn + xk + 1 and xe−n + xe−n+k + 1 and they are two

different trinomials of degree less than e. Therefore, Nf ≥ 2. 2

3.4. Divisibility of Self-reciprocal Trinomials by Irreducible Polynomials

over F3

Firstly, we determine self-reciprocal trinomials over F3. Suppose that axn+ bxm+ c

is a self-reciprocal trinomial, where a, b, c ∈ F3. Then we have axn + bxm + c =
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xn
(
a
xn

+ b
xm

+ c
)

= a + bxn−m + cxn. It follows that a = c and n = 2m. Therefore,

self-reciprocal trinomials over F3 must be of the form x2m + xm + 1, 2x2m + xm + 2,

x2m + 2xm + 1 or 2x2m + 2xm + 2. Observe that 2x2m + 2xm + 2 = 2(x2m +xm + 1) and

2x2m+xm+2 = 2x2m+4xm+2 = 2(x2m+2xm+1). So it suffices to consider divisibility

of self-reciprocal trinomials which have the forms x2m +xm + 1 and x2m + 2xm + 1 over

F3.

Lemma 3.4.18 Let f(x) be an irreducible polynomial over F3 of order e and assume

that f(x) divides the self-reciprocal trinomial x2m + xm + 1, where e does not divide

m. Then there exists a unique self-reciprocal trinomial which has degree < e and is

divisible by f(x).

Proof : Let α be a root of f(x) in some extension of F3. Since f(x) | (x2m+xm+1),

α is also a root of this trinomial. Hence we have α2m + αm + 1 = 0. Let m = eq + r,

where q, r are integers and 0 < r < e. Observe that r can not be 0 since e does not

divide m. Suppose that 2r < e. Then x2r + xr + 1 is a self-reciprocal trinomial of

degree < e and f(x) divides this trinomial since α2m+αm+ 1 = α2r +αr + 1 = 0. Now

assume that 2r > e. Let r1 = 2r − e. Then 0 < r − r1 = e− r < r and

0 = α2m + αm + 1 = αr + αr1 + 1.

Also, we have

0 = (α−1)2m + (α−1)m + 1 = α−r + α−r1 + 1

Then multiplying by αr both sides of the equation α−r + α−r1 + 1 = 0, we have

αr+αr−r1+1 = 0. So we have αr−r1 = αr1 . From this we get αr−2r1 = 1. Since the order

of α is e, it follows that e | (r− 2r1). But r− 2r1 = r− (4r− 2e) = 2e− 3r < e. Hence

r−2r1 = 0 and r = 2r1. Therefore f(x) divides the self-reciprocal trinomial x2r1+xr1+1

and this polynomial has degree 2r1 = r < e. Moreover, since α2r1 + αr1 + 1 = 0, we

have α3r1 = 1, which implies that e | (3r1). On the other hand, we have 2r1 < e, so

e = 3r1. Now, we show the uniqueness. Suppose that m1 is another integer such that

f(x) | (x2m1 + xm1 + 1), where 2m1 < e. Then by the same discussion we get e = 3m1.

Therefore e = 3r1 = 3m1 and r1 = m1. 2

Theorem 3.4.19 Suppose that f(x) is an irreducible polynomial of order e over F3,

where e does not divide m. If f(x) | (x2m + xm + 1), then e is a multiple of 3 and if e

is a multiple of 3, then f(x) divides a self-reciprocal trinomial of the form x2r +xr + 1.

Proof : Suppose that f(x) divides the self-reciprocal trinomial x2m + xm + 1. By

Lemma 3.4.18, f(x) divides a self-reciprocal trinomial x2r + xr + 1 which has degree

2r < e. Let α be a root of f(x). Since f(x) | (x2r + xr + 1), we have α2r + αr + 1 = 0.

As in the proof of Lemma 3.4.18, we get e = 3r. Hence e is a multiple of 3. Conversely,

suppose that e is a multiple of 3. Let e = 3r for some r ∈ Z+. Let α be a root of f(x).
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Then αe = α3r = 1; that is 0 = α3r−1 = (αr−1)(α2r+αr+1). Since r < e, αr−1 6= 0.

