
Decomposition and duality based approaches to Stochastic
Integer Programming

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

Jeffrey Christiansen

BSc Adv. Hons., Monash University

School of Science
College of Science, Engineering and Health

RMIT University

June 2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RMIT Research Repository

https://core.ac.uk/display/189992286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since the

official commencement date of the approved research program; any editorial work, paid or unpaid,

carried out by a third party is acknowledged; and, ethics procedures and guidelines have been

followed.

I acknowledge the support I have received for my research through the provision of an Australian

Government Research Training Program Scholarship.

Jeffrey Christiansen

June 21, 2018

i



Acknowledgements

First and foremost, I would like to thank my supervisors Andrew Eberhard (whose door always

seems to be open) and Natashia Boland (who battled through various inconveniences and injuries)

for their excellent guidance and steadfast support. For the same reasons, my heartfelt thanks to

Brian Dandurand, who acted as my unofficial third supervisor (despite this appearing nowhere in

his job description). I couldn’t have asked for a better team.

The research contained in this thesis has been carried out within a larger collaborative research

project. Besides Andrew, Natashia and Brian, the other members of this project were Fabricio

Oliveira and Jeff Linderoth, both of whom made substantial contributions to both our research and

my education as a researcher. James Luedtke joined forces with us for our first paper and also

merits mention here. The contributions made to the research in this thesis by the aforementioned

collaborators is documented in the Preface on the following page.

Thanks are also due to the friendly support staff at the National Computational Infrastruc-

ture (NCI) and the (unfortunately now retired) V3 Alliance (VPAC) for their technical assistance.

Without their trouble-shooting expertise the experimental component of this research would have

taken much longer, in terms of both implementation and execution.

Finally, I’m very grateful to my family, friends and colleagues for their encouragement and

support. I expect to speak with many of you personally, but in particular I’d like to thank the

various people I’ve lived with over the last four years for their understanding when deadlines became

pressing, the RMIT Optimisation group for broadening my horizons (particularly Vera Roshchina,

who organised the group for several years), and my office companions and fellow travellers on the

PhD track for always being ready to have a laugh.

ii



Preface

Some of the material in this thesis is based on published multi-author papers.

• Chapter 4 is based on [16]. The other co-authors of this paper are Natashia Boland, Brian

Dandurand, Andrew Eberhard, Jeff Linderoth, James Luedtke and Fabricio Oliveira.

• Chapter 5 is based on [17]. The other co-authors of this paper are Brian Dandurand, Fabricio

Oliveira, Andrew Eberhard and Natashia Boland.

• Chapter 6 is based on [93]. The other co-authors of this paper are Fabricio Oliveira, Brian

Dandurand and Andrew Eberhard.

From these sections and chapters, the experimental results in Sections 4.3 and 5.3 and the

theoretical results developed in Section 6.2 were completed by Jeffrey Christiansen. The remainder

of these chapters is the result of equal collaboration between the authors of each respective paper.

The work in the chapters not previously listed was also completed by Jeffrey Christiansen.

iii



Contents

1 Introduction 2

2 Background and Literature Review 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Stochastic Programming Formulation . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Introduction to Lagrangian Duality . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.5 Applying Lagrangian Duality to Stochastic Programming . . . . . . . . . . . 14

2.2 Current Literature in Lagrangian Duality . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Exact Augmented Lagrangian Duality for Integer Variables . . . . . . . . . . 19

2.2.2 Semi-Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Convex Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Convexity Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Convex Analysis, Duality and Optimality Conditions . . . . . . . . . . . . . 23

2.3.3 Alternating Direction Method of Multipliers . . . . . . . . . . . . . . . . . . 27

2.3.4 Frank-Wolfe Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Subgradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.6 Cutting Plane Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.7 Bundle Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 SIP Reformulations and Benchmark Instances . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Scenario Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Test Problems for Stochastic Programming . . . . . . . . . . . . . . . . . . . 33

iv



v

2.5 Stochastic Programming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Progressive Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Dual Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Diagonal Quadratic Approximation . . . . . . . . . . . . . . . . . . . . . . . 41

3 The Frank-Wolfe Method and Generalisations 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 The Frank-Wolfe Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Simplicial Decomposition Method . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Solving over the Convex Hull of Integer Programs . . . . . . . . . . . . . . . . . . . 46

3.3 Frank-Wolfe Method for Non-Smooth Optimisation . . . . . . . . . . . . . . . . . . 54

4 Calculating Dual Bounds with Frank-Wolfe-based Progressive Hedging 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Algorithm Design and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Algorithm Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Convergence of Progressive Hedging . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.3 Applying the Simplicial Decomposition Method . . . . . . . . . . . . . . . . 69

4.2.4 FW-PH Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Preliminary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Simplicial Decomposition-based Augmented Lagrangian Method 87

5.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Algorithm Design and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Augmented Lagrangian Method . . . . . . . . . . . . . . . . . . . . . . . . . 94



vi

5.2.2 Convergence Rate Analysis for Augmented Lagrangian Method . . . . . . . 104

5.2.3 Integration of the Simplicial Decomposition and Gauss-Seidel Methods . . . 105

5.2.4 Establishing optimal convergence of SDM-GS . . . . . . . . . . . . . . . . . 108

5.2.5 Implementing the Augmented Lagrangian Method using SDM-GS . . . . . . 111

5.2.6 Parallelisation and Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Preliminary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Effects of the Serious Step Condition . . . . . . . . . . . . . . . . . . . . . . 116

5.3.3 Benefits of Parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Penalty-based Gauss-Seidel Heuristic Method 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.2 Conditions for Strong Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Penalty Functions derived from Positive Bases . . . . . . . . . . . . . . . . . . . . . 133

6.2.1 Positive Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2.2 Generalising the 1-Norm and 8-Norm . . . . . . . . . . . . . . . . . . . . . 134

6.2.3 Strong Lagrangian Duality using Norm-like Penalties . . . . . . . . . . . . . 136

6.2.4 Defining an Appropriate Penalty Function for SIP . . . . . . . . . . . . . . . 138

6.3 Algorithm Design and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Block Gauss-Seidel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.2 Formalising a block Gauss-Seidel method for SIP . . . . . . . . . . . . . . . 145

6.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4.1 Preliminary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Theoretical Extension for the Penalty-based Gauss-Seidel Method 156

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156



vii

7.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.2 Applying Gauss-Seidel to Modified SIP Formulation . . . . . . . . . . . . . . 161

7.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.1 Properties of the infimal regularisation for a SIP . . . . . . . . . . . . . . . 164

7.2.2 Characterising Solutions of the SIP . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.3 Analysis of the Gauss-Seidel Step . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.4 Properties of the Consensus Variable Update Step . . . . . . . . . . . . . . . 177

7.2.5 Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8 Conclusions and Future Work 189



List of Figures

4.1 PH and FW-PH convergence profiles for CAP-101-250 (α � 0) . . . . . . . . . . . . 81

4.2 PH and FW-PH convergence profiles for CAP-101-250 (α � 0) . . . . . . . . . . . . 81

4.3 PH and FW-PH convergence profiles for DCAP-233-500 (α � 0) . . . . . . . . . . . 82

4.4 PH and FW-PH convergence profiles for DCAP-233-500 (α � 0) . . . . . . . . . . . 82

4.5 PH and FW-PH convergence profiles for SSLP-5-25-50 (α � 0) . . . . . . . . . . . . 83

4.6 PH and FW-PH convergence profiles for SSLP-5-25-50 (α � 0) . . . . . . . . . . . . 83

4.7 PH and FW-PH convergence profiles for for SSLP-10-50-100 (α � 0) . . . . . . . . . 84

4.8 PH and FW-PH convergence profiles for for SSLP-10-50-100 (α � 0) . . . . . . . . . 84

5.1 Applying SDM-GS-ALM to DCAP-233-500 using different penalties and parameter-

izations for the serious step condition . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Applying SDM-GS-ALM to CAP-101-250 using different penalties and parameteri-

zations for the serious step condition . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Applying SDM-GS-ALM to SSLP-5-25-50 using different penalties and parameteri-

zations for the serious step condition . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Applying SDM-GS-ALM to SSLP-10-50-100 using different penalties and parameter-

izations for the serious step condition . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 PBGS results for CAP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 PBGS results for DCAP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 PBGS results for SSLP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

viii



List of Tables

4.1 FW-PH result summary for CAP problem instances: dual bounds. . . . . . . . . . . 77

4.2 FW-PH result summary for DCAP problem instances: dual bounds. . . . . . . . . . 78

4.3 FW-PH result summary for SSLP problem instances : dual bounds. . . . . . . . . . 79

5.1 Comparing speedup and final best Lagrangian bound of SDM-GS-ALM, OOQP and

PIPS-IPM for SSLP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Comparing speedup and final best Lagrangian bound of SDM-GS-ALM, OOQP and

PIPS-IPM for DCAP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Comparing iteration count and runtime of SDM-GS-ALM, OOQP and PIPS-IPM for

SSLP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Comparing iteration count and runtime of SDM-GS-ALM, OOQP and PIPS-IPM for

DCAP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

ix



Abstract

Stochastic Integer Programming is a variant of Linear Programming which incorporates integer

and stochastic properties (i.e. some variables are discrete, and some properties of the problem are

randomly determined after the first-stage decision). A Stochastic Integer Program may be rewritten

as an equivalent Integer Program with a characteristic structure, but is often too large to effectively

solve directly. In this thesis we develop new algorithms which exploit convex duality and scenario-

wise decomposition of the equivalent Integer Program to find better dual bounds and faster optimal

solutions. A major attraction of this approach is that these algorithms will be amenable to parallel

computation.

1



Chapter 1

Introduction

Optimisation is a field of mathematics which provides tools for making optimal decisions in a given

situation. Decision problems are classified by how they can be mathematically represented. This

classification determines which algorithms can be effectively and efficiently applied to any given

problem.

A powerful modelling technique in optimisation is Linear Programming, which allows us to

solve decision problems which can be represented as Linear Programs. A Linear Program consists

of a linear objective function which must be minimised or maximised subject to a set of linear

constraints. We can represent a generic linear program with n decision variables and m linear

inequality constraints in the following form:

ζLP �min
x
c1x1 � � � � � cnxn

s.t. a1,1x1 � � � � � a1,nxn ¤ b1

...

am,1x1 � � � � � am,nxn ¤ bm

(1.1)

To abbreviate this formulation, define

x :�

���x1
...
xn

��� , c :�

���c1
...
cn

��� , and b :�

��� b1
...
bm

���
as the vectors of decision variables, objective coefficients and linear constraint constants respectively,

and

A :�

�����
a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n

�����
2



3

as the matrix of linear constraint coefficients. We can now represent (1.1) using matrix algebra in

the condensed form:

ζLP �min
x
cTx

s.t. Ax ¤ b
(1.2)

We will use similar abbreviations when formulating optimisation problems in subsequent chapters.

In fact, since additional indices to distinguish variable vectors will frequently be required, from this

point onward the notation xi will not denote the ith variable in the vector x unless this is specifically

indicated in the text.

Linear Programming is a valuable tool for modelling decision problems but has several limita-

tions. We will focus on two of these limitations. First, a Linear Program cannot model discrete

decisions (such as a yes/no decision); all decision variables in a Linear Program must be continuous.

Second, a Linear Program cannot model a problem in which some of the problem data is unavailable

when the first decision needs to be made. Discrete decisions and imperfect knowledge are common

properties of real-life decision problems, and a more general framework than Linear Programming

is necessary to model these problems accurately.

Stochastic Mixed-Integer Linear Programming, typically shortened to Stochastic Integer Pro-

gramming, generalises the concept of Linear Programs to account for these limitations. Incorporat-

ing binary and integer variables into a standard Linear Program formulation is a straightforward

process, although solving the resulting non-convex optimisation problem is frequently difficult. On

the other hand, there are several valid approaches to incorporating a stochastic element into a Lin-

ear Program so that the initial decisions must be made in conditions of uncertainty. The research in

this thesis focuses on a scenario-based approach in which initial decisions must be made before the

outcome scenario is known, then recourse decisions are made in reaction to the outcome scenario.

A well-known algorithm for solving scenario-based Stochastic Programming problems is the

Progressive Hedging algorithm of Rockafellar and Wets [98]. This algorithm calculates what the

best initial decision would be if the outcome scenario were known beforehand (for each possible

outcome scenario), then tries to find an intermediate solution which is reasonable for all outcome

scenarios by alternately updating the decision variables, a set of averaged consensus variables, and

the dual multipliers.

The Progressive Hedging algorithm is an effective approach for non-integer Stochastic Programs



4

in that it is guaranteed to converge to the global optimal solution. The algorithm may also be

applied to Stochastic Integer Programs but the guarantee of optimal convergence does not apply;

since the averaging operation is not well defined on an integer set this outcome is not surprising.

The main contributions of this thesis fall into two major classes. First, we will define algorithms

for Stochastic Integer Programming which improve on Progressive Hedging and more generally the

state of the art in Stochastic Integer Programming, either in the direction of calculating dual bounds

or in finding high-quality feasible solutions. These algorithms are based on a similar alternating-

update framework, but with structures and goals that are better suited to an integer programming

environment. Second, we will explore the underlying theory which motivates and justifies the

construction of these algorithms.

The main chapters of this thesis are structured as follows.

Chapter 2 formalises and elaborates on the background material presented in the Introduction.

This chapter also contains a review of the current literature in stochastic integer optimisation and

related fields of mathematics.

Chapter 3 describes the Frank-Wolfe method, several of its generalisations, and their appli-

cations. Section 3.2 extends existing knowledge by demonstrating that these Frank-Wolfe-type

methods can be applied to solving the convex hull relaxation of integer programs. This technique

is employed in Chapters 4 and 5. Section 3.3 demonstrates that the Frank-Wolfe method can be

applied to non-smooth optimisation problems.

Chapters 4 and 5 use a modified version of the Progressive Hedging algorithm to compute the

ordinary Lagrangian dual bound of a Stochastic Integer Program directly. The primary algorithmic

difficulty in this approach is in solving subproblems over the convex hull of the feasible set. The

main results of Chapters 4 and 5 are included in the published papers [16] and [17] respectively.

Chapter 6 takes the alternate approach of constructing penalty functions which result in strong

augmented Lagrangian duality. The primary algorithmic difficulty in this approach is in dealing

with the restrictions which this places on the penalty function (in particular, non-differentiability).

Having done this, an alternating update algorithm is used to obtain high-quality primal feasible

solutions. The main results of Chapter 6 are included in the published paper [93].

Chapter 7 proposes an modified version of the algorithm developed in Chapter 6 which has

stronger theoretical properties when applied to a Stochastic Mixed-Integer Program with only in-



5

teger variables in the first stage.

Chapter 8 summarises and concludes the results presented in the thesis and outlines potential

directions for future research.



Chapter 2

Background and Literature Review

2.1 Introduction

2.1.1 Integer Linear Programming

A Mixed Integer Linear Program (MILP), typically abbreviated to Mixed Integer Program

(MIP) or Integer Program (IP), may be written in the following general form:

ζIP �min cTx

s.t. Ax ¤ b

x ¥ 0

x P Rn�q � Zq

(2.1)

This MIP has n decision variables, represented by the vector x. n � q of these variables are

continuous, and the remaining q are discrete or integer variables. The vector c has the same length

as x and defines the coefficients for each variable in the linear objective function. A is a l�n matrix

and b is a vector of length l, which together define the constraints on the decisions variables as a

set of l inequalities.

A particular choice of decision variables x is called a solution. If a solution satisfies all of the

conditions of the problem, then it is a feasible solution. If a feasible solution yields the best possible

objective value across all feasible solutions, then it is an optimal solution. In this case the objective

is being minimised, so the best possible objective value is the smallest.

Equation (2.1) may appear restrictive since it does not account for differences in objective

and constraint type, or for different variable bounds. However, it is possible to reformulate any

6



7

integer linear program with equalities, negative variables, or a maximisation objective in the form

of Equation (2.1), and so any results proved for Equation (2.1) may be generalised to other forms.

In practice it is often more intuitive to construct a MIP using a combination of equalities and

inequalities, and with a variety of variable bounds.

2.1.2 Stochastic Programming

The representation of a problem as a MIP assumes that all decisions may be made in advance with

full knowledge of what effect they will have. Unfortunately this is not always the case. In many

practical problems it is necessary to make decisions before everything about the problem is known

with certainty. For example, when scheduling train networks the exact number of passengers each

day and the occurrence of any mechanical faults are not known with certainty when the timetable

is arranged. In agriculture, the weather conditions which will occur in a particular year are not

known when the crops are planted.

In both of these examples and in many other practical problems the future conditions are not

known with certainty. It is possible to model this uncertainty with a probability distribution.

For example, the probability distributions associated with the set of outcomes corresponding, for

example, to high or low passenger traffic, good or bad weather, and the frequency of mechanical

faults may be estimated using previous data, which allows a partially informed decision to be made.

Different possible outcomes are modelled as separate scenarios, each of which is assigned a

probability of occurring. Stochastic programs aim to find the decision which has the best average

outcome across all scenarios.

There are some problems which arise when applying the answer obtained by solving a stochastic

program to the real world. First, the assignment of probabilities to outcome scenarios is often made

without knowledge of the exact actual probabilities of all outcomes; an informed guess must be made.

Second, it may not be practical to examine all possible outcome scenarios; the number of outcome

scenarios may be prohibitively large, or infinite in the case of a continuous random distribution.

This second problem is addressed by taking a representative sample of the set of possible outcomes

as the scenario space for the purposes of obtaining a tractable stochastic program.

These issues mean that the optimal solution of a stochastic program will not necessarily be ex-

actly “optimal” in the real world. Therefore, algorithms for stochastic programs frequently prioritise



8

finding a “good” solution quickly over finding an “optimal” solution.

The work presented herein will generally employ a decision stage based approach to modelling

the stochastic elements of a given problem. These models may have two or more stages. A decision

problem with two stages will be referred to as a two-stage stochastic program. A problem with

more than two decision stages will be referred to as a multi-stage stochastic program.

In a two-stage stochastic program, the first stage decisions or initial decisions are made

before the outcome scenario is known. After the outcome scenario is determined, the second stage

decisions or recourse decisions can be made. For example, in the hypothetical train scheduling

problem above, if a mechanical fault occurs it may be possible to reschedule other trains to cover

the gap.

A multi-stage stochastic program is structured similarly. However, instead of fully unveiling the

final outcome scenario in a single step, it is revealed in several discrete steps. Recourse decisions

may be made at each of these steps. The structure of the outcome scenarios is typically represented

with a tree structure.

An alternative approach to modelling stochastic aspects of a problem is chance-constrained

programming. In a chance-constrained program, one or more constraints must be satisfied with

a given probability (or degree of certainty). A chance constraint may be written in the form

P pfpxq ¤ bq ¥ p,

which has the meaning “x must be chosen such that the probability that the constraint fpxq ¤ b is

satisfied is greater than or equal to p”.

Chance constraints are more appropriate to some classes of problems than the two- or multi-stage

approach, and can more directly tackle problems involving continuous random distributions.

Chance-constrained programming is outside the scope of this project. More detail about this

approach may be found in, e.g. [84].

2.1.3 Stochastic Programming Formulation

Two-stage stochastic programs have a much simpler structure than multi-stage stochastic programs.

For the purposes of simplicity and clarity, the following introductory explanation of decision-stage

based Stochastic Program problem formulation will focus on the two-stage case.



9

Two-stage stochastic programs are modelled with two sets of variables, corresponding to the first-

stage and second-stage decisions. Since the first-stage decisions must be made before determination

of the random variable, there is a single set of first-stage variables across all possible scenarios.

Since the second-stage decisions may be made after the random outcome is observed, and may

therefore respond to it, there are different sets of second-stage variables for each scenario.

A Two-stage Stochastic Mixed Integer Linear Program (SMILP), abbreviated here to

Stochastic Integer Program (SIP), may be written in the following general form:

ζSIP �min
x
cTx�

¸
sPS

psrQpx, sqs

s.t. Ax ¤ b

x ¥ 0

x P Rn�q � Zq

(2.2)

where

Qpx, sq �min
y
dTs y

s.t. Wsy ¤ hs � Tsx

y ¥ 0

y P Rm�r � Zr

(2.3)

In an SIP, the second-stage problem for each possible scenario is modelled as a MIP, with the

first-stage decision used as a parameter. The expected value of the second-stage problem across all

scenarios is added to the first-stage problem as a penalty or incentive in the objective function.

The set S is the set of all possible outcome scenarios s. The expected value of the second-

stage problem, given a first stage decision, is found by taking the average value of the second-stage

decision problem across all possible scenarios s P S, weighted by the probability ps of each scenario

s. We will always assume that
°
sPS ps � 1.

This IP has n first-stage decision variables, represented by the vector x, and m second-stage

decision variables, represented by the vector y. A full solution to the two-stage SIP consists of

a single first-stage decision and multiple second-stage decisions, each of which corresponds to an

outcome scenario. A particular choice of decision variables for each stage and outcome scenario is

sometimes referred to as a policy. This term is used because we cannot make all of the decisions

required in the problem which the stochastic program represents at a single point in time, but we



10

can initially define a policy which chooses decisions when and as appropriate. To be feasible a

policy must satisfy all constraints on both the first- and second-stage variables.

In the context of SIP formulations such as (2.2) our problem data is represented as follows. c and

d are vectors of length n and m respectively which define the objective functions for the first-stage

and second-stage problems. A is a matrix and b is a vector which together define the first-stage

constraints Ax ¤ b. As the second-stage decision y has not yet been made in the first stage, the

first-stage constraints do not refer to those decision variables. Similarly Ws and Ts are matrices and

hs is a vector which together define the second-stage constraints Wsy ¤ hs � Tsx for each scenario

s. Within the Qpx, sq subproblem the first-stage decision has already been made and is treated as

a constant, so the Tsx term is written on the right-hand side of the second-stage constraints in this

formulation.

This formulation does not give any explicit guarantees that the second-stage problems Qpx, sq

will be bounded or feasible for all possible first-stage decisions x. To correct this we may enforce

an additional recourse condition. ζSIP as defined in (2.2) and (2.3) has relatively complete

recourse if Qpx, sq   8 for all x which satisfy the first-stage constraints Ax ¤ b and x ¥ 0. The

stronger condition of complete recourse holds if Wsy ¤ z for all scenarios s and vectors z of real

numbers with the appropriate dimension.

The formulation given in (2.2) for ζSIP has the disadvantage that most of the complexity is

concealed within the Qpx, sq function. To address this problem, ζSIP can be reformulated as a

single deterministic equivalent MIP as follows:

ζSIP � min
x,y1,...,y|S|

cTx�
¸
sPS

ps
�
dTs ys

�
s.t. Ax ¤ b

Tsx�Wsys ¤ hs @s P S

x ¥ 0, y ¥ 0

x P Rn�q � Zq

y P Rm�r � Zr

(2.4)

This is an ordinary MIP and in principle may be solved using techniques for solving ordinary mixed

integer programs. For real world problems, since there is a separate set of variables and constraints

for each scenario, the MIP is invariably very large and therefore exceptionally difficult to solve in



11

this way.

However, this MIP does have a particular structure imposed by its origins as an SIP, which

allows specialised algorithms to solve it much more easily. The principle behind these algorithms is

to separate, or decompose, the problem into smaller subproblems.

Algorithms based on stage-wise decomposition, alternately named primal decomposition,

separate the variables and constraints based on which decision stage they correspond to. The L-

shaped method (see e.g. [71]) is a standard stage-wise decomposition method. Stage-wise decompo-

sition methods, like Benders decomposition, are often strongly based on duality and are thus open

to further development with the application of new duality methods for Integer Programming, but

are less well adapted to parallel decomposition.

Algorithms based on scenario-wise decomposition, alternately named dual decomposi-

tion, separate the variables and constraints based on which outcome scenario they correspond to.

Lagrangian duality gives a theoretical basis for scenario-wise decomposition on which many algo-

rithms have been constructed. Since there are a large number of scenarios in an SIP, and the

subproblems corresponding to each scenario are not strongly dependent on each other, scenario-

wise decomposition offers a great deal of scope for parallel computation. As such, scenario-wise

decomposition methods will be a primary focus of this research.

2.1.4 Introduction to Lagrangian Duality

In some constrained optimisation problems, a particular subset of the constraints make the prob-

lem significantly more difficult to solve. Conversely, if these constraints could be removed from

the problem it would be easier to solve. These constraints generally provide important information

about the problem, so simply ignoring them is not practical and will not result in a useful answer.

However, it is possible to move this information from the constraint into the objective using La-

grangian duality.

Consider a general MIP of the form:

ζIP �min
x
cTx

s.t. Qx � r

x P X

(2.5)



12

where the term x P X represents the “easy” constraints as well as bounds and integrality of the

variables. For the purposes of this discussion the s constraints represented by Qx � r are considered

difficult constraints. In the context of duality, the x variables are referred to as primal variables.

The Lagrangian corresponding to ζIP is:

Lpx, λq � cTx� λT pQx� rq (2.6)

The corresponding Lagrangian dual function is

ζLRpλq �min
x
Lpx, λq

s.t. x P X
(2.7)

and the corresponding Lagrangian dual problem is

ζLD � max
λ

ζLRpλq (2.8)

The vector λ of dual variables has length s. In the case where x consists of only continuous

variables, the initial program is convex and the Lagrangian dual is a strong dual, meaning that

ζLD � ζIP (e.g. [100, Theorem 3.27]).

If x contains integer variables the problem is no longer convex, and a duality gap between ζIP

and ζLD may occur. ζLD is still guaranteed to be a weak dual to ζIP — it yields a lower bound

on the value of ζIP , which provides information and may contribute to finding the solution for ζIP

via another method such as Branch-and-Bound.

Definition 2.1 Given a set X, The convex hull of X, denoted convpXq, is the smallest convex

set containing X. A constructive definition will be given in Section 2.3.2.

A primal characterisation of the Lagrangian dual problem is

ζLD �min
x
cTx

s.t. Qx � r

x P convpXq

(2.9)

(see e.g. [46]). This is a primal problem which has the same optimal value as the Lagrangian dual

problem. Furthermore it is a continuous programming problem, as taking the convex hull of the



13

feasible set X removes the integer restriction on the decision variables. In practice it is challenging

to calculate convpXq and model it with linear constraints.

The augmented Lagrangian corresponding to ζIP is:

Lρpx, λq � cTx� λT pQx� rq � ψρpQx� rq (2.10)

The corresponding augmented Lagrangian dual function is

ζLR�ρ pλq �min
x
Lρpx, λq

s.t. x P X
(2.11)

and the corresponding augmented Lagrangian dual problem is

ζLD�ρ � max
λ

ζLR�ρ pλq (2.12)

The augmenting term ψρpQx � rq is intended to penalise decisions which violate the difficult con-

straints Qx � r. The augmenting function ψρp�q has the properties ψρp0q � 0 and ψρpuq ¡ 0

for all u � 0, and determines the character of the penalty for violation of the hard constraints.

The penalty parameter ρ is a strictly positive scalar parameter which determines the size of

the penalty. The typical augmenting function used in most applications of augmented Lagrangian

duality is:

ψρpuq �
ρ

2
}u}2

2 (2.13)

Similarly to the ordinary Lagrangian dual, the augmented Lagrangian dual is a strong dual to

ζIP if the decision variables x are continuous (e.g. [100, Theorem 4.30]). Under some conditions,

the augmented Lagrangian dual may also be strong for an integer problem; these conditions are

discussed further in Section 2.2.1. Otherwise, it is a weak dual. The added term improves the

convergence properties of algorithms which employ Lagrangian duality, although in general it has

the undesirable side effect of destroying separability present in the original Lagrangian.

A primal characterisation of the augmented Lagrangian dual problem, due to Feizollahi et al.

[37], is

ζLD�ρ �min
x
cTx� ρω

s.t. Qx � r

px, ωq P convpSψq

(2.14)



14

where the set Sψ is defined as follows:

Sψ :�
 
px, ωq P Rn�1 : ψρpQx� rq ¤ ω, x P X

(
(2.15)

2.1.5 Applying Lagrangian Duality to Stochastic Programming

To apply Lagrangian duality to Equation 2.4, it is necessary to express the difficult part of the

problem (that the first-stage decisions must be the same for all scenarios) as a constraint. To

do this, we separate the first-stage variables x into separate vectors xs for all s P S and impose

a non-anticipativity constraint to ensure that the first-stage decisions remain identical for all

scenarios. The non-anticipativity constraint may be expressed in several ways, for example:

• Linking the first-stage decisions sequentially, i.e. x1 � x2, x2 � x3, ..., x|S|�1 � x|S|.

• Linking one first-stage decision to all of the others, i.e. x1 � x2, x1 � x3, ..., x1 � x|S|.

• Linking all of the first-stage decisions to a new non-anticipativity or consensus variable

x̄, i.e. x̄ � x1, x̄ � x2, ..., x̄ � x|S|.

For the sake of condensing notation, when describing an SIP, let x represent all of the first-stage

decision vectors txs : s P Su. Similarly let y represent all of the second-stage decision vectors

tys : s P Su, and λ represent all of the dual variable vectors tλs : s P Su.

In the context of this formulation, a decision policy is composed of a first- and second-stage

decision for each possible outcome scenario. If a policy satisfies the non-anticipative constraints, it

is described as non-anticipative or implementable. If a policy satisfies all of the other constraints

on the first and second stage variables it is described as admissible. A policy is feasible for ζSIP

if and only if it is both implementable and admissible, since this means that it satisfies all of the

constraints on the problem. If no other feasible policy results in a better objective value, then it is

an optimal policy.

The following representation of ζSIP uses the consensus decision variable approach to represent

the non-anticipativity constraints.



15

ζSIP �min
x ,y ,x̄

¸
sPS

ps
�
cTxs � dTs ys

�
s.t. Axs ¤ b @s P S

Tsxs �Wsys ¤ hs @s P S

xs � x̄ @s P S

xs ¥ 0, ys ¥ 0 @s P S

xs P Rn�q � Zq @s P S

ys P Rm�r � Zr @s P S

(2.16)

The constraints here which define the feasibility of first- and second-stage decisions for a particular

scenario may be abbreviated as pxs, ysq P Ks, where

Ks :�
 
px, yq | Ax ¤ b, Tsx�Wsys ¤ hs, x P Rn�q � Zq, y P Rm�r � Zr

(
.

This facilitates a more compact representation of the SIP:

ζSIP �min
x ,y ,x̄

¸
sPS

ps
�
cTxs � dTs ys

�
s.t. pxs, ysq P Ks @s P S

xs � x̄ @s P S

(2.17)

The Lagrangian corresponding to ζSIP is:

Lpx ,y , x̄,λq �
¸
sPS

psLspxs, ys, x̄, λsq, (2.18)

where

Lspxs, ys, x̄, λsq � pcTxs � dTs ysq � λTs pxs � x̄q. (2.19)

Note that the ps scaling factor also applies to the dual multiplier term in this formulation. Since

the dual variables are free we can multiply each of them by a scaling factor such as ps without loss

of generality. The corresponding Lagrangian dual function is

ζLRpλq �min
x ,y ,x̄

Lpx ,y , x̄,λq

s.t. pxs, ysq P Ks

(2.20)

and the corresponding Lagrangian dual problem is

ζLD � max
λ

ζLRpλq. (2.21)



16

The primal characterisation of the Lagrangian dual corresponding to (2.9) is:

ζSIP �min
x ,y ,x̄

¸
sPS

ps
�
cTxs � dTs ys

�
s.t. pxs, ysq P convKs @s P S

xs � x̄ @s P S

(2.22)

Define an augmenting function ψρpuq : Rn|S| Ñ R as follows:

ψρpuq � ψρpu1, . . . , us, . . . , u|S|q :�
¸
sPS

psψ
ρ
spusq (2.23)

The augmented Lagrangian corresponding to ζSIP , using the augmenting function (2.23), is:

Lρpx ,y , x̄,λq �
¸
sPS

psL
ρ
spxs, ys, x̄, λsq, (2.24)

where

Lρspxs, ys, x̄, λsq � pcTxs � dTs ysq � λTs pxs � x̄q � ψρspxs � x̄q. (2.25)

The corresponding augmented Lagrangian dual function is

ζLR�ρ pλq �min
x ,y ,x̄

Lρpx ,y , x̄,λq

s.t. pxs, ysq P Ks

(2.26)

and the corresponding augmented Lagrangian dual problem is

ζLD�ρ � max
λ

ζLR�ρ pλq. (2.27)

Each of the constraints in Equation 2.26 contain only variables from a single scenario, and therefore

may be separated by scenario. The augmented Lagrangian in the objective of (2.26) is not generally

separable by scenario due to the augmenting term. However, if x̄ is fixed the resulting objective

and problem ζLD�ρ is separable by scenario and much more tractable. This observation motivates

algorithms which solve the overall problem by iteratively solving ζLD�ρ for a fixed x̄, then using

the result to generate an improved value for x̄. Similar approaches are possible for other non-

anticipativity conditions.



17

Example 2.2 Consider the following SIP with two first-stage variables x1 and x2 and a single

second-stage variable y:

ζSIP �min
x,y

x1 �
1

2
p1000y1q �

1

2
p1000y2q

s.t. � y1 ¤ x1 � x2

� y2 ¤ x1 � x2 � 1

x1, x2, y1, y2 P t0, 1u

(2.28)

The set of feasible decisions in each scenario is

K1 :�
 
px1, x2, y1q P t0, 1u

3 | �x1 � x2 � y1 ¤ 0
(
,

K2 :�
 
px1, x2, y2q P t0, 1u

3 | �x1 � x2 � y2 ¤ �1
(
.

Given these definitions, we can rewrite this problem in the form

ζSIP �min
x,y

x1 �
1

2
p1000y1q �

1

2
p1000y2q

s.t. px1, x2, y1q P K1

px1, x2, y1q P K2

(2.29)

We can think of this as playing a (quite unfair) game as follows. You choose to pay a dollar (x1 � 1)

or not (x1 � 0). In either case, choose heads (x2 � 1) or tails (x2 � 0), then flip a coin.

• In scenario 1 the coin is tails: if you did not pay and you chose heads (so x1�x2 � 0�1 � �1)

then you must set y1 � 1 and pay the penalty of 1000 dollars. If you paid the dollar and/or

you chose tails (so x1 � x2 ¥ 0) then you may set y1 � 0 and pay nothing further.

• In scenario 2 the coin is heads: if you did not pay and you chose tails (so x1 � x2 � 1 �

0� 0� 1 � �1) then you must set y2 � 1 and pay the penalty of 1000 dollars. If you paid the

dollar and/or you chose tails (so x1 � x2 � 1 ¥ 0) then you may set y2 � 0 and pay nothing

further.

Obviously the best move is to pay the dollar (after which the heads/tails choice is irrelevant);

this yields an objective value of 1 in all outcome scenarios and hence ζSIP � 1.



18

We can rewrite in terms of non-anticipativity constraints as follows:

ζSIP �min
x,x̄,y

1

2
px1

1 � 1000y1q �
1

2
px1

2 � 1000y2q

s.t. px1
1, x

2
1, y1q P K1

px1
1, x

2
1, y1q P K2

x1
1 � x̄1, x1

2 � x̄1

x2
1 � x̄2, x2

2 � x̄2

(2.30)

The Lagrangian dual bound can be calculated via the dual problem definition as in (2.21) or the

convex hull-based primal representation as in (2.22). Both will be demonstrated below.

The Lagrangian dual problem corresponding to (2.30) is

ζLD �max
λ

min
x,x̄,y

1

2
px1

1 � 1000y1q �
1

2
px1

2 � 1000y2q�

1

2

�
λ1

1px̄
1 � x1

1q � λ1
2px̄

1 � x1
2q
�
�

1

2

�
λ2

1px̄
2 � x2

1q � λ2
2px̄

2 � x2
2q
�

s.t. px1
1, x

2
1, y1q P K1

px1
1, x

2
1, y1q P K2

with the implied dual feasibility condition λ1
1 � �λ1

2 and λ2
1 � �λ2

2. If we let λ1 � λ1
1 � �λ1

2 and

λ2 � λ2
1 � �λ2

2 then ζLD can be rewritten in the form

ζLD �max
λ

min
x,x̄,y

1

2
pp1� λ1qx1

1 � λ2x2
1 � 1000y1q �

1

2
pp1� λ1qx1

2 � λ2x2
2 � 1000y2q

s.t. px1
1, x

2
1, y1q P K1

px1
1, x

2
1, y1q P K2

By substituting all of the feasible points and eliminating those which are dominated by other feasible

points, we can rewrite ζLD as:

ζLD �max
λ

�
1

2
min

 
0,�λ2 � 1000, 1� λ1, 1� λ1 � λ2

(
�

1

2
min

 
1000, λ2, 1� λ1, 1� λ1 � λ2

(�
A feasible solution to this maximisation problem is λ1 � 0 and λ2 � 1, which results in

1

2
min

 
0,�λ2 � 1000, 1� 0, 1� 0� 1

(
�

1

2
min t1000, 1, 1� 0, 1� 0� 1u �

1

2
.

Since the Lagrangian dual problem is a maximisation problem, 1
2

is a lower bound on the Lagrangian

dual bound.



19

Now consider the primal representation based on the convex hull of the feasible region. Since

p0, 0, 0q and p1, 1, 0q are in K1, p1
2
, 1

2
, 0q is in convK1. Since p0, 1, 0q and p1, 0, 0q are in K2, p1

2
, 1

2
, 0q

is in convK2.

Therefore x1
1 � x1

2 � x̄1 � 1
2
, x2

1 � x2
2 � x̄2 � 1

2
and y1 � y2 � 0 is a feasible solution of the

convex hull representation of the Lagrangian dual of ζSIP . This solution has objective value 1
2
. Since

the convex hull representation of the Lagrangian dual is a minimisation problem, 1
2

is an upper

bound on the Lagrangian dual bound.

Since 1
2

is an upper and lower bound on the Lagrangian dual bound, it must in fact be the

Lagrangian dual bound, resulting in a duality gap of 1� 1
2
� 1

2
between the primal optimal solution

and the dual bound.

2.2 Current Literature in Lagrangian Duality

Overviews of Lagrangian duality may be found in [12, 100]. Some theory with particular relevance

to the developments of later chapters is discussed in this section.

Algorithms for convex optimisation which employ Lagrangian duality include the subgradient

method, cutting plane method, bundle methods, and alternating direction method of multipliers

(among many variants). These methods and the associated literature will be discussed in Sections

2.3 and 2.5.

2.2.1 Exact Augmented Lagrangian Duality for Integer Variables

The augmented Lagrangian dual is not in general a strong dual for an integer problem, so it only

provides a bound on the optimal solution rather than the exact optimal value. However, under some

conditions on the problem, the augmenting function and the penalty parameter, the augmented

Lagrangian dual is strong. Boland and Eberhard [18] showed that the augmented Lagrangian dual

applied under the following conditions is a strong dual:

• The augmenting function ψ is of the form ψpuq � φp}u}q, where φ is a convex, monotonically

increasing function, φp0q � 0 and for some δ ¡ 0 the following conditions hold:

lim infaÑ�8
φpaq

a
¥ δ



20

and diam ta|φpaq ¤ δu approaches 0 from above as δ approaches 0 from above.

• One of the following conditions holds:

– The feasible set of the LP relaxation of the problem does not contain a lineality space.

– The constraints on the feasible set are rational and the norm used in the augmenting

function is the infinity norm.

– The convex hull of the feasible set is bounded.

• One of the following conditions holds:

– The penalty parameter goes to infinity.

– The feasible set is finite and discrete, and the penalty parameter is sufficiently large (but

finite).

Feizollahi et al. [37] generalised this result under the condition that the penalty parameter goes

to infinity, for general mixed-integer linear programs, and for augmenting functions ψ which satisfy

the weaker conditions of being proper, non-negative, lower semi-continuous and level-bounded.

Feizollahi et al. also showed that in the alternate case where the penalty parameter is restricted

to finite values, the above result holds even when the feasible set contains infinitely many feasible

points. Furthermore, if the penalty function is proper, non-negative and bounded below by the

infinity norm in a neighbourhood of the origin, the augmented Lagrangian dual is exact even if the

feasible set is not discrete (some of the variables are continuous). In particular, these conditions on

the augmenting function are satisfied by the use of any norm as an augmenting function.

2.2.2 Semi-Lagrangians

Instead of directly applying Lagrangian relaxation to an equality constraint in a mixed-integer linear

program, in some cases it is preferable to reformulate the constraint into a different form first. Semi-

Lagrangian relaxation, as proposed by Beltran et al. [9], includes a redundant inequality constraint

Qx ¤ r to accompany the complicating equality constraint Qx � r. When Lagrangian relaxation

is applied to the equality constraint, the inequality constraint remains as an explicit constraint on

the problem. An equivalent approach is to reformulate the difficult constraint Qx � r into two



21

sub-constraints Qx ¤ r and Qx ¥ r, and then apply Lagrangian relaxation to only one of these two

sub-constraints.

Under some conditions, semi-Lagrangian relaxation results in a strong dual even for integer

programs, given that the problem has non-negative coefficients and the non-integrality constraints

on the variables are polyhedral. However, this comes at the cost of retaining an inequality constraint

in the problem to be solved. At worst the resulting problem will be no easier to solve than the

original MIP.

To put the semi-Lagrangian approach to effective use, the structure of the problem and algorithm

employed must allow the resulting primal integer programs (which include the scenario-linking

inequalities) to be solved easily. This is accomplished by choosing values for the dual variables which

allow the problems to be simplified. The method for choosing suitable dual variables varies from

problem to problem. For example, consider the p-median problem with the following formulation:

ζ� �min
x,y

m̧

i�1

ņ

j�1

cijxij

s.t.
m̧

i�1

xij � 1, @j,

m̧

i�1

yi � p,

xij ¤ yi, @i, j,

xij, yi P t0, 1u

Beltran et al. [9] gradually applied semi-Lagrangian relaxation to this problem using the following

procedure (with appropriate termination conditions):

1. Apply a full Lagrangian relaxation to the first constraint (
°m
i�1 xij � 1, @j) and second con-

straint (
°m
i�1 yi � p) and solve the associated dual problem

pλ1,µ1q � argmax
λ,µ

min
x,y

ņ

j�1

�
m̧

i�1

cijxij � λj

�
m̧

i�1

xij � 1

�
� µj

�
m̧

i�1

yi � p

��
s.t. xij ¤ yi, @i, j,

xij, yi P t0, 1u

(2.31)

using a cutting plane method.



