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Abstract. For sequences (φn) of eventually injective holomorphic self-maps of planar
domains Ω we present necessary and sufficient conditions for the existence of holomorphic
functions f on Ω whose orbits under the action of (φn) are dense in H(Ω). It is deduced
that finitely connected, but non-simply connected domains never admit such universal
functions. On the other hand, when allowing arbitrary sequences of holomorphic self-
maps (φn), then we show that the situation changes dramatically.
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1. Introduction

Let Ω be a domain in C and let H(Ω) denote the space of holomorphic functions in Ω;
as usual, this space is endowed with the topology of locally uniform convergence, under
which it becomes a complete separable metric space. We are interested in the existence of
dense orbits for composition operators on H(Ω). If φ is a holomorphic self-map of Ω then
the composition operator with symbol φ is defined as Cφ(f) = f ◦ φ, f ∈ H(Ω).

Birkhoff [8] showed that there exists an entire function f such that {f ◦τn : n ∈ N} forms
a dense set in H(C), where the τn are the C-automorphisms z 7→ z+n. Such a function f is
called universal. If, in a general domain Ω, one restricts f to functions bounded by 1, then
one may still hope to be able to approximate all holomorphic functions that are bounded
by 1. A first such result is due to Heins [20]. He constructed a Blaschke product f and a
sequence (zn) in the unit disk D such that any holomorphic function in D that is bounded
by 1 can be locally uniformly approximated by functions of the form f ◦ φn, n ∈ N, where
the φn are the D-automorphisms z 7→ z+zn

1+znz . Such a function f is called B-universal.
Universal functions, in one or several variables, have subsequently been investigated

by Abe, Bernal, Bonilla, Calderón, Chee, Godefroy, León, Luh, Montes, Rezaei, Shapiro,
Yousefi and Zappa (see [10], [29], [1], [14], [22], [7], [23], [21], [5], [28]). In recent years,
B-universality has been the object of intensive studies; we refer to papers by Aron, Bayart,
Gauthier, Gorkin, Grivaux, León, Mortini and Xiao (see [16], [17],[12], [2],[3],[24], [15], [4]).

The investigation of universal functions has recently taken a new turn. Motivated by a
concluding remark in [15], Bayart, Gorkin, Grivaux and Mortini [4] were the first to study
systematically composition operators with non-automorphic symbols. In this generality
they characterize universality and B-universality on the unit disk D. We shall here continue
their study on arbitrary planar domains Ω.

As usual, H∞(Ω) denotes the space of bounded holomorphic functions on the domain Ω;
the space is endowed with the supremum norm. The closed unit ball of H∞(Ω) is denoted
by B(Ω).
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Definition 1.1. Let Ω ⊆ C be a domain and (φn) a sequence of holomorphic self-maps of
Ω.

(a) A function f ∈ H(Ω) is called universal for (φn) if the set {f ◦φn : n ∈ N} is dense
in H(Ω). The sequence (Cφn) is called universal if it admits a universal function.

(b) A function f ∈ B(Ω) is called B-universal for (φn) if the set {f ◦ φn : n ∈ N} is
locally uniformly dense in B(Ω). The sequence (Cφn) is called B-universal if it
admits a B-universal function.

A major tool for showing the existence of universal functions will be Birkhoff’s transitiv-
ity criterion (for example, see [19, Theorem 1]). A sequence (Tn) of continuous maps on a
topological space X is called topologically transitive if, for every pair U and V of non-empty
open sets in X, there exists some n ∈ N such that Tn(U)∩V 6= ∅. The transitivity criterion
then says that, if X is a separable complete metric space, then there exists a dense set of
points x ∈ X (called universal elements for (Tn)) for which {Tn(x) : n ∈ N} is dense in
X if and only if (Tn) is topologically transitive. In our setting, X will be either H(Ω) or
B(Ω), and Tn = Cφn .

Let us introduce some more notation. For any set M in a topological space we denote
by M its closure, by M◦ its interior and by ∂M its boundary. As usual, C∗ = C \ {0} and
D∗ = D \ {0} will denote the punctured plane and the punctured disk, respectively, while
Ĉ = C∪ {∞} is the extended plane. By an exhaustion of a domain Ω we mean a sequence
(Kn) of compact subsets of Ω with

⋃
n≥1Kn = Ω such that, for every n ∈ N, Kn ⊆ K◦

n+1.
Finally, we shall write fn → f if a sequence (fn) converges locally uniformly to f .

In Section 2 we give a sufficient condition for the existence of B-universal functions. In
Section 3 we study universal functions on arbitrary domains.

2. Universality in the ball of H∞(Ω)

We assume throughout this section thatH∞(Ω) is not trivial; that means that it contains
non-constant functions.

Theorem 2.1. Let Ω ⊆ C be a domain and (φn) a sequence of holomorphic self-maps of
Ω. Suppose that (φn) satisfies

(1) there exists B ∈ B(Ω), B non-constant, such that B ◦ φn → 1;
(2) there exists a holomorphic self-map u of Ω such that u ◦ φn → z.

Then there exists a B-universal function f for (φn).

Proof. We show that (Cφn) satisfies Birkhoff’s transitivity criterion. So let K ⊆ Ω be
compact, 0 < ε < 1 and g, h ∈ B(Ω). We have to look for a function f ∈ B(Ω) and
an index n such that |f − g| < ε as well as |f ◦ φn − h| < ε on K. To this end, choose
0 < η < 1 so that B(K) ⊆ {z ∈ D : |z − 1| > η}. By [18, Lemma 3.9] there exists a
conformal automorphism ψ of the disk with fixed points 1 and −1 such that the image of
{z ∈ D : |z − 1| > η} under ψ is contained in {w ∈ D : |w + 1| < ε}. Hence p := ψ ◦B has
the property that p ∈ B(Ω), p ◦ φn → 1 and |p(z) + 1| < ε on K. Now let

f =
(

1− p

2

)2

g +
(

1 + p

2

)2

(h ◦ u).