Therefore α2r + αr + 1 = 0. This means that f(x) divides the self-reciprocal trinomial

x2r + xr + 1. 2

Now we give a criteria for divisibility of self-reciprocal trinomials of the form x2m +

2xm + 1 by irreducible polynomials over F3. Observe that x2m + 2xm + 1 = (xm + 1)2.

Let f(x) be an irreducible polynomial over F3 and suppose that f(x) | (xm + 1)2, then

f(x) | (xm + 1). So it suffices to consider divisibility of binomial xm + 1 by irreducible

polynomials over F3.

Lemma 3.4.20 Let f(x) be an irreducible polynomial of order e over F3. Suppose that

e does not divide m and m ≡ n (mod e). Then f(x) divides the binomial xm + 1 over

F3 if and only if e | 2n.

Proof : Assume that f(x) | (xm + 1). Then for any root α of f(x) we have

αm + 1 = 0. Note that m = ek + n for some integer k. It follows that

αm + 1 = αek+n + 1 = αn + 1 = 0.

Therefore, αn = −1 and α2n = 1. Hence, the order e of f(x) divides 2n.

Conversely, let m ≡ n (mod e) and suppose that e | 2n. Then for any root α of

f(x), we have α2n = 1. Then (αn− 1)(αn + 1) = 0. Since n < e and n 6= 0, αn− 1 6= 0.

It follows that αn + 1 = 0. This means that f(x) divides the binomial xn + 1 over F3.

But then f(x) divides the binomial xm + 1 since m ≡ n (mod e). 2
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CHAPTER 4

Irreducible Polynomials with Prescribed Coefficients

So far we focused on problems like the irreducibility, divisibility, enumeration of bi-

nomials, trinomials and self-reciprocal polynomials. Another line of active research is

on the existence/enumeration of irreducible polynomials with prescribed coefficients.

One, of course, may also consider these questions for subclasses of irreducible poly-

nomials like primitive or self-reciprocal irreducible polynomials. We refer to Chapter

3 of [26], Section 3.5 of [23] and the papers [3, 9] and the references therein for an

extensive survey of results on these and related problems.

As we did in Chapter 3, we denote the monic polynomials of degree n in Fq[x] by

Mn(q) and the irreducible polynomials in Mn(q) by In(q). Putting

f(x) = xn + a1x
n−1 + a2x

n−2 + . . .+ an (4.1)

we refer to ai, 1 ≤ i ≤ n, as the i-th coefficient of f(x). We call {a1, . . . , ak} the first

k coefficients and {an−l+1, . . . , an} the last l coefficients of f(x). For obvious reasons,

−a1 and (−1)nan are called the trace and norm, respectively.

In this chapter, we give a brief survey of results concerning polynomials in In(q)

with prescribed coefficients with emphasis on the recent work.

4.1. Questions on Existence

We start by stating the well-known Hansen-Mullen conjecture, going back to 1992.

This conjecture, now a theorem, is on the existence of irreducible polynomials inMn(q)

with any arbitrary coefficients being prescribed.

Hansen-Mullen Conjecture: Let a ∈ Fq, n ≥ 2 and 1 ≤ i ≤ n be fixed. Then

there exists an irreducible polynomial f(x) = xn +
∑n

i=1 aix
n−i ∈ Fq[x] with ai = a

except for an = a = 0 or q is even and (n, i, a) = (2, 1, 0).

Hansen and Mullen proved this conjecture for i = n − 1 and Cohen [4] proved it

for i = 1. Wan [29] proved that it is true for q > 19 and n ≥ 36. The cases q ≤ 19 or

n < 36 were settled by the use of computations by Ham and Mullen [14] and by Cohen

and Presern [7, 8] independently. An alternative proof of a very different nature of

Hansen-Mullen conjecture has been given recently by A. Tuxanidy and Q. Wang [28].
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This existence question can be extended in various ways. One may consider several

coefficients to be prescribed or subclasses of In(q). An interesting result, for example,

was obtained by T. Garefalakis and G. Kapetanakis [11], where they considered the

Hansen-Mullen conjecture for self-reciprocal polynomials. We state it below and it is

Theorem 4.2 in [11].

Theorem 4.1.1 Let n, i be natural numbers, where n ≥ 2, 1 ≤ i ≤ n, and a ∈ Fq.
There exists a self-reciprocal polynomial f(x) ∈ In(q) in the form 4.1 with ai = a, if

the inequality q(n−k−1)/2 ≥ 16
5
i(i+ 5) + 1

2
holds.