22

2. Add the constraint
°m
i�1 xij ¤ 1 @j (i.e. use a semi-Lagrangian relaxation for the first con-

straint) to (2.31) and solve again, using the dual variables pλ1,µ1q obtained from the previous

step as a starting point. This problem is solved with a general MIP solver (such as CPLEX).

Denote the optimal choice of dual variables for this problem as pλ2,µ2q.

3. Add the constraints
°m
i�1 xij ¤ 1 @j and

°m
i�1 yi ¤ p to (2.31) (i.e. a full semi-Lagrangian

relaxation) and solve again, using the dual variables pλ2,µ2q obtained from the previous step

as a starting point.

The motivation for this approach as opposed to solving the full semi-Lagrangian dual problem

directly is that the dual information obtained at each step makes the subsequent problems consid-

erably easier. In particular, when solving the partial semi-Lagrangian dual problem, any variable

xij whose cost cij exceeds the corresponding dual variable λj may be eliminated from considera-

tion. The solution to the full semi-Lagrangian dual problem is typically close to that of the partial

semi-Lagrangian problem, which allows a relatively easy search for the optimal solution.

Different problems require different approaches to choosing appropriate dual variables for semi-

Lagrangian relaxation. For example, when solving Uncapacitated Facility Location problem in-

stances it is instead ideal to keep small as many dual variables as possible, since this eliminates a

large number of variables from the corresponding subproblem [10].

A further refinement of semi-Lagrangian duality is to replace the complicating inequality con-

straint with a surrogate constraint; that is, replace the set of equalities Qix � Ri for i P I with

a single inequality
°
iPI Qix �

°
iPI Ri. In combination with the (previously redundant) added

inequalities, this replacement does not weaken the formulation, and when Lagrangian duality is

applied to the single surrogate constraint only a single dual variable results. This approach is

considered in [85, 64].

2.3 Convex Optimisation

2.3.1 Convexity Definitions

Definition 2.3 A set C P Rn is said to be a convex set if for all points x and y in C, and for all

α in r0, 1s, the point αx� p1� αqy is also in C.



23

In informal terms, this means that any straight line connecting two points in C is itself contained

in C.

Definition 2.4 The set of extended real numbers RY t�8,�8u is denoted R8.

Definition 2.5 The epigraph of a function f : X Ñ R8, denoted epi f , is the set of points lying

on or above the graph of the function:

epi f � tpx, µq | x P X,µ P R8, µ ¥ fpxqu

A function is convex if and only if its epigraph is a convex set.

Definition 2.6 A function on a convex set X P Rn, f : X Ñ R8 is said to be a convex function

if for all points x and y in X, and for all α in r0, 1s, the following condition holds:

fpαx� p1� αqyq ¤ αfpxq � p1� αqfpyq

Equivalently a function is convex if and only if its epigraph is a convex set.

In informal terms, this means that any straight line connecting two points on the graph of f lies

entirely above f .

A convex optimisation problem has the form

ζ � min
xPX

fpxq (2.32)

where X is a convex set and f is a convex function. Unless otherwise stated we will assume

that the feasible set X is closed and that ζ is bounded below (and therefore an optimal solution

exists). The properties of convex sets and functions are used to design algorithms specifically for

these problems.

2.3.2 Convex Analysis, Duality and Optimality Conditions

For an overview of convex analysis see e.g [97]. Some basic definitions are reproduced here.

Definition 2.7 The convex hull of a set X � Rn, denoted convpXq, is the set of all points which

may be obtained as a convex combination of points in X i.e. if x is in convpXq then there exist



24

points x1, . . . , xn in X and weights λ1, . . . , λn satisfying
°n
i�1 λi � 1 and λi P r0, 1s @i P p1, . . . , nq

such that

x �
ņ

i�1

λixi

This is also the smallest convex set containing X.

Definition 2.8 The effective domain of a convex function f : X Ñ R8 is the set of all points

x P X such that fpxq   �8.

Definition 2.9 A convex function f : X Ñ R8 is said to be proper if fpxq   �8 for some x P X

(i.e. the effective domain of f is non-empty) and fpxq ¡ �8 for all x P X.

Definition 2.10 The characteristic function of a set X � Rn is denoted δX : Rn Ñ R8, where

δXpxq �

#
0 x P X

�8 x R X

Definition 2.11 Assume V is a vector space. The set of linear functionals on this vector space is

said to be the corresponding dual (vector) space, and is denoted V �.

The results presented in later chapters will frequently only consider the special case where the

vector space V is a finite dimensional Euclidean space, meaning that V � � V . In these cases the

distinction between the vector space and its dual is unimportant. However, some definitions and

cited results will use the more general notation.

Definition 2.12 A function f : X Ñ R8 is said to be lower semi-continuous at x0 P X if

fpx0q ¤ lim inf
xÑx0

fpxq

Consider as an example the function δt0u : RÑ R8 defined by

δt0upxq �

#
0 x � 0

�8 x � 0.

This function is convex and lower semi-continuous but is not differentiable or continuous at 0.

The existence of convex functions which are not differentiable means that the theory of ordinary

derivatives and gradients is frequently not applicable in convex analysis. Instead, an analogous

concept which leverages the convexity property is used.



25

Definition 2.13 The subgradient of a convex function f : X Ñ R8 is denoted Bf , and is defined

as follows:

Bfpx0q :� tx� | x� P X�, fpxq � fpx0q ¥ xx�, px� x0qy @x P Xu (2.33)

The condition fpxq � fpx0q ¥ xx�, px� x0qy @x P X is referred to as the subgradient inequality.

Note that there exist more general definitions of the subgradient which do not rely on convexity

or the global behaviour of f , although they are generally equal to the convex subgradient when

the latter exists. We will use the definition presented above unless the text specifically indicates

otherwise.

If X is a finite dimensional real vector space, a consequence of the subgradient inequality is that

the hyperplane with normal vector x� which touches epi f at x0 is a supporting hyperplane of epi f .

Definition 2.14 An optimisation problem of the form

min
xPX

fpxq (2.34)

is said to be convex if its objective function f is a convex function and its feasible region X is a

convex set.

Remark 2.15 Optimsation problems with integer variables are almost always non-convex, since

their feasible regions are a discrete set of points or hyperplanes.

The basic definition of the globally optimal solution to an optimisation problem (that no better

feasible point exists) is difficult to evaluate directly for a given point. Based on the structure of

convex optimisation problems we can define an equivalent optimality criterion which is more

easily evaluated. This will be particularly useful when we define termination conditions for the

algorithms presented in later chapters.

If a convex optimisation problem of the form (2.34) is unconstrained (i.e. X � Rn) and smooth,

its optimal points x0 are those which satisfy 0 � ∇fpx0q. Similarly, if the optimisation problem

is unconstrained and non-smooth its optimal points x0 satisfy 0 P Bfpx0q; to see this, substitute

x� � 0 into the subgradient inequality to obtain

fpxq � fpx0q ¥ 0 @x P X.



26

If the convex optimisation problem contains constraints a more sophisticated optimality criterion

is required. In addition we will need some form of constraint qualification condition to exclude

“unreasonable” constraint sets and objective functions.

Definition 2.16 The normal cone to a convex set X at a point x̂ is denoted NXpx̂q and is defined

as follows:

NXpxq :� tx� | xx� x̂, x�y ¤ 0 @x P Xu

Theorem 2.17 [100, Theorem 3.34] Consider a convex optimisation problem

ζIP �min
x
fpxq

s.t. gipxq ¤ 0 @i � 1, . . . ,m

hjpxq � 0 @j � 1, . . . , p

x P X

(2.35)

where f and every gi are convex functions, every hj is an affine function, and X is a convex and

closed set in Rn. Assume that the following qualification conditions are satisfied:

• The Slater condition holds i.e. there exists a point x such that gipxq � 0 for all i � 1, . . . ,m

and hjpxq � 0 for all j � 1, . . . , p.

• The objective function f is continuous at some feasible point.

Then, if x̂ is a feasible point such that the conditions

0 P Bfpx̂q �
m̧

i�1

λ̂iBgipx̂q �
p̧

j�1

µ̂j∇hjpx̂q �NXpx̂q (2.36)

(where NXpx̂q is the normal cone of X at x̂) and

λ̂igipx̂q � 0 @i � 1, . . . ,m (2.37)

are satisfied for some λ̂ P Rm
� and µ̂ P Rp, then x̂ is an optimal solution of (2.35). Conversely, if x̂

is an optimal solution of (2.35), the criteria (2.36) and (2.37) must be satisfied for some λ̂ P Rm
�

and µ̂ P Rp.

The conditions given in (2.36) and (2.37) are a generalisation of the Karush-Kuhn-Tucker

(KKT) conditions to non-smooth optimisation.

A variety of methods for solving convex optimisation problems are explored in the following

sections.



27

2.3.3 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is a primal-dual algorithm for

solving convex optimisation problems [44, 48]. ADMM is based on the idea of iteratively solving an

optimisation problem with one set of variables fixed, then another, with the end goal of obtaining

the optimal decision for all variables.

ADMM proceeds on the assumption that the convex problem may be expressed in the form

ζIP �min fpxq � gpyq

s.t. Ax�By � c

x P X

y P Y

where f and g are convex functions and X and Y are convex polyhedral sets.

The augmented Lagrangian with penalty parameter ρ corresponding to the relaxation of the

constraint Ax�By � c is:

Lρpx, y, λq � fpxq � gpyq � λT pAx�By � cq �
ρ

2
}Ax�By � c}2

2

The ADMM algorithm is outlined below.

Initialise Initialise the decision variables x0 and y0. Set the dual variables λ0 to zero. Set k � 1.

Step 1 Update x:

xk P argmin
xPX

Lρpx, y
k�1, λk�1q

Step 2 Update y:

yk P argmin
yPY

Lρpx
k, y, λk�1q

Step 3 Update dual variables λ:

λk Ð λk�1 � ρpAxk �Byk � cq

Step 4 Check for convergence; if the method has not yet converged, set k � k � 1 and return to

Step 1.



28

The choice of penalty parameter ρ involves a tradeoff; typically when the penalty parameter is

larger convergence is swifter (in terms of number of iterations) but each individual subproblem is

more difficult to solve.

When applied to a stochastic integer program ADMM is equivalent to the Progressive Hedging

algorithm of Rockafellar and Wets [98]. In this context, the minimisation in step 1 is separable

into smaller subproblems, and that in step 2 has a closed-form representation, which aids in the

practical application of the algorithm. Progressive Hedging is discussed further in Section 2.5.1.

The Alternating Direction Method of Multipliers is a special case of Douglas-Rachford splitting

[43]. Eckstein and Bertsekas [32] demonstrated that Douglas-Rachford splitting is itself an applica-

tion of the proximal point algorithm, and applied generalisations of the proximal point algorithm

involving variable step lengths and approximate solving of subproblems to ADMM.

Another possible generalisation of ADMM is to vary the penalty parameter at each iteration

and/or by the variable to which each penalty pertains [70]. Lenoir and Mahey [75] proposed a

variety of methods for altering the penalty parameter at each iteration to improve the rate of

convergence. Computational results indicated that these methods did not perform significantly

better than choosing a “good” static penalty parameter, but they did remove the need to choose a

good initial parameter.

Two theoretical and practical overviews of the Alternating Direction Method of Multipliers are

given by Boyd et al. [21] and Eckstein and Yao [34].

2.3.4 Frank-Wolfe Method

Methods of feasible directions for solving convex optimisation problems approximate the feasible set

by finding feasible points. Since the feasible set is convex, any convex combinations of these feasible

points must also be feasible. A simple example of a feasible directions method is the Frank-Wolfe

method [41] (also known as the conditional gradient method). The Frank-Wolfe method assumes

that the objective function f is differentiable, so its gradient ∇f exists.

The Frank-Wolfe method always converges to the optimal solution of a convex optimisation

problem which satisfies the conditions for its use. At any given iteration, x̂ is the current candidate

solution, and x̄ may be chosen as an extreme point of the feasible set. (The feasible set is assumed

to be bounded.)



29

Since the developments in this thesis make extensive use of the Frank-Wolfe method and its

generalisations, they are reviewed in greater detail in Chapter 3.

2.3.5 Subgradient Method

Gradient projection methods for convex optimisation problems (of the form of Equation 2.32), with

a continously differentiable objective function, have the following basic steps:

Step 1 Calculate the direction of steepest descent. Terminate if the current point is a stationary

point.

Step 2 Take a step in the direction of steepest descent, and project the result onto the feasible set

to obtain a feasible point.

Step 3 Take a step in the direction of this feasible point. Return to Step 1.

The length of each step is determined by an arbitrary parameter which typically decreases over

time.

If the objective function is not continuously differentiable, it may not be possible to find a

direction of steepest descent. In this case, instead of finding the gradient of the function at a point,

we can instead take a subgradient of the function and take a step in that direction. A method of

this form is called a subgradient method.

At any given iteration, the chosen subgradient may not be a direction of descent at all. However,

convergence is guaranteed by the property that for sufficiently small step sizes, the distance from

the optimal solution set must decrease at every step ([12], Proposition 6.3.1). (The idea of the

proof is that the angle between any subgradient and any optimal point must be smaller than a right

angle.)

Summaries of the properties of subgradient methods may be found in [12, 103].

2.3.6 Cutting Plane Method

Calculating a subgradient of a convex function f at a point x is analogous to finding a supporting

hyperplane to the function which comes into contact with the graph of the convex function at x. A

convex function may be approximated from below by finding a number of supporting hyperplanes



30

and finding the pointwise maximum of these hyperplanes. Cutting plane methods use this to

generate successively closer approximations to the convex objective function, with the following

basic steps:

Initialise Choose a starting point by some heuristic. Set k � 1.

Step 1 Find a subgradient at the current point, and the supporting hyperplane which corresponds

to this subgradient. Add this hyperplane to the set of supporting hyperplanes.

Step 2 Choose a new point by solving the problem

ζ � min
xPX

F kpxq

where F k is an approximation of f at the current step k generated by taking the maximum

of the supporting hyperplanes.

Step 3 Set k � k � 1 and return to Step 1.

If the objective function fpxq is polyhedral then the cutting plane method converges to an

optimal solution in a finite number of steps, since the approximation of the objective function

becomes exact with a finite number of cutting planes. Otherwise, the cutting plane method is only

guaranteed to converge in the limit as the number of iterations goes to infinity [12].

Cutting plane methods were first developed by Cheney and Goldstein [25] and by Kelley [66].

Summaries of the properties of cutting plane methods may be found in [12, 100]. The basic cutting

plane method has largely been superseded by bundle-type methods, considered in the next section.

2.3.7 Bundle Method

Bundle methods are a general class which differ from the above methods in that they do not

necessarily change the current point at every iteration; they build up information about the problem

until a sufficiently descending step is found, and only then actually take that step and change the

current point.

The term “bundle” refers to the bundle of information which is accumulated over time as the

method runs. The cutting plane also stores a “bundle” of information in the form of the set of



31

cutting planes. However, bundle methods place more emphasis on curating the bundle, to limit its

size and to maximise the useful information stored given that limitation.

The information used by subgradient, cutting plane and bundle methods can be represented as

a set of triples pxi, fi, siq where xi is a point in the decision space, fi is the value of the objective

function at xi and si is a subgradient of f at xi. In bundle methods, this set is curated by selecting

which pieces of information to keep and which to discard, and by compressing multiple pieces of

information into a smaller form (while retaining as much useful information as possible).

A bundle method has the following basic steps:

Initialise Choose a starting point x1 by some heuristic, and find a subgradient at the current point.

Add this information to the bundle. Set k � 1, and set x1 as the current stability centre x̂.

Step 1 Choose the best next point xk�1, based on the current approximation of the objective

function (which is derived from the bundle) and a stability term (to stop the algorithm from

moving too far from x̂, based on limited information).

Step 2 Perform an optimality test on xk�1. If it is suffiently close to optimal, terminate.

Step 3 Find a subgradient at xk�1. Add the information obtained thereby to the bundle.

Step 4 Perform a progress test to determine whether xk�1 should replace the current stability

centre x̂.

Step 5 Select which items in the bundle of information should be discarded and/or compressed.

Step 6 Set k � k � 1 and return to Step 1.

A specific implementation of the bundle method must define

• A means of approximating the objective based on the information bundle,

• A stability term for the problem,

• A progress test for updating the stability centre,

• A test for (sufficient) optimality, and



32

• An algorithm to determine which of the pieces of information in the bundle (subgradients at

points) should be retained, compressed or discarded.

As an example, the proximal bundle method is a commonly used bundle method based on

combining bundle ideas with the proximal point method. The proximal point method consists of

iteratively finding the best point (with respect to the objective) which is in close proximity to the

current point (which is enforced by adding a term |xk � xk�1|
2, using some norm |�|, which penalises

a choice of new point xi�1 if it is far away from the current point xi).

Therefore, the proximal bundle method employs a proximal term of the form |xk�1 � x̂|2 to

enforce proximity of new points xk�1 to the current stability centre x̂. One possible implementation

builds cutting planes (as in the cutting plane method) using the subgradients obatined in Step 4.

In this case, the solution to the update problem in Step 2 has a closed-form solution. Furthermore,

it is easy to determine which cutting planes are currently not affecting the selection of xk�1 and

can be discarded [29].

The progress test considers the difference between the expected objective value at xk�1 based

on the current approximation to the objective, and the actual objective value calculated at that

point; if the approximation is good, it is “safe” to take a step. The optimality test also takes into

consideration the distance in the decision space between x̂ and xk�1; if the approximation is good

and the best point is close, the algorithm should be very close to the optimal point.

Summaries of the properties of subgradient methods may be found in e.g. [60, 29]. The proximal

bundle method is considered in detail in e.g. [73, 69, 40].

2.4 SIP Reformulations and Benchmark Instances

2.4.1 Scenario Clustering

Instead of fully decomposing an SIP with n outcome scenarios into n separate subproblems, it

is possible to partially decompose the problem by incorporating multiple scenarios (and the non-

anticipativity constraints which link them) in a single subproblem. The resulting subproblems are

more difficult, but the larger number of non-anticipativity constraints which are enforced explicitly

can improve the convergence rate of the overall algorithm employed to solve the SIP.

An obvious problem to consider is how to choose which scenarios to cluster together. Crainic et



33

al. [27] experimented with clusters of similar scenarios, dissimilar scenarios, and scenarios chosen at

random (with similarity measured by either properties of the constraints or distance of anticipative

solutions corresponding to each scenario). They found that, when applying Progressive Hedging to

network design problems, clustering similar scenarios resulted in the best performance, followed by

clustering dissimilar scenarios. Either clustering strategy performed better than clustering scenarios

at random, but any clustering method outperformed the no-clustering approach.

Scenario clustering has also been tested with encouraging computational results in combination

with the subgradient method and cutting plane method [35] (in which scenarios were clustered

with similar scenarios) and applied to multi-stage stochastic problems [36] (in which scenarios were

clustered based on the stage in which they diverged).

2.4.2 Test Problems for Stochastic Programming

SIPLIB (A Stochastic Integer Programming Test Problem LIBrary) [3] provides a variety of bench-

mark problems for stochastic integer programming. SIPLIB contains the following problem sets:

• DCAP - dynamic capacity acquisition and allocation under uncertainty, with mixed-integer

first-stage and pure binary second-stage variables [4]

• EXPUTIL - expected utility knapsack problem, with pure binary variables

• MPTSP - multi-path travelling salesman problem, with pure binary first- and second-stage

variables

• PROBPORT - chance constrained portfolio optimisation, with continuous first-stage and

pure binary second-stage variables

• SEMI - SIP related to planning semiconductor tool purchases, with mixed-integer first-stage

and continuous second-stage variables

• SMKP - stochastic multiple knapsack problem, with pure binary first- and second-stage

variables

• SIZES - SIP related to product substitution applications, with mixed-integer first- and

second-stage variables



34

• SSLP - SIP related to server location under uncertainty, with pure binary first-stage and

mixed-binary second-stage variables [92]

• VACCINE - vaccine allocation problem, with continuous variables and employing joint

chance constraints

Bodur et al. [15] presented two sets of benchmark stochastic integer programming problems.

Both the first set of capacitated facility location problems (CAP) variables and second set of stochas-

tic network interdiction problems (SNIP) have binary first-stage and continous second-stage vari-

ables.

For the purposes of benchmarking, stochastic integer programs are sometimes generated from

problems with only continuous decision variables by arbitrarily limiting some variables to be integer-

valued only.

Multi-stage extensions of some SIZES, DCAP and SEMI problems have been created by Zenarosa

et al. [115], and may be found at [114].

In the computational experiments performed throughout this work, we will generally refer to

the CAP, DCAP and SSLP problem sets.

2.5 Stochastic Programming Algorithms

2.5.1 Progressive Hedging

The Progressive Hedging (PH) algorithm for continuous stochastic problems was originally for-

malised by Rockafellar and Wets [98]. Both the current name and operation of the algorithm are

based on what Rockafellar and Wets term the principle of progressive hedging in optimisation

under uncertainty. The essence of this principle is that by finding a solution to a stochastic prob-

lem without enforcing non-anticipativity, and then gradually demanding greater conformity to the

non-anticipativity constraints, a good solution will be found.

The Progressive Hedging algorithm is outlined below. A more formal definition of the algorithm

is deferred until the introduction of Chapter 4.

Initialise Determine the starting values for the primal variables x0
s, y

0
s and dual variables λ0

s for all

s P S. Set the consensus variables x̄0 �
°
sPS psx

0
s. Choose a value for the penalty parameter



35

ρ. Set k � 1.

The starting values for the primal variables xs and ys are obtained by finding the optimal

anticipative decisions for each scenario. It suffices to initially set the dual variables to zero.

Step 1 Update x and y for each scenario:

pxks , y
k
s q P argmin

px,yqPXs

Lρpx, y, x̄
k�1, λk�1q @s P S

Note that since x̄k�1 is constant the parts of the augmented Lagrangian which were non-

separable are now constant and can be ignored. Therefore, this minimisation is separable into

subproblems, each of which contains the variables and constraints from one scenario. This

greatly decreases the computational difficulty of this step.

Step 2 Update x̄:

x̄k P argmin
x̄

Lρpx
k, yk, x̄, λk�1q

Step 3 Update dual variables λ for each scenario:

λks � λk�1
s � psρ

kpxks � x̄q @s P S

Step 4 Check for convergence; if the method has not yet convereged, set k � k � 1 and return to

Step 1.

Progressive Hedging is guaranteed to converge to the optimal primal solution when applied to

a convex stochastic problem even if the subproblems used to update the primal variables are not

solved exactly [98]. In particular it is possible to use a computationally simple heuristic to obtain

an approximate solution to the subproblems quickly, rather than use a slower method to obtain an

unnecessarily precise solution. This idea has been applied to control problems related to fishery

management [57]. In practice, finding a more accurate solution to the subproblems can actually

slow the convergence of the Progressive Hedging algorithm, not only in terms of computation time

but also with respect to the number of iterations [65].

Since the feasible region of a SIP is non-convex by virtue of the integrality restriction, the above

convergence result does not apply in the SIP context. In an intuitive sense, taking the probability-

weighted average of the first-stage decisions is problematic for an integer problem. If any first-stage



36

variables are integer-valued, their average is unlikely to be an integer itself. Even if all of the first-

stage variables are integer-valued, the integer-valued second-stage variables cause the second-stage

problem (2.3) to be non-convex, which means that the objective function of ζSIP (as defined in

(2.2)) is non-convex.

Progressive Hedging may be used to solve the continuous relaxation of an SIP with relative ease,

since this is simply an ordinary continuous stochastic program. An intuitive approach to solving

the SIP (and integer programs in general) is to first solve their linear relaxation and then examine

feasible integer points with values near to the fractional optimal point of the relaxation. The notion

of finding a “nearby point” is not always practical, especially in the case of a binary program, and

in general there is no guarantee of finding an optimal or even feasible integer point in this way.

Nevertheless, this approach has been applied to some problems with success [77].

The first application of Progressive Hedging to general multi-stage stochastic integer program-

ming was made by Løkketangen and Woodruff [78], using tabu search to solve the integer program-

ming subproblems.

Since the Progressive Hedging algorithm is not guaranteed to converge to the optimal primal

solution when applied to integer problems, solving the subproblems approximately is attractive

in this context also. Progressive Hedging has been used in this way to solve stochastic lot-sizing

problems, solving the scenario subproblems with a dynamic programming algorithm only guaranteed

to yield an optimal solution in the initialisation step [54].

Penalty Parameters

The value of the penalty parameter is especially important when applying Progressive Hedging to

integer stochastic problems, since for these problems the parameter determines not only the rate of

convergence and difficulty of the subproblems (as in continuous stochastic programming), but also

the quality of the solution found by the algorithm [88, 77].

A downside of the conventional approach of choosing a single penalty parameter which applies

to every non-anticipative constraint is that the decision variables may not all have the same scale.

For example, if a problem contains a binary variable and another variable with a large range of

possible values, failure to achieve consensus with respect to the binary variable will be penalised to

a lesser degree, even if its value is a more important component of the policy. This downside can



37

be overcome by choosing separate penalty parameters for the non-anticipativity constraints which

pertain to each decision variable.

Watson and Woodruff [112] proposed the rule

ρpiq �
ci

maxsPSpx0
sq �minsPSpx0

sq � 1

for choosing a penalty corresponding to each integer first-stage variable xi, based on the anticipative

first-stage decisions x0
s obtained for each scenario in the initialisation step. They proposed the similar

rule

ρpiq �
ci

maxp
°
sPS ps |x

0
s � x̄0| , 1q

for continuous variables.

In addition, the results covered in the previous section regarding penalty parameters for ADMM

are also applicable to Progressive Hedging.

Variable Fixing

Once the Progressive Hedging algorithm has obtained consensus as to the optimal value of a given

decision variable, that variable may be “fixed” to that value to decrease the computational difficulty

of the subproblems to be solved.

The difficult part of this procedure is to find a reliable heuristic to determine that the opti-

mal value of the variable has in fact been reached. If the heuristic is too conservative, then the

improvement in performance will be small. If the heuristic is too aggressive it may lock variables

prematurely to a non-optimal value.

One possible approach is to wait until the value of all integer variables has achieved consensus,

then fix the integer values and determine the value of the continuous variables by directly solving

the IP-equivalent problem [78, 77]. Since the resulting problem is a continuous LP it can be

computationally tractable despite its large size.

Alternatively, variables which have not yet achieved consensus may be “slammed” by fixing

them to a consensus value which seems reasonable based on the present value of the variables. This

method is easiest to apply to problems where all of the bounds on the variables are either from

above or below, since in this case it is possible to guarantee admissibility of the slammed variable

by taking the most pessimistic value for the variable [112].



38

Obtaining Lower Bounds

A downside of Progressive Hedging as applied to SIPs is that despite being a Lagrangian dual-based

approach it does not directly yield lower bounds. Gade et al. [45] showed that the dual variables

obtained at each step may be used to compute a lower bound for the SIP. The lower bounds are

computed by solving the following mixed integer linear program for each scenario s:

Dspλq �min
xs,ys

pspc
Txs � dTs ysq � λTs xs

s.t. pxs, ysq P Ks

The sum
°
sPS Dspλq is a lower bound for the SIP. This mixed-integer linear program is of comparable

complexity to the mixed-integer quadratic program solved for each scenario in each Progressive

Hedging step, and requires a similar amount of computational effort to solve.

The lower bounds obtained by this method, using the dual variables from successive steps of

Progressive Hedging, are not guaranteed to converge to the optimal Lagrangian dual value ζLD

when Progressive Hedging is applied to an integer problem. However, computational experiments

show that in some cases tight bounds can be obtained by this method [45]. In particular, when

the penalty parameter is chosen to be small the quality of the lower bound tends to improve.

Unfortunately, this low penalty parameter also causes the method to converge very slowly. The

developments in Chapters 4 and 5 of this work address this weakness of the Progressive Hedging

algorithm.

2.5.2 Dual Decomposition

The Dual Decomposition method for stochastic integer programs was proposed by Carøe and Schultz

[22]. It is based on a branch-and-bound framework, using the (non-augmented) Lagrangian dual to

obtain dual bounds (lower bounds for a minimisation problem). Each node of the branching tree

corresponds to an IP. Assuming that we are solving a minimisation problem, the method proceeds

as follows:

Initialise Initialise the set of problems P by adding the original IP equivalent problem (Equation

2.4).



39

Step 1 Choose (and remove) a problem P from P . If P is empty then the best known solution

pẑ, x̂q (if any) is optimal; terminate.

Step 2 (Compute lower bound) Solve the corresponding Lagrangian dual problem to P . If P is

infeasible return to Step 1.

If the optimal objective value of the Lagrangian dual problem is greater than the best known

solution’s objective value ẑ, return to Step 1; the assumptions made by the bounds on this

problem cannot result in a better solution than what we already have.

Step 3 (Compute upper bound) Otherwise, consider the solution found for the Lagrangian dual

problem.

• If the first-stage decisions x1, ..., x|S| across all scenarios are identical, then compute the

second-stage decisions and objective value which corresponds to this first-stage decision.

If the objective value is smaller than ẑ (hence an improvement), replace pẑ, x̂q with the

objective value and first-stage decision obtained here. Remove any problems in P with

known lower bounds which are worse (greater) than ẑ and return to Step 1.

• If the first-stage decisions x1, ..., x|S| across all scenarios are not identical, then compute

their average and round the integer variables by some heuristic to obtain an integer deci-

sion x̄. If this rounded decision is feasible then determine whether it is an improvement

on our existing best known solution as above, and remove any problems from P which

are now known to result in suboptimal solutions. In any case proceed to Step 4.

Step 4 (Branching step) Select a first-stage variable xi which did not acheive consensus across all

scenarios. (Its average value is x̄i.) Add two new problems to P by taking the current P and

adding one of two constraints to it:

• If xi is an integer variable, add the constraints xis ¤ tx̄iu @s P S to one problem and

xis ¥ tx̄iu� 1 @s P S to the other.

• If xi is a continuous variable, add the constraints xis ¤ x̄i � ε @s P S to one problem and

xis ¥ x̄i�ε @s P S to the other, where ε is a small constant to ensure disjoint subdomains.



40

The optimal value of both of these problems is bounded below by the lower bound on P , since

they are a strictly more constrained version of P . Once this is done, return to Step 1.

The idea behind the Dual Decomposition algorithm is to force consensus of first-stage decision

variables which are not reaching consensus across all variables by adding constraints to the problem

which force the variables in one direction or another from their “natural” average. The algorithm

can determine which constraints might result in optimal solutions (and therefore should be retained),

and which constraints might result in suboptimal solutions (and therefore should be removed from

consideration), by computing bounds on the resulting problems.

As it uses the non-augmented Lagrangian dual, the calculation of the Lagrangian dual and

thus the lower bound calculation may be made in parallel easily. Unlike Progressive Hedging, the

Dual Decomposition method is also guaranteed to find an optimal decision to an SIP; eventually

the constraints added in each branching step will constrain the decision variables to their optimal

values. However, Dual Decomposition yields much slower initial improvement in (lower and upper)

bounds than Progressive Hedging.

The computationally-difficult part of the Dual Decomposition algorithm is solving the La-

grangian dual problem in Step 3. The original implementation by Carøe and Schultz [22] used

a proximal bundle method [68] to solve the dual problem. The proximal bundle method may

partially be used in parallel in that the subproblems may be solved separately by scenario; if a

non-anticipativity constraint linking the first-stage variables to a consensus variable x̄ is used, the

master problem of the algorithm may also be solved in parallel [79]. Guo et al. [50] employed

Progressive Hedging to find reasonable lower bounds quickly (which in some cases allows a given

branch to be ruled out immediately) and to find a good starting point for the proximal bundle

method.

Other methods of applying branching methods to stochastic integer programming are also pos-

sible. Lulli and Sen [81] applied a branch-and-price method to SIPs, using a column generation

algorithm to solve the primal problem directly and obtain bounds, rather than using the Lagrangian

dual. Though they appear different the two approaches to solving the problem and obtaining bounds

are closely related [79]. Another branch-and-bound algorithm for problems with integer second stage

was proposed by Ahmed et al. [4].



41

2.5.3 Diagonal Quadratic Approximation

The Diagonal Quadratic Approximation (DQA) method for multistage stochastic (non-integer)

programs was first proposed by Mulvey and Ruszczyński [86, 87]. The principle of the DQA method

is similar to Progressive Hedging in that the augmented Lagrangian is employed to separate the SIP

into scenario-wise subproblems. The primary distinguishing feature of DQA is that the augmented

Lagrangian is approximated by a simpler, separable function.

Consider the quadratic term of the augmented Lagrangian:

ρ

2
}xi � xj}

2
2 (2.38)

This term considers cross-products of the form xTi xj, which combines two different variables xi and

xj in a non-separable quadratic term. This cross-product term may be approximated around x̃i

and x̃j as follows:

xTi xj � xTi x̃j � x̃Ti xj � x̃Ti x̃j (2.39)

Since x̃i and x̃j are constants this approximation is linear and separable in x. The augmented

Lagrangian also contains terms of the form pQixiq
TQixi; these terms are still quadratic but their

sum is separable. This principle can be used to approximate the augmented Lagrangian in the

context of other applications besides stochastic optimisation.

When this approximation is employed, the augmented Lagrangian for a stochastic program

becomes separable by scenario. Therefore, the Progressive Hedging-type approach of using a non-

anticipativity variable x̄ and alternating between minimisation over the decision variables and non-

anticipativity variables in an iterataive manner is unnecessary, and so sequential non-anticipativity

constraints (i.e. x1 � x2, x2 � x3, etc.) are used instead. However, since the accuracy of the

approximation (2.39) is dependent on the proximity of x to a chosen fixed point x̃, an iterative

series of minimisations bringing x̃ closer to the optimal decision is still necessary.

To accomodate a multistage problem, define xiptq as the decision variables corresponding to

outcome scenario i in stage t, and define νpi, tq as the outcome scenario which scenario i is linked

to by the non-anticipativity constraint in stage t. Define L̃ρpx , x̃ ,λq as the approximation of

the augmented Lagrangian. Given an initial state px 0,λ0q for the primal and dual variables, a

penalty parameter ρ, and an update parameter α P p0, 1s, the x̃ updates of the DQA method are

accomplished as follows:



42

Initialise Set k � 1 and x̃ k � x 0.

Step 1 Minimise L̃ρpx , x̃ k,λq over x and λ with respect to feasibility constraints on x , to obtain

a new feasible decision x k. Note that this can be solved independently for each scenario.

Step 2 If x k is sufficiently close to x̃ k, terminate.

Step 3 Update x̃ k:

x̃ k�1 � x̃ k � αpx k � x̃ kq

Step 4 Set k � k � 1 and return to Step 1.

Step 1 is solved using a primal-dual barrier method. A more sophisticated implementation of

the DQA method also proposed in [87] integrates the consensus update in Step 3 with the barrier

method; in effect the consensus update is not forced to wait until near-optimality of x and λ is

achieved in each iteration.

Like Progressive Hedging, the DQA method can be applied in parallel, with each of a group of

computational nodes being responsible for its own scenarios and their associated subproblems. Since

the non-anticipativity constraints link scenarios together as pairs instead of linking all scenarios to

a single consensus decision, each computational node need only communicate with the subset of

nodes with which its scenarios are paired. Scenario clustering may be used to combine all of the

scenario-wise subproblems assigned to a node into a single larger subproblem.



Chapter 3

The Frank-Wolfe Method and
Generalisations

3.1 Introduction

3.1.1 The Frank-Wolfe Method

This chapter introduces the Frank-Wolfe method and its more sophisticated generalisations, and

develops theory related to these algorithms for reference in subsequent chapters. Section 3.2 demon-

strates how the Frank-Wolfe method and its variants can be applied to solving the convex hull

relaxation of an integer program. Section 3.3 explores a generalisation of the Frank-Wolfe method

to non-smooth optimisation.

The Frank-Wolfe method (sometimes referred to as the conditional gradient method) was initially

proposed by Frank and Wolfe in [41] for quadratic programming problems, and was generalised by

Holloway [61] for general convex programming problems.

Given a problem of the form

ζCP � min
x
tfpxq | x P Xu , (3.1)

where f is a convex, continuous and differentiable function whose gradient ∇f is known, and the

feasible set X is closed and convex, the Frank-Wolfe method consists of the following steps:

Initialise Find a feasible solution x̂0 P X for Equation 3.1. Set k � 1.

Step 1 Set ξk P arg minxPX
 
∇fpx̂k�1qpx� x̂k�1q

(
. If ∇fpx̂k�1qpξk � x̂k�1q ¥ 0, the algorithm

terminates; we cannot find a better point than x̂k�1.

43



44

Step 2 Set tk P arg min0¤τ¤1

 
fpp1� τqx̂k�1 � τξkq

(
.

Step 3 Set x̂k � p1� tkqx̂k � tkξk.

Step 4 Set k � k � 1 and return to Step 1.

The termination condition in Step 1 may be informally interpreted as “there exists no feasible

point in a direction of descent from the current point”. Formally, by reference to the Karush-Kuhn-

Tucker conditions in Theorem 2.17, x̂k�1 is an optimal solution of (3.1) if and only if

�∇fpx̂k�1q P NXpx̂
k�1q (3.2)

i.e. xx� x̂k�1,�∇fpx̂qy ¤ 0 for all x P X.

Furthermore, since f is a convex function, the hyperplane with gradient ∇f which intersects

the graph of f at x̂k�1 minorizes f ; therefore,

fpx̂k�1q �∇fpx̂k�1qpξk � x̂k�1q

(i.e. the minimum of this hyperplane over X) is a lower bound on ζCP for all k.

The Frank-Wolfe method has a worst-case convergence rate of Op1{kq (e.g. [42]).

To utilise the Frank-Wolfe method we need to be able to solve the minimisation problems in

Steps 1 and 2. Since ∇fpx̂qpx� x̂q is affine with respect to x for a fixed x̂, and X is convex, the step

1 update is typically not very difficult. However, fpp1� τqx̂� τξq is merely convex with respect to

τ for fixed x̂ and ξ (it need not be affine or smooth), so even though its feasible set r0, 1s is very

simple in structure the Step 2 update may not be easy to solve exactly, depending on the structure

of f .

In early iterations of the algorithm our tk updates are based on gradient information at points

which are not necessarily close to optimal. This gradient information is therefore only an approxi-

mate guide to the location of the optimal point; therefore, it is unsurprising that the line search in

Step 2 may be performed approximately as well without compromising the convergence properties

of the Frank-Wolfe method. The rules used for these approximations generally make use of the

gradient information at x̂k�1 and global properties of the objective function. The approximation

schemes used in ordinary gradient descent algorithms are generally applicable to the Frank-Wolfe

method as well.



45

An example of such an approximation scheme is the Armijo rule [6]. The Armijo rule chooses a

step length based on the accuracy of the gradient information. If the gradient information remains

reliable over a long step length then a long step will be chosen. Conversely, if the gradient infor-

mation becomes inaccurate over a long step length then a shorter step will be chosen. This process

is formalised in the context of the Frank-Wolfe method as follows. At step 2 in iteration k of the

Frank-Wolfe method we wish to choose a step length tk from x̂k�1 in the direction dk � ξk � x̂k�1

based on the gradient ∇fpx̂k�1q. Replace the minimisation over τ with the following procedure:

Initialise Set an initial step length 0   s ¤ 1, a step-size multiplier 0   β   1, and a parameter

0   γ   1 which determines the required accuracy of the gradient projection. Set m � 0.

Step 1 Set τ � βms (this is the trial step length).

Step 2 If fpx̂k�1q � fpx̂k�1 � τdkq ¥ �γτx∇fpx̂k�1q, dky then set tk � τ and terminate.

Step 3 Set m � m� 1 and return to Step 1.

In fact, it is not necessary to use any information about the objective function or the progress

of the algorithm when choosing tk. For example, if we skip step 2 entirely and initialise the step

sizes using the rule

tk �
2

k � 2

for all k, the Frank-Wolfe method converges with the same worst-case rate of Op1{kq [42].

3.1.2 Simplicial Decomposition Method

A limitation of the original Frank-Wolfe method is that it retains minimal information from one

iteration to the next. In particular, the direction of the x̂k step is limited to the direction of the

most recently found feasible point ξk. A more sophisticated algorithm which makes better use of

previous calculations is the simplicial decomposition method (SDM) as given in [61, 110].

SDM applied to (3.1) consists of the following steps:

Initialise Find a feasible solution x̂0 P X. Let ξ0 � x̂0. Set k � 1.

Step 1 Set ξk P arg minxPX
 
∇fpx̂k�1qpx� x̂k�1q

(
. If ∇fpx̂k�1qpξk � x̂k�1q ¥ 0, the algorithm

terminates; we cannot find a better point than x̂k�1.



46

Step 2 Set ptk0, t
k
1, . . . , t

k
kq P arg minτ0,τ1,...,τk

 
fpτ k0 ξ

0 � τ k1 ξ
1 � � � � � τ kk ξ

kq | τ k0 � τ k1 � � � � � τ kk � 1
(
.

Step 3 Set x̂k � tk0ξ
0 � tk1ξ

1 � � � � � tkkξ
k.

Step 4 Set k � k � 1 and return to Step 1.

A generalisation of the Frank-Wolfe method is to retain the feasible points x̄ from each iteration,

and in step 3 find x̂ by searching over the convex hull of all (or a subset of) the previously generated

extreme points together with the previous x̂, rather than only the most recent extreme point [61].

The major practical disadvantage of SDM, as opposed to the basic Frank-Wolfe method, is the

increased complexity of the minimisation problem in Step 2. Instead of minimising a potentially

complicated convex function over a single variable, SDM must minimise over a larger number of

variables, and the number of these variables grows larger with more iterations. The restricted

simplicial decomposition method is a more sophisticated version of SDM which retains only the

“important” points from previous iterations, quantified by their weights ptk0, t
k
1, . . . , t

k
kq in the convex

combination used to generate the next candidate solution x̂k [56, 109]. Once the size of the set of

retained extreme points reaches some chosen limit, any further extreme points replace the currently

least important one. This restricts the subproblem in Step 3 of the algorithm to a manageable size.