Then f ∈ B(Ω), f ◦ φn → h and on K we have that f is very close to g; in fact,

|f − g| ≤
∣∣∣∣(1− p

2

)2

− 1
∣∣∣∣ +

∣∣∣∣1 + p

2

∣∣∣∣2 ≤ ∣∣∣∣(1− p

2

)
− 1

∣∣∣∣ ∣∣∣∣(1− p

2

)
+ 1

∣∣∣∣ + |1 + p|2 ≤

≤ |p+ 1|+ |1 + p|2 ≤ 2ε.
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Another proof works along the same lines as in [15]. First we note that condition (1)
shows that for z0 ∈ Ω the sequence (wn) := (φn(z0)) admits an asymptotic interpolating
subsequence of type 1. Actually it is known that, in a certain sense, both statements are
equivalent (see [18, Proposition 4.1]). We can assume that (wn) itself is such a sequence.

So, let (Kn) be an exhaustion of Ω, and let {pj : j ∈ N} be a set of functions that is
dense in B(Ω). Since, for every j, we have (pj ◦ u) ◦ φn → pj as n → ∞, there exists a
subsequence (nj) such that

sup
Kj

|(pj ◦ u) ◦ φnj − pj | < 1/j,

and there are fj , gj ∈ B(Ω) that satisfy conditions (4.1)-(4.5) of [15] for zj = φnj (z0) and
εjk = 1/2j+k+1.

Hence, by the proofs of [15, Theorem 4.3] and [15, Theorem 4.4], the function

F =
∞∑

j=1

(pj ◦ u)fjg1 · · · gj−1

is the universal function we are looking for. Note that

F ◦ φnj − (pj ◦ u) ◦ φnj → 0.

�

If we specialize to the case of the unit disk, then we obtain the result given in [4] that a
sequence of holomorphic self-maps (φn) in D with φn(0) → 1 admits a B-universal function
if and only if

(2.1) lim sup
n→∞

|φ′n(0)|
1− |φn(0)|2

= 1.

In fact, if φn(0) → 1 and (2.1) is satisfied, then we define b to be the Blaschke product
associated with a thin subsequence (φnj (0)) of (φn(0)). Then it is straightforward to check
that b ◦ φnjk

→ λz for some λ, |λ| = 1, see [4, 2.4]. Now let u = λb. Then u satisfies
condition (2) in Theorem 2.1 for some subsequence of (φn). If we let B be the peak
function (1+ z)/2, then we see that Condition (1) is satisfied, too. For the converse see [4,
2.3].

Definition 2.2. A sequence of self-maps (φn) of a domain Ω ⊆ C is said to be a run-away
sequence, if for every compact set K ⊆ Ω there exists n ∈ N such that φn(K) ∩K = ∅.

Bernal and Montes [7, Theorem 3.6] have shown that for planar domains not confor-
mally isomorphic to C∗ this run-away property is necessary and sufficient for a sequence of
automorphisms to admit universal functions. In [15, Theorem 5.3] it was shown that for
certain domains they also characterize B-universality for invertible composition operators.
Here we have the following statement.

Proposition 2.3. Let Ω ⊆ C be a domain and (φn) a sequence of holomorphic self-maps of
Ω. Suppose that f is a B-universal function for (φn). Then (φn) is a run-away sequence.

Proof. Choose a subsequence (nj) so that f ◦φnj → 1. Suppose that (φn) is not a run-away
sequence. Then there exists a compact set K ⊆ Ω such that φn(K) ∩K 6= ∅ for every n.
Choose ξn ∈ K so that φn(ξn) ∈ K. Passing, if necessary, to a subsequence of (nj), we
may assume that φnj (ξnj ) converges to some w0 ∈ K. By uniform convergence on K we
have (f ◦ φnj )(ξnj ) → f(w0), but also (f ◦ φnj )(ξnj ) → 1. Thus f(w0) = 1, the supremum
of f on Ω. The maximum principle implies that f is constant, a contradiction. �
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In the case of non-automorphic symbols, this condition though is far away from being
sufficient for B-universality, as was already observed in [4] for the case of the unit disk
(just take φn(z) = αnz + 1 − αn, where 0 < αn < 1 and αn → 0; these φn do not satisfy
(2.1)).

The following result complements [15, Corollary 3.7], where only automorphic symbols
were considered.

Theorem 2.4. Let Ω ⊆ C be a domain and (φn) a sequence of holomorphic self-maps of
Ω for which there exists B ∈ B(Ω), B non-constant, such that B ◦ φn → 1. Suppose that
H∞(Ω) is dense in H(Ω). Then the existence of a B-universal function for (φn) implies
the existence of an H(Ω)-universal function.

Proof. We show that (Cφn) satisfies Birkhoff’s transitivity criterion on H(Ω). To this end,
let u be a B-universal function, g, h ∈ H(Ω), g bounded, and let K ⊆ Ω be compact. Fix
ε ∈ ]0, 1[. Choose v ∈ B(Ω) and N ∈ N so large that |Nv − h| < ε on K. Since u is
B-universal, there exist infinitely many n′ so that |u ◦ φn′ − v| < ε/N on K. As in the
proof of Theorem 2.1, we choose p ∈ B(Ω) so that p ◦ φn → 1 and

sup
K
|p+ 1| < ε

max(1, supK |Nu|, supK |g|)
.

Now let

f =
(

1− p

2

)2

g +
(

1 + p

2

)2

Nu.

Then, on K, we have

|f − g| ≤ |p+ 1| |g|+
∣∣∣1 + p

2

∣∣∣ N |u| ≤ ε+ ε = 2ε,

and for n′ sufficiently large we have on K

|f ◦ φn′ − h| ≤
∣∣∣∣1− p ◦ φn′

2

∣∣∣∣2 ||g||∞ +N |u ◦ φn′ − v|+ |Nv − h| ≤ 3ε.