This result was improved in Theorem 1 of [12] recently by using computations:

Theorem 4.1.2 Let q be odd and a ∈ Fq, n ≥ 1. There exists a self-reciprocal poly-

nomial f(x) ∈ I2n(q) such that ai = a except (q, n, i, a) = (3, 3, 5, 0) and (q, n, i, a) =

(3, 4, 6, 0).

Another subclass of irreducible polynomials in Mn(q) is the set Pn(q) of primitive

polynomials. Han [15] and Cohen and Mills [6] addressed the problem of existence of

primitive polynomials with the first and second coefficients prescribed. We recall that

a polynomial f(x) ∈ Fq[x] is primitive, if it is the minimal polynomial of a primitive

element over Fq. The existence of polynomials in Pn(q) with prescribed trace −a1 =

a ∈ Fq was obtained in [4] and [17], the exceptional cases being (a, n) = (0, 3) for q = 4

and (a, n) = (0, 2) when q is arbitrary. When q is odd and n ≥ 7 Han [15] showed that a

polynomial f(x) ∈ Pn(q) exists with arbitrarily prescribed first and second coefficients.

Cohen and Mills [6] extended this result to the cases n = 5, 6.

The questions concerning the existence of polynomials in In(q) with more prescribed

coefficients have attracted considerable attention. When coefficients are fixed to be

zero, one can consider trinomials xn + x + b ∈ In(q), for instance. Their existence for

sufficiently large q with respect to n was obtained, for instance, by Cohen [5]. A very

interesting result in this direction is due to T. Garefalakis [10]. He showed that there

exists a polynomial f(x) ∈ In(q) with roughly n/3 consecutive coefficients prescribed

to be zero. Recent work of Panario and Tzanakis [24] also addresses related problems,

i.e., the existence of f(x) ∈ In(q) with many prescribed coefficients, including the case,

where some coefficients are zero.
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4.2. Questions on Enumeration

The number Nn(q) of polynomials in In(q) is well-known and is easy to obtain.

Consider the polynomial xq
n − x over Fq, where n ∈ Z+. Then we have

xq
n − x =

∏
α∈Fqn

(x− α) =
∏

f∈Id(q)
d|n

f(x). (4.2)

If we take degrees on both sides of the equation (4.2) and apply the Möbius inversion

formula, we get

Nn(q) =
1

n

∑
d|n

µ(d)qn/d.

The number of polynomials in In(q) with prescribed coefficients (trace and/or norm)

was obtained by Carlitz [2] and Kuzmin [20]. Yucas [30] proved Carlitz’ result by using

elementary arguments. We give the proof below.

Throughout this section, we put −a1 = tr(f) for a polynomial f(x) as in (4.1).

For γ ∈ Fq, let Iγ(n, q) denote the set of all monic irreducible polynomials over Fq
of degree n and trace γ. Denote the cardinality of Iγ(n, q) by Nγ(n, q).

Lemma 4.2.3 Let γ, δ ∈ F∗q. Then there exists a bijection between Iγ(n, q) and

Iδ(n, q); that is Nγ(n, q) = Nδ(n, q).

Proof : Consider the map Ψ : Iγ(n, q)→ Iδ(n, q) defined by

Ψ(f(x)) =

(
δ

γ

)n
f
(γ
δ
x
)
.

Firstly, we show that any element in Iγ(n, q) is mapped to an element in Iδ(n, q) by

Ψ. So let f(x) ∈ Iγ(n, q). Write f(x) = xn − γxn−1 + a2x
n−2 + . . .+ an, where ai ∈ Fq

for i = 2, . . . , n. Then we have

Ψ(f(x)) =

(
δ

γ

)n((γ
δ
x
)n
− γ

(γ
δ
x
)n−1

+ a2

(γ
δ
x
)n−2

+ . . .+ an

)
= xn−δxn−1+. . .+ δn

γn
an.