As with the Frank-Wolfe method, the convergence properties of SDM may be preserved (or

partially preserved) even when the ptk0, t
k
1, . . . , t

k
kq update is not calculated exactly. In fact, if we set

tki �
1

k

for all i and k, SDM converges with rate Oplnpkq{kq [42].

3.2 Solving over the Convex Hull of Integer Programs

The main application of Frank-Wolfe type methods in this thesis is to solve problems of the form

min
x
tfpxq | x P convpXqu (3.3)

where f is a convex, continuous and differentiable function, and X is of the form

X :�
 
x P Rn�m � Zm | Ax ¤ b

(
(3.4)



47

where A and b are defined such that X and hence convpXq are bounded sets.

Problems of the form (3.3) arise naturally from applying the primal characterisation (2.9) of the

Lagrangian dual problem to integer programs. The primary difficulty in solving (3.3) is that while

the feasible set convpXq is convex and polyhedral, finding the linear inequalities which explicitly

represent convpXq is a difficult task. The naive approach of enumerating the extremal points of

X is impractical since in general the number of such points is very large. In this section we will

demonstrate that the Frank-Wolfe method can be applied to this problem with good results; in

effect the Frank-Wolfe method enumerates only a few of the extremal points, meaning that it is

computationally practical, but optimality of the final solution is still guaranteed.

The key insight which makes the Frank-Wolfe class of methods well suited to this class of

problems is that to find the minimum of fpxq over convpXq it is not necessary to construct a

complete explicit representation of convpXq. Finding some extremal points of X which are close to

the optimal point is sufficient, and the required number of points is typically manageable.

This application also has good theoretical convergence characteristics; as we will see, the sim-

plicial decomposition method in particular is guaranteed to find the optimal solution in finite time

when applied to (3.3). The underlying principle behind this guarantee is that (in the worst-case

scenario) SDM is guaranteed to construct a complete explicit representation of convpXq eventually.

In practice the method generally terminates well before this point.

SDM applied to (3.3) consists of the following steps:

Initialise Find a feasible solution x̂0 P convpXq. Let ξ0 � x̂0. Set k � 1.

Step 1 Set ξk P arg minxPX
 
∇fpx̂k�1qpx� x̂k�1q

(
. If ∇fpx̂k�1qpξk � x̂k�1q ¥ 0, the algorithm

terminates; we cannot find a better point than x̂k�1.

Step 2 Set ptk0, t
k
1, . . . , t

k
kq P arg minτ0,τ1,...,τk

 
fpτ k0 ξ

0 � τ k1 ξ
1 � � � � � τ kk ξ

kq | τ k0 � τ k1 � � � � � τ kk � 1
(
.

Step 3 Set x̂k � tk0ξ
0 � tk1ξ

1 � � � � � tkkξ
k.

Step 4 Set k � k � 1 and return to Step 1.

In Step 1 we substitute a minimisation over X for the original minimisation over convpXq. This

is permissible since the set of extremal points of convpXq in the direction �∇fpx̂k�1q must always



48

include a point in X, by the definition of the convex hull. Since we have an explicit representation

for X, Step 1 can be evaluated using a MIP solver.

For the sake of convenience, in the following proofs we will use the abbreviation

V k �
 
ξ0, ξ1, . . . , ξk

(
.

Using this notation we can combine Steps 2 and 3 to obtain

x̂k P min
x

 
fpxq | x P convpV kq

(
.

In the case where X contains only integer variables (i.e. n � m) the proof of finite convergence

is straightforward since X is a finite set. As such we will consider this case first and then generalise

to the mixed-integer case.

Lemma 3.1 At each iteration k of the simplicical decomposition method applied to (3.3), exactly

one of the following is true:

• ξk is not in convpV k�1q and hence convpV k�1q � convpV kq.

• x̂k�1 is optimal with respect to the original problem (3.3).

Proof. Since x̂k�1 P minx
 
fpxq | x P convpV k�1q

(
, and f is a convex function, the gradient

∇fpx̂k�1q at this point satisfies the condition x∇fpx̂k�1q, x � x̂k�1y ¥ 0 @ x P convpV k�1q (this

is a necessary condition for optimality). Therefore:

• If x∇fpx̂k�1q, ξk�x̂k�1y   0 then ξh�1 is not in convpV k�1q and hence convpV k�1q � convpV kq.

• If x∇fpx̂k�1q, ξk � x̂k�1y ¥ 0 then

x∇fpx̂k�1q, ξk � x̂k�1y ¥ 0 @ ξ P X

and hence

x∇fpx̂k�1q, ξk � x̂k�1y ¥ 0 @ ξ P convpXq.

The optimality of xh with respect to (3.3) follows from the definition of the gradient.

Since exactly one of the conditions on x∇fpx̂k�1q, ξk � x̂k�1y must be satisfied, this completes the

proof.



49

Proposition 3.2 The simplicical decomposition method applied to (3.3) finds the optimal solution

in a finite number of iterations, under the assumption that X is a finite set of discrete points.

Proof. By Lemma 3.1, at each iteration k of SDM we either expand the inner approximation

convpV kq by adding a new point ξk P XzV k�1 to V k, or we find the optimal solution. Since X is a

finite set, eventually the possible points to add to V k will be exhausted and so the optimal solution

must be found instead.

When X contains non-discrete variables and hence is not finite in size, we will need to take a

different approach based on exhausting the faces of convpXq.

Definition 3.3 Let C be a convex set. A convex subset F of C is called a face of C if for every

x P F and every y, z P C such that x is a convex combination of y and z we have y, z P F . We will

represent this relation as F � C.

Observe that C itself and the empty set are both faces of C according to this definition. In some

circumstances we will want to exclude these.

Definition 3.4 Let C be a convex set. A face F of C is called a proper face of C if it is a

non-empty strict subset of C.

We will make use of the following standard definitions.

Definition 3.5 The affine hull of a set X � Rn, denoted affpXq, is the set of all points which

may be obtained as an affine combination of points in X i.e. if x is in affpXq then there exist points

x1, . . . , xn in X and weights λ1, . . . , λn satisfying
°n
i�1 λi � 1 such that

x �
ņ

i�1

λixi.

(This is also the smallest affine set containing X.)

Note that this definition differs from that of a convex hull in that the weights need not be in

the interval r0, 1s.

Definition 3.6 The relative interior of a set X � Rn, denoted ripXq, is its interior with respect

to its affine hull i.e. if x is in ripXq then there exists a neighbourhood of x such that any point in

the intersection of that neighbourhood and affpXq is also in X.



50

Definition 3.7 The lineality space of a convex set X � Rn, denoted linpXq is the largest subspace

of Rn such that

x� linpXq � X @x P X.

In particular if X is an affine subspace then linX is the same subspace translated such that it

includes the origin.

Lemmas 3.8 and 3.9 are well-known results relating to the properties of faces.

Lemma 3.8 A convex set is the union of the relative interiors of its faces (including non-proper

faces). Furthermore, these relative interiors are all disjoint sets.

Lemma 3.9 Polyhedral sets have a finite number of faces. Furthermore, all of these faces are

themselves polyhedral sets, and can be represented in the form HXconvpXq, where H is a supporting

hyperplane of convpXq.

We can now work towards the main result. Lemma 3.10 establishes the intuitively obvious

result that linear optimisation over a set defined by mixed-integer linear constraints must produce

an extreme point of the convex hull of the feasible region.

Lemma 3.10 Let X � Rn be defined as in (3.4). Let X � convX. Then for all d P lin aff Xzt0u

and all x� P argminx txd, xy | x P Xu, x� R riX.

Proof. (Note that aff X � aff X.) Assume for the purposes of contradiction that x� P riX. By

definition there exists an open ball Bεpx
�q of radius ε ¡ 0 such that every point in the intersection

of Bεpx
�q and aff X is also in X. In particular this includes the point x� � εd{2 }d}.

However, since x� P argminx txd, xy | x P Xu there are no points in the intersection of X and

the halfspace tx | xd, xy   xd, x�yu. Since X is the convex hull of X there are also no points in the

intersection of X and that halfspace. This is a contradiction.

Lemma 3.11 demonstrates that any face F of convpXq does not extend beyond the convex hull

of the points of X which are contained in F .

Lemma 3.11 Let X � Rn be defined as in (3.4). Let F be a face of convpXq. Then

F � conv pXX F q .



51

Proof. Since it is a face of a polyhedral set, F can be expressed as the intersection of convpXq with

one of its supporting hyperplanes H �
 
x | αTx � β

(
(see Lemma 3.9). Furthermore αTx ¤ β for

all x P convpXq.

By definition, any point x0 P F p� convpXqq may be expressed as the convex combination of a

set of points x1, . . . , xn in X:

x0 � λ1x1 � � � � � λnxn,
ņ

i�1

λi � 1

Multiply both sides by αT :

αTx0 � λ1α
Tx1 � � � � � λnα

Txn,
ņ

i�1

λi � 1

If x0 P F then αTx0 � β. Since αTx ¤ β for all x P X we have

β � αTxi

for all i P t1, . . . , nu, and so xi P H X X � H X convpXq � F for all i P t1, . . . , nu. Therefore every

point in F may be expressed as a convex combination of points in XXF , and so F � conv pXX F q.

conv pXX F q � F follows from the observation that since F is a convex set, the convex hull of a

subset of F is itself a subset of F .

Proposition 3.12 establishes that if the termination conditions of the simplicial decomposition

method are not satisfied, then the next vertex ξ� will expand the inner approximation conv V by

‘exploring’ a new face of X. Since X has a finite number of faces to explore, the desired convergence

result follows directly in Proposition 3.13.

Proposition 3.12 Let X � Rn be defined as in (3.4). Let V be a finite subset of X. Let X �

convpXq. For all x̂ P conv V , ξ� P X and d P lin aff Xzt0u which satisfy the following conditions:

xd, ξ � x̂y ¥ 0 @ξ P convpV q (3.5)

min
x
txd, x� x̂y | x P Xu   0 (3.6)

ξ� P argmin
x

txd, xy | x P Xu , (3.7)

there exists a proper face F �X which satisfies the following conditions:

ξ� P riF (3.8)



52

proj
lin aff F

d � 0 (3.9)

F X conv V � H (3.10)

Proof. Since d P lin aff Xzt0u and precondition (3.7) holds, the preconditions of Lemma 3.10 are

satisfied; therefore, ξ� is not in the relative interior of X. By 3.8, ξ� is in the relative interior of a

(non-empty) face F � X. By definition this means F is a proper face which satisfies (3.8). We will

show that this face also satisfies (3.9) and (3.10).

Since ξ� is in F it is also in XX F . Since XX F is a subset of X, by precondition (3.7) we have

ξ� P argmin
x

txd, xy | x P XX F u .

Since taking the convex hull relaxation of a linear IP does not change its optimal value, and any

point in XX F is also in convpXX F q, we have

argmin
x

txd, xy | x P XX F u � argmin
x

txd, xy | x P convpXX F qu .

By Lemma 3.11 we have convpXX F q � F and hence

argmin
x

txd, xy | x P convpXX F qu � argmin
x

txd, xy | x P F u .

Since xd, xy � xprojlin aff F d, xy for all x in F we have

argmin
x

txd, xy | x P F u � argmin
x

"
x proj

lin aff F
d, xy | x P F

*
Therefore we have

ξ� P argmin
x

"
x proj

lin aff F
d, xy | x P F

*
.

Since ξ� P riF we must have projlin aff F d � 0 and hence F satisfies (3.9).

We will show that F satisfies (3.10) by contradiction. Assume that there exists a point q in the

intersection of F and conv V . Since q P F we know that q � ξ� P lin aff F . Since projlin aff F d � 0

we have

xd, qy � xd, ξ�y (3.11)

Since xd,�x̂y is constant with respect to x we have

argmin
x

txd, xy | x P Xu � argmin
x

txd, x� x̂y | x P Xu



53

and therefore by precondition (3.6) we have

ξ� P argmin
x

txd, x� x̂y | x P Xu (3.12)

By (3.11), (3.12) and (3.7) we have

xd, q � x̂y � xd, ξ� � x̂y � min
x
txd, x� x̂y | x P Xu   0.

Since q P conv V this contradicts precondition (3.5). Therefore the intersection of F and conv V

must be empty, and so F satisfies (3.10).

Proposition 3.13 The simplicical decomposition method applied to (3.3) finds the optimal solution

in a finite number of iterations.

Proof. By Lemma 3.1, at each iteration k of SDM we either expand the inner approximation

convpV kq by adding a new point ξk P XzV k�1 to V k, or we find the optimal solution. Furthermore,

at each iteration we know by construction that either x̂k�1 is an optimal solution for (3.3), or the

following conditions are satisfied:

• x̂k�1 P convpV k�1q

• ξk P X

• ∇fpx̂k�1q P lin aff Xz t0u

• x∇fpx̂k�1q, ξk � x̂k�1y ¥ 0 @ξ P convpV k�1q

• minx
 
x∇fpx̂k�1q, x� x̂k�1y | x P X

(
  0

• ξk P argminx
 
x∇fpx̂k�1q, xy | x P X

(
Therefore, by Proposition 3.12, at each iteration k which precedes the discovery of an optimal

solution there exists a proper face F k such that

• ξk P riF k and hence F k X conv V k � H, but

• F k X conv V k�1 � H.



54

Let Fk denote the set of faces of convpXq which have non-zero intersection with V k. At least

one face F k is added to Fk at each iteration which precedes the discovery of an optimal solution.

Since convpXq is a polyhedral set it has a finite number of faces, so eventually an optimal solution

must be discovered.

Remark 3.14 An attractive property of this convergence proof is that it can be easily generalised to

the case where f may change from one iteration to the next. We will make use of this observation

in Section 4.2.4.

3.3 Frank-Wolfe Method for Non-Smooth Optimisation

The Frank-Wolfe method and its generalisations studied in the previous sections utilise the gra-

dient of the objective function to find an appropriate search direction at each iteration. As such,

these methods can only be applied to optimisation problems with smooth objective functions. In

this section we propose a generalisation of the Frank-Wolfe type methods to non-smooth convex

optimisation.

Definition 3.15 The limit inferior of a sequence of numbers txku as k Ñ 8 is defined by

lim inf
kÑ8

txku :� lim
kÑ8

�
inf
m¥k

xm



.

The limit inferior of a sequence of sets tXku as k Ñ 8 is defined by

lim inf
kÑ8

Xk :� tx | D txku s.t. xk P Xk @k, xk Ñ xu

Assume E is a subspace of a metric space X, Y is an ordered metric space, and a is a limit point

of E. The limit inferior of f : E Ñ Y as xÑ a is defined by

lim inf
xÑa

fpxq :� lim
εÓ0

pinf tfpxq | x P E XBεpaqz tauuq

where Bεpaq is the metric ball of radius ε around a.

The definition of the limit superior plim supq of a sequence of numbers or a function follows

directly by analogy. The limit superior of a sequence of sets requires xk Ñ x and xk P Xnk for all

k, where tXnku is a subsequence of tXku.



55

Definition 3.16 The directional derivative of f at x in the direction of d is defined by

f 1px; dq :� lim inf
τÓ0

fpx� τdq � fpxq

τ
.

Since f is continuous the directional derivative has a single value even when f is non-smooth at x.

Given a problem of the form

ζCP � min
x
tfpxq | x P Xu , (3.13)

where f is a convex, continuous, but not necessarily differentiable function whose subgradient Bf

and directional derivatives f 1px; dq are known, and the feasible set X is closed and convex, the

non-smooth Frank-Wolfe method consists of the following steps:

Initialise Find a feasible solution x̂0 P X for Equation 3.13. Set k � 1.

Step 1 Set sk P argmin
 
}s} | s P Bfpx̂k�1q

(
.

Step 2 Set ξk P arg minxPX
 
skpx� x̂k�1q

(
and dk � ξk � x̂k�1.

Step 3 Set tk P arg min0¤τ¤1

 
fpx̂k�1 � τdkq

(
.

Step 4 Set x̂k � x̂k � tkdk.

Step 5 If min
 
f 1px̂k; dq | d P X �

 
xk
((

¥ 0, terminate; x̂k is a local minimum (and hence a global

minimum by virtue of convexity of f and X).

Step 6 Set k � k � 1 and return to Step 1.

As with the normal Frank-Wolfe method, we can generalise the step length update in Step 3 to

utilise a heuristic instead, for example a generalised version of the Armijo rule:

Initialise Set an initial step length 0   s ¤ 1, a step-size multiplier 0   β   1, and a parameter

0   γ   1 which determines the required accuracy of the gradient projection. Set m � 0.

Step 1 Set τ � βms (this is the trial step length).

Step 2 If fpx̂k�1q � fpx̂k�1 � τdkq ¥ �γτ∇fpx̂k�1qTdk then set tk � τ and terminate.



56

Step 3 Set m � m� 1 and return to Step 1.

Remark 3.17 Unlike the corresponding step from the ordinary Frank-Wolfe method, Step 1 of the

non-smooth Frank-Wolfe method (in which we calculate the minimal subgradient of the objective

function f at a point x̂k�1) is not necessarily trivial. In practice we might use a bundle method

to generate increasingly accurate approximations of the minimal subgradient, while incorporating a

guarantee of descent with respect to ξk. In the theoretical results which follow we will concentrate

on the simpler case in which Step 1 can be solved exactly.

We will now show that the non-smooth Frank-Wolfe method using the generalised Armijo rule,

applied to (3.13), converges to an optimal solution. The following definitions and proofs are analo-

gous to those given for the conditional gradient method in [12, Section 2.2].

Definition 3.18 x̄ P X is stationary for (3.13) if

f 1px̄; dq ¥ 0 @ d P X � tx̄u

When X is closed and convex, stationarity is a necessary condition for optimality of x̄. It is also a

sufficient condition if f is convex.

Definition 3.19 The bounded direction sequence tdku is subgradient-related to the solution se-

quence tx̂ku if for any subsequence tx̂kukPK which converges to a non-stationary point, the corre-

sponding sequence tdkukPK satisfies the following condition:

lim sup
kPK,kÑ8

f 1px̂k; dkq   0 (3.14)

Remark 3.20 Especially in a non-differentiable setting, (3.14) may be satisfied even if tx̂kukPK

converges to a stationary point.

The following lemma does not make any assumptions upon the manner in which the solution

sequence tx̂ku is generated. We will assume that this sequence converges to some point x̄ without loss

of generality; since X is compact, we can replace tx̂ku with a convergent subsequence if necessary.

Therefore, this result can be applied to the non-smooth Frank-Wolfe method using the generalised

Armijo rule.



57

Lemma 3.21 The direction sequence tdku and solution sequence tx̂ku generated by the non-smooth

Frank-Wolfe method are subgradient-related.

Proof. Assume that tx̂ku converges to a non-stationary point x̄. By construction of dk, the sequence

tdku is bounded. Furthermore, for all k ¥ 0 we have

f 1px̂k; dkq ¤ f 1px̂k; dq, @ d P X � tx̂ku

Take the limit:

lim sup
kPK,kÑ8

f 1px̂k; dkq ¤ lim sup
kPK,kÑ8

f 1px̂k; dq, @ d P X � tx̂ku (3.15)

Since f is locally Lipschitz continuous, by [26, Proposition 2.1.1] the function px̂, dq ÞÑ f 1px̂; dq is

upper semi-continuous and so we have

lim sup
kPK,kÑ8

f 1px̂k; dq ¤ f 1px̄; dq (3.16)

for any fixed d P X � tx̂ku. Take d̄ P argmind
 
f 1px̄; dq | d P X � tx̂ku

(
. By the assumed nonsta-

tionarity of x̄ we have that

f 1px̄; d̄q   0. (3.17)

Therefore, by combining inequalities (3.15), (3.16) and (3.17) we have

lim sup
kPK,kÑ8

f 1px̂k; dkq   0.

This is the required condition to demonstrate that tdku is subgradient-related to tx̂ku.

Proposition 3.22 Assume that x and d are chosen such that f 1px, dq   0, and that �8  

f 1px, dq   8. Then the generalised Armijo rule algorithm terminates after a finite number of

iterations.

Proof. The termination condition ofthe generalised Armijo rule is:

fpx� τdq � fpxq ¤ τγf 1px; dq

Assume for the purposes of contradiction that this condition is never satisfied, i.e.

fpx� τdq � fpxq � τγf 1px; dq ¡ 0



58

Rearrange and take the limit to obtain

lim
τÓ0

fpx� τdq � fpxq

τ
� γf 1px; dq ¥ 0

and so

p1� γqf 1px; dq ¥ 0

Since γ   1 we have

f 1px; dq ¥ 0

which contradicts our initial condition that f 1px, dq   0. Therefore the termination condition of

the generalised Armijo rule must be satisfied by a sufficiently small τ , which the update step of the

algorithm will eventually generate.

Proposition 3.23 Assume that ζCP as defined in (3.13) is bounded below. Then the solution

sequence tx̂ku generated by the non-smooth Frank-Wolfe method with the generalised Armijo rule

satisfies the condition

lim
kÑ8

�
fpx̂kq � fpx̂k�1q

�
� 0

and limkÑ8 t
kf 1px̂k; dkq � 0.

Proof. By the convexity of f we have

fpx̂k � tkdkq ¥ fpx̂kq � tkf 1px̂k; dkq

for all k ¥ 1. Since tk ¡ 0 this is equivalent to

f 1px̂k; dkq ¤
fpx̂k � tkdkq � fpx̂kq

tk
. (3.18)

If
 
tk
(

is generated according to the generalised Armijo rule we have

fpx̂k � tkdkq � fpx̂kq

tk
¤ γf 1px̂k; dkq. (3.19)

Since γ P p0, 1q, if f 1px̂k; dkq   0 then

fpx̂k � tkdkq   fpx̂kq.



59

The update step for x̂k preserves the property that

fpx̂kq ¤ fpx̂k�1 � tk�1dk�1q   fpx̂k�1q. (3.20)

i.e. the sequence tfpx̂kqu is monotonically decreasing. By assumption f is bounded below over X,

so tfpx̂kqu is also bounded below. Therefore we have limkÑ8 fpx̂
kq � f̄ ¡ �8 for some f̄ and so

lim
kÑ8

�
fpx̂kq � fpx̂k�1q

�
� 0, (3.21)

as required.

By combining (3.19) (with k Ñ k � 1) and (3.20) we have

fpx̂kq � fpx̂k�1q ¤ tk�1γf 1px̂k�1; dk�1q.

for all k ¥ 2. Take the limit of both sides:

lim
kÑ8

pfpx̂kq � fpx̂k�1qq ¤ γ lim
kÑ8

tkf 1px̂k�1; dk�1q � γ lim
kÑ8

tkf 1px̂k; dkq.

Since γ is an arbitrary positive constant, by (3.21) limkÑ8 t
kf 1px̂k; dkq is bounded below by 0. Since

tk is strictly positive for all k and f 1px̂k; dkq is strictly negative for all k, limkÑ8 t
kf 1px̂k; dkq is

bounded above by 0. Therefore

lim
kÑ8

tkf 1px̂k; dkq � 0,

as required.

It is well known [99] that the limits correspond to the Kuratowski(–Painlevé) limit of the epi-

graph multifunction, giving rise to the following definitions:

epipe-lsvÑwfvq :� lim inf
vÑw

epi fv ,

epipe-livÑwfvq :� lim sup
vÑw

epi fv . (3.22)

(Recall that epi denotes the epigraph, as in Definition 2.5.)

Definition 3.24 Assume X is a vector space with dual space X�. The convex conjugate of a

function f : X Ñ R8 at a point x� P X� is given by

f�px�q :� sup
xPX

txx, x�y � fpxqu .

The convex biconjugate of a function f : X Ñ R8 at a point x P X is the convex conjugate of

its convex conjugate, and is denoted f��.



60

We need the following result which is a special case of the general result found in [113].

Theorem 3.25 [113, Theorem 3.4] Suppose tfkukPN is a family of locally uniformly bounded, closed

convex, functions. Then

e-lskÑ8fk � pe-likÑ8f
�
k q

�. (3.23)

Corollary 3.26 Suppose tCkukPN is a family of closed convex, uniformly bounded sets and C :�

liminfkÑ8Ck. Then

min
tdkÑd̄u

lim inf
kÑ8

δ�Ckpd
kq � e-likÑ8 δ

�
Ck
pd̄q � δ�Cpd̄q. (3.24)

Proof. The first identity corresponds to the well-known equivalent formulation of the epi-limit

infimum which may be found in e.g. [7, Theorem 1.13]. We note that

epire-lskÑ8δCkp�qs � lim inf
kÑ8

epi δCkp�q

� lim inf
kÑ8

rCk � r0,�8qs

� rlim inf
kÑ8

Cks � r0,�8qs � epi δlim infkÑ8 Ckp�q � epi δCp�q.

The second identity now follows from Theorem 3.25 applied to the indicator function x ÞÑ δCkpxq.

In the following result we will use the notation

Bdkfpx
kq :� tz P Bfpxkq | xz, dky � f 1pxk, dkqu.

Corollary 3.27 Suppose f : Rn Ñ R is a closed, convex function and xk Ñ x̄ along with dk Ñ d̄.

Suppose in addition that we have lim infkÑ8 Bdkfpx
kq � H. Then

lim inf
kÑ8

f 1pxk, dkq ¥ e-likÑ8δ
�
B
dk
fpxkqpd̄q � f 1px̄, d̄q. (3.25)

Proof. First note that for any d we have

f 1pxk, dq � suptxz, dy | z P Bfpxkqu � δ�Bfpxkqpdq ¥ δ�B
dk
fpxkqpdq.

As f is closed, convex (finite valued) we have tBfpxkqukPN locally uniformly bounded and so we may

apply Corollary 3.26 to obtain

lim inf
kÑ8

f 1pxk, dkq ¥ min
td1Ñd̄u

lim inf
kÑ8

δ�B
dk
fpxkqpd

1q � e-likÑ8δ
�
B
dk
fpxkqpd̄q

� δ�lim infkÑ8 B
dk
fpxkqpd̄q.



61

As f is semi-smooth and regular it is directionally upper semi-continuous by [105, Corollary 2.2

and Proposition 2.3]. Hence we have xz, d̄y � f 1px̄, d̄q for any z P lim infkÑ8 Bdkfpx
kq from which

the result follows.

Proposition 3.28 The limit point x̄ of a convergent subsequence tx̂kukPK of the solution sequence

tx̂ku generated by the non-smooth Frank-Wolfe method using the generalised Armijo rule is station-

ary (and therefore optimal) with respect to the convex problem defined in (3.13).

Proof. To arrive at a contradiction, assume that x̄ is non-stationary. Since tdku is subgradient-

related to tx̂ku (as per Lemma 3.21) we have that

lim sup
kPK,kÑ8

f 1px̂k; dkq   0. (3.26)

From the structure of the x̂k update step it follows that limkÑ8 t
k � 0. Via Proposition 3.23 we

have limkÑ8 t
kf 1pxk, dkq � 0 and due to (3.26) we then must have limkÑ8 t

k � 0.

Define t̄k � tk{β. Recall that β P p0, 1q is the Armijo rule step length multiplier; assuming the

initial step length was too long, t̄k is the smallest candidate step length which did not satisfy the

Armijo rule criterion at step k. Since ttku converges to zero there exists some k̄ P K such that t̄k ¤ 1

for all k ¥ k̄. By directional upper semi-continuity of tBfpxkqukPK there exists a subset K 1 � K and

zk P Bdkfpx
kq for which limkPK1,kÑ8 zk � z P lim infkPK1,kÑ8 Bdkfpx

kq � H. For notational simplcity

we rename this subsequence index set K 1 to be K.

Therefore, based on the condition in the generalised Armijo rule, we have

γf 1px̂k; dkq  
fpx̂k � t̄kdkq � fpx̂kq

t̄k

which implies

pγ � 1qf 1px̂k; dkq  
fpx̂k � t̄kdkq � fpx̂kq

t̄k
� f 1px̂k; dkq

Note that (3.26) and γ P p0, 1q implies

lim inf
kPK,kÑ8

pγ � 1qf 1px̂k; dkq ¡ 0.

Therefore we have

0   lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k
� f 1px̂k; dkq



.



62

Next note that

lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k
� f 1px̂k; dkq



� lim inf

kPK,kÑ8
f 1px̂k; dkq

¤ lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k



and so we have

0   lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k
� f 1px̂k; dkq



¤ lim inf

kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k



� lim inf

kPK,kÑ8
f 1px̂k; dkq

¤ lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k



� f 1px̄, d̄q, (3.27)

having applied Corollary 3.27 to obtain the last inequality.

By the Mean Value Theorem for subgradients (e.g. [26, Theorem 2.3.7]) applied to f on the

interval r0, t̄ks there exists t̂k P p0, t̄kq for all k ¥ 0 such that

fpx̂k � t̄kdkq � fpx̂kq

t̄k
P
 
sTdk | s P Bfpx̂k � t̂kdkq

(
and so

fpx̂k � t̄kdkq � fpx̂kq

t̄k
¤ max

 
sTdk | s P Bfpx̂k � t̂kdkq

(
. (3.28)

By the upper semi-continuity of Bf , for each ε ¡ 0 there exists a δ ¡ 0 such that

Bfpx̂k � t̂kdkq � Bfpx̄q � εBp0; 1q @ x̂k � t̂kdk P x̄� δBp0; 1q

for k sufficiently large and hence we have

max
 
sTdk | s P Bfpx̂k � t̂kdkq

(
¤ f 1px̄, d̄q � ε,

for k P K sufficiently large. Thus for any ε ¡ 0 we have

lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k



� f 1px̄, d̄q ¤ ε.

As ε is arbitrary we have

lim inf
kPK,kÑ8

�
fpx̂k � t̄kdkq � fpx̂kq

t̄k



� f 1px̄, d̄q ¤ 0 (3.29)

which contradicts (3.27).



63

Remark 3.29 The name ’conditional subgradient method’ is avoided in this section since an algo-

rithm with this name based on the structure of the subgradient method was proposed by Larsson et

al. in [72]. This differs from the non-smooth Frank-Wolfe method stated above in that conditions

are imposed on the choice of subgradient sk in Step 1 based on the feasible set, but the step direction

ξk is defined directly as the negative of this subgradient rather than performing the minimisation

in Step 2. Under some conditions this may result in a step to a non-feasible point, which must be

projected back onto the feasible set.



Chapter 4

Calculating Dual Bounds with
Frank-Wolfe-based Progressive Hedging

4.1 Introduction

In this chapter we will consider the problem of calculating high-quality dual bounds for two-stage

SIP problems, as represented by (2.4) and repeated here for reference:

ζSIP �min
x,y

cTx�
¸
sPS

�
psd

T
s ys

�
s.t. px, ysq P Ks @s P S

(4.1)

The set of feasible decisions Ks for scenario s is defined as follows:

Ks :�
 
px, yq | Ax ¤ b, Tsx�Wsys ¤ hs, x P Rn�q � Zq, y P Rm�r � Zr

(
As in (2.16) we can reformulate this problem using non-anticipativity constraints as follows:

ζSIP �min
x ,y ,x̄

¸
sPS

ps
�
cTxs � dTs ys

�
s.t. pxs, ysq P Ks @s P S

xs � x̄ � 0 @s P S

(4.2)

With the exception of the non-anticipativity constraints xs � x̄ � 0 this problem is separable by

scenario s. By using Lagrangian relaxation to remove this constraint we can move the non-separable

terms to the objective, where they can be dealt with more easily.

The Lagrangian corresponding to the relaxation of the non-anticipativity constraints in (4.2) is

Lpx ,y , x̄,λq �
¸
sPS

ps
�
pcTxs � dTs ysq � λTs pxs � x̄q

�
(4.3)

64



65

In order to guarantee that the Lagrangian dual problem is bounded the dual feasibility condition°
sPS psλs � 0 must be enforced. Under this condition the

°
sPS psλ

T
s x̄ term is equal to zero and the

Lagrangian may be expressed in the form

Lpx ,y , x̄,λq �
¸
sPS

ps
�
pcT � λTs qxs � dTs ys

�
. (4.4)

The corresponding Lagrangian dual function is

ζLRpλq �min
x ,y ,x̄

Lpx ,y , x̄,λq

s.t. px, ysq P Ks @s P S
(4.5)

and the corresponding Lagrangian dual problem is:

ζLD � max
λ

ζLRpλq (4.6)

The inclusion of a maximisation over the dual variables makes (4.6) difficult to tackle directly. A

well-known primal characterisation of ζLD (incorporating only primal variables) is:

ζLD � min
px ,y ,x̄q

¸
sPS

ps
�
cJxs � dJs ys

�
s.t. pxs, ysq P convpKsq @s P S

xs � x̄ @s P S

(4.7)

Since the feasible region has been convexified this is essentially a continuous Stochastic Program.

The optimal value of the Lagrangian dual problem ζLD is a high-quality dual bound for the

corresponding SIP instance. However, calculating this optimal value is not necessarily trivial. The

current chapter and Chapter 5 will develop methods for solving the primal characterisation of ζLD

given in (4.7). The primary challenge facing these methods is that no explicit representation is

available for the set convpKsq.

In this chapter we will also require the augmented Lagrangian dual. The augmented La-

grangian corresponding to ζSIP , using the augmenting function (2.23), is:

Lρpx ,y , x̄,λq �
¸
sPS

psL
ρ
spxs, ys, x̄, λsq, (4.8)

where

Lρspxs, ys, x̄, λsq � pcTxs � dTs ysq � λTs pxs � x̄q �
ρ

2
}xs � x̄}2

2 . (4.9)



66

4.2 Algorithm Design and Theory

4.2.1 Algorithm Background

This chapter covers the theoretical development and computational application of a novel algorithm,

called Frank-Wolfe-based Progressive Hedging (FW-PH), which is used to compute high-quality La-

grangian bounds for SIPs efficiently and with a high potential for parallelization. The fundamental

idea behind FW-PH is to apply the Progressive Hedging (PH) algorithm to the convex hull relax-

ation (4.7). Since this is itself a continuous stochastic program, the Progressive Hedging algorithm

is guaranteed to converge to optimality. Although convpKsq is only defined implicitly, we can get

around this by applying a Frank-Wolfe (FW) type method to solve the PH subproblems.

FW-PH has two important advantages over the direct approach of applying PH to the integer

stochastic program (4.2) and calculating dual bounds as in [45].

1. FW-PH requires less computational effort. To apply PH directly to a SIP, we must solve a

quadratic mixed-integer program for each scenario in each iteration for the primal variable

update, and calculating a dual bound requires an additional mixed-integer program to be

solved for each scenario. By contrast, FW-PH requires only a single mixed-integer program

for each scenario at each iteration, to both calculate a dual bound and update the primal

variables.

2. Under reasonable assumptions, the sequence of dual bounds obtained by FW-PH is guaranteed

to converge to the optimal Lagrangian dual bound ζLD. The dual bounds calculated in [45]

have no such guarantee.

4.2.2 Convergence of Progressive Hedging

Psuedocode for the Progressive Hedging algorithm is given in Algorithm 4.1. The algorithm is given

in a general form which is applicable to the original SIP (4.2) and the convex hull relaxation (4.7).

The termination condition on Line 16 of Algorithm 4.1 is motivated by the squared norm primal

residuals
��xks � x̄k

��2

2
for all s P S which quantifies consensus and the dual residual

��x̄k � x̄k�1
��2

2

which quantifies convergence. If all of these residuals are small then x̄k is close to satisfying the

necessary and sufficient conditions for optimality [21, Section 3.3]. We can determine whether all



67

Algorithm 4.1 PH applied to problem (4.2) (Ds � Ks) or (4.7) (Ds � convpKsq).

1: Precondition:
°
sPS psλ

0
s � 0

2: function PH(λ0, ρ, kmax, ε)
3: for s P S do
4: px0

s, y
0
sq P argminx,y

 
pc� λ0

sq
Jx� dJs y | px, yq P Ds

(
5: end for
6: φ0 Ð

°
sPS ps

�
pc� λ0

sq
Jx0

s � dJs y
0
s

�
7: x̄0 Ð

°
sPS psx

0
s

8: λ1
s Ð λ0

s � ρpx0
s � x̄0q for all s P S

9: for k � 1, . . . , kmax do
10: for s P S do
11: φks Ð minx,y

 
pc� λksq

Jx� dJs y | px, yq P Ds

(
12: pxks , y

k
s q P argminx,y

 
Lρspx, y, x̄

k�1, λksq | px, yq P Ds

(
13: end for
14: φk Ð

°
sPS psφ

k
s

15: x̄k Ð
°
sPS psx

k
s

16: if
b°

sPS ps }x
k
s � x̄k�1}2

2   ε then

17: return pxk, yk, x̄k, λk, φkq
18: end if
19: λk�1

s Ð λks � ρpxks � x̄kq for all s P S
20: end for
21: return pxkmax , ykmax , x̄kmax , λkmax , φkmaxq
22: end function



68

of the residuals are small in a single step by considering their sum:

��x̄k � x̄k�1
��2

2
�
¸
sPS

ps

���xks � x̄k
��2

2

�
�

¸
sPS

ps

���xks � x̄k
��2

2
�
��x̄k � x̄k�1

��2

2

�
By the definition of the squared 2-norm we can rewrite this as:¸

sPS

ps

���xks � x̄k
��2

2
�
��x̄k � x̄k�1

��2

2

�
�

¸
sPS

ņ

i�1

ps
�
pxks,i � x̄ki q

2 � px̄ki � x̄k�1
i q2

�
where xks,i, x̄

k
i and x̄k�1

i are the ith elements of their respective vectors. Since the definition of x̄k

in line 15 implies that the dual feasibility condition
°
sPS pspx

k
s,i � x̄ki q � 0 is satisfied, we can write

¸
sPS

ņ

i�1

ps
�
pxks,i � x̄ki q

2 � px̄ki � x̄k�1
i q2

�
�
¸
sPS

ņ

i�1

ps
�
pxks,i � x̄ki q

2 � 2pxks,i � x̄ki qpx̄
k
i � x̄k�1

i q � px̄ki � x̄k�1
i q2

�
�
¸
sPS

ņ

i�1

ps
�
pxks,i � x̄ki q � px̄ki � x̄k�1

i q
�2

�
¸
sPS

ps
��xks � x̄k�1

��2

2
.

The following proposition addresses the convergence of PH applied to problem (4.7).

Proposition 4.1 Assume that problem (4.7) is feasible with convpKsq bounded for each s P S, and

let Algorithm 4.1 be applied to problem (4.7) (so that Ds � convpKsq for each s P S) with tolerance

ε � 0 for each k ¥ 1. Then, the limit limkÑ8 λ
k � λ� exists, and furthermore,

1. limkÑ8

°
sPS pspc

Jxks � qJs y
k
s q � ζLD,

2. limkÑ8 φpλ
kq � ζLD,

3. limkÑ8px
k
s � x̄kq � 0 for each s P S,

and each limit point pppx�s , y
�
s qsPS, x̄

�q is an optimal solution for (4.7).

Proof. Since the constraint sets Ds � convpKsq, s P S, are bounded, and problem (4.7) is feasible,

problem (4.7) has an optimal solution ppx�s , y
�
s qsPS, z

�q with optimal value ζLD. The feasibility

of problem (4.7), the linearity of its objective function, and the bounded polyhedral structure

of its constraint set Ds � convpKsq, s P S, imply that the hypotheses for PH convergence to



69

the optimal solution are met (See Theorem 5.1 of [98]). Therefore,
 
λk
(

converges to some λ�,

limkÑ8

°
sPS pspc

Jxks � qJs ysq � ζLD, limkÑ8 φpλ
kq � ζLD, and limkÑ8px

k
s � zkq � 0 for each s P S

all hold. The boundedness of each Ds � convpKsq, s P S, furthermore implies the existence of limit

points ppx�s , y
�
s qsPS, z

�q of
 
ppxks , y

k
s qsPS, z

kq
(
, which are optimal solutions for (4.7).

Note that the convergence in Proposition 4.1 applies to the continuous problem (4.7) but not to

the mixed-integer problem (4.2). In problem (4.2), the constraint sets Ks, s P S, are not convex, so

there is no guarantee that Algorithm 4.1 will converge when applied to (4.2).

4.2.3 Applying the Simplicial Decomposition Method

To use Progressive Hedging (as in Algorithm 4.1) to solve (4.7) requires a method for solving the

subproblem

pxks , y
k
s q P argmin

x,y

 
Lρspx, y, x̄

k�1, λksq : px, yq P convpKsq
(

(4.10)

appearing in Line 12 of the algorithm.

As we saw in Section 3.2, the Frank-Wolfe method and its generalisations are well suited to

solving a problem of this form. In this chapter we will use the simplicial decomposition method

(SDM) to solve these subproblems.

The application of SDM to solve problem (4.10), i.e., to minimise Lρspx, y, x̄, λsq over px, yq P

convpKsq, for a given s P S, is presented in Algorithm 4.2. Here, tmax is the maximum number of

iterations and τ ¡ 0 is a convergence tolerance. Γt is the bound gap used to measure closeness to

optimality, and φs is used to compute a Lagrangian bound as described in the next section. The

inner approximation to convpKsq at iteration t ¥ 1 takes the form convpV t
s q, where V t

s is a finite

set of points, with V t
s � convpKsq. The points added by Algorithm 4.2 to the initial set, V 0

s , to

form V t
s , are all in Ks: here VpconvpKsqq is the set of extreme points of convpKsq and, of course,

VpconvpKsqq � Ks.

Observe that

∇px,yqL
ρ
spx, y, x̄, λsq|px,yq�pxt�1

s ,yt�1
s q �

�
c� λs � ρpxt�1

s � zq
qs

�
�

�
c� pλs
qs

�
,

and so the optimization at Line 5 minimises the gradient approximation to Lρspx, y, x̄, λsq at the

point pxt�1
s , yt�1

s q. Since this is a linear objective function, optimization over VpconvpKsqq can be



70

Algorithm 4.2 SDM applied to problem (4.10).