�

In the following section we derive necessary conditions for the existence of universal
functions in H(Ω). In view of Theorem 2.4, these conditions apply to B-universality as
well. At present, though, we do not know whether in finitely connected, but not simply
connected domains, there exist B-universal functions.

3. Universality in H(Ω)

We turn to universality of holomorphic functions that are not necessarily bounded. We
shall see that the degree of connectivity of the underlying domain plays an important role.
For this reason our investigation will cover, in turn, simply connected, finitely connected
and infinitely connected domains.

Definition 3.1. (a) Let M be an open or compact subset of C. Then a hole of M is
a bounded component of Ĉ \M .

(b) A compact subset M of a domain Ω is called Ω-convex if every hole of M contains
a point of C \ Ω.

We will often tacitly use the fact that if Ω ⊆ C is a domain with N holes and φ is an
injective holomorphic mapping on Ω, or if K is a compact set with N holes and φ is an
injective holomorphic mapping on a neighbourhood of K, then the images φ(Ω) and φ(K)
also have N holes (see [26, p. 276]).
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3.1. Simply connected domains. The simply connected case has already been addressed
in [4, Theorem 5.2]. There the domain D is considered, which by Riemann’s mapping
theorem can be replaced by any simply connected domain other than C itself. In the
following theorem a more general result is given that includes the domain C.

Theorem 3.2. Let Ω ⊆ C be a simply connected domain, and let (φn) be a sequence of
holomorphic self-maps of Ω. Then the following assertions are equivalent:

(a) The sequence of composition operators (Cφn) is universal.
(b) There exists a subsequence (nj) such that for each compact subset K of Ω there is

some J ∈ N such that φnj (K) ∩K = ∅ and φnj |K is injective for all j ≥ J .
(c) For every compact subset K of Ω there is some n ∈ N such that φn(K) ∩ K = ∅

and φn|K is injective.

Proof. (a)=⇒(b). We fix an exhaustion (Kn) of compact subsets of Ω. Let f be a universal
function. Then for every j ∈ N there exists an nj such that

(3.1) sup
z∈Kj

|f(φnj (z))− (z + j)| < 1
j .

We show that the sequence (nj) satisfies condition (b). To see this, let K ⊆ Ω be compact
and let J1 ∈ N be such that K ⊆ K◦

j for all j ≥ J1.
First, by (3.1) we have for z ∈ K and j ≥ J1

|f(φnj (z))| ≥ j − sup
ζ∈K

|ζ| − 1
j .

Thus, if j is larger than a suitable J2 ∈ N, J2 ≥ J1, then

inf
z∈K

|f(φnj (z))| > sup
ζ∈K

|f(ζ)|,

which implies that φnj (K) ∩K = ∅.
Secondly, let

δ = inf{|z0 − z| : z0 ∈ K, z ∈ ∂KJ1},
which is clearly positive. Let j ≥ J2, z0 ∈ K and z ∈ ∂Kj . We then have by (3.1) that∣∣[f(φnj (z0))− f(φnj (z))]− [z0 − z]

∣∣ ≤ 2 sup
ζ∈Kj

|f(φnj (ζ))− (ζ + j)| < 2
j .

Hence there is some J ≥ J2 such that for j ≥ J∣∣[f(φnj (z0))− f(φnj (z))]− [z0 − z]
∣∣ < δ.

This implies that for j ≥ J, z0 ∈ K and z ∈ ∂Kj ,∣∣[f(φnj (z0))− f(φnj (z))]− [z0 − z]
∣∣ < |z0 − z|,

where we have used that KJ1 ⊆ Kj . By Rouché’s theorem, see [25], f(φnj (z0))− f(φnj (z))
and z0− z have the same number of zeros in K◦

j , which shows that f(φnj (z)) 6= f(φnj (z0))
whenever j ≥ J, z0 ∈ K, z ∈ K◦

j , z 6= z0. In particular, f ◦ φnj is injective on K for j ≥ J ,
as is therefore φnj .

(b)=⇒(c) is trivial.
(c)=⇒(a) Unlike the constructive proof in [4] we base the proof on Birkhoff’s transitivity

criterion, by which it suffices to show that the sequence (Cφn) is topologically transitive.
Thus, let K ⊆ Ω be compact, f, g ∈ H(Ω) and ε > 0. Let K1,K2 be compact subsets of
Ω with connected complement and such that K ⊆ K1 ⊆ K◦

2 (here we have used that Ω
is simply connected). By (c) there is some n ∈ N such that φn(K2) ∩K2 = ∅ and φn|K2

is injective. Thus the mapping ψ = φ−1
n : φn(K◦

2 ) → K◦
2 is a well-defined holomorphic

mapping. Moreover, by the hole-invariance of injective holomorphic mappings, K1∪φn(K1)
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has connected complement. By Runge’s theorem, applied to the mappings f on K1 and
g ◦ ψ on φn(K1), we obtain a function h ∈ H(Ω) such that

|h(z)− f(z)| < ε for z ∈ K1,

|h(w)− g(ψ(w))| < ε for w ∈ φn(K1),

hence also

|h(φn(z))− g(z)| < ε for z ∈ K1,

which had to be shown. �

Remark 3.3. An analysis of the proof shows that the implications (a) =⇒ (b) =⇒ (c) of
the theorem above remain true for all domains Ω in C.

We also note that Theorem 3.2 contains [4, Theorem 5.2] as a special case. To see this
note that if φn are holomorphic self-maps of D such that φn(0) → 1 then (φn) converges
locally uniformly to 1 on D, so that, for any compact set K ⊆ D, φn(K) ∩ K = ∅ for
sufficiently large n.