Therefore, tr(Ψ(f)) = δ. Note that Ψ(f(x)) is a monic irreducible polynomial of degree

n over Fq. Hence Ψ(f(x)) ∈ Iδ(n, q). Now we show that the map Ψ is a bijection. The

map Ψ is one-to-one: Suppose that Ψ(f(x)) = Ψ(g(x)) for f(x), g(x) ∈ Iγ(n, q). Let

f(x) = xn − γxn−1 + a2x
n−2 + . . .+ an

g(x) = xn − γxn−1 + b2x
n−2 + . . .+ bn
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where ai and bi are in Fq. Then by assumption

xn − δxn−1 + . . .+
δn

γn
an = xn − δxn−1 + . . .+

δn

γn
bn

Thus ai = bi for i = 2, . . . , n. It follows that f(x) = g(x). Now we show that Ψ is onto.

To this end, let g(x) ∈ Iδ(n, q). We want to show that there exists f(x) ∈ Iγ(n, q) such

that Ψ(f(x)) = g(x). Consider the polynomial f(x) =
(
γ
δ

)n
g
(
δ
γ
x
)

. Then we have

Ψ(f(x)) = Ψ

((γ
δ

)n
g

(
δ

γ
x

))
=

(
γδ

δγ

)n
g

(
γ

δ

δ

γ
x

)
= g(x).

This shows that Ψ is an onto map and hence Ψ is a bijection between Iγ(n, q) and

Iδ(n, q). Thus we have Nγ(n, q) = Nδ(n, q). 2

Now consider the following integer recurrence:

D(1) = 1

D(n) = qn−1 +D(n/p) for n > 1.

When n is not divisible by p, D(n/p) is defined to be 0.

Lemma 4.2.4 Let n = pkm and p - m. Then

D(n) =
k∑
i=0

qp
k−im−1.

Proof : We proceed by induction on k. When k = 0, we have n = m and both

sides of the equation are equal to qn−1. Now suppose that k > 0 and the equality holds

for k − 1. We show that the equality holds for k.

D(n) = D(pkm) = qp
km−1 +D(pk−1m)

= qp
km−1 +

k−1∑
i=0

qp
k−1−im−1 =

k∑
i=0

qp
k−im−1.

2

Let γ ∈ Fq and n ∈ Z+. Define the polynomial qn,γ(x) over Fq by

qn,γ(x) = −γ + x+ xq + xq
2

+ . . .+ xq
n−1

.

The following lemma gives factorization of xq
n − x in terms of the polynomials

qn,γ(x), where γ ∈ Fq.

Lemma 4.2.5

xq
n − x =

∏
γ∈Fq

qn,γ(x).

27



Proof : We have

xq − x =
∏
γ∈Fq

(x− γ).

If we replace x by x+ xq + xq
2

+ . . .+ xq
n−1

in this equation, we get

(x+xq+xq
2

+. . .+xq
n−1

)q−(x+xq+xq
2

+. . .+xq
n−1

) =
∏
γ∈Fq

(x+xq+xq
2

+. . .+xq
n−1−γ).

It follows that

xq
n − x =

∏
γ∈Fq

qn,γ(x).

2

Let Ĩ(n, q) denote the set of all monic irreducible polynomials over Fq which have

degree dividing n.

Lemma 4.2.6 Let γ ∈ F∗q. Consider the set

Hn,γ = {h(x) ∈ Ĩ(n, q) : p - n/deg(h) and (n/deg(h))tr(h) = γ}.

Then we have

qn,γ(x) =
∏

h∈Hn,γ

h(x).

Proof : Let r(x) be an irreducible factor of qn,γ(x) of degree d. We show that r(x)

is an element of the set Hn,γ. Since qn,γ(x) divides xq
n −x we see that d divides n. Let

α ∈ Fqd be a root of r(x). Then

tr(r) = TrF/K(α) = α + αq + . . .+ αq
d−1

.

where F = Fqd and K = Fq. Since d divides n and α is also a root of qn,γ(x) we

see that n/d is not divisible by p and (n/d)TrF/K(α) = α + αq + . . . + αq
n−1

= γ.

Thus we have (n/d)tr(r) = γ. Therefore, r(x) belongs to Hn,γ. Now we want to show

that any polynomial h(x) ∈ Hn,γ divides qn,γ(x). So suppose that h(x) is a monic

irreducible polynomial of degree d and assume that d | n, n/d is not divisible by p

and (n/d)tr(h) = γ. Let α ∈ Fqd be any root of h(x). Then (n/d)TrF/K(α) = γ =

α + αq + . . . + αq
n−1

. So α satisfies the polynomial qn,γ(x) . Since α was arbitrary, it

follows that h(x) divides qn,γ(x). 2

Let qn,γ(x) = g1(x)g(x), where

g1(x) =
∏

h∈Hn,γ
d=n

h(x) and g(x) =
∏

h∈Hn,γ
d<n

h(x).