1: Precondition: V 0
s � convpKsq and z �

°
sPS psx

0
s

2: function SDM(V 0
s , x0

s, λs, z, tmax, τ)
3: for t � 1, . . . , tmax do
4: pλts Ð λs � ρpxt�1

s � zq

5: ppxs, pysq P argminx,y

!
pc� pλtsqJx� qJs y | px, yq P VpconvpKsqq

)
6: if t � 1 then
7: φs Ð pc� pλtsqJpxs � qJs pys
8: end if
9: Γt Ð �rpc� pλtsqJppxs � xt�1

s q � qJs ppys � yt�1
s qs

10: V t
s Ð V t�1

s Y tppxs, pysqu
11: pxts, y

t
sq P argminx,y tL

ρ
spx, y, z, λsq | px, yq P convpV t

s qu
12: if Γt ¤ τ then
13: return pxts, y

t
s, V

t
s , φsq

14: end if
15: end for
16: return pxtmaxs , ytmaxs , V tmax

s , φsq
17: end function

accomplished by optimization over Ks (see, e.g., [90], Section I.4, Theorem 6.3). Hence Line 5

requires a solution of a single-scenario MILP.

The value of φs for the first iteration in particular (t � 1) is used to construct a dual bound for

the overall SIP in Proposition 4.2.

The pxts, y
t
sq-update at Line 11 can be accomplished by expressing px, yq as a convex combination

of the finite set of points, V t
s , where the weights a P R|V ts | in the convex combination are now also

decision variables. That is, the Line 11 problem is solved with a solution to the following convex

continuous quadratic subproblem

pxts, y
t
s, aq P argmin

x,y,a

"
Lρspx, y, z, λsqs.t.px, yq �

°
ppxi,pyiqPV ts

aippxi, pyiq,°
i�1,...,|V ts |

ai � 1, and ai ¥ 0 for i � 1, . . . , |V t
s |

*
. (4.11)

For implementational purposes, the x and y variables may be substituted out of the objective of

problem (4.11), leaving a as the only decision variable, with the only constraints being nonnegativity

of the a components and the requirement that they sum to 1.

The convergence properties of the simplicial decomposition method (see Section 3.1.2) guarantee

that an arbitrarily near-optimal solution can be found for the augmented Lagrangian 4.10 which

comprises the main Progressive Hedging update step. However, the convergence speed of SDM may

be slow. Furthermore, it will frequently be an inefficient use of computational resources to solve the



71

augmented Lagrangian calculation exactly or nearly exactly. If the choice of dual variables is poor

(which is especially likely in the early iterations), an exact solution to the augmented Lagrangian

is not much more useful than an approximate one. This motivates the development of the FW-PH

method found in the next section.

4.2.4 FW-PH Method

The FW-PH method obtains an approximate solution to the augmented Lagrangian by running a

small number of SDM iterations for each update step. This has the advantage of greatly reducing

the number of MILP subproblems to be solved in each PH iteration. The standard PH convergence

proof relies on exact updates and therefore is not directly applicable to FW-PH. The remainder of

this section will demonstrate that despite this obstacle, FW-PH is still guaranteed to converge to

the optimal Lagrangian dual bound.

The FW-PH algorithm is stated in pseudocode-form in Algorithm 4.3. Similar to Algorithm 4.1,

the parameter ε is a convergence tolerance, and kmax is the maximum number of (outer) iterations.

The parameter tmax is the maximum number of (inner) SDM iterations in Algorithm 4.2.

The parameter α P R affects the initial linearization point x̃s of the SDM method. Any value

α P R may be used, but the use of x̃s � p1 � αqzk�1 � αxk�1
s in Line 6 is a crucial component in

the efficiency of the FW-PH algorithm, as it enables the computation of a valid dual bound, φk, at

each iteration of FW-PH without the need for additional MILP subproblem solutions. Specifically,

we have the following result.

Proposition 4.2 Assume that the precondition
°
sPS psλ

0
s � 0 holds for Algorithm 4.3. At each

iteration k ¥ 1 of Algorithm 4.3, the value, φk, calculated at Line 9, is the value of the Lagrangian

relaxation φp�q evaluated at a Lagrangian dual feasible point, and hence provides a finite lower bound

on ζLD.

Proof. Since
°
sPS psλ

0
s � 0 holds and, by construction, 0 �

°
sPS pspx

0
s�z

0q, we have
°
sPS psλ

1
s � 0

also. We proceed by induction on k ¥ 1. At iteration k, the problem solved for each s P S at Line

5 in the first iteration (t � 1) of Algorithm 4.2 may be solved with the same optimal value by

exchanging VpconvpKsqq for Ks; this follows from the linearity of the objective function. Thus,



72

Algorithm 4.3 FW-PH applied to problem (4.7).

1: function FW-PH(pV 0
s qsPS, px0

s, y
0
sqsPS, λ0, ρ, α, ε, kmax, tmax)

2: x̄0 Ð
°
sPS psx

0
s

3: λ1
s Ð λ0

s � ρpx0
s � x̄0q, for s P S

4: for k � 1, . . . , kmax do
5: for s P S do
6: rxs Ð p1� αqzk�1 � αxk�1

s

7: rxks , y
k
s , V

k
s , φ

k
ss Ð SDMpV k�1

s , rxs, λks , zk�1, tmax, 0q
8: end for
9: φk Ð

°
sPS psφ

k
s

10: x̄k Ð
°
sPS psx

k
s

11: if
b°

sPS ps }x
k
s � x̄k�1}2

2   ε then

12: return ppxks , y
k
s qsPS, x̄

k, λk, φkq
13: end if
14: λk�1

s Ð λks � ρpxks � x̄kq, for s P S
15: end for
16: return

�
pxkmaxs , ykmaxs qsPS, x̄

kmaxq, λkmax , φkmax
�

17: end function

an optimal solution computed at Line 5 may be used in the computation of φsprλksq carried out in

Line 7, where

rλks :� pλ1
s � λks � ρprxs � zk�1q � λks � ρpp1� αqzk�1 � αxk�1

s � zk�1q

� λks � αρpxk�1
s � zk�1q.

By construction, we have at each iteration k ¥ 1 in Algorithm 4.3 that¸
sPS

pspx
k�1
s � zk�1q � 0 and

¸
sPS

psλ
k
s � 0,

which establishes that
°
sPS ps

rλks � 0. Thus, rλk is feasible for the Lagrangian dual problem, so that

φprλkq � °
sPS psφ

k
s , and, since each φks is the optimal value of a bounded and feasible mixed-integer

linear program, we have �8   φprλkq   8.

We establish convergence of Algorithm 4.3 for any α P R and tmax ¥ 1. For the special case

where we perform only one iteration of SDM for each outer iteration (tmax � 1), we require the

additional assumption that the initial scenario vertex sets share a common point. More precisely,

we require the assumption £
sPS

projxpconvpV 0
s qq � H (4.12)



73

which can, in practice, be effectively handled through appropriate initialization, under the standard

assumption of relatively complete recourse. We describe one initialization procedure in Section 4.3.

Proposition 4.3 Let the convexified separable deterministic equivalent SIP (4.7) have an optimal

solution, and let Algorithm 4.3 be applied to (4.7) with kmax � 8, ε � 0, α P R, and tmax ¥ 1. If

either tmax ¥ 2 or (4.12) holds, then limkÑ8 φ
k � ζLD.

Proof. First note that for any tmax ¥ 1, the sequence of inner approximations convpV k
s q, s P S,

will stabilise, in that, for some threshold 0 ¤ k̄s, we have for all k ¥ k̄s

convpV k
s q �: Ds � convpKsq. (4.13)

This follows from the conclusion of Proposition 3.12 that each expansion of the inner approximations

convpV k
s q takes the form V k

s Ð V k�1
s Y tppxs, pysqu, where ppxs, pysq is in the relative interior of a

previously unexplored face of convpKsq. By a similar argument to Proposition 3.13, since each

polyhedron convpKsq, s P S has only a finite number of such faces, the stabilization (4.13) must

occur at some k̄s   8.

Case 1: tmax ¥ 2

The stabilizations (4.13), s P S, are reached at some iteration k̄ :� maxsPS
 
k̄s
(
. Noting that

Ds � convpV k
s q for k ¡ k we must have

pxks , y
k
s q P argmin

x,y

 
Lρspx, y, x̄

k�1, λksq : px, yq P convpKsq
(
. (4.14)

Otherwise, due to Lemma 3.1, the call to SDM on Line 7 must return V k
s � V k�1

s , contradicting

the finite stabilization (4.13). Therefore, the k ¥ k̄ iterations of Algorithm 4.3 are identical to

Algorithm 4.1 iterations, and so Proposition 4.1 implies that limkÑ8 x
k
s � x̄k � 0, s P S, and

limkÑ8 φpλ
kq � ζLD. By the continuity of λ ÞÑ φspλq for each s P S, we have limkÑ8 φ

k �

limkÑ8

°
sPS psφspλ

k
s � αpxk�1

s � zk�1qq � limkÑ8

°
sPS psφspλ

k
sq � limkÑ8 φpλ

kq � ζLD for all

α P R.

Case 2: tmax � 1 and (4.12) holds

We have at each iteration k ¥ 1 the optimality

pxks , y
k
s q P argmin

x,y

 
Lρspxs, ys, x̄

k�1, λksq | pxs, ysq P convpV k
s q
(
.



74

When stabilisation occurs as in (4.13), the iterations k ¥ k̄ of Algorithm 4.3 are identical to PH

iterations applied to the restricted problem

min
x,y,x̄

#¸
sPS

pspc
Jxs � qJs ysq | pxs, ysq P Ds, @s P S, xs � x̄, @s P S

+
. (4.15)

We have initialised the sets pV 0
s qsPS such that XsPSprojx convpV 0

s q � H, so since the inner approxi-

mations to convpKsq only expand in the algorithm, XsPSprojxpDsq � H. Therefore, problem (4.15)

is a feasible and bounded linear program, and so the PH convergence described in Proposition 4.1

with Ds � Ds, s P S, holds for its application to problem (4.15). That is, for each s P S, we have

1) limkÑ8 λ
k
s � λ�s and limkÑ8px

k
s � x̄kq � 0; and 2) for all limit points ppx�s , y

�
s qsPS, x̄

�q, we have

the feasibility and optimality of the limit points, which implies x�s � x̄� and

min
x,y

 
pc� λ�s q

Jpx� x�q � qJs py � y�qs.t.px, yq P Ds

(
� 0 (4.16)

Next, for each s P S the compactness of convpKsq � Ds, the continuity of the minimum value

function

λ ÞÑ min
x,y

 
pc� λqJx� qJs ys.t.px, yq P Ds

(
,

and the limit limkÑ8
rλk�1
s � limkÑ8 λ

k�1
s � αρpxks � x̄kq � λ�s , together imply that

lim
kÑ8

min
x,y

!
pc� rλk�1

s qJpx� xkq � qJs py � ykqs.t.px, yq P Ds

)
� 0. (4.17)

Recall that rλks � λks � ραpxk�1
s � zk�1q is the t � 1 value of pλts defined in Line 4 of Algorithm 4.2.

Thus, for k � 1 ¡ k̄, we have due to the stabilization (4.13) that

min
x,y

!
pc� rλk�1

s qJpx� xkq � qJs py � ykqs.t.px, yq P Ds

)
�

min
x,y

!
pc� rλk�1

s qJpx� xkq � qJs py � ykqs.t.px, yq P convpKsq
)

(4.18)

If equality (4.18) does not hold, then the inner approximation expansion Ds � convpV k�1
s q must

occur, since a point ppxs, pysq P convpKsq that can be strictly separated from Ds would have been

discovered during the iteration k � 1 execution of Algorithm 4.2, Line 5, t � 1. The expansion

Ds � convpV k�1
s q contradicts the finite stabilization (4.13), and so (4.18) holds. Therefore, the

equalities (4.17) and (4.18) imply that



75

lim
kÑ8

min
x,y

!
pc� rλk�1

s qJpx� xkq � qJs py � ykqs.t.px, yq P convpKsq
)
� 0. (4.19)

Our argument has shown that for all limit points px�s , y
�
s q, s P S, the following stationarity condition

is satsfied:

pc� λ�s q
Jpx� x�s q � qJs py � y�s q ¥ 0 @px, yq P convpKsq, (4.20)

which together with the feasibility x�s � x̄�, s P S implies that each limit point ppx�s , y
�
s qsPS, x̄

�q is

optimal for problem (4.7) and λ� is optimal for the dual problem (4.6).

Thus, for all tmax ¥ 1, we have shown limkÑ8px
k
s � x̄kq � 0, s P S, and limkÑ8 φpλ

kq � ζLD.

By a similar argument to Case 1 (drawing on the continuity of λ ÞÑ φspλq) we can show that

limkÑ8 φ
k � ζLD.

While using a large value of tmax more closely matches Algorithm 4.3 to the original PH al-

gorithm as described in Algorithm 4.1, we are motivated to use a small value of tmax since the

work per iteration is proportional to tmax. Specifically, each iteration requires solving tmax|S| MILP

subproblems, and tmax|S| continuous convex quadratic subproblems. (For reference, Algorithm 4.1

applied to problem (4.2) requires the solution of |S| MIQP subproblems for each λ update and |S|

MILP subproblems for each Lagrangian bound φ computation.)

4.3 Computational Results

4.3.1 Preliminary Information

We performed computations using a C++ implementation of Algorithm 4.1 (Ds � Ks, s P S) and

Algorithm 4.3 using CPLEX 12.5 [63] as the solver for all subproblems. For reading SMPS files into

scenario-specific subproblems and for their interface with CPLEX, we used modified versions of the

COIN-OR [1] Smi and Osi libraries. The computing environment is the Raijin cluster maintained

by Australia’s National Computing Infrastructure (NCI) and supported by the Australian Gov-

ernment [89]. The Raijin cluster is a high performance computing (HPC) environment which has

3592 nodes (system units), 57472 cores of Intel Xeon E5-2670 processors with up to 8 GB PC1600

memory per core (128 GB per node). All experiments were performed in a serial setting using a

single node and one thread per CPLEX solve.



76

In the experiments with Algorithms 4.1 and 4.3, we set the convergence tolerance at ε � 10�3.

For Algorithm 4.3, we set tmax � 1. Also, for all experiments performed, we set λ0 � 0. In this

case, convergence of our algorithm requires that (4.12) holds, which can be guaranteed during the

initialization of the inner approximations pV 0
s qsPS. Under the standard assumption of relatively

complete resource, i.e., the assumption that for all x P X and s P S there exists ys such that

px, ysq P Ks, a straightforward mechanism for ensuring this assumption is to solve the recourse

problems for any fixed px P X. Specifically, for each s P S, let

pys P arg min
y
tqJs y | ppx, yq P Ksu,

and initialise V 0
s for each s P S so that tppx, pysqu P V 0

s . Observe also that this initialization cor-

responds to a technique for computing a feasible solution to the original problem (4.1), which is

independently useful for obtaining an upper bound on ζSIP .

For the computational experiments, we run the following initialization to obtain pV 0
s qsPS and

px0
s, y

0
sqsPS that are input into Algorithm 4.3:

Algorithm 4.4 Initialization step for FW-PH

1: Precondition: Problem (4.1) has relatively complete recourse
2: function FW-PH-Initialization(λ0)
3: for s P S do
4: px0

s, y
0
sq Ð argminx,y

 
pc� λ0

sq
Jx� qJs y | px, yq P Ks

(
5: V 0

s Ð tpx0
s, y

0
squ

6: if s � 1 then
7: ys Ð argminy

 
qJs y | px

0
1, yq P Ks

(
8: V 0

s Ð V 0
s Y tpx0

1, ysqu
9: end if

10: end for
11: return pV 0

s , px
0
s, y

0
sqqsPS

12: end function

If problem (4.1) does not have relatively complete recourse, then any means to compute a feasible

solution to (4.1) may be employed to initialise each V 0
s , s P S, in a way to satisfy (4.12).

Two sets of Algorithm 4.3 experiments correspond to variants considering α � 0 and α � 1.

Computations were performed on eight problems: the CAP instance 101 and 102 with the first 250

scenarios (CAP-101-250 and CAP-102-250), the DCAP instance DCAP233 500 and DCAP243 500

with 500 scenarios, and the SSLP instances 5-25-50, 5-25-100, 10-50-100, and 15-45-15 (which encode



77

the number of servers, clients, and scenarios, respectively). For a more detailed description of the

structure of these instances see Section 2.4.2. For each problem, computations were performed for

different penalty values ρ ¡ 0. The penalty values used in the experiments for the SSLP-5-25-50

instance were chosen to include those penalties that are tested in a computational experiment with

PH whose results are depicted in Figure 2 of [45]. For the other problem instances, the set of penalty

values ρ tested is chosen to capture a reasonably wide range of performance potential for both PH

and FW-PH. All computational experiments were allowed to run for a maximum of two hours in

wall clock time.

4.3.2 Numerical Results

Gap(%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

20 0.05 0.17 0.09 509 398 445 T T T
100 0.01 0.00 0.00 178 446 440 1975.91 T T
500 0.07 0.00 0.00 540 92 93 T 931.84 986.83

1000 0.15 0.00 0.00 544 127 130 T 1345.04 1425.90
2500 0.34 0.00 0.00 581 259 274 T 3087.30 3276.03
5000 0.66 0.00 0.00 33 473 468 293.03 T T
7500 0.99 0.00 0.00 28 18 19 225.66 138.80 170.14

15000 1.59 0.00 0.00 545 28 33 T 246.65 283.53

(a) CAP-101-250; absolute percentage gap based on the known optimal value 733827.32

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

20 0.47 0.46 0.49 422 426 412 T T T
100 0.01 0.00 0.00 219 408 405 3343.29 T T
500 0.08 0.00 0.00 48 46 46 757.09 524.11 540.72

1000 0.13 0.00 0.00 24 25 24 297.34 271.72 286.68
2500 0.29 0.00 0.00 13 16 16 151.72 160.46 171.43
5000 0.61 0.00 0.00 14 18 18 156.90 170.86 188.87
7500 0.93 0.00 0.00 17 22 23 187.08 224.37 237.81

15000 1.91 0.00 0.00 22 39 42 228.26 450.64 436.41

(b) CAP-102-250; absolute percentage gap based on the known optimal value 788996.97

Table 4.1: FW-PH result summary for CAP problem instances: dual bounds.

Tables 4.1–4.3 provide a summary indicating the quality of the Lagrangian bounds φ computed

at the end of each experiment for the eight problems with varying penalty parameter ρ. In each



78

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

2 0.13 0.12 0.12 2234 576 570 T T T
5 0.22 0.09 0.09 2367 561 559 T T T

10 0.23 0.07 0.08 2583 592 573 T T T
20 0.35 0.07 0.07 2539 572 567 T T T
50 1.25 0.06 0.06 2721 578 580 T T T

100 1.29 0.06 0.06 2755 428 438 T 4016.29 4492.36
200 2.58 0.06 0.06 2667 256 262 T 1707.97 1848.49
500 2.58 0.07 0.07 2839 244 246 T 1799.88 1569.58

(a) DCAP-233-500; absolute percentage gap based on the best known upper bound 1737.73

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

2 0.14 0.18 0.18 1710 558 577 T T T
5 0.20 0.13 0.13 2108 570 562 T T T

10 0.29 0.11 0.11 2110 562 559 T T T
20 0.52 0.10 0.10 2233 570 577 T T T
50 0.70 0.10 0.10 2355 578 579 T T T

100 1.32 0.09 0.09 2504 393 395 T 3744.33 3849.53
200 1.40 0.10 0.09 2568 244 261 T 1866.03 1854.85
500 2.11 0.10 0.10 2486 180 165 T 983.41 884.66

(b) DCAP-243-500; absolute percentage gap based on the known optimal value 2167.51

Table 4.2: FW-PH result summary for DCAP problem instances: dual bounds.

of these tables, the first column lists the values of the penalty parameter ρ, while the following are

presented for PH and FW-PH (for both α � 0 and α � 1) computations in the remaining columns:

1) the absolute percentage gap
��� ζ��φζ�

��� � 100% between the computed Lagrangian bound φ and some

reference value ζ� that is either a known optimal value for the problem, or a known best upper

bound thereof (column “Percentage Gap”); 2) the total number of dual updates (“# Iterations”);

and 3) the indication of whether the algorithm terminated due to the time limit, indicated by letter

“T”, or the satisfaction of the convergence criterion
b°

sPS ps }x
k
s � x̄k�1}2

2   ε, indicated by the

time elapsed in seconds (column “Time”).

The following observations can be made from the results presented in Tables 4.1–4.3. First, for

small values of the penalty ρ, there is no clear preference between the bounds φ generated by PH

and FW-PH. However, for higher penalties, the bounds φ obtained by FW-PH are consistently of

better quality (i.e., higher) than those obtained by PH, regardless of the variant used (i.e. α � 0 or



79

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

1 0.30 0.00 0.00 105 115 116 225.80 150.63 151.52
2 0.73 0.00 0.00 51 56 56 107.85 71.56 72.07
5 0.91 0.00 0.00 25 26 27 51.77 33.43 34.88

15 3.15 0.00 0.00 12 16 17 22.00 20.59 21.95
30 6.45 0.00 0.00 12 18 18 18.44 23.29 24.00
50 9.48 0.00 0.00 18 25 26 21.00 34.37 37.89

100 9.48 0.00 0.00 8 45 45 7.95 62.20 67.77

(a) SSLP-5-25-50; absolute percentage gap based on the known optimal value -121.60

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

1 0.16 0.00 0.00 82 97 90 385.08 266.05 248.92
2 0.45 0.00 0.00 42 43 44 196.76 119.57 121.30
5 1.06 0.00 0.00 18 21 22 83.66 58.29 61.62

15 2.96 0.00 0.00 13 15 16 51.40 42.50 46.35
30 6.21 0.00 0.00 19 24 23 56.58 70.47 64.26
50 7.91 0.00 0.00 3123 38 36 T 113.21 107.54

100 7.91 0.00 0.00 27 74 70 44.60 223.73 216.66

(b) SSLP-5-25-100; absolute percentage gap based on the known optimal value -127.37

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

1 0.57 0.22 0.22 130 234 234 T T T
2 0.63 0.03 0.03 131 226 227 T T T
5 1.00 0.00 0.00 104 218 219 4885.74 T T

15 2.92 0.00 0.00 33 45 118 1012.11 1463.75 3949.99
30 4.63 0.00 0.00 18 21 22 413.28 618.52 619.85
50 4.63 0.00 0.00 11 26 27 202.47 759.83 756.59

100 4.63 0.00 0.00 9 43 45 106.76 1302.04 1271.27

(c) SSLP-10-50-100; percentage gap based on the known optimal value -354.19

Gap (%) # Iterations Time

ρ PH
FW-PH

PH
FW-PH

PH
FW-PH

α � 0 α � 1 α � 0 α � 1 α � 0 α � 1

1 2.85 2.15 2.17 224 304 300 T T T
2 2.21 1.00 1.00 193 272 272 T T T
5 1.21 0.01 0.03 181 180 178 7021.35 T T

15 4.13 0.00 0.00 421 84 86 T 5022.34 4986.36
30 7.89 0.00 0.00 35 66 68 424.76 1873.24 1866.31
50 7.89 0.00 0.00 23 67 65 257.40 992.90 1020.19

100 7.89 0.00 0.00 6 69 62 32.25 562.65 428.18

(d) SSLP-15-45-15; percentage gap based on the known optimal value -253.60

Table 4.3: FW-PH result summary for SSLP problem instances : dual bounds.



80

α � 1). This tendency is clearly illustrated by the results of the DCAP experiments in Table 4.2,

where the absolute percentage gap of the Lagrangian lower bound with the known optimal value

was 0.06% with ρ � 200 for FW-PH (α � 0), while it was 2.58% for the same value of ρ for PH.

This improvement is consistently observed for the other problems and the other values of ρ that

are not too close to zero. Also, FW-PH did not terminate with suboptimal convergence or display

cycling behavior for any of the penalty values ρ in any of the problems considered. In the case of the

SSLP-5-25-50 problem instance, the FW-PH algorithm terminated due to convergence in all cases.

The percentage gaps suggest that the convergence for PH was suboptimal, while it was optimal for

FW-PH. Moreover, it is possible to see from these tables that the quality of the bounds φ obtained

using FW-PH were not as sensitive to the value of the penalty parameter ρ as obtained using PH.

The FW-PH (α � 0) versus PH convergence profiles for the experiments performed are given

in Figures 4.1–4.8, in which we provide plots of wall time versus Lagrangian bound values based

on profiling of varying penalty. Since the α � 1 variant of FW-PH behaved very similarly to the

α � 0 variant in all cases, the plots of the α � 1 variant have been omitted for brevity. The time

scales for each plot have been chosen to highlight the most interesting features. The trend of the

Lagrangian bounds is depicted with solid lines for FW-PH with α � 0 and with dashed lines for

PH.

As seen in the plots of Figures 4.1–4.8, the Lagrangian bounds φ generated with PH tend to

converge suboptimally, often displaying cycling, for large penalty values. In terms of the quality of

the bounds obtained, while there is no clear winner when low penalty ρ values are used, for large

penalties, the quality of the bounds φ generated with FW-PH is consistently better than for the

bounds generated with PH, regardless of the α value. This last observation is significant because

the effective use of large penalty values ρ in methods based on augmented Lagrangian relaxation

tends to yield the most rapid early iteration improvement in the Lagrangian bound; this point is

most clearly illustrated in Figure 4.5, which depicts the results of the SSLP-5-25-50 experiments.

Although finding primal feasible solutions is not the stated purpose of FW-PH, in practice the

algorithm can be easily modified to generate these solutions by adding one of the following heuristics:

• Record the vertices generated in the final SDM step; these points are integer feasible.

• Perform a single Progressive Hedging-style iteration at the end of FW-PH to generate an



81

0 100 200 300 400 500 600 700 800 900 1000

Wall clock time (seconds)

7.1

7.15

7.2

7.25

7.3

7.35

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

105 CAP-101-250

Best Known Objective Value
=500-PH
=500-FW-PH (  = 0)
=2500-PH
=2500-FW-PH (  = 0)
=7500-PH
=7500-FW-PH (  = 0)
=15000-PH
=15000-FW-PH (  = 0)

Figure 4.1: PH and FW-PH convergence profiles for CAP-101-250 (α � 0)

0 100 200 300 400 500 600 700 800 900 1000

Wall clock time (seconds)

7.65

7.7

7.75

7.8

7.85

7.9

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

105 CAP-102-250

Best Known Objective Value
=500-PH
=500-FW-PH (  = 0)
=2500-PH
=2500-FW-PH (  = 0)
=7500-PH
=7500-FW-PH (  = 0)
=15000-PH
=15000-FW-PH (  = 0)

Figure 4.2: PH and FW-PH convergence profiles for CAP-101-250 (α � 0)



82

0 100 200 300 400 500 600 700 800 900 1000

Wall clock time (seconds)

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

DCAP-233-500

Best Known Objective Value
=5-PH
=5-FW-PH (  = 0)
=10-PH
=10-FW-PH (  = 0)
=20-PH
=20-FW-PH (  = 0)
=50-PH
=50-FW-PH (  = 0)

Figure 4.3: PH and FW-PH convergence profiles for DCAP-233-500 (α � 0)

0 100 200 300 400 500 600 700 800 900 1000

Wall clock time (seconds)

2110

2120

2130

2140

2150

2160

2170

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

DCAP-243-500

Best Known Objective Value
=5-PH
=5-FW-PH (  = 0)
=10-PH
=10-FW-PH (  = 0)
=20-PH
=20-FW-PH (  = 0)
=50-PH
=50-FW-PH (  = 0)

Figure 4.4: PH and FW-PH convergence profiles for DCAP-233-500 (α � 0)



83

0 10 20 30 40 50 60 70 80 90 100

Wall clock time (seconds)

-135

-130

-125

-120

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

SSLP-5-25-50

Best Known Objective Value
=2-PH
=2-FW-PH (  = 0)
=5-PH
=5-FW-PH (  = 0)
=15-PH
=15-FW-PH (  = 0)
=30-PH
=30-FW-PH (  = 0)

Figure 4.5: PH and FW-PH convergence profiles for SSLP-5-25-50 (α � 0)

0 20 40 60 80 100 120 140 160 180 200

Wall clock time (seconds)

-140

-138

-136

-134

-132

-130

-128

-126

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

SSLP-5-25-100

Best Known Objective Value
=2-PH
=2-FW-PH (  = 0)
=5-PH
=5-FW-PH (  = 0)
=15-PH
=15-FW-PH (  = 0)
=30-PH
=30-FW-PH (  = 0)

Figure 4.6: PH and FW-PH convergence profiles for SSLP-5-25-50 (α � 0)



84

0 1000 2000 3000 4000 5000 6000 7000

Wall clock time (seconds)

-295

-290

-285

-280

-275

-270

-265

-260

-255

-250

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

SSLP-15-45-15

Best Known Objective Value
=2-PH
=2-FW-PH (  = 0)
=5-PH
=5-FW-PH (  = 0)
=15-PH
=15-FW-PH (  = 0)
=30-PH
=30-FW-PH (  = 0)

Figure 4.7: PH and FW-PH convergence profiles for for SSLP-10-50-100 (α � 0)

0 500 1000 1500 2000 2500 3000

Wall clock time (seconds)

-385

-380

-375

-370

-365

-360

-355

-350

La
gr

an
gi

an
 d

ua
l b

ou
nd

 

SSLP-10-50-100

Best Known Objective Value
=2-PH
=2-FW-PH (  = 0)
=5-PH
=5-FW-PH (  = 0)
=15-PH
=15-FW-PH (  = 0)
=30-PH
=30-FW-PH (  = 0)

Figure 4.8: PH and FW-PH convergence profiles for for SSLP-10-50-100 (α � 0)



85

integer feasible point.

These heuristics are not guaranteed to find a high-quality feasible solution. However, small-scale

testing indicated that both approaches are promising and worthy of future examination.

Remark 4.4 It may seem counter-intuitive that in some cases (particularly when applied to the

DCAP class of instances) the PH algorithm completes more iterations than FW-PH, despite the

fact that PH is solving a more difficult class of subproblem than FW-PH at each iteration (QMIP

vs MIP). However, in these cases it is generally the case that the PH algorithm eventually cycles

at some distance from the optimal dual bound (and therefore is solving potentially easy QMIPs

in which only the cycling variables are contributing to complexity), whereas the FW-PH algorithm

asymptotically converges to the optimal dual bound (and therefore is solving potentially difficult and

ill-conditioned MIPs). Additional experimental work would be required to investigate this further.

4.4 Conclusions

This chapter has presented an alternative approach to compute Lagrangian dual bounds for SIPs

that combines ideas from Progressive Hedging (PH) and the Frank-Wolfe (FW) based methods.

This approach is motivated by the weaknesses of previous methods for retrieving dual bounds from

PH and PH-like algorithms; in general these previous methods require additional computational

effort and the dual bounds they retrieve are not necessarily of high quality. In general the direct

application of PH to SIPs is handicapped by the non-convexity of the SIPs.

By applying Progressive Hedging to the primal characterisation of the Lagrangian dual prob-

lem, which is itself a convex stochastic program, the issue of non-convexity is side-stepped. This

approach is specifically directed towards finding Lagrangian dual bounds, as opposed to finding the

primal optimal solution. The primary difficulty with this approach is that the PH update subprob-

lems can no longer be computed directly, since the convex hull relaxation appearing in the primal

characterisation is not explicitly defined. Section 4.2.3 shows that a FW-like method such as the

simplicial decomposition method can be used to solve the update subproblems. However, using

SDM to solve these subproblems exactly at each PH iteration is likely to be very slow.

A more sophisticated algorithm, designated as the FW-PH algorithm, is proposed in Section

4.2.4. FW-PH has good convergence properties under general assumptions on how the Lagrangian



86

bounds are computed and on the number of SDM iterations used at each step. Furthermore, under

mild assumptions on the initialization of the algorithm, FW-PH convergence only requires the

solution of a MILP subproblem and a continuous convex quadratic subproblem for each iteration

and each scenario. FW-PH is versatile enough to handle a wide range of SIPs with integrality

restrictions in any stage, while providing rapid improvement in the Lagrangian bound in the early

iterations that is consistent across a wide range of penalty parameter values.

The numerical results for FW-PH, presented in Section 4.3, are encouraging as they suggest

that the proposed FW-PH method applied to SIP problems usually outperforms the traditional

PH method with respect to how quickly the quality of the generated Lagrangian bounds improves.

This is especially true with the use of larger penalty values. For all problems considered and for all

but the smallest penalties considered, the FW-PH method displayed better performance over PH

in terms of the quality of the final Lagrangian bounds at the end of the allotted wall clock time.

The improved performance of FW-PH over PH for large penalties is significant because it is the

effective use of large penalties enabled by FW-PH that yields the most rapid initial dual improve-

ment. This last feature of FW-PH would be most helpful in its use within a branch-and-bound

or branch-and-cut framework for providing strong lower bounds (in the case of minimisation). In

addition to being another means to compute Lagrangian bounds, PH would still have a role in such

frameworks as a heuristic for computing a primal feasible solution to the SIP, thus providing (in

the case of minimisation) an upper bound on the optimal value.

Several opportunities to extend the FW-PH algorithm and its implementation are immediately

apparent. The approach taken in this chapter of performing exactly one SDM iteration per PH

iteration is unnecessarily limiting; a more sophisticated approach would vary the frequency of SDM

updates based on their projected utility. The assumption that every extreme point is retained in the

inner approximation of the feasible region is necessary for the convergence proof given in this chapter,

but is likely unnecessary for convergence in practice. Furthermore, while we have observed that the

structure of the FW-PH algorithm is amenable to parallel computation, the computational results

presented in Section 4.3 do not explore the benefits of doing so. These potential improvements are

pursued in Chapter 5.



Chapter 5

Simplicial Decomposition-based
Augmented Lagrangian Method

5.1 Introduction and Background

5.1.1 Problem Formulation

In this chapter we will consider the problem of calculating high-quality dual bounds for a more

general class of MIP having the form

ζ� :� min
x,z

tfpxq : Qx � z, x P X, z P Zu , (5.1)

where f is convex and continuously differentiable, Q P Rq�n is a block-diagonal matrix determining

linear constraintsQx � z, X � Rn is a closed and bounded set, and Z � Rq is a linear subspace. The

vector x P X of decision variables is derived from the original decisions associated with a problem,

while the vector z P Z of auxiliary variables are introduced to effect a decomposable structure

in (5.1). In particular, the decomposable structure takes the form: 1) X �
±m

i�1Xi with Xi � Rni

closed and bounded and
°m
i�1 ni � n; 2) fpxq �

°m
i�1 fipxiq where fi : Rni ÞÑ R are convex and

differentiable for i � 1, . . . ,m; 3) Q has block diagonal structure with block diagonal components

denoted as Qi P Rqi�ni , i � 1, . . . ,m where
°m
i�1 qi � q, so that after setting z � pziqi�1,...,m, where

for each i � 1, . . . ,m, zi P Rqi , we may write Qx � z as Qixi � zi, i � 1, . . . ,m. This decomposable

structure is implicitly present throughout the chapter, although explicit referral to it is typically

avoided where it is not needed.

Assumption 5.1 Problem (5.1) is feasible with finite optimal value.

87



88

The structure of (5.1) is sufficiently general to include two-stage SIP problems. In particular,

(5.1) represents a two-stage SIP when the problem data of (5.1) is defined as follows:

• f is a linear function in x.

• qi � qj and ni � nj for all i and j in 1, . . . ,m, and furthermore n ¡ q. qi is the number of

first-stage variables, while ni � qi is the number of second-stage variables.

• Construct Qi by horizontal concatenation of the identity matrix of size qi with the zero matrix

of size qi � pqi � niq. This links the first-stage variables one-to-one with variables in z.

• X is restricted by the linear constraints of the SIP on first- and second-stage variables.

• Z � tpz1, . . . , zq1 , zq1�1, . . . , zm�q1q | zj � zi�q1�j @i � 1, . . . ,m� 1, @j P 1, . . . , q1u. The

definition of this linear subspace enforces the non-anticipativity constraint.

By a similar (albeit more complicated) construction process it can be shown that multi-stage SIP

problems can be represented by (5.1) as well. Stochastic programs in which f is convex but non-

linear, or in which X is a general compact (not necessarily convex) set, can also be represented by

(5.1).

We develop a solution approach to solving the following relaxation of (5.1),

ζCLD :� min
x,z

tfpxq : Qx � z, x P convpXq, z P Zu (5.2)

and its Lagrangian dual problem due to the relaxation of Qx � z,

ζCLD � sup
ω
φCpωq, (5.3)

which is based on the dual function

φC pωq :� min
x

 
fpxq � ωJpQx� zq : x P convpXq, z P Z

(
. (5.4)

When f is linear, then φC pωq � φ pωq where

φpωq :� min
x,z

 
fpxq � ωJpQx� zq, x P X, z P Z

(
. (5.5)

(That is, when f is linear, the role of X and convpXq are interchangeable.) Consequently, when f

is linear, ζCLD � ζLD :� supω φpωq. However, when f is nonlinear, then in general, ζCLD ¤ ζLD.



89

Strict inequality is demonstrated with the following example. Let f : R2 ÞÑ R be defined by

fpxq � px1 � 0.5q2 � px2 � 0.5q2, X � t0, 1u � t0, 1u, and let Qx � z be defined to model the

constraints x1 � z1 � 0 and x2 � z2 � 0 where Z � tpz1, z2q : z1 � z2u � R2. We see trivially

that ζCLD � 0, which is verified with the saddle point x�1 � x�2 � z�1 � z�2 � 0.5 and ω� � p0, 0q.

However, ζLD � 0.5, which is verified with either of the saddle points x�1 � x�2 � z�1 � z�2 � 0 and

ω� � p0, 0q, or x�1 � x�2 � z�1 � z�2 � 1 and ω� � p0, 0q. Thus, ζCLD   ζLD.

Given that X is compact and f is continuous, in order for �8   φCpωq to hold, it is necessary

and sufficient that the dual feasibility assumption

ω P ZK :�
 
υ P Rq : υJz � 0 for all z P Z

(
(5.6)

is maintained either by assumption or by construction. Under condition (5.6), the z term in defini-

tion (5.4) vanishes, and we may compute

φCpωq � min
x

 
fpxq � ωJQx : x P convpXq

(
.

Consequently, φC becomes separable as

φCpωq �
m̧

i�1

φCi pωiq,

where φCi pωiq :� minx
 
fipxiq � ωJi Qixi : xi P convpXiq

(
and ω � pω1, . . . , ωmq P Rq1 �� � ��Rqm has

a block structure compatible with the block diagonal structure of Q.

Given that X is closed and bounded (thus so is convpXq), and (5.2) is assumed to be feasible,

then in order to guarantee that the maximum in (5.3) is realised for some ω� P ZK, we assume

a constraint qualification such as Slater’s condition. In other words, we assume that there exists

px�, z�q such that x� P intpconvpXqq and Qx� � z�, where intp�q returns the topological interior of

the set argument. If convpXq is polyhedral, then even this Slater’s condition is not required.

5.1.2 Method Overview

The method developed in this chapter is an iterative solution approach to solving problem (5.3)

subject to the following challenges:

Implementability: The set X is not convex (for example, it may have mixed-integer constraints

as part of its definition). Consequently the augmented Lagrangian method is not supported

by the theory of proximal point methods.



90

Efficiency of parallelisation: The solution approach should be amenable to efficient parallel com-

putation, in the sense of maximising the computational work that can be parallelised, the

memory usage that can be distributed, and minimising the amount of parallel communica-

tion.

Our method is theoretically applicable to calculating Lagrangian dual bounds of any problem which

can be expressed in the form of (5.1) and satisfies Assumption 5.1. However, to implement the

method in practice we will need to have an solver available to evaluate its subproblems.

Assumption 5.2 The gradient of f is known for all x P X. Furthermore, a solver is available for

the following problems:

• Minimise an affine function over X.

• Minimise the sum of f and a quadratic function over the closed convex hull of a nonempty

subset of X.

Remark 5.1 In the case where (5.1) represents a SIP, Assumption 5.2 is trivially satisfied: f is

an affine function and X is defined by linear constraints and integrality constraints (so we can

minimise an affine function over X with a standard MILP solver).

Throughout this chapter we will assume that the problem of interest (5.1) satisfies Assumptions

5.1 and 5.2.

For the Lagrangian dual problem (5.3), we note that the objective function φ is concave, even

when f and X are not convex. We can apply a subgradient method (see e.g. [103]; in textbooks [12,

102]) for solving (5.3) in an efficiently parallelizable manner. Such an approach is proposed in [22].

However, it is preferable to make use of structural features of (5.3) that allow for smoothing or

regularization, so that better convergence properties are realised. For this reason, we consider

alternative developments based on proximal point methods that are modified to address both of the

above two challenges.

5.1.3 Background

As a starting point, we consider the classical augmented Lagrangian method based on proximal point

methods. The augmented Lagrangian (AL) method (also known as the method of multipliers) is



91

developed from proximal point methods, and references include [58, 94, 11, 12].

The AL method typically has favorable convergence properties as a dual solution approach for

convex problems (linear convergence rate under certain assumptions, see [95, 11] and references

cited therein). However, two issues arise: 1) the set X is not convex, and so current theories of

convergence are not applicable; and 2) the primal subproblem associated with each iteration of

the AL method is not separable due to the augmented Lagrange term, making efficient parallel

implementations difficult to develop.

This chapter introduces modifications to the AL method that address both of these issues. In

order to introduce computational tractability in light of the possible nonlinearity of f and the

nonconvexity of X, the modified AL method solves an alternative dual problem that can provide

a weaker dual bound than that provided by the value of (5.3). In the case when f is linear,

the alternative dual problem is equivalent to (5.3). This matter is explained in more detail in

Section 5.2.5. The method that results from these modifications is most naturally compared with

the proximal bundle method. The proximal bundle method initially appeared in [74], and for

a survey with history, see [29]. Use of inexact oracles for computing φpωq and elements of the

subdifferential set Bφpωq are studied in [29, 30, 52] and references therein.

In its dual form, the bundle method may be referred to as the stabilized column generation

method [5] or the proximal simplicial decomposition method [14]. In implementation, the developed

algorithm more closely resembles the latter dual form.