Finally, Theorem 3.2 allows us to give examples of universal composition operators on
H(C) that do not come out of simple variations of Birkhoff’s theorem. In order to do this
we must consider non-injective entire functions φn, because any injective function φ ∈ H(C)
is an automorphism and therefore of the form φ(z) = az + b, a 6= 0.

Example 3.4. (a) For p ∈ N let φn(z) = (z + n)p. Then (φn) satisfies condition (c)
of the theorem; the injectivity follows from the fact that z 7→ zp is injective in the cone
C = {z ∈ C : | arg z| < 2π/p} and that the translate K+n of any compact set K eventually
lies in C.

Hence there is some f ∈ H(C) such that the functions f((z + n)p), n ∈ N, form a dense
set in H(C). In other words, the function f ◦ zp is universal in the sense of Birkhoff. This
can also be phrased in the following way. For every p ∈ N there is a Birkhoff-universal
function h ∈ H(C) of the form

h(z) =
∞∑

k=0

akz
kp.

This is a special case of a much more general result recently obtained by Gharibyan, Luh
and Müller [13, Theorem 4.1].

(b) Let φn(z) = ez/n + n. Then (φn) satisfies condition (c) of the theorem. Hence there
is some f ∈ H(C) such that the functions

f(ez/n + n), n ∈ N
form a dense set in H(C).

3.2. Non-simply connected domains: existence of universal functions. Every sim-
ply connected domain supports an automorphism φ whose iterates (φ[n]) define a universal
sequence of composition operators, see [7]. However, when passing to non-simply connected
domains of finite connectivity, then, as observed by Bernal and Montes, no sequence (Cφn)
with automorphic symbols can be universal; see [7, pp. 51–52, p. 55, Theorem 3.6]. It is
therefore of interest to investigate if the situation changes when we allow non-automorphic
symbols. We shall see that the answer depends on the geometry of the domain.

We first note that the observation of Bernal and Montes extends to non-automorphisms
if the complement of Ω consists of at least two but at most finitely many points. This result
has little to do with universality but follows from the fact that Ω supports only finitely
many non-constant holomorphic self-maps. This fact is certainly known, but we have not
been able to find a reference.
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Proposition 3.5. Let z1, . . . , zN be N ≥ 2 distinct points in C. If Ω = C \ {z1, . . . , zN},
then there are at most finitely many non-constant holomorphic self-maps of Ω. Moreover,
these are linear fractional transformations. In particular, there exists no sequence (φn) of
holomorphic self-maps of Ω such that (Cφn) is universal.

Proof. By Picard’s theorem, any holomorphic function with an essential isolated singularity
takes every value, with at most one exception, infinitely often. Thus any holomorphic
self-map φ of Ω is a rational function. Now, φ being a self-map of Ω, we have that
φ−1{z1, . . . , zN ,∞} ⊆ {z1, . . . , zN ,∞}. Since non-constant rational functions are surjective
mappings on Ĉ, our map φ acts as a permutation on {z1, . . . , zN ,∞}.

Let τ be the (unique) linear fractional map that satisfies τ(z1) = φ(z1), τ(z2) = φ(z2)
and τ(∞) = φ(∞). Then ψ := τ−1 ◦ φ is a rational function that keeps z1, z2 and ∞ fixed.
Moreover, if ψ(w) = ∞ then φ(w) = τ(∞) = φ(∞), hence w = ∞. This shows that ψ is
a polynomial. Similarly, ψ−1(z1) = {z1} and ψ−1(z2) = {z2}. Let d be the degree of ψ.
Then both z1 and z2 have d preimages (counted with multiplicity). Hence the multiplicities
of each of these preimages must be d. Therefore the degree of the derivative ψ′ is at least
2(d − 1), hence d ≥ 2(d − 1) + 1. This implies that d = 1. Hence φ = τ ◦ ψ is a linear
fractional map.

Since only finitely many permutations of the set {z1, . . . , zN ,∞} are possible, we con-
clude that there can only be finitely many non-constant self-maps of Ω. �

In many interesting cases, however, universality can happen.

Proposition 3.6. Let Ω ⊆ C be a domain for which H∞(Ω) is dense in H(Ω). Then there
exists a sequence (φn) of holomorphic self-maps of Ω such that (Cφn) is universal.

Proof. By the separability of H(Ω) the assumption implies that there exists a sequence
(ψn) of bounded functions on Ω that is dense in H(Ω). Then there are closed disks Brn

of radius rn > 0 with centre 0 that contain ψn(Ω). Moreover, let b be a boundary point
of Ω, and let Bρn(an) be disks of radius ρn > 0 with centre an that lie in Ω, are pairwise
disjoint and satisfy an → b. Then there are maps τn(z) = αnz + βn, αn 6= 0, such that
τn(Brn) = Bρn(an) for all n ∈ N. We finally define φn by

φn = τn ◦ ψn.

Clearly the φn are holomorphic self-maps of Ω.
We now show that (Cφn) is topologically transitive. To see this, let K be a compact

subset of Ω, f, g ∈ H(Ω) and ε > 0. By enlarging K we may assume that it is Ω-convex.
It follows from the hypotheses that there is some n ∈ N such that Bρn(an) ∩K = ∅ and
|g(z)− ψn(z)| < ε for all z ∈ K.

Since K ∪Bρn(an) is Ω-convex, we may apply Runge’s theorem to the function f on K
and the inverse τ−1

n on Bρn(an) to obtain a function h ∈ H(Ω) such that

|h(z)− f(z)| < ε for all z ∈ K,
|h(w)− τ−1

n (w)| < ε for all w ∈ Bρn(an).(3.2)

Since τn(ψn(z)) ∈ Bρn(an) for z ∈ Ω, (3.2) implies that for all z ∈ K,

|h(φn(z))− g(z)| ≤ |h(φn(z))− ψn(z)|+ |ψn(z)− g(z)|
= |h(τn(ψn(z)))− τ−1

n (τn(ψn(z)))|+ ε < 2ε.