Then

g1(x) =
∏
h∈G1

h(x),
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where

G1 = {h(x) ∈ Ĩ(n, q) : deg(h) = n and tr(h) = γ}.

Let

G2 = {h(x) ∈ Ĩ(n, q) : p | n/deg(h) and tr(h) = γ}

and

G3 = {h(x) ∈ Ĩ(n, q) : deg(h) < n, p - n/deg(h) and tr(h) = γ}.

Define

g2(x) =
∏
h∈G2

h(x) and g3(x) =
∏
h∈G3

h(x).

Then

Bn,γ(x) = g1(x)g2(x)g3(x)

Then

Bn,γ(x) =
∏

f∈Id(q)
d|n

tr(f)=γ

f(x).

Proposition 4.2.7 Let D(n) = deg(Bn,γ). Then D(n) satisfies the recurrence D(n) =

qn−1 +D(n/p).

Proof : Note that g2(x) is the product of all monic irreducible polynomials which

have degree dividing n/p with trace γ. Thus, deg(g2) = D(n/p). By Lemma 4.2.3, we

have deg(g3) = deg(g). Then we have

D(n) = deg(Bn,γ) = deg(g1) + deg(g2) + deg(g3)

= deg(g1) +D(n/p) + deg(g)

= deg(qn,γ) +D(n/p)

= qn−1 +D(n/p).

2

Theorem 4.2.8 Let γ ∈ F∗q. Then we have

Nγ(n, q) =
1

n

∑
d|n

µ(n/d)

kd∑
i=0

qp
(kd−i)md−1,

where d = pkdmd and p - md.

Proof :

D(n) = deg(Bn,γ) =
∑
d|n

dNγ(d, q).
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By Lemma 4.2.4, we have

D(n) =
k∑
i=0

qp
k−im−1,

where n = pkm and p - m. By applying the Möbius inversion formula, we get

Nγ(n, q) =
1

n

∑
d|n

µ(n/d)

kd∑
i=0

qp
(kd−i)md−1.

2

Corollary 4.2.9 Let n = pkm and p - m. If γ ∈ F∗q, then

Nγ(n, q) =
1

nq

∑
d|m

µ(d)qn/d.

Proof : Let r be a divisor of n. Then r = pjd, where d is a divisor of m and

0 ≤ j ≤ k. If j < k − 1, then p2 divides n/r hence µ(n/r) = 0. Therefore, in Theorem

4.2.8, it suffices to consider divisors of n of the form pkd or pk−1d, where d is a divisor

of m. Also note that µ(n/pkd) = µ(m/d) and µ(n/pk−1d) = −µ(m/d). So by using

these facts, we have

µ(n/pkd)
k∑
i=0

qp
k−id−1 = µ(n/pkd)

(
qp

kd−1 +
k∑
i=1

qp
k−id−1

)

= µ(n/pkd)

(
qp

kd−1 +
k−1∑
i=0

qp
k−1−id−1

)
.

Thus

µ(n/pkd)
k∑
i=0

qp
k−id−1 + µ(n/pk−1d)

k−1∑
i=0

qp
k−1−id−1 = µ(n/pkd)(qp

kd−1)

= µ(m/d)(qp
kd−1).

By Theorem 4.2.8, we have

Nγ(n, q) =
1

n

∑
d|m

µ(m/d)qp
kd−1

=
1

nq

∑
d|m

µ(m/d)qp
kd

=
1

nq

∑
d|m

µ(d)qn/d.

2

Now we obtain a similar expression for N0(n, q).
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Corollary 4.2.10 Let n = pkm and p - m. We have

N0(n, q) =
1

nq

∑
d|m

µ(d)qn/d − ε

n

∑
d|m

µ(d)qn/dp

where ε = 1 if k > 0 and ε = 0 if k = 0.

Proof : Firstly, we consider the case when k = 0. Since k = 0 we have n = m. We

want to show that

N0(n, q) =
1

nq

∑
d|m

µ(d)qn/d.