For parallelisation of the proximal bundle method, see [39] and [79]. The approach developed

in this chapter is most naturally compared with [79], as both approaches address the manner in

which the same continuous master problem is approximately solved. The approach of [39] uses

a substantially different parallel computational paradigm based on subspace optimization. This

approach, in which solution subspaces are assigned to processors based on periodically updated

global state information, is not necessarily based on the problem’s decomposable structure.

The proximal bundle method approach requires modification for efficient parallelisation. This

matter is addressed in [79], where a solution to the continuous master problem is obtained by primal

dual interior point methods that exploit the decomposable structure present in the augmented

Lagrangian term. We provide and analyze an alternative approach based on the use of:



92

1. the simplicial decomposition method (SDM) [61, 110, 12, 13], which provides an alternative

framework to the proximal bundle method to address the implementability of the proximal

point method while allowing for the possibility that f is nonlinear; and

2. nonlinear block Gauss-Seidel (GS) method [59, 111, 49, 108, 20] to approximate the solutions

to the continuous master problem.

For a more detailed description of the simplicial decomposition and block Gauss-Seidel methods, see

Sections 3.1.2 and 6.3.1 respectively. Motivated by its constituent parts, the algorithm we develop

is referred to as SDM-GS-ALM.

In an iteration of SDM-GS-ALM, the analog to the continuous master problem is not solved

to (near) exactness; instead, approximate solutions based on possibly just one nonlinear block GS

iteration are used. Due to the underlying need for convexification of the non-relaxed constraint

set, implementability requires that the nonlinear block GS method must be integrated with the

SDM so that optimal convergence of the resulting iterations can be established. In this way, a

serious step condition similar to that used in proximal bundle methods is eventually satisfied after

a finite number of such integrated SDM-GS iterations, and analogous dual optimal convergence of

our approach is recovered even with the deviations from the proximal bundle method. In summary,

we algorithmically integrate the AL method, the SDM, nonlinear block GS iterations, and the

proximal bundle method serious step condition. A convergence analysis is also provided for SDM-

GS-ALM. Such an integration allows for a considerable improvement in parallel efficiency with

respect to maximising the computational work that can be parallelised, the memory usage that can

be distributed, and minimising the amount of parallel communication.

Other methods developed in the past that are related to aspects of our contribution include the

following. In terms of approximating within the AL method, we include reference to [31, 33], where

the research goal of developing implementable approximation criteria is addressed. The separable

augmented Lagrangian (SALA) method [51], which is an application of the alternating direction

method of multipliers (ADMM) [48, 44, 21] with a form of resource allocation decomposition and

incorporates separability into the AL method. Other approaches to introducing separability into

the AL method include [23, 107]. Jacobi iterate approaches applied within either a proximal bundle

method or an AL method framework are considered in [86, 101]; the accelerated distributed aug-



93

mented Lagrangian method (ADAL) developed in [23] is like a Jacobi-iterate analogue of ADMM

with supporting convergence analysis. Other approaches to incorporating separability are found

in the alternating linearization approaches [67, 76] and the predictor corrector proximal multiplier

(PCPM) methods [24, 55]. All of these methods provide implementable mechanisms for approximat-

ing primal subproblem solutions and effecting parallelism in a setting where X is convex. However,

they are not practically implementable in our setting where X is not convex and its convex hull

convpXq is not given beforehand in a computationally useful closed-form description.

In papers such as [45, 38], ADMM is applied directly to the primal problem (5.1). In both

works, it is acknowledged that ADMM is not theoretically supported in optimal convergence due

to the lack of convexity of X. Nevertheless, [45] reports the potential for Lagrangian dual bounds

to be recovered at each iteration of ADMM even though it is applied to (5.1). In [38], where

ADMM is applied to nonconvex decentralised unit commitment problems, heuristic improvements

to ADMM are introduced to address the lack of convexity due to the mixed-integer constraints. In

contrast to both of these approaches, where ADMM is applied directly to the primal problem (5.1),

the approach developed in this chapter and the preceding chapter both resemble ADMM but with

application to a primal characterization of the dual problem. In these two approaches, the challenge

of not having an explicit form for this primal characterization is addressed.

The FW-PH algorithm developed in the previous chapter is structureally similar to the SDM-

GS-ALM algorithm developed in this chapter. While the algorithms differ only slightly in terms

of functionality, there are substantial differences in the motivation and the convergence analysis.

The convergence analysis of FW-PH interfaces with the convergence analysis for ADMM, which is

most naturally developed in the context of the theory of maximal monotone operators and Douglas-

Rachford splitting methods [32, 34], or as the proximal decomposition of the graph of a maximal

monotone operator [82]. In contrast, the convergence analysis of SDM-GS-ALM naturally reflects

its synthesis of SDM, the nonlinear block GS method, the proximal bundle method, and the AL

method. The convergence analysis of SDM-GS-ALM follows under more general assumptions than

that for FW-PH. In particular, the convergence analysis of SDM-GS-ALM allows for trimming of

the inner approximations, and it does not require the warm-starting required by FW-PH. The most

important difference in functionality is due to the influence of ideas from proximal bundle methods

in SDM-GS-ALM, where updates of ω are taken conditionally at each iteration, while such updates



94

are taken unconditionally at each iteration of FW-PH. We shall see that these conditional updates

help to mitigate performance problems that arise due to the seemingly inevitable use of suboptimal

algorithm parameters.

5.2 Algorithm Design and Theory

5.2.1 Augmented Lagrangian Method

Algorithm 5.1 provides a general framework for an AL method with approximate subproblem solu-

tions that uses the bundle method’s serious step condition (SSC). This framework will be useful to

guide the developments presented next, in which we discuss optimality conditions and convergence

properties of the algorithm. The convergence proof of Algorithm 5.1 is based on the convergence

proofs of the proximal bundle method such as found in Chapter 7 of [100]. In the following we

denote the augmented Lagrangian (AL):

Lρpx, z, ωq :� fpxq � ωJpQx� zq �
ρ

2
}Qx� z}2

� fpxq � ωJQx�
ρ

2
}Qx� z}2 (5.7)

where the AL relaxes Qx � z and with the second equality following from ω P ZK and z P Z.

In the proximal bundle method, the dual function φ is approximated by a cutting plane model

function that majorizes φ. Instead we use the following approximation pφ : Rq �Rn�Rq ÞÑ R of φC

centered at pxk, zkq, k ¥ 0, to replace the cutting plane model:

pφpω, xk, zkq :� Lρpx
k, zk, ωq �

ρ

2

��Qxk � zk
��2

2
.

The ρ
2

��Qxk � zk
��2

2
term is a duplicate of a term inside the Lρpx

k, zk, ωq expression; this is required

to guarantee that, under appropriate conditions, pφ can be used as an upper bound on φC (see

Lemma 5.4).

The convex hull convpXq is not known explicitly, and so φC cannot be evaluated directly. Con-

sequently, we will also require a tractable minorization of φC . For xk P convpXq, k ¥ 0, defineqφpω, xkq as follows:

qφpω, xkq :� min
x

 
fpxkq �∇xfpx

kqJpx� xkq � ωJQx : x P X
(
. (5.8)



95

To justify that for any xk P convpXq this function minorizes φC , observe that fpxq ¥ fpxkq �

∇xfpx
kqJpx�xkq for all x; furthermore, since the objective term fpxkq�∇xfpx

kqJpx�xkq�ωJQx

is linear in terms of x, its minimum with respect to x over convpXq is identical to its minimum over

X.

In Algorithm 5.1, a proximal bundle method-like serious step condition is used in Line 9 that

makes use of pφ and qφ in place of the cutting plane model and φ, respectively. Proposition 5.9 will

demonstrate that any sequence of solutions converging to the argmin in Line 5 must eventually

satisfy this serious step condition, unless dual optimality (i.e. the Line 8 condition) has already

been achieved. The Line 6 condition is an optimality condition for z which we enforce for any

accepted approximate solution to the Line 5 subproblem.

The inputs f , Q, X, and Z specify the data associated with problem (5.1); ρ ¡ 0 is the

AL term coefficient; ω0 is an initial dual solution; γ P p0, 1q is the parameter of the serious step

condition of Line 9; and ε ¡ 0 is a tolerance for termination. Algorithm 5.1 will be given a specific

implementation in the form of SDM-GS-ALM in Section 5.2.5.

Algorithm 5.1 A general approximated ALM using a bundle method SSC.

1: Preconditions: ω1 P ZK, γ P p0, 1q.
2: function ApproxALM(f , Q, X, Z, ρ, ω1, γ, ε, kmax)
3: for k � 1, 2, . . . , kmax do
4: Solve approximately
5: pxk, zkq P argminx,z

 
Lρpx, z, ω

kq : x P convpXq, z P Z
(

such that

6: 1) zk P argminz

!��Qxk � z
��2

2
: z P Z

)
and

7: 2) either

8: pφpωk, xk, zkq � qφpωk, xk�1q ¤ ε or

9: 0   γ ¤
qφpωk�ρpQxk�zkq,xkq�qφpωk,xk�1q

pφpωk,xk,zkq�qφpωk,xk�1q

10: if pφpωk, xk, zkq � qφpωk, xk�1q ¤ ε then
11: return pxk, zk, ωkq
12: else
13: set ωk�1 Ð ωk � ρpQxk � zkq
14: end if
15: end for
16: return pxk, zk, ωk�1q
17: end function

Remark 5.2 Under the assumption that convpXq is not known beforehand by any characterization,



96

direct evaluation of φC or any of its subgradients at any ω P ZK is not possible. This dual function

is not used in the proximal bundle method and is only treated indirectly in the current development.

In addition to generating a sequence
 
ωk

(
of dual solutions to (5.3), our algorithm will also

generate a sequence of primal solutions
 
pxk, zkq

(
to (5.2), and so reference to (5.2) will be useful.

In applying the AL method to problem (5.2), the continuous master problem for fixed ω P ZK takes

the form

ζALρ pωq :� min
x,z

tLρpx, z, ωq, x P convpXq, z P Zu . (5.9)

Lemma 5.3 For any optimal solution ω� to problem (5.3), we have ζALρ pω�q � ζCLD. Additionally,

any optimal solution px�, z�q to problem (5.9) with ω � ω� is also optimal for problem (5.2).

Proof. We specialise developments in, e.g., Section 4 of [96] or Section 6.4.3 of [100]. In the

following, we begin assuming ω P ZK as an arbitrary fixed vector to show:

max
ωPZK

"
pω � ωqJQx�

1

2ρ
}ω � ω}2

2

*
�
ρ

2
min
zPZ

}Qx� z}2
2 . (5.10)

By the uniqueness of the projection onto a subspace, z P argminzPZ }Qx � z}2
2 is the unique z P Z

for which pQx � zq P ZK. Moreover, the optimality condition for left-hand side problem in (5.10):

0 P Bω

!
pω � ωqJQx� 1

2ρ
}ω � ω}2

2 � δZKpωq
)

dictate that pω�ωq P ρpQx�Zq (where we have used,

for ω P ZK, BδZKpωq � NZKpωq � Z, where δZK denotes the indicator function of a convex set ZK and

NZKpωq the normal cone at ω). Hence pω�ωq � ρpQx�zq for some z P Z. Furthermore, ω�ω P ZK

must hold, and so z P Z must be chosen so that ρpQx� zq P ZK also. Consequently, from our first

observation, this z P Z must be the unique solution of the right-hand side of (5.10). Evaluating the

objective on the left-hand side of (5.10) (observing that we must have ρpQx� zq P ZK) establishes

the claimed equality. We may compute:

max
ωPZK

φCpωq �
1

2ρ
}ω � ω}2

2 (5.11)

� max
ωPZK

min
x

"
fpxq � ωJQx�

1

2ρ
}ω � ω}2

2 : x P convpXq

*
� min

x

#
fpxq � ωJQx

�maxωPZK
!
pω � ωqJQx� 1

2ρ
}ω � ω}2

2

)
: x P convpXq

+
(5.12)

� min
x

!
fpxq � ωJQx�

ρ

2
min
zPZ

 
}Qx� z}2

2

(
: x P convpXq

)
� min

x,z
tLρpx, z, ωq, x P convpXq, z P Zu .



97

The switching of min and max in (5.12) is justified by the Sion min-max theorem [104] along with

the convexity of f , convpXq, Z and convpXq assumed compactness. In substituting ω � ω�, the

value of the left-hand side maximisation problem (5.11) is clearly ζCLD, while the same substitution

on the right-hand side (5.10) yields the value ζALρ pω�q, from which we see that ζCLD � ζALρ pω�q. To

prove the last claim, we note that Lρpx
�, z�, ω�q � ζCLD implies that }Qx� � z�}2

2 � 0. Otherwise,

φCpω�q   ζCLD, contradicting the dual optimality of ω�. Thus, px�, z�q is feasible and optimal for

problem (5.2).

The approximation pφ satisfies the following bounding relationship.

Lemma 5.4 For each pxk, zkq, k ¥ 0, such that the z-optimality condition is satisfied:

zk P argmin
z

!��Qxk � z
��2

2
: z P Z

)
, (5.13)

we have for each ω P ZK

pφpω, xk, zkq ¥ φC
�
ω � ρpQxk � zkq

�
. (5.14)

Proof. Via convexity of the term }Qx� z}2
2 over px, zq P convpXq �Z, we may write the following

inequalities that hold for px, zq P convpXq � Z and a fixed ω P ZK. Via the subgradient inequality:

Lρpx, z, ωq ¥ fpxq � ωJQx�
ρ

2

��Qxk � zk
��2

2

� ρpQxk � zkqJpQx� zq � ρpQxk � zkqJpQxk � zkq

� fpxq � ωJQx�
ρ

2

��Qxk � zk
��2

2
� ρpQxk � zkqJpQx� zq

ùñ Lρpx, z, ωq �
ρ

2

��Qxk � zk
��2

2
¥ fpxq �

�
ω � ρpQxk � zkq

�J
Qx (5.15)

¥ min
x

!
fpxq �

�
ω � ρpQxk � zkq

�J
Qx : x P convpXq

)
. (5.16)

Note that the term �ρpQxk�zkqJz vanishes due to the optimality condition associated with (5.13).

Inequality (5.14) follows from the inequalities (5.15)–(5.16) once the substitution px, zq � pxk, zkq

and the definition of pφpω, xk, zkq are applied to the left-hand side of (5.15).

Observe that, due to the linearity of the objective function with respect to x in (5.8), the use of

constraint sets X and convpXq are interchangeable, and so in evaluating qφ, an explicit description

of convpXq is not required. Furthermore, from the definition of φC , the convexity of f over Rn, and

the interchangeability of X and convpXq in (5.8), it is clear that for all xk P Rn, k ¥ 0, we have



98

φCpωq ¥ qφpω, xkq. This is not only true in principle but also practically if one can provide a oracle

that returns an extremal point of convpXq when minimising a linear function over X. When the

non-convexity is entirely due to the presence of integer restrictions on variables, MIP or MINLP

solvers can provide such an oracle. Later in Section 5.2.5 we shall see that the class of problems

that is amenable to the final implementable algorithm is dictated, in practice, by the user’s ability

to provide such an oracle. Moreover, when f is linear, we have φCpωq � qφpω, xkq for all xk, k ¥ 0;

the two functions collapse into the same function with the centering at xk of the latter function

now irrelevant.

The first important property of pω, xq ÞÑ qφpω, xq is its continuity.

Lemma 5.5 Let X be compact, and f be continuously differentiable. Then pω, xq ÞÑ qφpω, xq is

continuous over pω, xq P ZK � Rn.

Proof. From (5.8), compute

qφpω, xq � fpxq �∇xfpxq
Jx�min

x

 �
∇xfpxq � ωJQ

�
x� δconvpXqpxq

(
� fpxq �∇xfpxq

Jx� δ�convpXq

�
�
�
∇xfpxq � ωJQ

��
.

where δconvpXqpxq :�

"
0, if x P convpXq;
8, otherwise.

is the indicator function on the set convpXq and δ�convpXq

is the conjugate function [95] of δconvpXq. As convpXq is convex and compact, we see that δ�convpXqp�q

has domain Rn and is thus continuous over Rn (e.g., Lemma 2.91 of [100]), yielding the intended

conclusion.

The second property of qφ is its limiting behavior as the solutions pxk, zkq approach certain critical

values.

Lemma 5.6 Let the sequence
 
pxk, zkq

(
� convpXq � Z satisfy the z-optimality condition (5.13)

for each k ¥ 1. If, for some fixed ω P ZK, the sequence
 
pxk, zkq

(
converges optimally in the sense

that

lim
kÑ8

pxk, zkq � px�, z�q P argmin
x,z

tLρpx, z, ωq : x P convpXq, z P Zu ,

then

lim
kÑ8

qφpω � ρpQxk � zkq, xkq � Lρpx
�, z�, ωq �

ρ

2
}Qx� � z�}2

2 . (5.17)



99

Proof. We begin by writing the necessary (and sufficient) conditions associated with the optimality

px�, z�q P argminx,z tLρpx, z, ωq : x P convpXq, z P Zu:�
∇fpx�q � rω � ρpQx� � z�qsJQ

�ρpQx� � z�q

� �
x� x�

z � z�

�
¥ 0 for all x P convpXq, z P Z.

Since zk P argminz

!��Qxk � z
��2

2
: z P Z

)
for each k ¥ 1, we have Qxk � zk P ZK, and so Qx�� z� P

ZK also. Thus, we can simplify the consideration of the above displayed necessary conditions to

consider the x block only:

�
∇fpx�q � rω � ρpQx� � z�qsJQ

�J
r x� x� s ¥ 0 for all x P convpXq,

which implies

min
x

!�
∇fpx�q � rω � ρpQx� � z�qsJQ

�J
r x� x� s : x P convpXq

)
� 0.

In terms of qφpω � ρpQx� � z�q, x�q, the above equality is re-written as:

qφpω � ρpQx� � z�q, x�q � fpx�q � ωJQx� � ρ }Qx� � z�}2
2

� Lρpx
�, z�, ωq �

ρ

2
}Qx� � z�}2

2 ,

where the equality pQx� � z�qJz� � 0 is utilised. The continuity of pω, xq ÞÑ qφpω, xq established in

Lemma 5.5 gives the desired conclusion.

We use Lemmas 5.5 and 5.6 to develop the proximal bundle method-like serious step condition

(SSC) that makes use of pφ and qφ in place of the cutting plane model and φ, respectively. Definingrωk :� ωk � ρpQxk � zkq, consider the following modified serious step condition:

γ ¤
qφprωk, xkq � qφpωk, xk�1qpφpωk, xk, zkq � qφpωk, xk�1q

¤ 1, (5.18)

where γ P p0, 1q is the SSC parameter. The upper bound of (5.18) is satisfied automatically sincepφpωk, xk, zkq ¥ φCprωkq ¥ qφprωk, xkq holds by Lemma 5.4 and the definition of qφ. However, the

satisfaction of the lower bound is conditional on γ.

Remark 5.7 Throughout this chapter, we shall always assume or construct zk such that the z-

optimality condition (5.13) is satisfied for each k ¥ 0. Due to the necessary conditions of optimality

associated with (5.13) and that Z is a linear subspace, we have pQxk � zkqJz � 0 for all z P Z. It



100

immediately follows that if ωk P ZK, then rωk � ωk � ρpQxk � zkq P ZK also. Thus, the satisfaction

of the z-optimality condition (5.13) guides the generation of
 
ωk

(
so that if ω0 P ZK, then ωk P ZK

is always maintained for each k ¥ 1.

Under certain circumstances, the denominator of the ratio displayed in (5.18) can be zero. The

following lemma states that this never happens when ωk is not dual optimal with respect to the

dual problem (5.3).

Lemma 5.8 For any ω P ZK that is not dual optimal with respect to the dual problem (5.3) and

px, zq P convpXq � Z, we have pφpω, x, zq � φCpωq ¡ 0. (5.19)

Consequently, at any iteration k, the denominator of the ratio displayed in (5.18) cannot be zero

when ωk is not dual optimal.

Proof. By the definition of pφ , we have

pφpω, x, zq � φCpωq ¥ Lρpx
�, z�, ωq �

ρ

2
}Qx� z}2

2 � φCpωq

for all convpXq and z P Z, where

px�, z�q P argmin
x,z

tLρpx, z, ωq : x P convpXq, z P Zu .

(That is, we substitute Lρpx, z, ωq from the definition of pφ with Lρpx
�, z�, ωq to get the inequality.)

Now Lρpx
�, z�, ωq � φCpωq ¡ 0 when ω is not dual optimal. Otherwise, if Lρpx

�, z�, ωq � φCpωq,

then Qx� � z� must hold, and px�, z�, ωq is a Lagrangian saddle point for problem (5.2) with respect

to the Lagrangian relaxation of the constraint Qx � z. This contradicts the non-dual optimality of

ω. Thus, the strict inequality (5.19) is established.

In the context of (5.18) at iteration k, noting that φCpωkq ¥ qφpωk, xk�1q, we substitute px, zq �

pxk, zkq and ω � ωk in the strict inequality (5.19) and so the denominator in (5.18) is positive when

ωk is not dual optimal.

From Lemma 5.6, we have the following result regarding the satisfaction of condition (5.18).

Proposition 5.9 Let the sequence
 
pxk, zkq

(
� convpXq � Z satisfy

zk P argmin
z

!��Qxk � z
��2

2
: z P Z

)



101

for each k ¥ 1. Furthermore, let ω P ZK and ω R argmaxω φpωq. If the sequence
 
pxk, zkq

(
converges

optimally in the sense that

lim
kÑ8

pxk, zkq � px�, z�q P argmin
x,z

tLρpx, z, ωq : x P convpXq, z P Zu ,

then condition (5.18) must be satisfied after a finite number of iterations.

Proof. For all pxk, zkq P convpXq � Z with zk P argminz

!��Qxk � z
��2

2

)
, we have

pφpω, xk, zkq � Lρpx
k, zk, ωq �

ρ

2

��Qxk � zk
��2

2

¥ φCpω � ρpQxk � zkqq ¥ qφpω � ρpQxk � zkq, xkq,

where the first inequality follows from the definition of pφ and Lemma 5.4, and the second inequality

follows readily from the definition of qφ, the subgradient inequality and the interchangeability of X

and convpXq. By the assumption that ω is not dual optimal, the denominator of (5.18) cannot

be zero by Lemma 5.8. It follows from the convergence in (5.17) implied by Lemma 5.6 that the

ratio in (5.18) must approach 1, and so condition (5.18) must be satisfied after a finite number of

iterations.

Consequently, unless the current ωk is already dual optimal, there cannot be an infinite number

of null-steps when using condition (5.18). Recall that we use k to count only serious steps.

Proposition 5.10 Assume that problem (5.3) has an optimal dual solution ω�, and that for each

k ¥ 1, φCpωkq   φCpω�q. Also, assume that ρ and γ may vary with each iteration, defined by

sequences tρku and tγku such that ρk ¡ 0 and γk P p0, 1q, bounded strictly away from zero for all

k ¥ 1, and ρk

�
1�γk
γk

	
� c ¡ 0 for all k. If the sequence

 
ωk

(
of dual updates is generated with

Algorithm 5.1 with ε � 0 and kmax � 8, then
 
ωk

(
converges, and limkÑ8

qφpωk, xk�1q � ζCLD (and

consequently limkÑ8 φ
Cpωkq � ζCLD). Furthermore,

lim
kÑ8

pφpωk, xk, zkq � ζCLD,

and all limit points px̄, z̄q of the sequence
 
pxk, zkq

(
are optimal for problem (5.2).

Proof. Let ω� be any dual optimal solution for problem (5.3). For each iteration k ¥ 1, write the



102

following two relations:

��ωk�1 � ω�
��2

2
�
��ωk � ω� � ρkpQx

k � zkq
��2

2

�
��ωk � ω�

��2

2
� 2ρkpQx

k � zkqJpωk � ω�q � ρ2
k

��Qxk � zk
��2

2
, (5.20)

and φCpω�q ¤Lρkpx
k, zk, ω�q � Lρkpx

k, zk, ωkq � pω� � ωkqJpQxk � zkq

ùñ pωk � ω�qJpQxk � zkq ¤ Lρkpx
k, zk, ωkq � φCpω�q. (5.21)

Substituting the inequality (5.21) into equality (5.20), we have

��ωk�1 � ω�
��2

2
¤
��ωk � ω�

��2

2

� 2ρk
�
Lρkpx

k, zk, ωkq � φCpω�q
�
� ρ2

k

��Qxk � zk
��2

2
(5.22)

�
��ωk � ω�

��2

2
� 2ρk

�qφpωk, xk�1q � φCpω�q
�

� 2ρk

�
Lρkpx

k, zk, ωkq �
ρk
2

��Qxk � zk
��2

2
� qφpωk, xk�1q

�
. (5.23)

By assumption, for each k ¥ 1, we have φCpωkq   φCpω�q, so by Lemma 5.8 and ε � 0, the

Line 8 condition of Algorithm 5.1 never holds. Therefore the alternate Line 9 termination condi-

tion, which is equivalent to the satisfaction of condition (5.18), must be satisfied for each k ¥ 1.

Rewriting (5.18), with the substitution rωk � ωk�1, as

Lρkpx
k, zk, ωkq �

ρk
2

��Qxk � zk
��2

2
� qφpωk, xk�1q ¤

qφpωk�1, xkq � qφpωk, xk�1q

γk
(5.24)

and substituting (5.24) into (5.23), we have

��ωk�1 � ω�
��2

2
¤
��ωk � ω�

��2

2
� 2ρk

�qφpωk, xk�1q � φCpω�q
�

�
2ρk
γk

�qφpωk�1, xkq � qφpωk, xk�1q
�

¤
��ωk � ω�

��2

2
� 2ρk

�qφpωk�1, xkq � φCpω�q
�

� 2ρkp
1� γk
γk

q
�qφpωk�1, xkq � qφpωk, xk�1q

�
(5.25)

From (5.25), we make the following three inferences: 1) that
 ��ωk � ω�

��( is bounded, 2) that°8
k�1

�
φCpω�q � φCpωkq

�
is finite, and 3) that

 
ωk

(
converges. To establish these inferences, we

rearrange terms and sum the inequality (5.25) from k � `, . . . , N for some integers 1 ¤ ` ¤ N to



103

get

2
Ņ

k�`

ρk

�
φCpω�q � qφpωk�1, xkq

�
�
��ωN�1 � ω�

��2

2

¤
��ω` � ω�

��2

2
� 2ρN

�
1� γN
γN


 qφpωN�1, xNq � 2ρ`

�
1� γ`
γ`


 qφpω`, x`�1q

� 2
N�1̧

k�`

�
ρk

�
1� γk
γk



� ρk�1

�
1� γk�1

γk�1


� qφpωk�1, xkq

¤
��ω` � ω�

��2

2
� 2c

�
φCpω�q � qφpω`, x`�1q

�
, (5.26)

where the last inequality follows from the assumption that ρk

�
1�γk
γk

	
� c for all k and the bounding

relationships implied by the optimality of ω�:

φCpω�q ¡ φCpωk�1q ¥ qφpωk�1, xkq (5.27)

Noting that each summand φCpω�q � qφpωk�1, xkq in the summation on the left-hand side of (5.26)

is nonnegative so we have immediately from (5.26) that
°8
k�1 ρk

�
φCpω�q � qφpωk, xk�1q

�
  8 and 

pωk � ω�q
(

is bounded, establishing the first two inferences from (5.25). The validity of the first

two inferences imply the boundedness of
 
ωk

(
and the convergence limkÑ8

qφpωk, xk�1q � φCpω�q,

respectively. The boundedness of
 
ωk

(
implies the existence of limit points, while the convergence

limkÑ8
qφpωk, xk�1q � φCpω�q implies that all such limit points are dual optimal. It is straightforward

from (5.27) that limkÑ8 φ
Cpωkq � φCpω�q also.

To establish the third assertion, that
 
ωk

(
in fact converges, we drop the summation from the

left-hand side of (5.26),��ωN�1 � ω�
��2

2
¤
��ω` � ω�

��2

2
� 2c

�
φCpω�q � qφpω`, x`�1q

�
, (5.28)

and note that the above analysis holds independent of the choice of dual optimal ω�. Since it was

just shown that
 
ωk

(
has limit points, and that all such limit points are dual optimal, we now

specify ω� to be one of these limit points. We then choose an appropriate ` for any ε ¡ 0 so that

the right-hand side of (5.28) is arbitrarily small, i.e.,��ωN�1 � ω�
��2

2
¤ ε

for all N ¥ `. Thus, limkÑ8 ω
k � ω�, and it is clear that the limit point ω� of

 
ωk

(
is in fact

unique.



104

To prove the last assertion, the satisfaction of (5.18) is rewritten as

qφpωk�1, xkq � qφpωk, xk�1q ¤ pφpωk, xk, zkq � qφpωk, xk�1q

¤
1

γk

�qφpωk�1, xkq � qφpωk, xk�1q
	
.

Due to the convergence limkÑ8
qφpωk, xk�1q � ζCLD, we have on taking the limit as k Ñ 8

of the last displayed inequalities that limkÑ8
pφpωk, xk, zkq � ζCLD. Noting that pφpωk, xk, zkq �

Lρkpx
k, zk, ωkq � ρk

2

��Qxk � zk
��2

2
, it is clear that if lim supkÑ8 ρk � 8, then we have

lim
kÑ8

��Qxk � zk
��2

2
� 0

and

lim
kÑ8

Lρkpx
k, zk, ωkq � ζCLD,

and so the limit points of
 
pxk, zkq

(
must be feasible and furthermore optimal for (5.2). Now assume

0   lim sup ρk   8. In taking the limit points px̄, z̄, ω�q of the sequence
 
pxk, zk, ωkq

(
and ρ̄ of

tρku, noting that the optimal value of problem (5.9) with ω � ω� is ζCLD by Lemma 5.3,

ζCLD �
ρ̄

2
}Qx̄� z̄}2

2 ¤ Lρ̄px̄, z̄, ω
�q �

ρ̄

2
}Qx̄� z̄}2

2 � ζCLD.

From this, it follows that }Qx̄� z̄}2
2 � 0 and Lρ̄px̄, z̄, ω

�q � ζCLD, and so px̄, z̄q must be feasible

and furthermore optimal for (5.2).

5.2.2 Convergence Rate Analysis for Augmented Lagrangian Method

The proof of Proposition 5.10 allows for the following remarks on the rate-of-convergence associated

with limkÑ8
qφpωk, xk�1q � ζCLD. Note that each iteration k of Algorithm 5.1 corresponds to a

serious step update of ωk.

1. Let ρk � ρ and γk � γ for all k ¥ 1, where ρ ¡ 0 and γ P p0, 1q are constants. Then, from the

proof of Proposition 5.10, we have

Ņ

k�1

�
φCpω�q � qφpωk, xk�1q

�
  8

and since
!qφpωk, xk�1q

)
is monotonically non-decreasing, it is clear that

φCpω�q � qφpωk, xk�1q � op1{kq,

where o is the Little-o notation.



105

2. Let ρk � kρ for some constant ρ ¡ 0 and γk � ρk
c�ρk

for some constant c ¡ 0 so that

ρk

�
1�γk
γk

	
� c is a constant. Then we have

°N
k�1 k

�
φCpω�q � qφpωk, xk�1q

�
  8,

and so φCpω�q � qφpωk, xk�1q � op1{k2q.

3. Let ρk � ρbk for some constant ρ ¡ 0 and b ¡ 1, and as γk �
ρk
c�ρk

for some constant c ¡ 0 so

that ρk

�
1�γk
γk

	
� c, a constant. Then we have

°N
k�1 b

k
�
φCpω�q � qφpωk, xk�1q

�
  8,

and so φCpω�q � qφpωk, xk�1q � opb�kq.

Since the number of null step updates per serious step is not fixed, and a null step does not

require significantly less computational effort, these convergence results in terms of serious steps

cannot be generalised to a convergence result in terms of total steps or runtime without some notion

of how often null steps are taken.

Exploratory numerical tests did not conclusively reveal any clear and consistent pattern to

the frequency of null steps as the algorithm progresses. However, for at least some combinations of

instances and parameters the null step frequency increased significantly as the duality gap decreased.

Therefore, the practical convergence behaviour of the algorithm in terms of runtime is likely worse

than the above results would suggest.

5.2.3 Integration of the Simplicial Decomposition and Gauss-Seidel
Methods

We consider the following general two-block problem

min
x,z

tF px, zq : x P convpXq, z P Zu (5.29)

where F : Rn � Rq ÞÑ R is a continuously differentiable function, convpXq and Z are closed

convex sets, and convpXq is also bounded. (Z can be more generally a convex set in this setting,

not necessarily a linear (sub)space.) Additionally, we assume for each fixed x P convpXq that

z ÞÑ F px, zq is inf-compact. (That is, the set tz P Z : F px, zq ¤ `u is compact for all x P convpXq

and ` P R.) In the context of Algorithm 5.1, we would identify F px, zq � Lρpx, z, ωq for a given ω.



106

Problem (5.29) is assumed to be feasible, bounded, and to have an optimal solution px�, z�q.

We shall utilise the following two-block nonlinear Gauss-Seidel (GS) method with the x update

approximated in a manner resembling an iteration of the SDM. As per Assumption 5.2, we assume

the user provides an oracle to return an extremal point in convpXq when minimising a linear function

over X. This can be used to initialise the following and later algorithms.

Algorithm 5.2 An iteration of inner-approximated nonlinear Gauss-Seidel approach applied to
problem (5.29).

1: Precondition: rx P convpXq, rz P argminz tF prx, zq : z P Zu, D � convpXq
2: function SDM-GS(F , X, Z, D, rx, rz, tmax)
3: for t � 1, . . . , tmax do
4: rxÐ argminx tF px, rzq : x P Du
5: rz Ð argminz tF prx, zq : z P Zu
6: end for
7: px P argminx

 
∇xF prx, rzqJpx� rxq : x P X

(
8: Reconstruct D to be any set such that
9: trx� αppx� rxq : α P r0, 1su � D � convpXq

10: Set Γ Ð �∇xF prx, rzqppx� rxq
11: return prx, rz,D,Γq
12: end function

If the z block update of Line 5 is trivialised, such as by making it not actually appear in the

definition of F , or by making Z a singleton set, then Algorithm 5.2 would be identical to SDM

applied to problem (5.29) in which the z block of variables correspondingly does not play any role.

On the other hand, if the x update (4) is replaced with an update based on an exact minimisationrxÐ argminx tF px, rzq : x P convpXqu (so that the computations of Lines 7–10 and the returning of

D and Γ can be skipped), then Algorithm 5.2 would be equivalent to a more traditional two-block

nonlinear Gauss-Seidel method. Different forms of approximation of the x update, such as those

resulting from gradient descent steps in x, are also considered in [53, 20].

Remark 5.11 The main approach envisioned for constructing the inner approximation D on lines 8

and 9 is to take D Ð convpDY trx, pxuq. To implement this update of D, we need to save the pointspx computed during previous calls to Algorithm 5.2.

We assume in the following proposition that Algorithm 5.2 is applied iteratively in the sense

that at iteration k ¥ 0, we input prx, rzq � pxk, zkq and return prx, rzq � pxk�1, zk�1q. Furthermore,



107

at the same iteration k call of Algorithm 5.2, we set dk�1 � px � rx where px and rx are set as in

Line 9. This provides a reference sequence of directions
 
dk
(

necessary in the proof of the following

proposition.

Proposition 5.12 For problem (5.29), let F be convex and continuously differentiable, and let

convpXq and Z be nonempty and convex, with convpXq bounded and z ÞÑ F px, zq inf-compact for

each x P convpXq. Then, for any tmax ¥ 1, the sequence
 
pxk, zkq

(
generated by iterations of

Algorithm 5.2 has limit points px̄, z̄q, each of which are optimal for problem (5.29).

Proof. In light of the convexity and continuous differentiablity of F and the convexity of convpXq

and Z, it is sufficient to show that

∇xF px̄, z̄q
Jpx� x̄q ¥ 0 for all x P convpXq (5.30)

and ∇zF px̄, z̄q
Jpz � z̄q ¥ 0 for all z P Z. (5.31)

As∇zF px
k, zkqJpz�zkq ¥ 0 for all z P Z holds for each k ¥ 1 (this follows due to the optimality zk P

argminz
 
F pxk, zq : z P Z

(
that holds by construction) the satisfaction of the latter condition (5.31)

is trivially established for any limit points px̄, z̄q. It remains only to show the satisfaction of the

x-stationarity condition (5.30). This may be established by using Proposition 3.2 of [20] combined

with the last sentence of Remark 3.3 from the same reference; a more explicit proof that (5.30)

holds is given in Section 5.2.4.

Note, for the sake of nontriviality, that ∇xF px
k, zkqJpx � xkq ¥ 0 for all x P X is assumed not

to hold for any k ¥ 1. Thus, with reference to the argument given in Section 5.2.4, the sequence

of directions
 
dk
(

satisfy the the Direction Assumption (DA), prior to Algorithm 5.3. Also, the

Gradient Related Assumption (GRA) referred to in Section 5.2.4 is satisfied for this same
 
dk
(
, by

Lemma 5.16 therein. Due to the construction of D in Line 9 and setting pxk�1, zk�1q � prx, rzq after

the termination of the for loop of Lines 3–6, we have given
 
dk
(

and any choice of pβ, σq P p0, 1q

the satisfaction of the Sufficient Decrease Assumption (SDA), also referred to in Section 5.2.4. It

then follows from Lemma 5.14 that limit points px̄, z̄q of
 
pxk, zkq

(
do exists, and that each of which

satisfies the stationarity condition (5.30).



108

5.2.4 Establishing optimal convergence of SDM-GS

Given initial px0, z0q P X�Z � Rn�Rq, we consider the generation of the sequence
 
pxk, zkq

(
with

iterations computed using Algorithm 5.3, whose target problem is given by

min
x,z

tF px, zq : x P X, z P Zu , (5.32)

where px, zq ÞÑ F px, zq is convex and continuously differentiable over X �Z, and sets X and Z are

closed and convex, with X bounded and z ÞÑ F px, zq is inf-compact for each x P X.

We define the directional derivative with respect to x as

F 1
xpx, z; dq :� lim

αÓ0

F px� αd, zq � F px, zq

α
.

Of interest is the satisfaction of the following local stationarity condition at x P X:

F 1
xpx, z; dq ¥ 0 for all d P X � txu (5.33)

for any limit point px, zq � px̄, z̄q of some sequence
 
pxk, zkq

(
of feasible solutions to problem (5.32).

For the sake of nontriviality, we shall assume that the x-stationarity condition (5.33) never holds

at px, zq � pxk, zkq for any k ¥ 0. Thus, for each xk, k ¥ 0, there always exists a dk P X �
 
xk
(

for

which F 1
xpx

k, zk; dkq   0.

Direction Assumptions (DAs): For each iteration k ¥ 0, given xk P X and zk P Z, we have dk

chosen so that 1) xk � dk P X; and 2) F 1
xpx

k, zk; dkq   0.

Gradient Related Assumption (GRA): Given a sequence
 
pxk, zkq

(
with

limkÑ8px
k, zkq � px, zq, and a bounded sequence

 
dk
(

of directions, then the existence of a direction

d P X � txu such that F 1
xpx, z; dq   0 implies that

lim sup
kÑ8

F 1
xpx

k, zk; dkq   0. (5.34)

In this case, we say that
 
dk
(

is gradient related to
 
xk
(
. This gradient related condition is similar

to the one defined in [12]. The sequence of directions dk is typically gradient related to
 
xk
(

by

construction. (See Lemma 5.16.)

To state the last assumption, we require the notion of an Armijo rule step length αk P p0, 1s

given pxk, zk, dkq and parameters β, σ P p0, 1q.



109

Algorithm 5.3 Computing an Armijo rule step length αk at iteration k.

1: function ArmijoStep(F , xk, zk, dk, β, σ)
2: αk Ð 1
3: while F pxk � αkdk, zkq � F pxk, zkq ¡ αkσF 1

xpx
k, zk; dkq do

4: αk Ð βαk

5: end while
6: return αk

7: end function

Remark 5.13 Under mild assumptions on F such as continuity that guarantee the existence of

finite F 1
xpx, z; dq for all px, z, dq P tpx, z, dq : x P X, d P X � txu , z P Zu, we may assume that the

while loop of Lines 3–5 terminates after a finite number of iterations. Thus, we have αk P p0, 1s for

each k ¥ 1.

The last significant assumption is stated as follows.

Sufficient Decrease Assumption (SDA): For sequences
 
pxk, zk, dkq

(
and step lengths

 
αk

(
computed according to Algorithm 5.3, we assume for each k ¥ 0, that pxk�1, zk�1q satisfies

F pxk�1, zk�1q ¤ F pxk � αkdk, zkq.

Lemma 5.14 resembles standard Armijo rule convergence proofs for algorithms which take it-

erative steps in a single variable, but incorporating the z-update required by our Gausss-Seidel

approach requires special care.

Lemma 5.14 For problem (5.32), let F : Rnx�Rnz ÞÑ R be convex and continuously differentiable,

X � Rnx convex and compact, and Z � Rnz closed and convex. Furthermore, assume for each

x P X that z ÞÑ F px, zq is inf-compact. If a sequence
 
pxk, zk, dkq

(
satisfies the DA, the GRA, and

the SDA for some fixed β, σ P p0, 1q, then the sequence pxk, zkq has limit points px, zq, each of which

satisfies the stationarity condition (5.33).

Proof. The existence of limit points px, zq follows from the compactness of X, the inf-compactness

of z ÞÑ F px, zq for each x P X, and the SDA. In generating
 
αk

(
according to the Armijo rule as

implemented in Lines 2–5 of Algorithm 5.3, we have

F pxk � αkdk, zkq � F pxk, zkq

αk
¤ σF 1

xpx
k, zk; dkq. (5.35)



110

By the DA, F 1
xpx

k, zk; dkq   0 and since αk ¡ 0 for each k ¥ 1 by Remark 5.13, we infer from (5.35)

that F pxk � αkdk, zkq   F pxk, zkq. By construction, we have F pxk�1, zk�1q ¤ F pxk � αkdk, zkq  

F pxk, zkq.. By the monotonicity F pxk�1, zk�1q   F pxk, zkq and F being bounded from below on

X � Z, we have limkÑ8 F px
k, zkq � F̄ ¡ �8. Therefore,

lim
kÑ8

F pxk�1, zk�1q � F pxk, zkq � 0,

which implies

lim
kÑ8

F pxk � αkdk, zkq � F pxk, zkq � 0. (5.36)

We assume for sake of contradiction that limkÑ8px
k, zkq � px, zq does not satisfy the stationarity

condition (5.33). By GRA, we have that
 
dk
(

is gradient related to
 
xk
(
; that is,

lim sup
kÑ8

F 1
xpx

k, zk; dkq   0. (5.37)

Thus, it follows from (5.35)–(5.37) that limkÑ8 α
k � 0.