This implies that (Cφn) is topologically transitive, hence universal. �

Remark 3.7. The assumption of the proposition holds, in particular, for each domain Ω
for which each component of C \ Ω has interior points. In fact, choose a set P having
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exactly one point from the interior of each such component. Then by Runge’s theorem the
rational functions with poles from P form a dense set in H(Ω), and these functions belong
to H∞(Ω). Further examples are provided by bounded finitely connected domains Ω for
which each component of C \ Ω is a continuum. According to a result of Gauthier and
Melnikov [11], H∞(Ω) is dense in H(Ω) if and only if for every open set D in the Riemann
sphere Ĉ that meets C \ Ω we have that γ(D ∩ (C \ Ω)) > 0, where γ denotes analytic
capacity.

Problem 3.8. Characterize all domains (possibly only among the finitely connected ones)
that support a universal sequence (Cφn) of composition operators.

3.3. Non-simply connected domains: necessary conditions. What is remarkable
about the proof of Proposition 3.6 is that it is not so much the universal function f
that behaves wildly but the symbols φn. This seems to be contrary to the usual idea of
universality. Motivated by Theorem 3.2 we shall in the sequel impose a regularity condition
on the φn, namely that they are eventually injective. On the one hand this will allow us
to apply the Runge approximation theorem at a crucial point, and on the other hand this
will eliminate the pathological kind of universality constructed in the proof of Proposition
3.6.

Definition 3.9. Let Ω ⊆ C be a domain, and let φn be holomorphic self-maps of Ω. Then
(φn) is called eventually injective if, for every compact subset K of Ω, there is some N ∈ N
such that φn|K is injective for all n ≥ N .

By Remark 3.3, a sequence of composition operators (Cφn) on an arbitrary domain Ω
can only be universal if the sequence (φn) has an eventually injective subsequence.

¿From now on we shall only consider eventually injective sequences (φn). Our first aim
is to derive a necessary condition for the universality of (Cφn). This result will be crucial
for all that follows.

We begin with two simple geometric lemmas.

Lemma 3.10. Let K be an Ω-convex compact subset of a domain Ω ⊆ C. Then K has at
most finitely many holes.

Proof. Otherwise we can choose points zn ∈ C \ Ω, n ∈ N, lying in different holes of K.
By compactness, a subsequence (znj ) converges to some z ∈ C \ Ω ⊆ C \ K. Hence the
component of C \K containing z also contains infinitely many zn, a contradiction to the
choice of the zn. �

Let us point out though that a hole of K can contain infinitely many components of
Ĉ \ Ω.

Lemma 3.11. Let K and L be compact subsets of a domain Ω ⊆ C with K ⊆ L. Let φ be
a holomorphic self-map of Ω that is injective on some neighbourhood of L. If K and φ(L)
are Ω-convex then so is φ(K).

Proof. By Lemma 3.10, K has a finite number, N say, of holes. Suppose that φ(K) is not
Ω-convex. Then it has a hole O that contains no point from C \ Ω. But then O cannot
contain a point from C \ φ(L) since, otherwise, it would contain a hole of φ(L), hence also
a point from C \Ω because φ(L) is Ω-convex. Thus, φ(K)∪O is a compact subset of φ(L)
with N − 1 holes. Therefore, φ−1(φ(K) ∪ O) is a compact subset of L with N − 1 holes.
This implies that one hole of K lies in φ−1(φ(K) ∪ O), hence in Ω. But that contradicts
the fact that K is Ω-convex. �

We can now prove the main result of this subsection.
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Theorem 3.12. Let Ω ⊆ C be a domain, and let (φn) be an eventually injective sequence
of holomorphic self-maps of Ω. Suppose that (Cφn) is universal. Then, for every Ω-convex
compact subset K of Ω and every N ∈ N, there is some n ≥ N such that φn(K) is Ω-convex
and φn(K) ∩K = ∅.

Proof. By Theorem 3.2 and the hole-invariance principle, the result is true for simply
connected domains. So let Ω be non-simply connected. In the sequel we follow the notation
and terminology of Rudin [27, section 13]. Let b ∈ Ω \K. We shall construct a connected
Ω-convex compact subset L of Ω that contains K and b in its interior and that is bounded
by finitely many Jordan curves.

To this end, consider the 1
2n -lattice of all points z = x + iy in C for which x and

y are integer-multiples of 1
2n . Let Ln be the largest compact set inside Ω ∩ {|z| < n}

whose boundary lies on the 1
2n -lattice. If n is big enough then Ln will contain K and b

in its interior. By maximality, Ln is Ω-convex. If Ln is not connected, we enlarge it by
finitely many small tubes in such a way that the new set, call it L, remains Ω-convex and
has a Jordan curve as outer boundary. By Lemma 3.10, L has only a finite number of
holes. Denote the positively oriented outer boundary by γ0. The p negatively oriented
boundaries of the holes Oj constitute Jordan curves, denoted by γ1, . . . , γp. Note that the
connectedness of L prevents that one hole of L surrounds another (see Figure 1), and that
the outer boundary surrounds all the p holes. This ends the construction of L.

Figure 1. The set L

Now fix, in each hole Oj of L, j = 1, . . . , p, a point aj ∈ C \ Ω. Then our curves γj will
have the following properties:

indγj (aj) = −1, indγj (ak) = 0, indγj (b) = 0, j, k = 1, . . . , p, j 6= k,

indγ0(aj) = 1, indγ0(b) = 1, j = 1, . . . , p.

We define, for any m ∈ N,

gm(z) = m
(z − b)p+1∏p
j=1(z − aj)

.