Note that the cardinality of In(q) is given by the formula

Nn(q) =
1

n

∑
d|n

µ(d)qn/d.

By Corollary 4.2.9, if γ ∈ F∗q, we have

Nγ(n, q) =
1

nq

∑
d|m

µ(d)qn/d.

There are q−1 non-zero elements in Fq and for two non-zero elements γ and δ we have

Nγ(n, q) = Nδ(n, q) by Lemma 4.2.3. It follows that

1

n

∑
d|n

µ(d)qn/d = (q − 1)
1

nq

∑
d|m

µ(d)qn/d +N0(n, q).

Therefore, we have

N0(n, q) =
1

n

∑
d|n

µ(d)qn/d − (q − 1)
1

nq

∑
d|m

µ(d)qn/d

=
1

n

∑
d|m

µ(d)qn/d − (q − 1)
1

nq

∑
d|m

µ(d)qn/d

=
1

nq

∑
d|m

µ(d)qn/d.

Now we consider the case k > 0. We want to show that

N0(n, q) =
1

nq

∑
d|m

µ(d)qn/d − 1

n

∑
d|m

µ(d)qn/dp.

As in the case k = 0, we have

1

n

∑
d|n

µ(d)qn/d = (q − 1)
1

nq

∑
d|m

µ(d)qn/d +N0(n, q).

So we get

N0(n, q) =
1

n

∑
d|n

µ(d)qn/d − (q − 1)
1

nq

∑
d|m

µ(d)qn/d.
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Then it suffices to show that

1

n

∑
d|n

µ(d)qn/d − (q − 1)
1

nq

∑
d|m

µ(d)qn/d =
1

nq

∑
d|m

µ(d)qn/d − 1

n

∑
d|m

µ(d)qn/dp.

So it is enough to show that the following equality holds:

1

n

∑
d|n

µ(d)qn/d =
1

n

∑
d|m

µ(d)qn/d − 1

n

∑
d|m

µ(d)qn/dp.

i.e., ∑
d|n

µ(d)qn/d =
∑
d|m

µ(d)(qn/d − qn/dp).

We have∑
d|n

µ(d)qn/d =
∑
d|n

µ(n/d)qd =
∑
d|m

µ(n/pk−1d)qp
k−1d +

∑
d|m

µ(n/pkd)qp
kd

=
∑
d|m

µ(m/d)qp
kd −

∑
d|m

µ(m/d)qp
k−1d =

∑
d|m

µ(m/d)(qp
kd − qpk−1d)

=
∑
d|m

µ(d)(qn/d − qn/dp).

2

Example 4.2.7 Let q = 5 and n = 5.2 = 10. In this case m = 2. By Corollary 4.2.9,

we have

N1(10, 5) = N2(10, 5) = N3(10, 5) = N4(10, 5) =
1

50

∑
d|2

µ(d)510/d

=
1

50
(µ(1)510 + µ(2)55)

=
1

50
(510 − 55) = 195250.

By Corollary 4.2.10, we have

N0(10, 5) =
1

50

∑
d|2

µ(d)510/d − 1

10

∑
d|2

µ(d)510/(5d) = 195250− 2 = 195248.

Now we compute the number of monic irreducible polynomials of degree 10 over F5.

We have

N10(5) =
1

10

∑
d|10

µ(d)510/d = 976248.

Observe that 976248 = 4.195250 + 195248.
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Now, we turn our attention to the number of polynomials f(x) ∈ In(q) with a large

number of prescribed coefficients. Ha [13] recently obtained the number of polynomials

f(x) ∈ In(q) with k = o(n) prescribed coefficients for large n. Consider the set

I = {i1, . . . , ik}, 1 ≤ ij ≤ n and b1, . . . , bk ∈ Fq. Put

ε =


1 if 0 /∈ I,

1 + 1
q−1 if 0 ∈ I, and an 6= 0

0 if 0 ∈ I, and an = 0.

Let N(n, k, q) be the number of polynomials f(x) ∈ In(q), where f(x) is as in (4.1)

and aij = bj, 1 ≤ j ≤ k.

Ha [13] shows that N(n, k, q) = εqn−k(1 + o(1))/n when k = o(n) and n is large.

See [13] for the precise statement.

The collection of results that we briefly described above is far from being complete.

However, they point to many non-trivial questions, which are still open.
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