Consequently, after a certain iteration k ¥ k̄, we can define
 
ᾱk

(
, ᾱk � αk{β, where ᾱk ¤ 1 for

k ¥ k̄, and so we have

σF 1
xpx

k, zk; dkq  
F pxk � ᾱkdk, zkq � F pxk, zkq

ᾱk
. (5.38)

Since F is continuously differentiable, the mean value theorem may be applied to the right-hand

side of (5.38) to get

σF 1
xpx

k, zk; dkq   F 1
xpx

k � rαkdk, zk; dkq, (5.39)

for some rαk P r0, αks.
Again, using the assumption lim supkÑ8 F

1
xpx

k, zk; dkq   0, and also the compactness of X �X,

we take a limit point d of
 
dk
(
, with its associated subsequence index set denoted by K, such that

F 1
xpx, z, dq   0. Taking the limits over the subsequence indexed by K, we have

lim
kÑ8,kPK

F 1
xpx

k, zk; dkq � F 1
xpx, z; dq

and

lim
kÑ8,kPK

F 1
xpx

k � rαkdk, zk; dkq � F 1
xpx, z; dq.

These two limits holds since 1) px, zq ÞÑ F 1
xpx, z; dq for each d P X � X is continuous and 2)

d ÞÑ F 1
xpx, z; dq is locally Lipschitz continuous for each px, zq P X�Z (e.g., Proposition 2.1.1 of [26]);



111

these two facts together imply that px, z; dq ÞÑ F 1
xpx, z; dq is continuous. Then, inequality (5.39)

becomes in the limit as k Ñ 8, k P K,

σF 1
xpx, z; dq ¤ F 1

xpx, z; dq ùñ 0 ¤ p1� σqF 1
xpx, z; dq.

Since p1� σq ¡ 0 and F 1
xpx, z; dq   0, we have a contradiction. Thus, x must satisfy the stationary

condition (5.33).

Remark 5.15 Noting that F 1
xpx

k, zk; dkq � ∇xF px
k, zkqJdk under the assumption of continuous

differentiability of F , one means of constructing
 
dk
(

is as follows:

dk Ð argmin
d

 
∇xF px

k, zkqJd : d P X �
 
xk
((
. (5.40)

Lemma 5.16 Given sequence
 
pxk, zkq

(
with limkÑ8px

k, zkq � px, zq, let each dk, k ¥ 1, be gen-

erated as in (5.40). Then
 
dk
(

is gradient related to
 
xk
(

.

Proof. By the construction of dk, k ¥ 1, we have

F 1
xpx

k, zk; dkq ¤ F 1
xpx

k, zk; dq @ d P X �
 
xk
(
.

Taking the limit, we have

lim sup
kÑ8

F 1
xpx

k, zk; dkq ¤ lim sup
kÑ8

F 1
xpx

k, zk; dq ¤ F 1
xpx, z; dq @ d P X � txu ,

where the last inequality follows from the upper semicontinuity of the function px, z, dq ÞÑ F 1
xpx, z; dq,

which holds in our setting due, primarily, to Proposition 2.1.1 (b) of [26] given that F is assumed

to be convex and continuous on Rn. Taking

d P argmin
d

 
F 1
xp3x, z; dq : d P X � txu

(
,

we have by the assumed nonstationarity that F 1
xpx, z; dq   0. Thus, lim supkÑ8 F

1
xpx

k, zk; dkq   0,

and so GRA holds.

5.2.5 Implementing the Augmented Lagrangian Method using SDM-
GS

The method SDM-GS-ALM is now stated as Algorithm 5.4, which uses Algorithm 5.2 as a subroutine

to provide a practical implementation of Algorithm 5.1.



112

Remark 5.17 At the return of Algorithm 5.2 in Line 8 of Algorithm 5.4, we have

Γ � �∇xLρpx
k, zk, ωkqJppx� xkq

� �
�
∇xfpx

kq �
�
ωk � ρpQxk � zkq

�J
Q
�J
ppx� xkq

where px is computed on Line 7 of Algorithm 5.2. One may verify the equality pQxk�zkqJzk � 0 due

to zk P argminz

!��Qxk � z
��2

2
: z P Z

)
. Moreover using this value of Γ and the computation of rφ on

Lines 4 and 12 one may show, using the fact that x̂ P argminxt∇xLρpx
k, zk, ωkqJpx� xkq : x P Xu,

that rφ � Lρpx
k, zk, ωkq �

ρ

2

��Qxk � zk
��2

2
� Γ � qφ �ωk � ρpQxk � zkq, xk

�
.

Algorithm 5.4 A practical implementation of Algorithm 5.1 based on the use of SDM-GS itera-
tions. (SDM-GS is given as Algorithm 5.2.)

1: Preconditions: x0 P convpXq, z0 P Z, ω0 P ZK, D � convpXq, γ P p0, 1q.
2: function SDM-GS-ALM(f , Q, X, Z, D, ρ, x0, z0, ω0, γ, ε, tmax, kmax)
3: px0, z0, D,Γq Ð SDM-GS(Lρp�, �, ω

0q, X, Z, D, x0, z0, tmax)

4: rφÐ Lρpx
0, z0, ω0q � ρ

2
}Qx0 � z0}

2
2 � Γ

5: set ω0 Ð ω0 � ρpQx0 � z0q, qφ0 Ð rφ
6: for k � 1, 2, . . . , kmax do
7: Initialise ωk Ð ωk�1, qφk Ð qφk�1 � (Default, null-step updates)
8: pxk, zk, D,Γq Ð SDM-GS(Lρp�, �, ω

kq, X, Z, D, xk�1, zk�1, tmax)

9: if Lρpx
k, zk, ωkq � ρ

2

��Qxk � zk
��2

2
� qφk ¤ ε then

10: return pxk, zk, ωk, qφkq
11: end if
12: rφÐ Lρpx

k, zk, ωkq � ρ
2

��Qxk � zk
��2

2
� Γ

13: ηk Ð
rφ�qφk

Lρpxk,zk,ωkq�
ρ
2
}Qxk�zk}22�

qφk

14: if ηk ¥ γ then
15: set ωk Ð ωk � ρpQxk � zkq, qφk Ð rφ
16: end if
17: Possibly update ρ, e.g., ρÐ 1

mintmaxtp2{ρqp1�ηkq,1{p10ρq,10�4u,10{ρu
as in [69]

18: If ρ was updated, γ Ð ρk
ρk�c

19: end for
20: return pxk, zk, ωk, qφkq
21: end function

Proposition 5.18 Let
 
pxk, zk, ωkq

(
be a sequence generated by Algorithm 5.4 applied to prob-

lem (5.1) with X compact, Z a linear subspace, ω0 P ZK, ρ ¡ 0, γ P p0, 1q, ε � 0 and kmax � 8. If

there exists a dual optimal solution ω� to the dual problem (5.3), then either



113

1. ωk � ω is fixed and optimal for (5.3) for k ¥ k̄ for some finite k̄; or

2. ωk is never optimal for (5.3) for any finite k ¥ 1, but limkÑ8 ω
k � ω is optimal,

and the sequence
 
pxk, zkq

(
has limit points px, zq, each of which are optimal for problem (5.2).

Proof. In the first case, Algorithm 5.4 never takes serious steps for iterations k ¥ k̄ ¥ 1, and so

with ωk � ω, optimal for (5.3) and fixed for k ¥ k̄, the Algorithm 5.4 iterations continue with the

generation of
 
pxk, zkq

(
as generated by iterations of SDM-GS (Algorithm 5.2). By Proposition 5.12,

the sequence
 
pxk, zkq

(
has limit points px, zq, each of which is optimal for problem (5.9) with ω � ω.

Then, by Lemma 5.3, px, zq is also optimal for problem (5.2) since ω is optimal for (5.3).

In the second case, where ωk is never dual optimal for (5.2) for any finite k ¥ 1, any serious

step must be followed by a finite number of consecutive null-steps. We consider the subsequence

indices tkiu
8
i�1 where the update ωki�1 is obtained by a serious step. By Proposition 5.10, we have

limiÑ8 φ
Cpωki�1q � ζCLD, and accommodating the null steps in between, we have also limk φ

Cpωkq �

ζCLD. To prove the last claim, we note that ωj � ωki�1 for all integers j such that ki   j ¤ ki�1 due

to the taking of null steps. From Proposition 5.10, we have that limiÑ8 Lρpx
ki , zki , ωkiq � ζCLD. By

the continuity of px, z, ωq ÞÑ Lρpx, z, ωq, the convergences limkÑ8 ω
k � ω and limiÑ8Qx

ki�zki � 0

(again, Proposition 5.10), we have limiÑ8 Lρpx
ki , zki , ωki�1q � ζCLD also. Next, at each i, and

integers j such that ki   j ¤ ki�1, observe that

Lρpx
ki , zki , ωki�1q ¥ Lρpx

j, zj, ωjq ¥ Lρpx
ki�1 , zki�1 , ωki�1q.

In taking the limit of the above inequality as iÑ 8, it becomes evident that limkÑ8 Lρpx
k, zk, ωkq �

ζCLD in the original sequence also. By the optimality of ω for problem (5.3), we know from

Lemma 5.3 that ζALρ pωq � ζCLD, and so each limit point px, zq must be optimal for problem (5.9)

with ω � ω. Furthermore, by Lemma 5.3, px, zq must also be optimal for problem (5.2). (These

limit points exist furthermore, due to the compactness of convpXq and the continuous and closed-

form expression that the unique solution zk P argminz

!��Qxk � z
��2

2
: z P Z

)
has given xk P convpXq

when Z is a linear subspace.)



114

5.2.6 Parallelisation and Workload

The opportunities for parallelisation and distribution of the computational workload in SDM-GS-

ALM, as stated in Algorithm 5.4, are not immediately apparent. This section explicitly indicates

which update problems may be solved in parallel, and the nature of the required communication

between the parallel computational nodes.

The bulk of computational work, parallelisation, and parallel communication occurs within

the SDM-GS method stated in Algorithm 5.2, where for the problems of interest, the following

decomposable structures apply: X �
±m

i�1Xi, D �
±m

i�1Di, and F px, zq �
°m
i�1 F pxi, zq. In the

larger context of Algorithm 5.4, the subproblem of Line 4 in Algorithm 5.2 can be solved in parallel

given fixed rz P Z and ω P ZK along the block indices i � 1, . . . ,m as

min
x

!
fipxq � pωiq

JQix�
ρ

2
}Qix� rzi}2

2 : x P Di

)
, (5.41)

while the subproblem of Line 7 is solved as

min
x

!
∇xfiprxiq � pωi � ρpQirxi � rziqqJQix : x P Xi

)
.

Remark 5.19 In the setting where problem (5.1) is a large-scale mixed-integer linear optimization

problem, the subproblems of Line 4 are continuous convex quadratic optimization problems for each

block i � 1, . . . ,m, which can be solved independently of one another and in parallel. In the same

setting, the Line 7 subproblems are mixed-integer optimization problems for each block i � 1, . . . ,m,

which can also be solved independently of one another and in parallel. Additionally, the reconstruc-

tion of D occurring in Line 9 can be done in parallel for each Di along the indices i � 1, . . . ,m.

Parallel communication is needed for the computation of the z update in Line 5 in Algorithm 5.2.

In the larger context of Algorithm 5.4, this takes the form of solving

min
z

#
m̧

i�1

}Qirxi � zi}
2
2 : z P Z

+
.

This minimum corresponds to taking an average, which we can accomplish this by using a reduce

type parallel communication. This type of communication applies an operator (in this case, sum-

mation) to the value in each processor. Dividing by m afterwards yields the desired average. The

evaluation of the serious step condition through calculating ηk in Line 13 in Algorithm 5.4 also re-

quires a reduce-sum type parallel communication. For implementation purposes, the computation



115

of these values, including the computation of Γ from the SDM-GS call, can be combined into one

reduce-sum communication.

In total, each iteration of Algorithm 5.4 requires two reduce-sum type communications, one for

computing the z-update of Line 5 Algorithm 5.2, and one combined reduce-sum communication to

compute scalars associated with the Lagrangian bounds and the critical values for the termination

conditions. The storage and updates of xk and ωk and D can also be done in parallel, while zk and

γk need to be computed and stored by every processor at each iteration k.

5.3 Computational Results

5.3.1 Preliminary Information

In this section, we present and examine the results of two computational tests with the following

purposes:

Test 1: to demonstrate the effect of enforcing the serious step condition on the Lagrangian values;

Test 2: to compare the parallel speedup obtained with the use of two parallel implementations

of SDM-GS-ALM (Algorithm 5.4) versus the parallel speedups reported in [79] for two other

parallel approaches. Additionally, the final iteration Lagrangian bounds are compared between

the different parallel implementations for each experiment.

Computational experiments were performed on instances from three classes of problems. The first

class consists of the capacitated allocation problems (CAP) [15]. The second and third classes

consist of the DCAP and SSLP problems from the Stochastic Integer Programming Test Problem

Library (SIPLIB), which are described in detail in [91, 3] and accessible at [3]. These are all large-

scale mixed-integer linear optimization problems, so the preceding observations for when f is linear

apply.

Test 1 was conducted with a Matlab 2012b [83] serial implementation of Algorithm 5.4 using

CPLEX 12.6.1 [62] as the solver. The computing environment was on an Intelr CoreTM i7-4770

3.40 GHz processor with 8 GB RAM and on a 64-bit operating system. All experiments for Test 1

were run with maximum number of iterations kmax � 20.



116

The parallel experiments of Test 2 were conducted with a C++ implementation of Algorithm 5.4

using CPLEX 12.5 [63] as the solver and the message passing interface (MPI) for parallel commu-

nication. For reading SMPS files into scenario-specific subproblems and for their interface with

CPLEX, we used modified versions of the COIN-OR [1] Smi and Osi libraries, either to instantiate

appropriate C++ class instances of the subproblems directly, or to write scenario-specific MPS files

from the SMPS file. The computing environment for the Test 2 experiments is the Raijin cluster

maintained by Australia’s National Computing Infrastructure (NCI) and supported by the Aus-

tralian government [89]. The Raijin cluster is a high performance computing (HPC) environment

which has 3592 nodes (system units), 57472 cores of Intel Xeon E5-2670 processors with up to 8 GB

PC1600 memory per core (128 GB per node). All experiments were conducted using one thread

per CPLEX solve.

5.3.2 Effects of the Serious Step Condition

The results of the Test 1 set of experiments are depicted in the plots of Figures 5.1–5.4. The

use of different penalty parameter ρ values is differentiated by the use of different plot colors. The

penalties are chosen so that the smallest penalties (in red) are near optimal in terms of the resulting

computational performance, while the larger penalties are known beforehand to be too large for

optimal performance. For testing purposes, this is the most interesting way to choose penalty values,

as smaller (than optimal) penalty values yield very little difference in Lagrangian bound between

the use of different SSC parameter values. Solid line and dashed line plots depict the Lagrange

bounds due to the use of a more stringent SSC parameter value γ � 0.5 and a more lenient value

for the SSC parameter γ � 0.125, respectively. The dotted line plots depict the Lagrangian values

resulting from the non-use of the SSC, so that it evaluates true no matter what. The following

observations are suggested from the results of the Test 1 experiments:

1. First, the most significant differences between the varied use of SSC occur when the penalty

coefficient values are large. In this setting, it seems to be the case that the use of more stringent

(i.e., larger) values of the SSC parameter γ has the effect of mitigating the destabilizing

effect of having a penalty parameter ρ value that is too large. This is significant because

the performance of iterative Lagrangian dual solution approaches based on (or related to)



117

proximal bundle methods is sensitive to the tuning of the ρ value, and the optimal tuning

of such parameters is assumed to be unknown beforehand in practical applications. For this

reason, any mechanism to mitigate the effect of having an unfavorable tuning of the penalty

parameter is highly desirable.

2. As is the case for the proximal bundle method, information from the SSC test can be used

to dynamically fine-tune the value of the penalty parameter ρ. For the convergence analysis

culminating in Proposition 5.18 to remain valid, it is expected that if ρ does vary with iteration

k, that it should stabilise to some positive value.

3. While not enforcing the SSC can adversely affect the growth trend in the Lagrangian bound,

the use of a SSC parameter γ value that is too large can have a similar effect for the tail-end

values. This is most clearly seen in the Figure 5.1 DCAP-233-500 ρ � 50 and ρ � 100 plots.

In these plots, the growth in Lagrangian bound value is noticeably stunted in the tail-end

iterations for the larger γ � 0.5 value as compared with the smaller γ � 0.125.



118

0 2 4 6 8 10 12 14 16 18 20
1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

Number of iterations

La
gr

an
gi

an
 b

ou
nd

 v
al

ue

Profiles for DCAP-233-500 comparing different SSC parameters γ with no SSC condition over different penalties ρ

 

 

ρ=50, γ=0.500

ρ=50, γ=0.125

ρ=50, No SSC

ρ=100, γ=0.500

ρ=100, γ=0.125

ρ=100, No SSC

ρ=500, γ=0.500

ρ=500, γ=0.125

ρ=500, No SSC

ρ=1000, γ=0.500

ρ=1000, γ=0.125

ρ=1000, No SSC

Figure 5.1: Applying SDM-GS-ALM to DCAP-233-500 using different penalties and parameteriza-
tions for the serious step condition



119

0 2 4 6 8 10 12 14 16 18 20
7.18

7.2

7.22

7.24

7.26

7.28

7.3

7.32

7.34
x 10

5

Number of iterations

La
gr

an
gi

an
 b

ou
nd

 v
al

ue

Profiles for CAP-101-250 comparing different SSC parameters γ with no SSC condition over different penalties ρ

 

 

ρ=5000,γ=0.500

ρ=5000,γ=0.125

ρ=5000, No SSC

ρ=20000,γ=0.500

ρ=20000,γ=0.125

ρ=20000, No SSC

ρ=50000,γ=0.500

ρ=50000,γ=0.125

ρ=50000, No SSC

ρ=200000,γ=0.500

ρ=200000,γ=0.125

ρ=200000, No SSC

Figure 5.2: Applying SDM-GS-ALM to CAP-101-250 using different penalties and parameteriza-
tions for the serious step condition



120

0 2 4 6 8 10 12 14 16 18 20
-135

-130

-125

-120

Number of iterations

La
gr

an
gi

an
 b

ou
nd

 v
al

ue

Profiles for SSLP-5-25-50 comparing different SSC parameters γ with no SSC condition over different penalties ρ

 

 

ρ=5, γ=0.500

ρ=5, γ=0.125

ρ=5, No SSC

ρ=15, γ=0.500

ρ=15, γ=0.125

ρ=15, No SSC

ρ=50, γ=0.500

ρ=50, γ=0.125

ρ=50, No SSC

ρ=100, γ=0.500

ρ=100, γ=0.125

ρ=100, No SSC

Figure 5.3: Applying SDM-GS-ALM to SSLP-5-25-50 using different penalties and parameteriza-
tions for the serious step condition



121

0 2 4 6 8 10 12 14 16 18 20
-372

-370

-368

-366

-364

-362

-360

-358

-356

-354

Number of iterations

La
gr

an
gi

an
 b

ou
nd

 v
al

ue

Profiles for SSLP-10-50-100 comparing different SSC parameters γ with no SSC condition over different penalties ρ

 

 

ρ=5, γ=0.500

ρ=5, γ=0.125

ρ=5, No SSC

ρ=15, γ=0.500

ρ=15, γ=0.125

ρ=15, No SSC

ρ=30, γ=0.500

ρ=30, γ=0.125

ρ=30, No SSC

ρ=100, γ=0.500

ρ=100, γ=0.125

ρ=100, No SSC

Figure 5.4: Applying SDM-GS-ALM to SSLP-10-50-100 using different penalties and parameteri-
zations for the serious step condition

5.3.3 Benefits of Parallelisation

For the Test 2 experiments, we primarily compare the parallel speedup achieved with Algorithm 5.4

against that achieved with the enhancements to the proximal bundle method presented in [79].

Additionally, we compare the Lagrangian bound at the final iteration.

The enhancements in [79] use structure-exploiting primal-dual interior point solvers to improve

the parallel efficiency of solving the proximal bundle method master problem. (The solution of this

master problem is analogous to the approximated solution to problem (5.9) obtained by using the

SDM-GS method in Algorithm 5.2.) The first solver is referred to by its acronym OOQP [47], while

the second is PIPS-IPM [80].



122

In the experiments of Test 2, the underlying computing architecture and third-party software are

inevitably different between our tests and those in [79]. Additionally, the termination criterion is

necessarily different from that given in Step 2 of Figure 2 in [79] due to the differences in algorithms.

In our tests, the termination criterion comes from Lines 9–11 of Algorithm 5.4 with ε � 10�6. We can

nevertheless create a meaningful control in the tuning of the most important parameters affecting

the performance of the algorithm.

1. As done in [79], we set the SSC parameter γ � 0.1, and we initialise the dual solution ω0 � 0.

2. In analogy to the possible trimming of cutting planes noted in [79], practical implementations

of Algorithm 5.4 may judiciously trim the set D to improve performance. As all cuts are kept

in the experiments of [79], so we also avoid trimming the expansion of D in our experiments,

and so we just use the simple update rule D Ð convpD Y trx, pxuq within Algorithm 5.2.

3. We use an update rule analogous to the one in [69] as is done in [79]. which takes the suggested

form given in Line 17 of Algorithm 5.4. Initially, ρ � 1.

In Tables 5.1–5.2, the columns headed by OOQP and PIPS-IPM report the parallel speedup due

to the use of N � 1, 8, 16, 32 processors, which are originally reported in Figure 2 of [79]. If, given

the use of N processors, TN denotes the total wall clock time (in seconds) divided by number of

iterations, then we compute the parallel speedup as T1{TN . For the computational experiments with

Algorithm 5.4, we compute each table entry T1{TN after taking, from five identically parameterised

experiments, 1) the minimum T1 value, and 2) the average TN , N ¡ 1, value. The column headed

by SDM-GS1-ALM presents the parallel speedup values for the application of Algorithm 5.4 with

tmax � 1. The column headed by SDM-GS5-ALM is analogous, with tmax � 5. The total wall

clock time per iteration values used to compute the ratios T1{TN are provided in Tables 5.3–5.4,

accounting for taking the minimum (N � 1) or average (N ¡ 1) over the five experiments for each

set of parameterizations associated with Algorithm 5.4. Also in Tables 5.1–5.2, the best Lagrangian

bounds obtained for each combination of test problem and algorithm are reported.

For the two sets of experiments based on the application of Algorithm 5.4, a problem-specific

maximum number of main loop iterations was set so as to make the tests as comparable with the

tests in [79] as possible. These results are reported in Tables 5.3–5.4. For each entry pA,Bq of these



123

tables, A provides the number of iterations at termination, and B provides the average wall clock

time (in seconds) per iteration.

We draw the following conclusions from the results of the Test 2 experiments reported in Ta-

bles 5.1–5.2.

1. The improvement in parallel speedup (SDM-GS-ALM columns) over either OOQP or PIPS-

IPM is evident for all problems except for the one with the fewest number of scenarios (SSLP

5-25-100).

2. Slightly inferior final Lagrange bounds reported for SDM-GS1-ALM (tmax � 1) are evident.

This deficit is improved by using SDM-GS with tmax � 5, as done for the SDM-GS5-ALM

experiments. But even these bounds are usually not as good as the bounds obtained with

OOQP or PIPS-IPM; this is due to their more exact solving of the master problem instances.

This suggests that as the iterations k ¥ 1 increase, it is advantageous to solve the continuous

master problem with SDM-GS iterations using larger tmax values.

3. Interestingly, parallel speedup is enhanced for SDM-GS5-ALM over SDM-GS1-ALM; although

the latter yields lower average total wall clock time per iteration, the proportion of efficiently

parallelizable work seems to increase in the former.

For Test 2, we also tested the performance of Algorithm 5.4 on the SSLP 10-50-2000 problem,

which is of substantially larger scale than the other test problems considered in this chapter. Using

N � 1, 2, 4, 8, 16, 32, 64 processors, we see very good speedup, which suggests the realised benefit of

distributing the use of memory. We also see that for such large-scale problems, the additional cost

in time of performing more inner loop Gauss-Seidel iterations (larger tmax) becomes marginal, since

the cost of solving the mixed-integer linear subproblems takes a larger share of the computational

time.



124

Speedup for SSLP 5-25-100
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 5.54 5.23 4.38 4.78
16 8.89 8.55 6.61 7.07
32 11.69 11.94 8.19 8.89

Lagr. Value -127.37 -127.37 -127.71 -127.58

Speedup for SSLP 10-50-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 2.64 2.80 6.87 6.95
16 2.70 2.92 12.95 12.84
32 2.98 3.40 21.67 20.98

Lagr. Value -349.14 -349.14 -349.48 -349.14

Speedup for SSLP 10-50-2000
No. Proc. SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00
2 2.34 2.34
4 4.81 4.83
8 9.29 9.25
16 18.69 18.48
32 34.63 35.10
64 60.59 60.93

Lagr. Value -348.35 -347.75

Table 5.1: Comparing speedup and final best Lagrangian bound of SDM-GS-ALM, OOQP and
PIPS-IPM for SSLP instances



125

Speedup for DCAP 233-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 2.44 5.32 6.88 8.11
16 2.81 8.15 13.28 15.65
32 1.63 10.25 23.42 27.40

Lagr. Value 1736.68 1736.68 1734.99 1736.02

Speedup for DCAP 243-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 2.85 5.71 6.51 7.61
16 3.59 5.85 12.28 14.44
32 1.98 6.44 21.99 25.25

Lagr. Value 2165.48 2165.50 2162.58 2164.48

Speedup for DCAP 332-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 2.03 5.56 6.83 8.50
16 2.33 5.00 12.84 16.20
32 1.21 6.61 21.83 23.48

Lagr. Value 1587.44 1587.44 1584.77 1586.11

Speedup for DCAP 342-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 1.00 1.00 1.00 1.00
8 2.45 3.78 7.16 8.25
16 2.71 4.36 12.95 15.49
32 1.84 4.64 22.41 26.93

Lagr. Value 1902.84 1903.21 1900.81 1901.90

Table 5.2: Comparing speedup and final best Lagrangian bound of SDM-GS-ALM, OOQP and
PIPS-IPM for DCAP instances

SSLP 5-25-100
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (8, 6.31) (8, 6.33) (8,3.22) (8,3.32)
8 (8, 1.14) (8, 1.21) (8,0.74) (8,0.69)
16 (8, 0.71) (8, 0.74) (8,0.49) (8,0.47)
32 (8, 0.54) (8, 0.53) (8,0.39) (8,0.37)

SSLP 10-50-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (26, 3301) (22, 2939) (30, 168.80) (29, 171.85)
8 (31, 1252) (24, 1049) (30, 24.58) (29, 24.71)
16 (27, 1224) (28, 1005) (30, 13.04) (30, 13.39)
32 (31, 1106) (27, 865) (30, 7.79) (28, 8.19)

SSLP 10-50-2000
No. Proc. SDM-GS1-ALM SDM-GS5-ALM

1 (20, 840.69) (20, 845.77)
2 (20, 359.63) (20, 361.40)
4 (20, 174.83) (20, 175.03)
8 (20, 90.51) (20, 91.46)
16 (20, 44.98) (20, 45.76)
32 (20, 24.27) (20, 24.09)
64 (20, 13.87) (20, 13.88)

Table 5.3: Comparing iteration count and runtime of SDM-GS-ALM, OOQP and PIPS-IPM for
SSLP instances



126

DCAP 233-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (68, 16.15) (66, 12.71) (68, 3.67) (68, 5.21)
8 (68, 6.62) (70, 2.39) (68, 0.53) (68, 0.64)
16 (68, 5.75) (73, 1.56) (68, 0.28) (68, 0.33)
32 (68, 9.91) (70, 1.24) (68, 0.16) (68, 0.19)

DCAP 243-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (57, 14.37) (57, 12.11) (57, 3.72) (57, 5.11)
8 (57, 5.04) (58, 2.12) (57, 0.57) (57, 0.67)
16 (57, 4.00) (59, 2.07) (57, 0.30) (57, 0.35)
32 (57, 7.26) (59, 1.88) (57, 0.17) (57, 0.20)

DCAP 332-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (82, 13.51) (80, 9.45) (82, 2.94) (82, 4.85)
8 (82, 6.65) (79, 1.70) (81, 0.43) (82, 0.57)
16 (82, 5.81) (80, 1.89) (81, 0.23) (82, 0.30)
32 (82, 11.20) (77, 1.43) (82, 0.13) (82, 0.21)

DCAP 342-500
No. Proc. OOQP PIPS-IPM SDM-GS1-ALM SDM-GS5-ALM

1 (59, 14.78) (71, 12.07) (59, 3.80) (59, 5.57)
8 (59, 6.03) (67, 3.19) (59, 0.53) (59, 0.68)
16 (59, 5.46) (56, 2.77) (59, 0.29) (59, 0.36)
32 (59, 8.05) (62, 2.60) (59, 0.17) (59, 0.21)

Table 5.4: Comparing iteration count and runtime of SDM-GS-ALM, OOQP and PIPS-IPM for
DCAP instances



127

5.4 Conclusions

The developments in this chapter are motivated by the goal of improving the efficiency of paral-

lelisation applied to iterative approaches for solving the Lagrangian dual problem of large scale

optimization problems. These problems have nonlinear convex differentiable objective f , decom-

posable nonconvex constraint set X, and nondecomposable affine constraint set Qx � z to which

Lagrangian relaxation is applied. Problems of such a form include the split variable extensive form

of mixed-integer linear stochastic programs as a special case. Implicitly, our approach refers to

the convex hull convpXq of X, and the assumed lack of known description of convpXq needs to be

addressed. Proximal bundle methods (alternatively in the form of the proximal simplicial decompo-

sition method or stabilized column generation) are well-known for addressing the latter issue. In the

former issue, that of exploiting the large scale structure to apply parallel computation efficiently,

we develop a modified augmented Lagrangian (AL) method with approximate subproblem solutions

that incorporates ideas from the proximal bundle method.

The approximation of subproblem solutions is based on an iterative approach that integrates

ideas from the simplicial decomposition method (SDM) (for constructing inner approximations

of convpXq) and the nonlinear block Gauss-Seidel method. It is the latter Gauss-Seidel aspect

that is primarily responsible for enhancing the parallel efficiency that is observed in the numerical

experiments. While convergence analysis of the integrated SDM-GS approach may be derived from

slight modifications to results in [20], for the sake of completeness and explicitness, Section 5.2.4

contains a proof of optimal convergence of SDM-GS as it is applied within our algorithm under

a standard set of conditions. A distinction between so-called “serious” steps and “null” steps, in

analogy to the proximal bundle method, is also recovered. Once these aspects are successfully

integrated, then the contribution is complete, where the beneficial stabilization associated with

proximal point methods and the ability to apply parallelisation more efficiently are both realised.

The resulting algorithm developed in this chapter is referred to as SDM-GS-ALM, which has similar

functionality to the alternating direction method of multipliers (ADMM).

We performed numerical tests of two sorts. In Test 1, we examined the impact of varying

the serious step condition parameter. We found that parameterizations that effect more stringent

serious step conditions seem to have the effect of mitigating the early iteration instability due to



128

penalty parameters that are too large. At the same time, the more stringent serious step condition

parameterizations seemed to result in slower convergence to dual optimality in the tail-end. As is

the case for proximal bundle methods, information obtained in the serious step condition tests may

be used to beneficially adjust the proximal term penalty coefficient in early iterations.

In Test 2, we examined the efficiency of parallelisation, measured by the speedup ratio, due

to the use of the SDM-GS-ALM, compared versus pre-existing implementations of the proximal

bundle method that use structure exploiting primal dual interior point methods to improve parallel

efficiency. We saw in these results a promising increase in parallel efficiency due to the use of

SDM-GS-ALM, where the increase in parallel efficiency is attributed primarily to the successful

incorporation of Gauss-Seidel iterations. The results of the last problem tested, SSLP 10-50-2000,

additionally suggested a benefit due to the ability of SDM-GS-ALM to distribute not just the

workload, but also the use of memory. The vector of auxiliary variables z is the only substantial

block of data that needs to be stored and modified by all processors. In the context of stochastic

optimization problems, this represents a modest communication bottleneck in proportion to the

number of first-stage variables for two-stage problems, while for multistage problems, the amount

of such data that must be stored by every processor and modified by parallel communication can

increase exponentially with the number of stages.



Chapter 6

Penalty-based Gauss-Seidel Heuristic
Method

6.1 Introduction

6.1.1 Problem Formulation

In this chapter we will develop and demonstrate an algorithm for finding high-quality primal solu-

tions to two-stage stochastic mixed integer linear programs, as represented by (2.4) and repeated

here for reference:

ζSIP �min
x,y

cTx�
¸
sPS

�
psd

T
s ys

�
s.t. x P X

ys P Yspxq @s P S

(6.1)

The sets of feasible first-stage decisions X, and second-stage decisions Yspxq for scenario s, are

defined as follows:

X :�
 
x P Rn�q � Zq | Ax ¤ b

(
Yspxq :�

 
y P Rm�r � Zr | Tsx�Wsys ¤ hs

(
This notation differs from that of the previous chapters in that the first- and second-stage feasible

sets are separated.

Assumption 6.1 ζSIP is feasible, the optimal value of ζSIP is bounded, and ps, c, ds, A, b, Ts,

Ws, and hs are vectors or matrices (as appropriate) of rational numbers.

129



130

Similarly to (2.16) we can reformulate this problem using non-anticipativity constraints as fol-

lows:

ζSIP �min
x ,y ,z

¸
sPS

pspc
Txs � dTs ysq

s.t. xs P X @s P S

ys P Yspxsq @s P S

xs � z � 0 @s P S

(6.2)

With the exception of the non-anticipativity constraints xs � z � 0 this problem is separable by

scenario s. A natural approach to solving this problem is to relax this constraint in some way so as

to obtain full separability.

Since ζSIP contains integer variables, applying ordinary Lagrangian relaxation to the non-

anticipativity constraints does not result in strong duality. Under some conditions, strong duality

may be retrieved through augmented Lagrangian relaxation of these constraints. The augmented

Lagrangian corresponding to ζSIP is

Lρpx ,y , z,λq �
¸
sPS

�
pspc

Txs � dTs ysq � λTs pxs � zq � ψρspxs � zq
�

(6.3)

where ψ is an appropriate penalty function dependent on the scenario s and penalty parameter ρ.

The penalty parameter may be a scalar or a vector, depending on the penalty function. A linear

increase in the components of ρ should result in a linear increase in the value of ψ. The properties

of an ’appropriate’ penalty function, as defined by Feizollahi et al. [37, Assumption 2], are stated

in Assumption 6.2.

Assumption 6.2 ψ satisfies the following requirements:

• ψ vanishes at zero (i.e. ψp0q � 0)

• ψpuq is strictly positive for all non-zero u.

• ψ is lower semi-continuous.

• ψ is level-bounded.

• limδÑ0 diam tu | ψpuq ¤ δu � 0.



131

By making the variable substitution ωs �
λs
ps

, (6.3) may be rewritten in the simpler form

Lρpx ,y , z,ωq �
¸
sPS

�
pspc

Txs � dTs ys � ωTs pxs � zqq � ψρspxs � zq
�
. (6.4)

In order to guarantee that the augmented Lagrangian dual problem is bounded the dual feasibility

condition ω P Ω :�
 
ω |

°
sPS p

T
s ωs � 0

(
must be enforced. Under this condition the

°
sPS psω

T
s z

term is equal to zero and the augmented Lagrangian may be expressed in the form

Lρpx ,y , z,ωq �
¸
sPS

ps
�
pcT � ωTs qxs � dTs ys � ψρspxs � zq

�
. (6.5)

The corresponding augmented Lagrangian dual function is

ζLR�ρ pωq �min
x ,y ,z

Lρpx ,y , z,ωq

s.t. xs P X @s P S

ys P Yspxsq @s P S

(6.6)

and the corresponding augmented Lagrangian dual problem is:

ζLD�ρ � max
ωPΩ

ζLR�ρ pωq (6.7)

6.1.2 Conditions for Strong Duality

Under some conditions on the penalty parameter ρ and augmenting function ψ, the augmented

Lagrangian dual is strong even when applied to problems with integer variables. For clarity some

results from Feizollahi et al. [37], adapted to the problem structure considered in this chapter, are

stated below.

Theorem 6.1 [37, Theorem 2] Suppose that Assumption 6.1 on ζSIP as defined in (6.1) and As-

sumption 6.2 on the penalty function ψ used in (6.7) hold. Then supρ¡0 ζ
LD�
ρ � ζSIP .

Proof. Apply [37, Theorem 2] to (6.1).

Theorem 6.1 is theoretically interesting but its practical utility is limited, since it relies on taking

the supremum of the Lagrangian dual over all ρ ¡ 0. Typically this means that ρ must go to �8,

which is computationally infeasible; very large penalty parameters generally lead to intractable

numerical issues.

A more practically useful result may be obtained with more restrictive assumptions on the

penalty function.



132

Assumption 6.3 ψ satisfies the following requirements:

1. ψp0q � 0

2. ψpuq ¥ δ ¡ 0, @u R V

3. ψpuq ¥ γ||u||8, @u P V

for some open neighbourhood V of 0 and positive scalars δ, γ ¡ 0.

Theorem 6.2 [37, Theorem 5] Suppose that (6.1) satisfies Assumption 6.1. If ψ :
±

sPS Rnx ÞÑ R

is a summed augmenting function ψpuq :�
°
sPS ψ

s
ρpusq for (6.6) such that ψ satisfies Assumption

6.3, then there exists a finite penalty parameter ρ such that ζLD�ρ � ζLR�ρ pωLP q � ζSIP , for ωLP (an

optimal multiplier of the linear programming relaxation of the non-anticipativity conditions).

Proof. Apply [37, Theorem 5] to (6.1).

Applying Theorem 6.2 to obtain strong duality only requires a finite choice of penalty parameter.

However, the restriction imposed by Assumption 6.3 introduces computational difficulties of its own.

In particular, the third part of Assumption 6.3 implies that ψ is non-smooth at zero, which means

that we can no longer apply algorithms which require smoothness of the objective function to solve

the minimisation problem in the augmented Lagrangian dual function.

Remark 6.3 One may see with little difficulty that the proof of [37, Theorem 5] does not rely

on the setting of ω � ωLP . Indeed one can show that for any ω P Ω there still exists a finite

penalty parameter such that Theorem 6.2 holds true. To see this, considering the notation of [37],

one needs to replace λ̄LP with a generic (dual feasible) λ and ζLP in [37, Theorem 5] with the

Lagrangian dual function ζLRpλq defined earlier in [37]. Also, adjust the definition of ρ̂ in [37,

Theorem 5] accordingly.

Feizollahi et al. observed that any norm function satisfies the requirements of Assumption 6.3

and therefore that employing one as an augmenting function would result in strong duality as per

Theorem 6.2. However, the class of norm functions is lacking in flexibility, since deviation from

consensus in each direction is penalised equally. In Section 6.2 a more general class of penalty

functions satisfying Assumption 6.3 will be defined.



133

6.2 Penalty Functions derived from Positive Bases

6.2.1 Positive Bases

We will use the concept of a positive basis, sometimes also called a non-negative basis, to define

a more general class of penalty functions than the class of norm functions.

Definition 6.4 A point u P Rm is a positive combination of a set of vectors N � tn1, . . . , nlu �

Rm if there exists αi ¥ 0 for i � 1, . . . , l such that u �
°l
i�1 αini.

Definition 6.5 A set of vectors N � tn1, . . . , nlu � Rm is positively independent if for all

i P t1, . . . , lu, ni is not a positive combination of Nzni.

Definition 6.6 A set of vectors N � tn1, . . . , nlu � Rm positively spans a set S � Rm if all

points in S are positive combinations of N .

Definition 6.7 A set of vectors N � tn1, . . . , nlu � Rm is a positive basis for Rm if and only

if N is positively independent and N positively spans Rm.

For purposes of brevity define teiui�1,...,m as the standard basis of Rm, as follows:

e1 � p1, 0, . . . , 0q

e2 � p0, 1, 0, . . . , 0q

. . .

em � p0, . . . , 0, 1q

The following sets of vectors are examples of positive bases for Rm.

• The vertices of a m-simplex (generalised tetrahedron), centred at the origin.

• The set of vectors t�eiu
m
i�1 Y t

°m
i�1 �eiu.

• The set of vectors t�eiu
m
i�1.

We will require the following result:

Theorem 6.8 ([28, Theorem 3.1]) tn1, . . . ,nlu positively spans Rm if and only if for every non-zero

u P Rm there exists an index i such that u � ni ¡ 0.



134

6.2.2 Generalising the 1-Norm and 8-Norm

The 1-norm and 8-norm are particularly amenable to alternate representations because they are

polyhedral and may be represented as the maxima of a finite number of hyperplanes. These two

norms may be represented using the positive basis t�eiu
m
i�1 in the following ways.

}u}8 � max
i�1,...,m

t�eJi uu (6.8)

}u}1 �
m̧

i�1

maxt�eJi u, 0u �
m̧

i�1

maxt�eJi u, 0u (6.9)

or alternatively }u}1 �
m̧

i�1

max
 
νJi u : νi P t�ei,�eiu

(
. (6.10)

The representation of the 1-norm given by (6.10) cannot be generalised to an arbitrary positive basis,

since it is dependent on each basis vector being matched with a negative multiple of itself. The

representations of the 8-norm and 1-norm given by (6.8) and (6.9) respectively may be generalised

to an arbitrary positive basis N � tn1, . . . , nlu as follows:

ψN8puq :� max
i�1,...,l

tnJ
i uu and (6.11)

ψN1 puq :�
ļ

i�1

maxtnJ
i u, 0u. (6.12)

For a general positive basis N , these functions are not norms because they are not necessarily abso-

lutely homogeneous. As an illustrative example, the set of one-dimensional vectors N � tp�3q, p1qu

is a positive basis for R1, but for u ¡ 0 we have:

ψN8pp�1quq � maxt�3p�uq, 1p�uqu � 3u � u � max�3puq, 1puq � |�1|ψN8puq

and

ψN1 pp�1quq � maxt�3p�uq, 0u �maxt1p�uq, 0u � 3u

� u � maxt�3puq, 0u �maxt1puq, 0u � |�1|ψN1 puq

However, ψN8puq and ψN1 puq do share some useful properties with norms.