We then have for j = 1, . . . , p and m ∈ N that

1
2πi

∫
γj

g′m(z)
gm(z)

dz = 1,

and
1

2πi

∫
γ0

g′m(z)
gm(z)

dz = (p+ 1)− p = 1.
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Let f be a universal function for (Cφn). Then, given anym ∈ N, we can find subsequences

(n(m)
k ) such that f ◦ φ

n
(m)
k

→ gm and (f ◦ φ
n

(m)
k

)′ → g′m. Thus
(f◦φ

n
(m)
k

)′

f◦φ
n
(m)
k

converges to g′m
gm

locally uniformly on Ω \ {b}. Since minz∈K |gm(z)| → ∞ as m→∞ (note that b /∈ K), we
conclude that there is a sequence (nm) such that

f ◦ φnm − gm → 0 in H(Ω),

(f ◦ φnm)′

f ◦ φnm

− g′m
gm

→ 0 in H(Ω \ {b}),

min
z∈K

|f(φnm(z))| > max
z∈K

|f(z)|.

Now let N ∈ N. Then there is some n ≥ N such that φn is injective on a neighbourhood
of L and such that, for j = 0, 1, . . . , p,

1
2πi

∫
φn(γj)

f ′(z)
f(z)

dz =
1

2πi

∫
γj

(f ◦ φn)′(z)
(f ◦ φn)(z)

dz = 1,(3.3)

min
z∈K

|f(φn(z))| > max
z∈K

|f(z)|.

The last equation obviously implies that

φn(K) ∩K = ∅.

We now claim that φn(L) is Ω-convex. By Lemma 3.11 this implies that φn(K) is Ω-convex,
which will finish the proof.

Since φn is injective on a neighbourhood of L, φn(L) is a compact set with exactly
p holes. We assume that one of these holes, call it O, does not contain a point from
C \Ω. Since injective holomorphic functions map boundaries to boundaries, there is some
l ∈ {0, 1, . . . , p} such that the Jordan curve φn(γl) is the boundary of O. Moreover, since
O contains no point from C \ Ω, we have that

indφn(γl)(ζ) = 0 for ζ /∈ Ω.

Now, the compact set L is to the left of each curve γj , j = 0, 1, . . . , p. Since injective
holomorphic mappings preserve orientation, φn(L) must also be to the left of the image
curve φn(γl). This implies that φn(γl) is oriented negatively. Since f is holomorphic in a
neighbourhood of O, the integral

− 1
2πi

∫
φn(γl)

f ′(z)
f(z)

dz

equals the number of zeros of f in O; but, by (3.3), that integral has the value −1, a
contradiction. Thus we can conclude that φn(L) is Ω-convex. �

For our application in Section 3.5 we need to strengthen the necessary condition ex-
pressed in Theorem 3.12 along the lines of Bernal and Montes’ Lemmas 2.11 and 2.12
in [7]. Their argument should also work in our context but the proof given here seems
geometrically simpler and does not require infinite connectivity.

Lemma 3.13. Let Ω ⊆ C be a domain, and let (φn) be an eventually injective sequence of
holomorphic self-maps of Ω.

Suppose that, for every Ω-convex compact subset K of Ω and every N ∈ N, there is some
n ≥ N such that φn(K) is Ω-convex and φn(K) ∩K = ∅.

Then, for every connected Ω-convex compact subset K of Ω with at least two holes and
every N ∈ N, there is some n ≥ N such that φn(K) ∪K is Ω-convex and φn(K) ∩K = ∅.
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Proof. Let K be a connected Ω-convex compact subset of Ω with at least two holes, and let
N ∈ N. We fix an exhaustion (Kl) of Ω of connected Ω-convex compact sets, all containing
K; see the proof of Theorem 3.12. Then, by assumption, there is a subsequence (nl) such
that, for all l ∈ N, nl ≥ N , φnl

|Kl+1
is injective, φnl

(Kl) is Ω-convex and φnl
(Kl)∩Kl = ∅.

Hence φnl
(K) ∩K = ∅ and, by Lemma 3.11, φnl

(K) is Ω-convex, too. We claim that, for
some l ∈ N, φnl

(K) ∪K is Ω-convex.
We distinguish three cases. First, if, for some l ∈ N, φnl

(K) lies in the unbounded
component of C \K and K lies in the unbounded component of C \ φnl

(K) then it follows
immediately that φnl

(K) ∪K is Ω-convex.
Secondly, infinitely many of the φnl

(K) might lie in holes of K. Since, by Lemma 3.10,
K has only finitely many holes, infinitely many φnl

(K) must lie in some fixed hole O of
K. By passing to a subsequence we may assume that all of them do. We choose some
l ∈ N such that φn1(K) ⊆ Kl. Since φnl

(Kl) ∩Kl = ∅, we have that φn1(K) and φnl
(K)

are disjoint subsets of O. Now there are three possibilities: If both of these sets lie in the
unbounded component of the complement of the other then φnl

(K) ∪ K is Ω-convex (as
is φn1(K) ∪K); if φn1(K) lies in a hole of φnl

(K) then φn1(K) ∪K is Ω-convex because
φnl

(K) has at least two holes; or if φnl
(K) lies in a hole of φn1(K) then φnl

(K) ∪ K is
Ω-convex because φn1(K) has at least two holes.

Finally, for infinitely many l ∈ N, K might lie in holes of φnl
(K). Again we can assume

that this is true for all l. We then choose some l ∈ N such that φn1(K) ⊆ Kl. Since
φnl

(Kl) ∩Kl = ∅ we have that φn1(K) and φnl
(K) are disjoint sets. Since both these sets

contain K in one of their holes, we must have that either φn1(K) lies in a hole of φnl
(K)

or φnl
(K) lies in a hole of φn1(K). We then argue as above that either φnl

(K) ∪ K or
φn1(K) ∪K is Ω-convex. �

Example 3.14. The lemma is not true for sets K with exactly one hole. Indeed, let
Ω = C∗ and φn(z) = nz. Then, for K = ∂D we have that φn(K) ∪K is not Ω-convex for
n ≥ 2 even though the assumptions of the lemma are satisfied.

3.4. Finitely connected domains. We have seen in Section 3.2 that some finitely con-
nected domains can support universal functions even if they are not simply connected. We
shall now show that this can only happen if the sequence (φn) is not eventually injective.

Theorem 3.15. Let Ω ⊆ C be a finitely connected domain that is not simply connected.
Then (Cφn) is not universal for any eventually injective sequence of holomorphic self-maps
(φn) of Ω.

Proof. We first assume that Ω has exactly p ≥ 2 holes. Suppose that (Cφn) is universal. We
then consider a connected Ω-convex compact subset K of Ω that has p holes. By Theorem
3.12 there is some n ∈ N such that φn(K) is Ω-convex, φn is injective on a neighbourhood
of K and φn(K) ∩K = ∅. But since K and hence also φn(K) is connected, φn(K) must
lie inside a component O of Ĉ \K.

Due to the invariance of the number of holes under injective holomorphic mappings,
φn(K) has p holes. Since φn(K) is Ω-convex, each of these holes contains a hole of Ω; thus
O contains p holes of Ω. Hence, Ω would contain at least (p− 1) + p = 2p− 1 holes of Ω;
a number that is strictly bigger than p if p ≥ 2. This contradicts the assumption on the
number of holes of Ω.

In the case where Ω has exactly one hole we can assume, via conformal equivalence,
that Ω is either C∗ or D∗ or an annulus, see [9, Theorem 10.2]. We shall treat the case of
the punctured plane, the other two being very similar, and we proceed by a variant of the
proof of Theorem 3.12.
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Consider the compact annulus K = {z ∈ C : 1/2 ≤ |z| ≤ 2}. Its boundary is given by
the circle γ0 of radius 2 around 0, with positive orientation, and the circle γ1 of radius 1/2
around 0, with negative orientation. In addition we consider the functions

gm(z) = m
(z + 1)2

z
, m ∈ N.

We then have that
1

2πi

∫
γ0

g′m(z)
gm(z)

dz = 1,

1
2πi

∫
γ1

g′m(z)
gm(z)

dz = 1.

Suppose now that (Cφn) is universal, and let f be a corresponding universal function.
As in the proof of Theorem 3.12 we obtain some n ∈ N such that φn is injective on a
neighbourhood of K and

1
2πi

∫
φn(γ0)

f ′(z)
f(z)

dz = 1,(3.4)

1
2πi

∫
φn(γ1)

f ′(z)
f(z)

dz = 1,(3.5)

min
z∈∂K∪[ 1

2
,2]
|f(φn(z))| > sup

z∈K
|f(z)|.(3.6)

It then follows from (3.6) that

(3.7) φn(∂K ∪ [12 , 2]) ∩K = ∅.
Due to injectivity, φn(K) has exactly one hole. We denote by Γ0 and Γ1 the outer and

inner boundary of φn(K), respectively. As in the proof of Theorem 3.12 it follows that Γ0

coincides either with φn(γ0) or φn(γ1), and its orientation is positive, while Γ1 coincides
with the remaining curve, and its orientation is negative. Hence, by (3.4) and (3.5),

1
2πi

∫
Γ0

f ′(z)
f(z)

dz =
1

2πi

∫
Γ1

f ′(z)
f(z)

dz = 1.(3.8)

This also implies that φn(K) is Ω-convex. For, otherwise, f would be holomorphic in the
hole of φn(K), so that − 1

2πi

∫
Γ1

f ′(z)
f(z) dz = −1 would be the number of zeros of f in that

hole, which is impossible.
Thus, using (3.7), it follows that the connected set φn(K) is contained either in {|z| <

1/2} or in {|z| > 2} and that the origin lies in the hole of φn(K) (see Figure 2).

Figure 2. The set φn(K)
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We next choose r > 0 and R > 0 such that K ′ = {z ∈ C : r ≤ |z| ≤ R} contains
K ∪ φn(K). Arguing as above we can find some n′ ∈ N such that the set φn′(K ′) is
bounded by a positively oriented outer curve Γ′0 and a negatively oriented inner curve Γ′1,
that the origin lies in the hole of φn′(K ′), and that φn′(K ′) is contained either in {|z| < r}
or in {|z| > R}. Moreover,

1
2πi

∫
Γ′0

f ′(z)
f(z)

dz =
1

2πi

∫
Γ′1

f ′(z)
f(z)

dz = 1.(3.9)

Figure 3. The four curves

In this way we have found four Jordan curves, Γ0,Γ1,Γ′0,Γ
′
1, each of which surrounds 0.

Also, either both Γ′0 and Γ′1 lie in the interior of both Γ0 and Γ1, or vice versa (see Figure
3). We assume that the first case holds, the second case being treated similarly.

Consider the domain G surrounded by the curves Γ1 and Γ′0, and let Γ be the cycle
Γ1 + Γ′0. Then the outer boundary Γ1 of G is oriented negatively, the inner boundary Γ′0
of G positively. Since f is holomorphic in G,

λ :=
1

2πi

∫
Γ

f ′(z)
f(z)

dz

is the negative of the number of zeros of f in G. But it follows from (3.8) and (3.9) that
λ = 2, a contradiction. Hence (Cφn) cannot be universal. �

3.5. Infinitely connected domains. We finally turn to domains of infinite connectivity.
Theorem 3.12 and Lemma 3.13 lead us to the desired characterization of universality for
sequences of composition operators (Cφn), provided that (φn) is eventually injective.

Theorem 3.16. Let Ω ⊆ C be a domain of infinite connectivity, and let (φn) be an
eventually injective sequence of holomorphic self-maps of Ω. Then the following assertions
are equivalent:

(a) The sequence (Cφn) is universal;
(b) For every Ω-convex compact subset K of Ω and every N ∈ N there is some n ≥ N

such that φn(K) is Ω-convex and φn(K) ∩K = ∅.