Lemma 6.9 ψN8puq and ψN1 puq are positively homogeneous, i.e. ψpαuq � αψpuq for all u and all

α ¥ 0.



135

Proof. Since α is non-negative it can be extracted as a constant factor from the maximums, as

follows:

ψN8pαuq � max
i�1,...,l

tαnJ
i uu � α max

i�1,...,l
tnJ

i uu � αψN8puq

ψN1 pαuq �
ļ

i�1

maxtαnJ
i u, 0u � α

ļ

i�1

maxtnJ
i u, 0u � αψN1 puq

Lemma 6.10 ψN8puq and ψN1 puq are strictly positive for all non-zero u.

Proof. By Theorem 6.8 at least one nJ
i u term is positive for any non-zero u. Therefore, the

maximisation term in ψN8puq and at least one of the maximisation terms in ψN1 puq is always positive

for any non-zero u. Since each of the maximisation terms in ψN1 puq is bounded below by zero this

is sufficient to show that both functions are strictly positive for non-zero u.

Lemma 6.11 ψN8puq and ψN1 puq separate points, i.e. ψpuq � 0 implies u � 0.

Proof. Follows directly from Lemma 6.10 and the observation that ψ vanishes at zero, i.e. ψN8p0q �

ψN1 p0q � 0.

Lemma 6.12 ψN8puq and ψN1 puq are finite valued.

Proof. The maximum or sum of a finite number of finite valued functions is finite valued.

Lemma 6.13 ψN8puq and ψN1 puq are sub-additive, i.e. ψpuq ¤ ψpuq � ψpvq.

Proof.

ψN8pu� vq � max
i�1,...,l

tnJ
i pu� vqu ¤ max

i�1,...,l
tnJ

i puqu � max
i�1,...,l

tnJ
i pvqu � ψN8puq � ψN8pvq

ψN1 pu� vq �
ļ

i�1

maxtnJ
i pu� vq, 0u ¤

ļ

i�1

maxtnJ
i puq, 0u �

ļ

i�1

maxtnJ
i pvq, 0u � ψN1 puq � ψN1 pvq

Lemma 6.14 ψN8puq and ψN1 puq are coercive, i.e. ψpuq Ñ �8 as }u} Ñ �8.

Proof. Follows directly from positive homogeneity of ψN1 puq and ψN8puq.

In the next section we will see that this weaker set of properties is sufficient for ψN8puq and ψN1 puq

to yield strong duality when employed as Lagrangian dual penalty functions.



136

6.2.3 Strong Lagrangian Duality using Norm-like Penalties

The following results demonstrate that ψN8 and ψN1 satisfy the conditions given in Assumption 6.3,

and therefore than when they are employed as penalty functions Theorem 6.2 may be applied.

Lemma 6.15 If two functions ψA : Rm Ñ R and ψB : Rm Ñ R are positive homogeneous, contin-

uous, and strictly positive for all u � 0 then there exists a finite γ ¡ 0 such that

ψApuq ¥ γψBpuq for all u P Rm.

Proof. Since they are positive homogeneous, ψA and ψB vanish at zero and so the required

property trivially holds with equality at u � 0. To obtain the required inequality for nonzero u, set

V � tu : ||u|| � 1u (where || � || is any norm) and take α � minuPV ψApuq and β � maxuPV ψBpuq.

Since ψA and ψB are continuous and defined on the closed and bounded set V , by the Extreme Value

Theorem these extrema exist and are attained by their respective functions. Since these functions

are strictly positive and finite valued on V , and they attain their extrema, α and β both strictly

positive and finite.

For any point u P Rmzt0u, ||u|| is strictly positive and the point u
||u||

is in V . Therefore, by the

positive homogeneity of ψApuq and ψBpuq we have

ψApuq � ||u||ψA

�
u

||u||



¥ α||u||

and

β||u|| ¥ ||u||ψB

�
u

||u||



� ψBpuq.

Let γ � α{β. Since α and β are strictly positive and finite, γ is also strictly positive and finite.

The required inequality follows:

ψApuq ¥ α||u|| �
α

β
β||u|| � γβ||u|| ¥ γψBpuq.

Proposition 6.16 For any positive basis N , the augmenting functions ψN8 and ψN1 given in (6.11)

and (6.12) respectively satisfy the conditions given in Assumption 6.3.



137

Proof. Let V � B8
ε p0q be an open ball in the infinity norm with radius ε ¡ 0 centred at the

origin. This is an appropriate open neighbourhood of 0 for the purposes of Conditions 2 and 3 of

Assumption 6.3.

Condition 1: ψp0q � 0.

If u � 0 then nJ
i u � 0 and therefore ψN8puq � 0 and ψN1 puq � 0, as required.

Condition 2: ψpuq ¥ δ ¡ 0, @u R V for some positive scalar δ.

Using Theorem 6.8, for any u � 0 we have some i such that nJ
i u ¡ 0 and hence ψN8puq ¡ 0. Now

define

δ :� min
u
t max
i�1,...,l

tnJ
i uu | }u}8 � εu ¡ 0, (6.13)

where δ ¡ 0 follows from the compactness of the ε- ball, the continuity of u ÞÑ maxi�1,...,ltn
J
i uu,

and Theorem 6.8. For any u R V , the point v :� ε u
}u}8

is in V and hence ψN8pvq ¥ δ ¡ 0. Using the

positive homogeneity property we have

ε
}u}8

ψN8puq ¥ δ ¡ 0

and so ψN8puq ¥ δ }u}8
ε

¥ δ ¡ 0,

using the fact that u R V means }u}8 ¥ ε. This is the required inequality for ψN8 .

Apply Lemma 6.15 to deduce that there exists a η ¡ 0 such that:

ψN1 puq ¥ ηψN8puq ¥ ηδ ¡ 0 for all u R V.

ηδ is also a positive scalar and so this is the required inequality for ψN1 .

Condition 3: ψpuq ¥ γ||u||8, @u P V for some positive scalar γ.

The property holds trivially for u � 0. For any u P V zt0u, the point v :� ε u
}u}8

is in V and using

the same δ as defined in (6.13) we have

ε
}u}8

ψN8puq ¥ δ ¡ 0

and so ψN8puq ¥ δ }u}8
ε

¥ δ
ε
}u}8 ¡ 0,

and so we may place γ :� δ
ε
¡ 0. This is the required inequality for ψN8 .

As above, apply Lemma 6.15 to deduce that there exists a η ¡ 0 such that:

ψN1 puq ¥ ηψN8puq ¥ ηγ}u}8 ¡ 0.



138

ηγ is also a positive scalar and so this is the required inequality for ψN1 .

Corollary 6.17 Suppose that ζSIP (as defined in (6.1)) satisfies Assumption 6.1, and that the

penalty function ψ appearing in zLR�ρ pωq and ζLD�ρ (as defined in (6.6) and (6.7) respectively) has

the form of (6.11) or (6.12). Then, for each ω P Ω, there is a finite ρ ¡ 0 for which we have

ζLD�ρ � zLR�ρ pωq � ζSIP (6.14)

Proof. Equalities (6.14) follow directly from Theorem 6.2, Remark 6.3, and Proposition 6.16.

This result may be generalised to an even wider class of penalty functions.

Remark 6.18 Consider a positive basis N � tn1, . . . , nlu and the functions

gipuq :� maxtnJi u, 0u.

Each function gipuq is non-negative, positive homogeneous and finite valued, and these properties

are preserved if multiple gis are summed, or their maximum is taken. By Theorem 6.8, for any

non-zero u there exists an index i P t1, . . . , lu such that gipuq is strictly positive. Therefore, if every

one of the gi functions is combined using a combination of summation and/or maximisation, the

resulting function gpuq will be strictly positive for all non-zero u. Applying Lemma 6.15 to bound g

below by a positive multiple of ψN8 (as ψN1 was treated in Proposition 6.16) shows that this function

gpuq satisfies the conditions of Assumption 6.3, and as such will close the duality gap if used as an

augmenting function (as per Corollary 6.17).

Remark 6.19 By using the positive basis t�eiu
m
i�1Yt

°m
i�1 �eiu or similar to define an augmenting

function, we can obtain penalty terms analogous to the Lagrangian terms obtained through surrogate

semi-Lagrangian relaxation (see Section 2.2.2).

6.2.4 Defining an Appropriate Penalty Function for SIP

Section 6.2.3 provides us with a large class of viable penalty functions for achieving strong duality

using the augmented Lagrangian dual (6.7). The task remains to actually choose a penalty function

(or clearly defined subclass of penalty functions) which is specifically appropriate for two-stage SIP

problems.

The choice of penalty function is motivated by the following criteria:



139

• The penalty function should have the flexibility to penalise deviation of each variable from

consensus to varying degrees, in reaction to the impositions placed upon each variable by the

outcome scenarios. A single variable’s deviation from consensus in the positive and negative

directions should also be separately variable.

• As we do not assume any information about the relationship between the first-stage variables,

it is more appropriate to penalise each variable for deviation from consensus individually,

rather than link multiple variables together in a single penalty term. This implies that we

should choose a positive basis composed of vectors with one non-zero component each, so that

each basis vector (and thus each penalty term) relates to only one variable. This criteria for

the penalty function should be revisited when designing a penalty function and associated

algorithm to solve a specific SIP instance or instance class.

• In particular, the xs variables which correspond to different scenarios should be penalised

separately, to minimise computational difficulty.

These criteria naturally lead to the definition of a penalty function which penalises each variable

linearly for deviation from consensus in the positive or negative direction, with the degree of pe-

nalisation for each variable in each direction controlled by its own penalty parameter. This penalty

function is formalised as follows.

Given a vector u :� pusqsPS P
±

sPS Rnx representing the deviation of each first-stage variable

from the consensus, we define for each scenario s the penalty function

ψρspusq :� ρJ
s
russ

� � ρJs r�uss
�,

where ρ � pρ
s
, ρsqsPS P R2nx|S|

¡0 and rvs� :� �mint0, vu (performed component wise), where in this

case v P Rnx . The definition of the overall penalty function ψρ is the sum of the scenario-specific

penalty functions over all scenarios, as follows:

ψρpuq :�
¸
sPS

ψsρpusq �
¸
sPS

ρJ
s
russ

� �
¸
sPS

ρJs r�uss
�. (6.15)

This penalty function has the same form as ψN1 puq (as defined in (6.12)) with the positive basis

Nρ � tρs,iei�ps�1qnx | s P S, i P t1, . . . , nxuu Y t�ρ
s,i
ei�ps�1qnx | s P S, i P t1, . . . , nxuu.



140

Substituting this penalty function into the augmented Lagrangian corresponding to the problem of

interest (6.5) we obtain

Lρpx ,y , z,ωq �
¸
sPS

�
psppc

T � ωTs qxs � dTs ysq � ρJ
s
rxs � zs� � ρJs rz � xss

�
�
. (6.16)

As stated in Remark 6.3, for any given ω there exists a penalty parameter ρ ¡ 0 such that ζSIP �

ζLR�ρ pωq. In particular, for purposes of simplicity we can set ω � 0 and therefore obtain the

following representation of ζSIP for some ρ:

ζSIP �min
x ,y ,z

¸
sPS

�
pspc

Txs � dTs ysq �
¸
sPS

ρJ
s
rxs � zs� �

¸
sPS

ρJs rz � xss
�

�
s.t. xs P X @s P S

ys P Yspxsq @s P S

(6.17)

The only terms which are non-separable in this formulation are the z terms in the objective. In the

next section we will develop a Gauss-Seidel based approach which solves this optimisation problem

for x and y with z held constant (and vice versa) which circumvents this difficulty.

6.3 Algorithm Design and Theory

6.3.1 Block Gauss-Seidel Method

The block Gauss-Seidel optimisation approach applies to optimisation problems of the form

min tfpx, yq | x P X, y P Y u (6.18)

where the objective function f is convex and the feasible sets X and Y are closed. The important

feature of this formulation is that the variables are split into two distinct groups. Our problem of

interest (6.17) can be placed in this form by separating the px, yq and the z variables.

The basic principle of block Gauss-Seidel methods is to separate this optimisation problem into

two simpler subproblems, optimising over x and y separately while holding the other set of variables

constant:

min tfpx, ŷq | x P Xu (6.19)



141

for some ŷ P Y and

min tfpx̂, yq | y P Y u (6.20)

for some x̂ P X. There is obviously no guarantee that for any given ŷ the optimal decision x of

(6.19) will be an optimal, or even good, decision with respect to (6.18). The same applies to (6.20).

To achieve a useful result, Gauss-Seidel methods alternate between optimising with respect to

x and y. Starting at an initial point px0, y0q, at each iteration k the method minimises over x while

holding y � yk�1 constant, finding an optimal point xk. The method then minimises over y while

holding x � xk constant, finding an optimal point yk. Since we are carrying out a minimisation at

each step, the inequality

fpxk�1, yk�1q ¥ fpxk, yk�1q ¥ fpxk, ykq

holds for all k, meaning the decision pxk, ykq found in each iteration is guaranteed to be no worse

than the previous decision pxk�1, yk�1q. This basic framework is formalised in Algorithm 6.1.

Algorithm 6.1 A block GS method

1: initialise px0, y0q P X � Y
2: for k � 1, . . . , kmax do
3: xk Ð argminx

 
fpx, yk�1q | x P X

(
4: yk Ð argminy

 
fpxk, yq | y P Y

(
5: k Ð k � 1
6: end for
7: return pxkmax , ζkmaxq

The sequence of decisions
 
pxk, ykq

(
generated by Algorithm 6.1 has limit points if X and Y are

compact. Furthermore, if f is continuous and bounded from below the following proposition may

be applied.

Proposition 6.20 For problem (6.18), let f be continuous and bounded from below, and let X and

Z be compact. Then the limit points px�, y�q of the sequence
 
pxk, ykq

(
generated by iterations of

Algorithm 6.1 are partial minima, i.e. they satisfy the following conditions:

fpx�, y�q ¤ fpx, y�q @x P X (6.21)

fpx�, y�q ¤ fpx�, yq @y P Y (6.22)



142

Proof. We have by construction that fpxk, ykq ¤ fpxk, yq for all y P Y , and (6.22) follows directly

from the continuity of f . To establish (6.21), assume for sake of contradiction that there is an

x̄ P X for which fpx�, y�q ¡ fpx̄, y�q. Due to the continuity of f , we have, for some infinite

subsequence index set K such that limkÑ8,kPKpx
k, ykq � px�, y�q, the existence of γ ¡ 0 such that

fpxk, ykq � fpx̄, ykq ¡ γ ¡ 0. Thus, fpxk, ykq ¡ fpx̄, ykq � γ ¥ fpxk�1, ykq � γ ¥ fpxk�1, yk�1q � γ,

which would imply that limkÑ8 fpx
k, ykq � �8 since K is an infinite index set and fpxk, ykq

is monotonically non-increasing in the original sequence, so that f is unbounded from below, a

contradiction. Therefore, px�, y�q must be a partial minimum for problem (6.18).

If f is convex, differentiable and inf-compact, and X and Y are non-empty, closed and convex,

the limit points of Algorithm 6.1 are optimal for (6.18) (see, for example, [12, 49, 108]). However,

these conditions do not hold for our reformulation of ζSIP , since the r�s� terms in the objective

of (6.17) are non-differentiable and the integrality constraints on x and y mean that their feasible

regions are non-convex. When these conditions do not hold, the partial minima found as limit

points of Algorithm 6.1 may be neither global nor even local minima of the problem.

The following examples illustrate the details of this problem and yield some insight into what

measures may be taken (particularly with relation to the penalty parameter ρ) to reduce its impact

on solution quality.

Examples:

1. Let problem (6.18) be specified so that fpx, yq : R � R ÞÑ R is defined to be fpx, yq �

7x2 � 10xy� 7y2, and let X � Y � t�2,�1, 0, 1, 2u. For px0, y0q � p2,�2q, the application of

Algorithm 6.1 leads immediately to the one limit point px̂, ŷq � p1,�1q. We have fp1,�1q � 4,

but fp0, 0q � 0, so px̄, ȳq � p1,�1q is not optimal. Note here that f is convex and continuously

differentiable, but the constraint set X � Y is nonconvex due to the integer restriction, and

this is the reason that the limit point was not guaranteed to be optimal.

2. Let problem (6.18) be specified so that fpx, yq : R � R ÞÑ R is defined to be fpx, yq �

�2x � y � ρ |x� y|, X � r�2, 3s, and Y � r0, 5s. Observe that ρ |x� y| is in effect a

penalty term which penalises infeasibility with respect to the constraint x � y. For ρ P r0, 1q,

the optimal solution is px�, y�q � p3, 5q. For ρ � 1, the optimal solutions are taken from

px�, y�q P t3u � r3, 5s, and for ρ ¡ 1, the optimal solution is px�, y�q � p3, 3q.



143

(a) When applying the GS approach of Algorithm 6.1 with ρ P p0, 1q, the resulting sequence

stabilises after one iteration at the optimum px�, y�q � p3, 5q for any feasible starting

point.

(b) For ρ � 1 with zy0 ¥ 3, we have after half an iteration px1, y0q � p3, y0q which is an

optimum solution, and the remaining updates stay at some optimal solution px�, y�q P

t3u � r3, 5s. For ρ � 1 with starting point y0   3, we have x1 � 3 and y1 P r3, 5s and so

stabilisation at an optimal solution also occurs.

(c) For ρ ¡ 1 with y0 ¥ 3, we have px1, y1q � p3, 3q, which is optimal. However, for ρ ¡ 1

with y0   3, we have x1 � y0 and y1 � y0, so that stabilisation occurs at px̄, ȳq � py0, y0q,

which is not optimal.

3. Let problem (6.18) be specified so that fpx, yq : R3 � R3 � R3 ÞÑ R is defined to be

fpx, yq � 2x1,1 � 1x1,2 � 2x1,3 � 2x2,1 � 1x2,2 � 2x2,3 � ρ
¸
i�1,2

¸
j�1,2,3

|xi,j � yj| ,

and let X and Y be defined so that

Y �

#
pxqi,j :

3̧

j�1

xi,j ¤ 1 for i � 1, 2; xi,j P t0, 1u for i � 1, 2, j � 1, 2, 3

+
,

and Z � t0, 1u3. For ρ Ñ 8 (simulating the enforcement of constraints xi,j � yj for i � 1, 2

and j � 1, 2, 3) we have the optimal solution

px�, y�q � prp0, 1, 0q, p0, 1, 0qs, 0, 1, 0q .

If such constraints are altogether ignored (ρ � 0), then the optimal x-component is x� �

pp0, 0, 1q, p1, 0, 0qq. This behaviour would only change at the threshold ρ � 1. For ρ ¡ 1, the

optimal solution would be px�, y�q � prp0, 1, 0q, p0, 1, 0qs, p0, 1, 0qq.

(a) Now we consider what happens when the GS approach of Algorithm 6.1 is applied. Let

y0 � p0, 0, 0q. Starting with a small penalty such as ρ � 0.5, we have

x1 � pp0, 0, 1q, p1, 0, 0qq and y1 P tp0, 0, 0q, p0, 0, 1q, p1, 0, 0q, p1, 0, 1qu ,

where there is more than one way to choose y1. If, for example, we make it a policy to

choose y by some bitwise lexicographical rule, then we choose y1 � p0, 0, 0q. Keeping



144

this same penalty ρ � 0.5, we find that stabilisation has occurred, where xk � x1 and

yk � y1 for k ¥ 1. If we increase the penalty value to ρ � 2 for iteration k � 2, then

we have the stabilisation x1 � pp0, 0, 0q, p0, 0, 0qq and y1 � p0, 0, 0q, which is suboptimal

(and ρ � 2 is the threshold for this change in stabilisation to occur).

If, instead, the y update is chosen by a reverse-lexicographic rule, so that y1 � p1, 0, 1q,

then we have immediate stabilisation with

pxk, ykq � pp0, 0, 1q, p1, 0, 0q, p1, 0, 1qq

for all k ¥ 1 for all ρ ¡ 0. (Notice that no matter how large the penalty is, consensus

is not achieved in the GS setting. That is, without additional restriction on how y

is updated, the optimal y update may be chosen to always correspond to a consensus

solution that is infeasible for both scenarios. In practice, we would need a rule to insure

that the y update is chosen to satisfy
°3
j�1 yj ¤ 1 to match with the constraints in the

x update subproblems.)

(b) The shortcomings of the above GS approach motivate the introduction of more precision

in how the consensus discrepancies are penalised, where f is redefined to be

fpx, yq � 2x1,1 � 1x1,2 � 2x1,3 � 2x2,1 � 1x2,2 � 2x2,3 �
¸
i�1,2

¸
j�1,2,3

ρi,j |xi,j � yj| .

That is, instead of one scalar ρ, we have term-specific ρi,j ¡ 0 for each i � 1, 2 and

j � 1, 2, 3. We start as before with y0 � p0, 0, 0q, and let ρi,j � 0.5 for each i � 1, 2 and

j � 1, 2, 3. Assuming lexicographic rule in choosing y, we have as before

x1 � pp0, 0, 1q, p1, 0, 0qq and y1 � p0, 0, 0q,

and this is stable if the penalty does not change. Now increase ρ1,3 � ρ2,1 � 1, and we

have

x2 � pp0, 0, 1q, p1, 0, 0qq and y2 � p1, 0, 1q,

and this is stable if the penalty does not change. Increasing ρ1,1 � ρ2,3 � 1, we have

again

x3 � pp0, 0, 1q, p1, 0, 0qq and y3 � p0, 0, 0q,



145

and this is stable. But once we again increase ρ1,3 � ρ2,1 � 2, we have

x4 � pp0, 1, 0q, p0, 1, 0qq and y4 � p0, 1, 0q,

which is optimal for the original problem.

Example 2 illustrates the trade-off inherent in choosing the penalty parameter. If a large ρ

is chosen, the non-differentiable terms in the objective function become dominant and the block

Gauss-Seidel method does not converge to the optimal decision for (6.18). This is dependent on

the initial point chosen; even if ρ is large we may still obtain convergence to the optimal point if

our initial point was chosen well. This problem is averted for a smaller choice of ρ, but the optimal

decision for the resulting problem may be infeasible with respect to the constraints relaxed by the

penalty term (in the context of SIP, these are the non-anticipativity constraints).

Example 3 further demonstrates that there may in fact be no viable choice of a single ρ which

avoids both of these problems. Part (b) of Example 3 suggests a possible solution; if the ρ parameter

(which multiplies each penalty term) is divided into a separate penalty parameter for each constraint,

then each component of ρ may be set only as large as is necessary to ensure that the final optimal

solution respects the relaxed constraint, which gives us the best possible chance to avoid sub-optimal

convergence of the block Gauss-Seidel method.

In practice it is unlikely to be clear a priori which of the relaxed constraints should be penalised

to a greater or lesser degree, in which case it will be necessary to modify the penalty parameters

in the course of the algorithm. The algorithm presented in the following sections takes the natural

approach of starting with small penalty parameters, then dynamically increasing them in an attempt

to enforce feasibility with respect to the relaxed constraints. This has the additional benefit of

providing the block Gauss-Seidel method with a reasonable starting point (based on optimising

with a small penalty parameter) with which to approach the more difficult problem (with a large

penalty parameter, and hence a sharper non-differentiable point).

6.3.2 Formalising a block Gauss-Seidel method for SIP

In this section we will examine how a block Gauss-Seidel type method can be used to obtain solutions

for SIP problems, in the form of (6.17). The central motivation is to separate the minimisation

over z from the minimisation over x and y so that the latter minimisation problem is separable.



146

For purposes of simplicity let

φρpx, y, z, ρq :�
¸
sPS

φρspxs, ys, z, ρsq,

where

φρspxs, ys, z, ρsq :� pspc
Txs � dTs ysq �

¸
sPS

ρJ
s
rxs � zs� �

¸
sPS

ρJs rz � xss
�.

ζSIP may now be written in the form

ζSIP �min
x ,y ,z

¸
sPS

φρspxs, ys, z, ρsq

s.t. xs P X @s P S

ys P Yspxsq @s P S

(6.23)

For a given ρk � pρk
s
, ρksqsPS and an initial z0,0, the proposed method will iterate between the solution

of the following l � 0, 1, . . . , lmax subproblems:

pxk,l�1, yk,l�1qsPS Ð argmin
x,y

φρpx, y, zk,l, ρkq

s.t.: xs P X, @s P S

ys P Yspxsq, @s P S,

(6.24)

and

zk,l�1 Ð argmin
z

φρpxk,l�1, yk,l�1, z, ρkq, (6.25)

followed by l Ð l� 1 and successive repetition until partial convergence is approximately achieved,

i.e.

φρpxk,l, yk,l, zk,l, ρkq � φρpxk,l�1, yk,l�1, zk,l�1, ρkq ¤ ε

given a threshold ε ¥ 0.

If the current primal infeasibility level, given by a residual measure such as ||xk,l � zk,l||22, is not

acceptable for a ε threshold, the set of penalties ρk are then updated to ρk�1 and the process is

repeated for iteration k � 1.

Note that the px, yq-update step depicted in (6.24) is fully separable by scenario, since the z

term is held constant.



147

The remaining problems are to recast the objective function φρpx, y, z, ρq (particularly the r�s�

terms) in a form amenable to conventional MILP solvers, and to clarify the form of the z update

step. To accomplish the first, we consider an equivalent reformulation of the problem given by

min
x,y,w,w

pspc
Jxs � qJs ysq � ρk

s

J
ws � ρks

J
ws

s.t.: ws ¥ 0, ws ¥ zk,l � xs

ws ¥ 0, ws ¥ xs � zk,l

xs P X, ys P Yspxsq.

The calculation of

zk,l�1 P argmin
z

φρpxk,l�1, yk,l�1, z, ρkq (6.26)

may be performed by computing

zk,l�1 P argmin
z

Φρpx
k,l�1

, z, ρkq,

where the penalty function px, zq ÞÑ Φρpx, z, ρq is defined by

Φρpx, z, ρq :� ψρppxs � zqsPSq �
¸
sPS

�
ρJ
s
rxs � zs� � ρJs rz � xss

�
	
.

The last displayed problem can be solved using the following equivalent mathematical programming

formulation:

Φρpxk,l�1, zk,l�1, ρkq � min
z,w,w

¸
sPS

pρk
s
qJws � pρksq

Jws

s.t.: ws ¥ 0, @s P S, ws ¥ z � xk,l�1
s , @s P S

ws ¥ 0, @s P S, ws ¥ xk,l�1
s � z, @s P S.

(6.27)

When the x components are all restricted to take binary values, it is possible to show that the

calculation of zk,l�1 can be performed in the following closed form where each component of zk,l�1

always takes binary value. In that case, its optimal solution is given by

zk,l�1
i �

$'&'%
1, if

°
sPSp1� xk,l�1

s,i qρk
s
 
°
sPS x

k,l�1
s,i ρks

0, if
°
sPSp1� xk,l�1

s,i qρk
s
¡
°
sPS x

k,l�1
s,i ρks

either 0 or 1, otherwise

, i � 1, . . . , nx. (6.28)

The cases in which we have a tie might require “flipping a coin” for deciding on the value for zk,l�1,

as it becomes a case of multiple minima. The existence of multiple minima can be better understood



148

from the following explicit form of the solution for the general case given in Proposition 6.21, from

which (6.28) is a special case. In the following proposition, we assume Z is a closed convex set, so

that no explicit integrality constraints are enforced.

Proposition 6.21 Suppose a set of scenario dependent solutions pxsqsPS, where xs � pxs,iqi�1,...,nx,

are given and z :� pziqi�1,...,nx. For each i P t1, . . . , nxu define

I�pziq :� ts P S | xs,i ¡ ziu

I�pziq :� ts P S | xs,i   ziu

I0pziq :� ts P S | xs,i � ziu

Then zi solves problem (6.26) given fixed pxsqsPS if and only if

¸
sPI�pziq

ρs,i �
¸

sPI�pziq

ρ
s,i
P

��� ¸
sPI0pziq

ρs,i,
¸

sPI0pziq

ρ
s,i

�� , (6.29)

defining the right-hand side to be t0u if I0 is empty; this situation will only arise for small ρ.

Proof. The index s term of the penalty function Φρ may be written as

Φρ
sppxsqsPS, z, ρq :�

nx̧

i�1

�� ¸
sPI�pziq

ρs,i maxt0, xs,i � ziu �
¸

sPI�pziq

ρ
s,i

maxt0, zi � xs,iu

�� .
As this is separable in the variables pz1, . . . , znxq, its subdifferential is defined as the cross product

of intervals, one for each component i. Thus, the necessary and sufficient condition

0 P BΦρ
sppxsqsPS, z, ρq,

can be equivalently stated as

0 P BziΦ
ρ
sppxsqsPS, zi, ρq,

for each i � 1, . . . , nx, which is given by:

0 P
¸

sPI�pziq

ρ
s,i
�

¸
sPI�pziq

ρs,i �
¸

sPI0pziq

�
�ρs,i, ρs,i

�

�
¸

sPI�pziq

ρ
s,i
�

¸
sPI�pziq

ρs,i �

��� ¸
sPI0pziq

ρs,i,
¸

sPI0pziq

ρ
si,i

�� .
which in turn is equivalent to (6.29).



149

Remark 6.22 In practice I0 is always non-empty; if we consider the formulation in 6.27 it is clear

that any solution where zi � xs, i for all i cannot be optimal since

We now consider how to update the penalty parameters ρk. A simple strategy is

ρk�1

s
� ρk

s
� γrxk,ls � zk,ls�

ρk�1
s � ρks � γrzk,l � xk,ls s

�

for some positive γ. By doing so, we are reinforcing the penalties associated with the respective

discrepancies. Recalling that rvs� :� �mint0, vu, we have namely that for each i � 1, . . . , nx:

ρk�1

s,i
�

#
ρk
s,i
� γpzk,li � xk,ls,iq, if xk,ls,i   zk,li

ρk
s,i
, if xk,ls,i ¥ zk,li

ρk�1
s,i �

#
ρks,i � γpxk,ls,i � zk,li q, if zk,li   xk,ls,i
ρks,i, if zk,li ¥ xk,ls,i

Remark 6.23 The update in ρk�1 has the effect of changing the left hand side of (6.29) at the next

iteration by the amount:

∆k�1
i :� γ

�� ¸
sPI�pzki q

rzki � xks,is
� �

¸
sPI�pzki q

rxks,i � zki s
�

�� , (6.30)

for each i � 1, . . . , nx. If the addition of this factor ensures the sum in left hand side of (6.29)

at iteration k � 1 exits the interval
�
�
°
sPI0pziq

ρs,i,
°
sPI0pziq

ρ
s,i

�
associated with the prior choice

of zki � xks,i then we would be forced to choose new consensus values zki in order to re-establish

the satisfaction of the optimality condition (6.29). In doing so, a reassignment of the index sets

I�pzki q, I
�pzki q, and I0pzki q is effected. As intuition would suggest, the optimality condition (6.29)

is more easily satisfied when s P I0pzki q for large ρ
s,i

and ρs,i, as this makes the target interval�
�
°
sPI0pziq

ρs,i,
°
sPI0pziq

ρ
s,i

�
larger.

To effect a gradual increase in the terms ∆k in an attempt to improve convergence with the

satisfaction of the non-anticipativity condition, we considered an increasing multiplier factor to ψρ

given by βpk�1q � 1 (where β P p1, 2s to keep penalty growth at a reasonable rate and pk � 1q



150

represents an exponent and not an iteration index). In other words, we consider the objective at a

given iteration k as being

φρ,kpxs, ys, z, ωq :�
¸
sPS

pspc
Jxs � qJs ysq � pβpk�1q � 1q

�¸
sPS

ρJ
s
rxs � zs� �

¸
sPS

ρJs rz � xss
�

�
.

These observations culminate in the Penalty-based block Gauss-Seidel (PBGS) method presented

in Algorithm 6.2.

Algorithm 6.2 Penalty-based block Gauss-Seidel (PGBS) method for SIP

1: initialise ρ0 � pρ0, ρ0q, ẑ0, ε, γ, β, lmax, kmax

2: for s P S do
3: x̂0

s Ð argminx,y tφρ,1pxs, ys, ẑ
0, ρ0q : xs P X, ys P Yspxsqu

4: end for
5: for k � 1, . . . , kmax do
6: xk,0 Ð x̂k�1

7: zk,0 Ð ẑk�1

8: for l � 1, . . . , lmax do
9: for s P S do

10: pxk,ls , y
k,l
s q Ð argminx,y

 
φρ,kpxs, ys, z

k,l�1, ρkq : xs P X, ys P Yspxsq
(

11: end for
12: zk,l Ð argminz φ

ρ,kpxk,l, yk,l, z, ρkq
13: Γ Ð φρ,kpxk,l�1, yk,l�1, zk,l�1, ρkq � φρ,kpxk,l, yk,l, zk,l, ρkq
14: if Γ ¤ ε or l � lmax then
15: px̂ks , ŷ

k
s q Ð pxk,ls , y

k,l
s q for all s P S

16: ẑk Ð zk,l

17: break
18: end if
19: l Ð l � 1
20: end for
21: if ||x̂k � ẑk||22 ¤ ε or k � kmax then
22: return ppx̂ks , ŷ

k
s qsPS, ẑ

kq
23: else
24: ρk

s
� ρk�1

s
� γrx̂ks � ẑks� for all s P S

25: ρks � ρk�1
s � γrẑk � x̂kss

� for all s P S
26: end if
27: k Ð k � 1
28: end for



151

6.4 Computational Results

6.4.1 Preliminary Information

The SIP instance classes selected for testing the capabilities of Algorithm 6.2 are the CAP [15],

DCAP [4] and SSLP [92] problem classes (see Section 2.4.2 for more details). Since Algorithm 6.2

is a heuristic with potentially high sensitivity to changes in the problem data, sets of 50 instances

were taken from two problems from each class so as to more reliably evaluate its potential. The

specific test problems from each class are:

• CAP101 and CAP111, with 100 scenarios sampled from the 5000 scenarios available.

• DCAP233 and DCAP342, with 100 scenarios sampled from the 500 scenarios available.

• SSLP5-50 and SSLP10-50, with 100 scenarios generated as per [92].

The Progressive Hedging algorithm (see Section 2.5.1) was also used to solve these problems

as a point of comparison with an existing heuristic for calculating primal solutions of SIPs. An

important point to note is that the Progressive Hedging algorithm uses the squared 2-norm as

a penalty function, and hence its subproblems are quadratic integer programs. Since the block

Gauss-Seidel based method presented here only requires linear integer programs to be solved, its

subproblems could be expected to be computationally easier. However, due to the other differing

characteristics of the two algorithms this does not suffice as a comparison of their merits.

Another advantage of PGBS in the context of SIP problems is that zk,l�1 (computed in Line 12)

frequently satisfies the integrality constraints of the problem. By comparison, the z consensus values

computed in PH by averaging the first-stage variables tend to be non-integer. When the first-stage

variables are binary, the PH averaging computation of the consensus zk,l�1 is especially prone to

producing many non-integer components which can lead to episodic cycling in binary values set in

the assignment of scenario specific variables.

One important difference between PGBS and PH is that in PGBS we do not update the dual

variables ω. In principle it would be possible to incorporate a dual variable update in PGBS.

However, preliminary experiments with the subgradient method to update the dual solutions ω did

not provide significant improvement in the PGBS performance. It seems likely that this observation



152

is related to the asymmetrical way we update the penalty terms which, in effect, subsumes the role

usually taken by the linear multiplier term. Consequently, in Algorithm 6.2 we use ω � 0 and do

not update the dual solutions.

In the PGBS experiments, the parameters were chosen from β P t1.11, 1.25u, and γ P t0.5ρ0, ρ0u.

Three different initial values for ρ0 were used in both the PGBS and PH experiments; these were cho-

sen individually to suit each problem class. In the Progressive Hedging algorithm, dual multipliers

were initialised as 0.

As the CAP and SSLP problems have pure binary first-stage variables, we used (6.28) to perform

the z-update in PGBS (Line 12 of Algorithm 6.2). For DCAP, we relied on solving (6.27) explicitly.

A time limit of 1000 seconds and termination condition of ε � 10�3 was used for both methods.

A total of 300 (3 � 2 � 50) instances were solved with three parameters choices for PH (different

choices of ρ0) and 12 combinations of parameter choices for PBGS (different choices of ρ0, β, and

γ). Parameters ρ0 were set based on early experiments (in case of CAP) and considering values

known to be (near) optimal from other studies that have applied PH to instances of these problems

(in case of DCAP and SSLP, e.g., [50] and [45]).

All methods have been implemented using AIMMS 4.14 and subproblems have been solved using

CPLEX 12.6.2 with its standard configurations.

6.4.2 Numerical Results

A summary of the computational results is presented in Figures 6.1 to 6.3, which depicts the average

computational time and objective value difference for the 50 instances considered for both PH and

PBGS in all parameter settings that have been tested.

The blue bars indicate the average wall clock times for both methods. The instances in which

PH terminated due to the time limit of 1000s have been removed from the average calculations,

these being treated as outliers. The green line shows the average objective value relative difference,

which is calculated as
1

N

Ņ

i�1

ζ iPBGS � ζ iPH
ζ iPH

,

where ζ iPBGS and ζ iPH are the objective function values obtained for the solutions returned by PBGS

and PH for instance i, respectively, and N is the total number of instances considered for average



153

value calculations. To obtain ζ iPBGS and ζ iPH , we used the last solution returned by both methods

and evaluated it a posteriori. For the cases in which PH returned solutions that were infeasible in

regard to integrality restrictions (typically those obtained when the algorithm stopped due to the

time criterion), rounding has been performed to recover a feasible solution to be evaluated when

applicable.

(a) CAP101 (b) CAP111

Figure 6.1: PBGS results for CAP instances

(a) DCAP233 (b) DCAP342

Figure 6.2: PBGS results for DCAP instances

For the CAP instances, all configurations tested with PBGS and PH presented similar values

for the objective function, and in most configurations PBGS presented better performance in terms

of computational time. For the DCAP instances, in all cases PH terminated due to the time



154

limit of 1000 seconds. For these problems, a comparison in terms of objective function shows that

the differences between the objective function value of the solutions found by PGBS and PH are

more pronounced. A similar behaviour can be observed in the SSLP instances, in which PBGS

outperforms PH in terms of solution times in most cases while providing solutions that are, in the

worst case, 0.5% worse for SSLP5-50 and 5% worse for SSLP10-50. Overall, PBGS seems to be able

to obtain comparably good solutions however presenting more reliable convergence behaviour.

(a) SSLP5-10 (b) SSLP10-50

Figure 6.3: PBGS results for SSLP instances

6.5 Conclusions

This chapter has explored an alternative approach for solving stochastic mixed-integer problems

based on the combination of penalty-based and block Gauss-Seidel methods. The motivation for

this method arises from recently developed theoretical results which encourage the use of non-smooth

penalties within Lagrangian-based methods.

The computational experiments detailed in Section 6.4 suggest that there is potential for ex-

ploiting this framework as the resulting algorithm is competitive with contemporary methods in

terms of computational efficiency. Similarly to Progressive Hedging, the methodology developed

here is easily amenable to both parallel computation and multi-stage SIP problems. It can also po-

tentially benefit from many modern enhancements for PH available in literature, such as improved

techniques to set values for ρ [112] and scenario aggregation techniques [27, 45].

Further developments of this research can be separated into two classes. From a theoretical



155

perspective, suitable alternative extensions of the block Gauss-Seidel approach into non-smooth

non-separable problems are worth investigation. A better understanding of how to fine-tune the

updates of the penalty coefficients would improve the likelihood (or perhaps even guarantee!) that

the block Gauss-Seidel iterations do not display suboptimal stationarity. This would improve the

trend of the objective values computed by the main algorithm. In terms of practical considerations,

it would be of interest to evaluate the performance of the proposed approach with alternative

versions of PH that rely on heuristically improved ways of setting the penalty parameter ρ to

provide a more broad comparison of performance between the two algorithms. It would be also

of interest to evaluate the performance of the proposed approach in contexts other than SIPs, its

extension to the multi-stage case, and compare its performance with other algorithms that are

tailored to problems of similar structure, such as presented in [2], for example.

It is noteworthy that the PBGS algorithm is not theoretically guaranteed to converge to even

a feasible point (although when applied to our test problems it appears to do so invariably). A

modified version of the PBGS algorithm which is guaranteed to produce a feasible point for a

subclass of SIP is presented in the next chapter.



Chapter 7

Theoretical Extension for the
Penalty-based Gauss-Seidel Method

7.1 Introduction

7.1.1 Problem Formulation

In this chapter we will propose a modified version of the penalty-based Gauss-Seidel method of

Chapter 6 with stronger theoretical properties for certain sub-classes of Stochastic Integer Programs.

In particular we will show that the modified algorithm always converges to a feasible point. To

simplify proof construction later in this section we will use a slightly modified non-anticipativity

constraint formulation:

ζSIP � min
x ,y ,x̄,ȳ

¸
sPS

pspc
Txs � dTs ysq

s.t. xs P X @s P S

ys P Yspxsq @s P S

z � xs � 0 @s P S

ws � ys � 0 @s P S

(7.1)

As in Chapter 6 we have

X :�
 
x P Rn�q � Zq | Ax ¤ b

(
Yspxq :�

 
y P Rm�r � Zr | Tsx�Wsys ¤ hs

(
and we make the following assumption on ζSIP throughout:

156



157

Assumption 7.1 ζSIP is feasible, the optimal value of ζSIP is bounded, and ps, c, ds, A, b, Ts,

Ws, and hs are vectors or matrices (as appropriate) of rational numbers.