Proof. The necessity was shown in Theorem 3.12. We now show sufficiency.
Assume that (b) holds. It suffices to show that the sequence (Cφn) is topologically

transitive. To this end, let K be a compact subset of Ω, ε > 0, and f, g ∈ H(Ω). By
making K larger, if necessary, we can assume that it is connected, Ω-convex and has at
least two holes. By Lemma 3.13 and the hypothesis there is some n ∈ N such that φn is
injective on a neighbourhood of K, φn(K)∪K is Ω-convex and φn(K)∩K = ∅. It follows
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that the function g ◦ φ−1
n is holomorphic on φn(K), as is f on K. By Runge’s theorem

there exists a function h ∈ H(Ω) such that

|h(z)− f(z)| < ε for z ∈ K,
|h(w)− g(φ−1

n (w))| < ε for w ∈ φn(K),

hence also

|h(φn(z))− g(z)| < ε for z ∈ K.

This implies that (Cφn) is topologically transitive. �

We consider an example along the lines of [15, Example 1].

Example 3.17. Let ψ be the self-mapping of D given by

ψ(z) =
z

4
+

3
4
.

Then ψ(D) is the disk of radius 1/4 around 3/4. Let ψ[n] denote the nth iterate of ψ. Then
the sets

Kn = ψ[n]({z : |z| ≤ 1
2}), n ∈ N0,

are pairwise disjoint subsets of D that accumulate at 1 and the restriction φ = ψ|Ω of ψ to
the domain

Ω = D \
⋃
n≥0

Kn

is a self-map. Clearly, the φ[n] are injective non-automorphisms on Ω that satisfy condition
(b) of Theorem 3.16. Hence (Cφ[n]) is universal. In other words, the operator Cφ is
hypercyclic; see Definition 3.20 below.

3.6. Heredity. When we reconsider Proposition 3.6 in the light of Theorem 3.15 we arrive
at an interesting observation. If Ω is a domain for which H∞(Ω) is dense in H(Ω) then a
universal sequence (Cφn) exists. By Remark 3.3 the sequence (φn) must have an eventually
injective subsequence (φnj ). But if Ω is, in addition, finitely connected and not simply
connected then, by Theorem 3.15, the subsequence (Cφnj

) cannot be universal. Now,
in the theory of universality a sequence of operators is called hereditarily universal (or
hereditarily hypercyclic) if each of its subsequences is universal, see [6].

Corollary 3.18. Let Ω ⊆ C be a finitely connected, not simply connected domain for which
H∞(Ω) is dense in H(Ω). Then no universal sequence (Cφn) of composition operators on
Ω is hereditarily universal.

This applies, for example, to annuli. In such a domain, then, not even a subsequence
of (Cφn) can be hereditarily universal. This implies that (Cφn) is another example of
a universal sequence that does not satisfy the so-called Hypercyclicity Criterion; see [6,
Theorem 2.2].

What we have observed here is rather pathological. Let us note that arbitrary uni-
versal sequences (Cφn) on simply connected domains and universal sequences (Cφn) with
eventually injective symbols on infinitely connected domains do have hereditarily universal
subsequences. The first statement is obvious from Theorem 3.2, while the second follows
from Theorem 3.16 by looking at an exhaustion of Ω by Ω-convex compact subsets.
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3.7. Injective self-maps, and hypercyclicity. In this final section we formulate our
results in two important special cases.

In their pioneering work, Bernal and Montes [7] have treated the case when the maps φn

are automorphisms. The notion of a run-away sequence, see Definition 2.2 above, turned
out to be crucial there: If Ω is not conformally equivalent to C∗ then a sequence (Cφn)
of composition operators with automorphic symbols is universal if and only if (φn) is run-
away, see [7, Theorem 3.6]. They also note that in the finitely connected but not simply
connected case no such sequence of composition operators can be universal.

The following special case of Theorems 3.2, 3.15 and 3.16 extends their results to injective
sequences (φn).

Theorem 3.19. Let (φn) be a sequence of injective holomorphic self-maps of a domain
Ω ⊆ C.

(a) If Ω is simply connected then (Cφn) is universal if and only if (φn) is run-away.
(b) If Ω is finitely connected but not simply connected then (Cφn) is never universal.
(c) If Ω is infinitely connected then (Cφn) is universal if and only if, for every Ω-convex

compact subset K of Ω and every N ∈ N there is some n ≥ N such that φn(K) is Ω-convex
and φn(K) ∩K = ∅.

Our second special case concerns iterates φ[n] of a single self-map φ. In this case we also
speak of hypercyclicity; see [19].

Definition 3.20. Let φ be a holomorphic self-map of a domain Ω ⊆ C. Then a function
f ∈ H(Ω) is called hypercyclic for Cφ if the set {f ◦ φ[n] : n ∈ N} is dense in H(Ω). The
operator Cφ is called hypercyclic if it admits a hypercyclic function.

Several authors have recently observed that Cφ can only be hypercyclic if φ is injective;
see [5, Corollary 3.2], [28, Proposition 2.1] and [15]. Thus we obtain a characterization of
all hypercyclic composition operators Cφ. With this complete solution of a natural problem
we conclude our paper.

Theorem 3.21. Let φ be a holomorphic self-map of a domain Ω ⊆ C.
(a) If Ω is simply connected then Cφ is hypercyclic if and only if φ is injective and (φ[n])

is run-away.
(b) If Ω is finitely connected but not simply connected then Cφ is never hypercyclic.
(c) If Ω is infinitely connected then Cφ is hypercyclic if and only if φ is injective and,

for every Ω-convex compact subset K of Ω and every N ∈ N there is some n ≥ N such
that φ[n](K) is Ω-convex and φ[n](K) ∩K = ∅.
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