This formulation has one important distinction from those used in previous chapters; non-anticipativity

variables ȳ :� ȳ1, . . . , ȳs and constraints ȳs � ys � 0 are added for the second stage. Since the

second-stage non-anticipativity variables are independent for each outcome scenario and otherwise

unconstrained, the non-anticipativity constraints ȳs�ys � 0 have no practical effect on the feasibil-

ity of the second-stage decisions ys. The advantage of this formulation is that the first- and second-

stage variables are represented in a consistent manner. Note that in a multi-stage SIP formulation

all stages except the last have active non-anticipativity constraints, so this change in notation is

particularly well suited to generalising results for two-stage SIPs to the multi-stage case.

Define Ix and Rx as the index sets of first-stage integer and continuous variables respectively.

Similarly, define Iy and Ry as the index sets of second-stage integer and continuous variables

respectively. We can then write px, yq �
��
xIx

, xRx

�
,
�
yIy

, yRy

		
without loss of generality by

reordering the components of x and y.

Many of the results in this chapter will require the first-stage variables to be pure integer i.e.

|Ix| � r � m and Rx � H. This is a significant restriction on the subclasses of SIP which those

results can be applied to.

Define

Ks �
 
px, yq P Rn�q � Zq � Rm�r � Zr | x P X, y P Yspxq

(
.

Condition 7.1 Ks is a non-empty set of feasible decisions constructed with linear constraints and

integrality constraints on the xs and ys variables. This also implies that it is closed.

Condition 7.2 The optimal value of the SIP minimisation problem is bounded from below.

Condition 7.3 The set of constraints in Ks which act on only the first-stage decision variables is

identical for all s P S.

Condition 7.4 The SIP model has relatively complete recourse i.e. for all scenarios s P S, if a

first-stage decision x satisfies all constraints in Ks which act on only the first-stage decision variables

(i.e. x P X), a second-stage decision ys exists which satisfies

px, ysq P Ks.



158

The augmented Lagrangian dual problem corresponding to ζSIP with penalty function ψρpuq :�°
sPS ψ

s
ρpuq and penalty parameter ρ is:

ζLD�ρ :� sup
λ
ζLR�ρ pλq (7.2)

where

ζLR�ρ pλq :� min
x,y,z,w

t
¸
sPS

ps
�
cJxs � dJs ys � λJs ppz, wsq � pxs, ysqq � ψρss ppz, wsq � pxs, ysqq

�
| pxs, ysq P Ks @s P Su.

The theoretical results in subsequent sections will require a set of conditions on the penalty

function ψρ to be satisfied. In the remainder of this section we will discuss the consequences and

limitations of a sequence of condition sets, each stronger than the last, before reaching the full set

of conditions required for our final results.

The first and weakest set of assumptions on ψρ we will consider were introduced in [18] and later

used in [37] for the study of augmented Lagrangian duality in mixed integer programming.

Condition 7.5 ψρ :
±

sPS R|S|n ÞÑ R is a separable augmenting function ψρpuq :�
°
sPS ψ

ρs
s pusq

which satisfies the conditions

1. ψρp0q � 0

2. ψρpuq ¥ δ ¡ 0, @u R V

3. ψρpuq ¥ γ||u||8, @u P V

for some open neighbourhood V of 0 and positive scalars δ, γ ¡ 0, ρ :� pρ1, ρ2, . . . , ρ|S|q with the

later a vector of positive scalars, which acts as a scaling parameter for ψρ.

Theorem 7.6 [37, Thm. 5 ] Consider a two-stage SMIP problem ζSIP as defined in (7.1) which

satisfies Conditions 7.1, 7.2, 7.3 and 7.4. Further, consider the augmented Lagrangian dual problem

ζLD�ρ as defined in (7.2) which corresponds to ζSIP .

If the penalty function ψρpusq :�
°
sPS ψ

ρs
s pusq used in ζLD�ρ satisfies Condition 7.5, then there

exists a finite ρ such that

ζLD�ρ � ζLR�ρ pλLP q � ζSIP

where λLP may be taken as an optimal multiplier of the linear programming relaxation of the non-

anticipativity conditions xs � z.



159

Proof. Apply the general theorem [37, Thm. 5 ] to our problem (7.1). For the case of multidimen-

sional ρ observe that ψρpuq is bounded below by ψpv,...,vqpuq where v � mintρ1, . . . , ρIu.

As in Chapter 6 we may set the dual variables in ζLD�ψ to zero to obtain

ζLR�ρ p0q � min
x,y,z,w

t
¸
sPS

ps
�
cJxs � dJs ys � ψρsppz, wsq � pxs, ysqq

�
| pxs, ysq P Ks @s P Su.

If ψρ satisfies Condition 7.5 then by Theorem 7.6 for a sufficiently large finite ρ we have

ζSIP � ζLR�ρ p0q.

Since ζLR�ρ p0q and ζSIP are respectively lower and upper bounds on ζLD� we also have ζSIP � ζLD�.

The minimum over xs and ys of the augmented Lagrangian corresponding to (7.1) with dual

multipliers set to zero is

ϕρ pz, wq :� min
pxs,ysqPKs

sPS

#¸
sPS

ps
�
cJxs � dJs ys � ψρss ppz, wsq � pxs, ysqq

�+
(7.3)

where z P Rn, w P Rn�|S| and we write Ks in the following form:

Ks � tpxs, ysq | xs P X and ys P Ysu .

We consider the augmented Lagrangian dual function with dual multipliers set to zero:

ζLR�ρ p0q � min
pz,wq

ϕρ pz, wq . (7.4)

This is a continuous, unconstrained (global) optimisation problem. As in the previous Theorem

7.6, under Assumption 7.1 on ζSIP and suitable conditions on ψρs we have ζSIP � ζLR�ρ p0q for

sufficiently large but finite ρ. Any z and w which are optimal decisions for ζSIP clearly must also

be optimal decisions for ζLR�ρ p0q. However the converse does not necessarily hold; in general the z

and w decisions which are optimal for ζLR�ρ p0q need not even be feasible with respect to ζSIP . We

are interested in what we can discover about the local solutions to the minimisation of ϕρ.

Assumption 7.2 ψρs : Rn�m Ñ R is a continuous integer compatible regularization function

(ICRF), meaning that it satisfies the following conditions:



160

1. ψρs pu, vq ¥ 0 for all pu, vq and pu, vq � p0, 0q if and only if ψρs pu, vq � 0.

2. If γ P p0, 1q then ψρs pγ pu, vqq   ψρs pu, vq for all pu, vq � 0.

3. There exists a continuous, strictly increasing, function γ p�q : R� Ñ R� and a M such that

for all M   M we have ψρs pu, vq ¤ M implies }pu, vq}1 ¤ γ�1p M
minstρsu

q for the l1 norm }�}1

on Rn�m.

Remark 7.7 In practice it is generally the case that

ψρs pu, vq � ρψs pu, vq

for some coercive, differentiable function ψ and so ψρs pu,vq
ρs

� ψs pu, vq.

As separation between the first and second stage variables is a basic tool in stochastic optimi-

sation we need this property to be reflected in the penalty functions as well. This is achieved by

allowing component wise radial strict monotonicity. We require the following further strengthened

assumptions:

Assumption 7.3 We say that ψρs � ρsψs : Rn�m Ñ R is an integer compatible regularization

function plus (ICRF�), if we assume assumption 7.2 as well as the following conditions holding

for all s P S:

1. The penalty pu, vq ÞÑ ψs pu, vq is uniformly continuous over a bounded set.

2. If γ P r0, 1q then ψs pγu, vq   ψs pu, vq and ψs pu, γvq   ψs pu, vq for all pu, vq � 0.

3. There exists a function h3 : r0, 1s � r0,�8q Ñ R� which is uniformly continuous on bounded

sets, satisfies the condition

ψs pt pu, vqq � ψs pu, vq ¤ �h1 pt, }pu, vq}q   0

for all t P p0, 1q, and satisfies the condition that h1 pt, }pu, vq}q � 0 if and only if either t � 1

or }pu, vq} � 0.



161

4. There exists a function h2 : Rn�m Ñ R� which is uniformly continuous on bounded sets,

vanishes at the origin and at no other point, and satisfies the condition

|ψs pu, uq � ψs pu
1, v1q| ¤ h2 ppu, vq � pu1, v1qq for all pu, vq , pu1, v1q

Remark 7.8 The penalty function used in the Progressive Hedging algorithm is ψ pu, vq � }pu, vq}2.

This function is an ICRF�; in particular,

h1 pt, }pu, vq}q �
�
t2 � 1

�
}pu, vq}2

and

h2 pu, vq � 2 max t}pu, vq} , }pu1, v1q}u p}pu, vq � pu1, v1q}q

satisfy the conditions of parts 3 and 4 of Assumption 7.3.

7.1.2 Applying Gauss-Seidel to Modified SIP Formulation

For a general treatment of the block Gauss-Seidel method see Section 6.3.1. In this section we will

consider the application of a Gauss-Seidel type method to find a local solution for

min
pz,wq

ϕρ pz, wq .

Algorithm 7.1 Block GS method for SIP

1: initialise pz0, w0q P X � Y pz0q
2: for k � 1, . . . , kmax do
3: wk�1 Ð argminw ϕρ

�
zk, w

�
4: zk�1 Ð argminz ϕρ

�
z, wk�1

�
5: k Ð k � 1
6: end for
7: return pzkmax , wkmaxq

Algorithm 7.1 apparently alternates between optimisation over the proximal first-stage and

proximal second-stage non-anticipativity variables z and w, respectively. In this section we will

see that (after some rearrangement) this algorithm can be implemented by alternating between

optimisation over the decision variables px, yq and the proximal non-anticipativity variables z.



162

Suppose that px�, y�q is an optimal solution of the proximal point problem (7.3) for pz, wq ��
zk, wk�1

�
i.e. for all scenarios s P S we have

px�s , y
�
s q P argminpxs,ysqPKsc

Jxs � dJs ys � ψsρ
��
zk, wk�1

s

�
� pxs, ysq

�
.

If wk�1
s � y�s for some s P S we have

ϕρ
�
zk, wk�1

�
�

¸
sPS

ps min
pxs,ysqPKs

�
cJxs � dJs ys � ψρss

��
zk, wk�1

s

�
� pxs, ysq

��
�

¸
sPS

ps
�
cJx�s � dJs y

�
s � ψρss

��
zk, wk�1

s

�
� px�s , y

�
s q
��

¡
¸
sPS

ps
�
cJx�s � dJs y

�
s � ψρss

��
zk, y�s

�
� px�s , y

�
s q
��

due to condition 2 of Assumptions 7.3

¥
¸
sPS

ps min
pxs,ysqPKs

�
cJxs � dJs ys � ψρss

��
zk, y�s

�
� pxs, ysq

��
� ϕρ

�
zk, y�

�
which implies that wk�1 R argminw

 
ϕρ

�
zk, w

�(
.

Therefore, wk�1 P argminw
 
ϕρ

�
zk, w

�(
implies that wk�1

s � y�s for all s P S so that

min
pxs,ysqPKs

cJxs � dJs ys � ψρss
��
zk, wk�1

s

�
� pxs, ysq

�
� cJx�s � dJs y

�
s � ψρss

��
zk, wk�1

s

�
� px�s , y

�
s q
�
� min

pxs,ysqPKs
cJxs � dJs ys � ψρss

�
zk � xs, 0

�
.

Hence wk�1 takes the component value y�s of the optimal decision px�, y�q for the minimisation

problems

min
pxs,ysqPKs

cJxs � dJs ys � ψρss
�
zk � xs, 0

�
and

ϕρ
�
zk, wk�1

�
� min

px,yqPΠsKs

¸
sPS

ps
�
cJxs � dJs ys � ψρss

�
zk � xs, 0

��
. (7.5)

Define f px, yq :�
°
sPS ps

�
cJxs � dJs ys

�
� δΠsKs px, yq and place ψρ pu, vq :�

°
sPS psψ

ρs
s pus, vsq .

Also, define z|S| as a concatenation of the same vector |S| times to produce a vector in Rn�|S| i.e.

z|S| � pz, z, . . . , zq . Observe that

zk�1 P arg min
z
ϕρ

�
z, wk�1

�
�

� arg min
z

min
px,yq

t
¸
sPS

ps
�
cJxs � dJs ys

�
� δΠsKs px, yq

�
¸
sPS

psψ
ρs
s

��
z, wk�1

s

�
� pxs, ysq

�
u

� arg min
z

min
px,yq

 
f px, yq � ψρs

��
z|S|, w

k�1
�
� px, yq

�(
:� arg min

z
pf � ψρq

�
z|S|, w

k�1
�

(7.6)



163

where � denotes the infimal convolution. We can now rewrite Algorithm 7.1 in a form which

separates the minimisation over the decision and non-anticipativity variables, as shown in Algorithm

7.2.

Algorithm 7.2 Restatement of the block GS method for SIP

1: initialise pz0, w0q P X � Y pz0q
2: for k � 1, . . . , kmax do
3:

�
xk�1
s , yk�1

s

�
P arg minpxs,ysqPKs

�
cJxs � dJs ys � ψρss

�
zk � xs, 0

��
for all s P S

4: wk�1 Ð yk�1

5: zk�1 Ð arg minz pf � ψρq
�
z|S|, w

k�1
�

6: k Ð k � 1
7: end for
8: return pzkmax , wkmaxq

The z update step (as in 7.6) is too complicated to solve exactly as the evaluation of the objective

requires the solution of a MIP of equal difficulty as that provided by the original SMIP. Still this

problem is useful from a theoretical standpoint as it links the consensus problem to the Gauss-

Seidel step of the continuous regularisation. Later we will see that in practise we can still produce

a descent using the usual consensus update. Note that when zk�1 P arg minz
°
sPS psψ

ρs
s

�
z � xk�1

s

�
,

the pxk�1, wk�1q update step guarantees that

ϕρ
�
zk, wk�1

�
�

¸
sPS

ps
�
cJxk�1

s � dJs y
k�1
s � ψρss

��
zk, wk�1

s

�
�
�
xk�1
s , yk�1

s

���
¥

¸
sPS

ps
�
cJxk�1

s � dJs y
k�1
s

�
�min

z

¸
sPS

psψ
ρs
s

�
z � xk�1

s , 0
�

(7.7)

�
¸
sPS

ps
�
cJxk�1

s � dJs y
k�1
s

�
�
¸
sPS

psψ
ρs
s

��
zk�1, wk�1

s

�
�
�
xk�1
s , yk�1

s

��
¥ min

pxs,ysqPKs
sPS

#¸
sPS

ps
�
cJxs � dJs ys � ψρss

��
zk�1, wk�1

s

�
� pxs, ysq

��+
� ϕρ

�
zk�1, wk�1

�
¥ min

z
ϕρ

�
z, wk�1

�
Thus the solution of zk�1 P arg minz

°
sPS psψ

ρs
s

�
z � xk�1

s

�
produces a non-ascent step in ϕρs

�
�, wk�1

�
in that ϕρ

�
zk, wk�1

�
¥ ϕρ

�
zk�1, wk�1

�
¥ minz ϕρ

�
z, wk�1

�
. Using this observation we can write a

Gauss-Seidel algorithm that is guaranteed to produce non-ascent steps, which is given in Algorithm

7.3.



164

Algorithm 7.3 Modified block GS method for SIP

1: initialise pz0, w0q P X � Y pz0q
2: for k � 1, . . . , kmax do
3:

�
xk�1
s , yk�1

s

�
P arg minpxs,ysqPKs

�
cJxs � dJs ys � ψρss

�
zk � xs, 0

��
for all s P S

4: wk�1 Ð yk�1

5: zk�1 Ð arg minz
°
sPS psψ

ρs
s

�
z � xk�1

s

�
6: k Ð k � 1
7: end for
8: return pzkmax , wkmaxq

Note that for now the pzk�1, wk�1q update steps do not guarantee strict descent in φρ. We will

address this in the next section, particularly in Lemma 7.23.

Remark 7.9 If the penalty function used in Algorithm 7.3 is the squared 2-norm, this algorithm is

equivalent to Progressive Hedging with no dual multiplier update.

7.2 Theoretical Results

7.2.1 Properties of the infimal regularisation for a SIP

In this section we develop the properties of the continuous regularisation ϕρ of our SMIP. Critically

we are able to associate the local minima of this function with the feasible points of the associated

SMIP. Many of the following results are adapted from similar findings in [19] which apply to the

Feasibility Pump algorithm for mixed-integer programming. Recall that by z|S| we denote a concate-

nation of the same vector |S| times to produce a vector in Rn�|S| i.e. z|S| � pz, z, . . . , zq P diagRn�|S|.

Lemma 7.10 Assume ψρss are ICRFs for each s P S . Then for all pz, wq P Rn � Rm�|S| the

function ρ ÞÑ ϕρ pz, wq is non-decreasing.

Proof. This follows from the non-decreasing function dependence on ρ of the penalty terms ρs ÞÑ

ϕρss .

Lemma 7.11 Assume ψρss are ICRFs for each s P S. Then

ϕρ pz, wq ¤ f pz, wq :�
¸
sPS

ps
�
cJz � dJs ws � δKs pz, wsq

�
for all pz, wq P Rn � Rm�|S| for all ρ ¥ 0.



165

Proof. Observe that for pz, wsq P Ks we have

ϕρ pz, wq � min
pxs,ysqPKs

sPS

#¸
sPS

ps
�
cJxs � dJs ys � ψρss ppz, wsq � pxs, ysqq

�+
¤

¸
sPS

ps
�
cJz � dJs ws � δKs pz, wsq � ψρss ppz, wsq � pz, wsqq

�
� f pz, wq .

Note that since ρ ÞÑ ϕρ pz, wq is non-decreasing as per Lemma 7.10, the assumption that

tϕρpz
0, w0q | ρ ¡ 0u is bounded in the following lemma implies that there exists a sequence tρiu

and a constant C such that ϕρipz
0, w0q Ñ C, where C is the least upper bound on ϕρpz

0, w0q for all

ρ ¡ 0. Now a local minimum of an increasing family of functions might indeed increase in function

value at the minimiser and decrease in the domain on which it is a local minimiser. It is those local

minimisers that do not suffer from these issues that we wish to isolate.

Lemma 7.12 Assume that ψρss , for all s P S, satisfies the assumption to be an ICRF� (see As-

sumption 7.3). Assume that minpx,yqPΠsPSKs f px, yq   �8. Let

ϕρ
�
z0, w0

�
� inf

 
fρ
�
px, yq ,

�
z0
|S|, w

0
��
| px, yq P Rn�|S| � Rm�|S|

(
(7.8)

where

px, yq ÞÑ fρ
�
px, yq ,

�
z0
|S|, w

0
��

:�
¸
sPS

ps
�
cJxs � dJs ys � δKs pxs, ysq � ψρss

��
z0
|S|, w

0
s

�
� pxs, ysq

��
.

Then fρ attains a local minimum for all ρ �
�
ρ1, ρ2, . . . , ρ|S|

�
¡ 0.

Proof. Let M ¡ minpx,yqPΠsPSKs f px, yq and let ρ ¡ 0 be sufficiently large that the condition�
M �minpx,yqPΠsPSKs f px, yq

minstρsu



 M.

is satisfied. Consider

FK pz, wq :�
 
px, yq P ΠsPSKs | f px, yq � ψρ

��
z|S|, w

�
� px, yq

�
¤M

(
(7.9)

�

"
px, yq P ΠsPSKs |

�
min

px,yqPΠsPSKs
f px, yq

�
� ψρ

��
z|S|, w

�
� px, yq

�
¤M

*
�

"
px, yq P ΠsPSKs |

���z|S|, w�� px, yq
��

1
¤ |S| γ�1

�
M �minpx,yqPΠsPSKs f px, yq

minstρsu


*
.

This set FK is bounded and non-empty, and so the minimum of fρ is attained.



166

Lemma 7.13 Assume that ψρss are convex functions that for all s P S, satisfies the assumption to

be an ICRF� (see Assumption 7.3). Assume that the SIP has no continuous variables in the first

stage and that Ks for all s P S are bounded. Furthermore assume that we have a point pz0, w0q which

is a local minimum of ϕρ for all sufficiently large ρ �
�
ρ1, ρ2, . . . , ρ|S|

�
, and that tϕρ pz

0, w0quρ¡0 is

bounded above.

Then there exists a ρ̄ �
�
ρ̄1, ρ̄2, . . . , ρ̄|S|

�
¡ 0 such that for ρ ¥ ρ̄ the minimum in (7.8) is attained

by some pxs, ysq P Ks for s P S and there is a fixed neighbourhood Bδ pz
0, w0q (independent of ρ)

which verifies the local optimality of pz0, w0q for all ρ ¡ ρ.

Proof. We now need to show that pz0, w0q is a local minimum of ϕρ with respect to a fixed

neighbourhood Bδ̄ pz
0, w0q for all ρ greater than a sufficiently large ρ̄. To show this, we use the fact

that ρ Ñ ϕρ p�q is increasing with tϕρ pz
0, w0quρ¡0 bounded above by a constant C. We take C to

be the smallest such constant.

For sufficiently large ρ̄ ¡ 0, define Uρ to be the largest (convex) connected component of

 
pz, wq P Rn � Rm�|S| | ϕρ pz, wq   ϕρ

�
z0, w0

�
( ¤ C)

(
containing pz0, w0q which contains all the points pz, wq which demonstrate that ϕρ fails to be a

strict local minimum at pz0, w0q. Indeed if pz0, w0q fails to be local minimum within a fixed convex

neighbourhood there must exists pzρ, wρq P Uρ with pzρ, wρq Ñ pz0, w0q as ρ Ñ 8. This situation

can be eliminated by showing Uρ � H for ρ ¡ ρ.

Consider ρ Ñ Uρ, noting that as Uρ is convex and let lim infρÒ8 Uρ :� U8, a convex set. Note

that

Uρ �
 
pz, wq P Rn � Rm�|S| | ϕρ pz, wq ¤ C

(
:� Wρ,

where tWρu is a monotonically decrease family of sets, and hence convergent, to the right hand side

of �
z0, w0

�
P

#
px, yq |

¸
sPS

ps
�
cJx� dJs ys

�
¤ C, px, ysq P Ks for all s

+
. (7.10)

Thus we have U8 contained in the largest connected component containing pz0, w0q of the set in

(7.10).

We make the following observations:



167

•
°
sPS ps

�
cJz0 � dJs w

0
s

�
Ò C and pz0, w0

sq P Ks for all s by the initial assumptions of the lemma.

• For all pz, wq P Uρ and ρ is sufficiently large, every px�, y�q which satisfies

px�, y�q P arg min
pxs,ysqPKs

sPS

#¸
sPS

ps
�
cJxs � dJs ys � ψρs ppz, wsq � pxs, ysqq

�+

must also satisfy px�I , pysq
�
Iq � pz0

I , pw
0
sqqIq. If this were not the case then px�I , py

�
s qqIq �

pz0
I , pw

0
sqqIq for arbitrarily large ρ, and then tϕρ pz, wquρ¡0 would not be bounded above for

all ρ ¡ 0, contrary to assumption.

We next show that for ρ sufficiently large Uρ � H. To this end assume that there exists

pz, wq P Uρ and so

ϕρ pz, wq � min
pxs,ysqPKs

sPS

#¸
sPS

ps
�
cJxs � dJs ys � ψρs ppz, wsq � pxs, ysqq

�+
  ϕρ

�
z0, w0

�
¤ C. (7.11)

Thus for pz, wq P Uρ and ρ sufficiently large (ρ ¥ ρ̄) we have

ϕρ pz, wq � min

#¸
sPS

ps
�
cJxs � dJs ys � ψρs ppz, wsq � pxs, ysqq

�
| px, yq �

��
xR, z

0
I
�
,
�
yR, w

0
I
��
P ΠsPSKs

+
.

When we locally minimise over a compact, convex set

KRpz, wq :�
 
px, yq P ΠsPSKs | xI � z0

I and yI � w0
I
(
,

pz, wq ÞÑ ϕρ pz, wq can be locally represented as a closed convex function on Uρ; it is the infimal

convolution of two closed, convex functions

px, yq ÞÑ
¸
sPS

ps
�
cJxs � dJs ys

�
� δKR px, yq ,

and

pu, vq ÞÑ
¸
sPS

psψ
ρ
s pus, vsq

with pz, wq � px, yq � pu, vq.

Hence taking pz1, w1q � t pz0, w0q � p1� tq pz, wq P U8 (recall that pzI , pwsqqIq � pz0
I , pw

0
sqqIq for

all pz, wq P Uρ) then by the local convexity of ϕρ on the set Uρ and (7.11) we have for all t P p0, 1q

that

ϕρ pz
1, w1q ¤ tϕρ

�
z0, w0

�
� p1� tqϕρ pz, wq   ϕρ

�
z0, w0

�
,



168

which contradicts the initial assumption of the lemma that pz0, w0q is a local minimum of ϕρ. Hence

Uρ � H.

The following is another way of framing the observation made in the last result that the min-

imisers in (7.12), the definition of the function ϕρ̄, are attained exactly at the local minimiser of

the same function ϕρ̄p�q. This observation is critical to subsequent analysis so further justification

is provided.

Lemma 7.14 Assume that ψρss , for all s P S, satisfies the assumption to be an ICRF� (see As-

sumption 7.3). Assume that the SIP has no continuous variables in the first stage and that Ks for

all s P S are bounded. Furthermore assume that we have a point pz0, w0q which is a local minimum

of ϕρ with respect to a fixed neighbourhood Bδ̄ pz
0, w0q for all ρ �

�
ρ1, ρ2, . . . , ρ|S|

�
sufficiently large.

Then there exists ρ̄ �
�
ρ̄1, ρ̄2, . . . , ρ̄|S|

�
¡ 0 such that for ρ ¥ ρ̄,

�
z0
|S|, w

0
	
P Rn�|S| � Rm�|S| is the

unique minimum point of px, yq ÞÑ fρppx, yq ,
�
z0
|S|, w

0
	
q in

ϕρ
�
z0, w0

�
� inf

 
fρ
�
px, yq ,

�
z0
|S|, w

0
��
| px, yq P Rn�|S| � Rm�|S|

(
(7.12)

and pz0, w0q also satisfies the conditions ϕρ pz
0, w0q �

°
sPS ps

�
cJz0 � dJs w

0
s

�
for all ρ ¥ ρ̄ with

pz0, w0
sq P Ks for all s P S.

Moreover ρ̄ can be obtained by the strategy of of selectively increasing ρ̄s for all the s P S

whenever the minimiser px�s , y
�
s qsPS in px, yq ÞÑ fρppx, yq ,

�
z0
|S|, w

0
	
q has x�s � z0.

Proof. For all sufficiently large ρ there exists px̄, ȳq P K that attains the infimum in the definition

of ϕρ pz
0, w0q i.e. we have

ϕρ
�
z0, w0

�
�

¸
sPS

ps
�
cJx̄s � dJs ȳs � ψρss

��
z0, w0

s

�
� px̄s, ȳsq

��
¤ ϕρ pz

1, w1q

for all pz1, w1q P Bδ̄

�
z0
|S|, w

0
	

. Thus¸
sPS

ps
�
cJx̄s � dJs ȳs � ψρss

��
z0, w0

s

�
� px̄s, ȳsq

��
¤ ϕρ pz

1, w1q

¤
¸
sPS

ps
�
cJx̄s � dJs ȳs � ψρss ppz1, w1

sq � px̄s, ȳsqq
�

or

Ψρ

��
z0
|S|, w

0
�
� px̄, ȳq

�
�

¸
sPS

psψ
ρs
s

��
z0, w0

s

�
� px̄s, ȳsq

�
¤

¸
sPS

psψ
ρs
s ppz1, w1

sq � px̄s, ȳsqq � Ψρ

��
z1|S|, w

1
�
� px̄, ȳq

�



169

Hence for any given pz1, w1q P Bδ̄

�
z0
|S|, w

0
	

0 ¤
¸
sPS

ps
�
ψρss ppz1, w1

sq � px̄s, ȳsqq � ψρss
��
z0, w0

s

�
� px̄s, ȳsq

��
. (7.13)

We will show that for all s P Sρ :� ts P S | pz0, w0
sq � px̄s, ȳsqu we must have

ψρss
��
z0, w0

s

�
� px̄s, ȳsq

�
¡ ψρss ppz1, w1

sq � px̄s, ȳsqq

for all pz1, w1
sq �

�
z0, w0

s

�
� t

�
px̄s, ȳsq �

�
z0, w0

s

��
P Bδ̄

�
z0, w0

s

�
� Rn � Rm. (7.14)

Assume that pz0, w0
s1q � px̄s1 , ȳs1q for some s1 P S and t P p0, 1q is taken sufficiently small so that

�
z0, w0

s1

�
� pz1s1 , w

1
s1q :�

�
z0, w0

s1

�
� t

�
px̄s1 , ȳs1q �

�
z0, w0

s1

��
P Bδ̄

�
z0, w0

s1

�
� Rn � Rm.

is satisfied. Indeed we may take t to be a fixed number

t �
δ̄

B �
����z0

|S|, w
0
	���

for a fixed B ¥ sup t}pz, wq} | pz, wq P FK pz
0, w0qu, where FK as defined in (7.9) is a bounded set

(note that t is independent of ρ ¥ ρ̄). Given this, we have

t
��px̄s1 , ȳs1q � �

z0, w0
s1

��� ¤ t
��px̄, ȳq � �

z0
|S|, w

0
��� ¤ t

����z0
|S|, w

0
���� }px̄, ȳq}

�
¤ t

�
B �

���z0
|S|, w

0
���� � δ̄

so pz1s1 , w
1
s1q P Bδ̄ pz

0, w0
s1q for this given t ¡ 0 and all s1 P S. Now if we presume that the opposite

inequality to (7.14) holds for s � s1 and use the second part of Assumption 7.3 we have

ψρ
s1

s1

��
z0, w0

s1

�
� px̄s1 , ȳs1q

�
¤ ψ

ρs1
s1

�
p1� tq

��
z0, w0

s1

�
� px̄s1 , ȳs1q

��
  ψ

ρs1
s1

��
z0, w0

s1

�
� px̄s1 , ȳs1q

�
which is evidently a contradiction. Thus we have (7.14) holding for all s P Sρ.

Consider (7.13) for a variable ρ and assume that for all ρ ¡ 0 we have s P Sρ � H. We now

consider two cases.

Case 1: x̄s � z0 for some s P S.



170

As we have a pure SIP in the x variables, and ψρss is an ICRF� for all s P S (see Assumption

7.3), we deduce form (7.13) that there exists a fixed ε ¡ 0 such that

1

ρs

�
ψρss ppz1, w1

sq � px̄s, ȳsqq � ψsρs
��
z0, w0

s

�
� px̄s, ȳsq

��
� ψs

�
p1� tq

��
z0, w0

s

�
� px̄s, ȳsq

��
� ψs

��
z0, w0

s

�
� px̄s, ȳsq

�
¤ �h3

�
p1� tq ,

���z0, w0
s

�
� px̄s, ȳsq

��� ¤ �ε   0.

Then for ρs ¡ 0 sufficiently large for s P Sρ � H we have the following contradiction arising from

(7.13):

0 ¤
¸
sPSρ

ρsps
1

ρs

�
ψρss ppz1, w1

sq � px̄s, ȳsqq � ψρss
��
z0, w0

s

�
� px̄s, ȳsq

��
�

¸
sRSρ

psψ
ρs
s ppz1, w1

sq � px̄s, ȳsqq   0.

Thus there exists ρ̄ ¡ 0 such that Sρ � H for all ρ ¥ ρ̄ and x̄ � z0
s (fixed) for all s P S.

Case 2: x̄s � z0 for all s P S

If w0 � ȳ then by (7.13) we have some t P p0, 1q (independent of ρ) which satisfies

�
z0
|S|, w

0
�

�
�
z0
|S|, w

1
s

�
:�

�
z0
|S|, w

0
s

�
� t

��
z0
|S|, ȳs

�
�
�
z0
|S|, w

0
s

��
P Bδ

�
z0
|S|, w

0
�
� Rn�|S| � Rm�|S|.

and then

Ψρ

��
z0
|S|, w

0
�
�
�
z0
|S|, ȳ

��
¤ Ψρ

��
z0
|S|, w

1
�
�
�
z0
|S|, ȳ

��
� Ψρ

�
p1� tq

��
z0
|S|, ȳ

�
�
�
z0
|S|, w

0
���

  Ψρ

��
z0
|S|, ȳ

�
�
�
z0
|S|, w

0
��

which is a contradiction. Therefore in this case we have px̄s, ȳsq � pz0, w0
sq P Ks for all s P S. Hence

if ρ ¥ ρ̄ we have the equality�
min

px,yqPK

 
fρ
�
px, yq ,

�
z0
|S|, w

0
��(

�



ϕρ

�
z0, w0

�
�

¸
sPS

ps
�
cJz0 � dJs w

0
s

�
. (7.15)

holding. Since the RHS is not dependent on ρ the minimum over fρ is constant for all ρ ¥ ρ̄.

It remains to show that if ρ̄ is defined such that pz0, w0q is a local minimum of ϕρ with respect

to a fixed neighbourhood Bδ̄ pz
0, w0q for all ρ ¥ ρ̄, then the point pz0, w0q uniquely obtains the

minimum of fρ for all ρ ¥ ρ̄.



171

Let px̂, ŷq be the minimiser of fρp�, pz
0, w0qq for some sufficiently large ρ ¥ ρ̄. Then px̂, ŷq

cannot be anticipative since the penalty term and hence the minimum of fρ would increase as ρ

increases (indeed the integral first stage assumption implies x̂s � z0 for all s P S for sufficiently

large ρ). If px̂, ŷq is non-anticipative but not equal to
�
z0
|S|, w

0
	

then for sufficiently small t P p0, 1q,

p1 � tq
�
z0
|S|, w

0
	
� tpx̂, ŷq remains within Bδ̄ pz

0, w0q (for all ρ ¥ ρ̄). Since the second part of

Assumption 7.3 implies

¸
sPS

psψ
ρs
s

��
p1� tq

�
z0, w0

s

�
� tpx̂s, ŷsq

�
� px̂s, ŷsq

�
 

¸
sPS

psψ
ρs
s

��
z0, w0

s

�
� px̂s, ŷsq

�
we have

fρ
�
px̂, ŷq, p1� tq

�
z0, w0

�
� tpx̂, ŷq

�
  fρ

�
px̂, ŷq,

�
z0, w0

��
� ϕρ

�
z0, w0

�
which contradicts our assumption that pz0, w0q is a local minimum of ϕρ with respect to Bδ̄ pz

0, w0q.

Therefore,
�
z0
|S|, w

0
	

uniquely obtains the minimum of fρ for all ρ ¥ ρ̄, as required.

Finally, observe that by (7.15) and

fρp
�
z0
|S|, w

0
�
,
�
z0
|S|, w

0
�
q �

¸
sPS

ps
�
cJz0 � dJs w

0
s � δKs

�
z0, w0

s

�
� ψρss

��
z0, w0

s

�
�
�
z0, w0

s

���
we see that

�
z0
|S|, w

0
	

can only attain the minimum
°
sPS ps

�
cJz0 � dJs w

0
s

�
if pz0, w0

sq P Ks for all

s P S.

Lemma 7.15 Assume that ψρss , for s P S, satisfy the assumption to be an ICRF� (see Assumption

7.3). Then local minima of ϕρ̄ are also local minima of ϕρ1 for ρ1 ¥ ρ̄. Furthermore, if the SIP

has no continuous variables in the first stage, local minima of ϕρ̄ are strict local minima of ϕρ1 for

ρ1 ¥ ρ̄.

Proof. Follows immediately from the proof of Lemmas 7.13 and 7.14.

7.2.2 Characterising Solutions of the SIP

We now characterise the solutions of the SIP (7.1) in terms of the minimisers of ϕρ. Let g px, yq :�°
sPS ps

�
cJxs � dJs ys

�
and F :�

 
px, yq P Rn � Rm�|S| | px, ysq P Ks for all s P S

(
; note that this

implicitly guarantees consensus for all elements of F .



172

Theorem 7.16 Assume that ψρss , for s P S, satisfy the assumption to be an ICRF� (see Assumption

7.3). Suppose in addition that either:

1. We have a pure SIP that contains no real variables in both stages i.e. x and ys for all s P S

or

2. We have a pure SIP that contains no first stage real variables and given any px, yq P F then�
xIx

,
�
yTy

, w0
Ry

		
P F implies yRy � w0

Ry
.

Then there exists a ρ̄ ¡ 0 such that for ρ ¡ ρ̄ any local minimum of ϕρ lies in the feasible region

F . Moreover for ρ ¡ ρ̄ large enough, the local minima of ϕρ are exactly the points of F .

Proof. Lemma 7.14 demonstrates that any local minimum of ϕρ lies in F ; therefore we need only

show that if pz0, w0q P F then pz0, w0q is a local minimum of ϕρ for ρ sufficiently large. Let

g px, yq :�
¸
sPS

ps
�
cJxs � dJs ys

�
f px, yq :� g px, yq � δΠsKs px, yq and

ψρ pu, vq :�
¸
sPS

psψ
ρs
s pus, vsq .

Consider K :� ϕρ pz
0, w0q � 2, ρ ¡ ρ̄ sufficiently large so via (7.9) we know that the set

FK
�
z0, w0

�
:�

 
px, yq P ΠsPSKs | f px, yq � ψρ

��
z0
|S|, w

0
�
� px, yq

�
¤ K

(
(7.16)

is bounded. As f is lower semi-continuous and ψρ

��
z0
|S|, w

0
	
� p�, �q

	
is continuous their sum is also

lower semi-continuous, implying that FKpz
0, w0q is a closed set. Next note that since ϕρpz

0, w0q is

defined as an infimum of continuous functions px, yq ÞÑ g px, yq�ψρ

��
z0
|S|, w

0
	
� px, yq

	
, it is upper

semi-continuous. Thus we may take pz1, w1q sufficiently close to pz0, w0q so that ϕρ pz
1, w1q � 1  

ϕρ pz
0, w0q�2 :� K; since ψρss , is an ICRF� for s P S (see Assumption 7.3), for all px, yq P FK pz

0, w0q



173

with
�
xIx

, yIy

	
�

��
z0
Ix

	
|S|
, w0

Iy



we have by for ρ̂ :� minstρsu that

1

ρ̂
ψρ

�
px, yq �

�
z1|S|, w

1
��
�

¸
sPS

ps
ρs
ρ̂
ψs pxs � z1, ys � w1

sq

¥
¸
sPS

psψs pxs � z1, ys � w1
sq :� ψ

�
px, yq �

�
z1|S|, w

1
��

� ψ
�
px, yq �

�
z0
|S|, w

0
��
�
�
ψ
�
px, yq �

�
z1|S|, w

1
��
� ψ

�
px, yq �

�
z0
|S|, w

0
���

¥ inf

"
ψ
�
px, yq �

�
z0
|S|, w

0
��
| px, yq P FK

�
z0, w0

�
with

�
xIx

, yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy


*
�
�
ψ
�
px, yq �

�
z0
|S|, w

0
��
� ψρ

�
px, yq �

�
z1|S|, w

1
���

� ε�
�
ψ
�
px, yq �

�
z0
|S|, w

0
��
� ψ

�
px, yq �

�
z1|S|, w

1
���

¡ 0

where

inf

"
ψ
�
px, yq �

�
z0
|S|, w

0
		

| px, yq P FK
�
z0, w0

�
with

�
xIx , yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy


*

¥ inf

"
h1

�
px, yq �

�
z0
|S|, w

0
		

| px, yq P FK
�
z0, w0

�
with

�
xIx , yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy


*
:� ε ¡ 0.

Take ρ ¡ 0 sufficiently large so that ε
2
¡ Γ

ρ̂
� Γ

minstρsu
¡ 0 where

Γ :� max
 
f px, yq � f pz1, w1q | px, yq , pz1, w1q P FK

�
z0, w0

�(
� max

 
g px, yq � g pz1, w1q | px, yq , pz1, w1q P F X FK

�
z0, w0

�(
which is finite since g is continuous, FK pz

0, w0q is compact and F is closed. Refer to the definition
of an ICRF� given in Assumption 7.3 and assume we take pz1, w1q sufficiently close to pz0, w0q so
that at least �

ψ
�
px, yq �

�
z0
|S|, w

0
��
� ψ

�
px, yq �

�
z1|S|, w

1
���

 
ε

2

and hence ψρ

�
px, yq �

�
z1|S|, w

1
		

¥ ρ̂ε
2
¡ ρ̂ Γ

minstρsu
� Γ.

Then for px, yq P FK pz
0, w0q with

�
xIx

, yIy

	
�

��
z0
Ix

	
|S|
, w0

Iy



we have

f px, yq � ψρ
��
z1|S|, w

1
�
� px, yq

�
�
 
f px, yq � f

�
z0
|S|, w

0
�
� ψρ

��
z1|S|, w

1
�
� px, yq

�(
� f

�
z0
|S|, w

0
�

¥ �Γ� ρ
ε

2
� f

�
z0
|S|, w

0
�
¥ �Γ� Γ� f

�
z0
|S|, w

0
�
� f

�
z0
|S|, w

0
�
¥ ϕρ

�
z0, w0

�
.

Next note that if px, yq P FK�1 pz
1, w1q and we have pz1, w1q is sufficiently close to pz0, w0q so that��ψρ �px, yq � �

z1|S|, w
1
��
� ψρ

�
px, yq �

�
z0
|S|, w

0
���� ¤ 1

then

K � 1 ¥ f px, yq � ψρ
�
px, yq �

�
z1|S|, w

1
��

� f px, yq � ψρ
�
px, yq �

�
z0
|S|, w

0
��
�
�
ψρ

�
px, yq �

�
z1|S|, w

1
��
� ψρ

�
px, yq �

�
z0
|S|, w

0
���

¥ f px, yq � ψρ
�
px, yq �

�
z0
|S|, w

0
��
� 1



174

and so FK�1 pz
1, w1q � FK pz

0, w0q giving

inftf px, yq � ψρ
��
z1|S|, w

1
�
� px, yq

�
| px, yq P FK�1 pz

1, w1q with
�
xIx

, yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy



u

¥ ϕρ
�
z0, w0

�
.

On the other hand for px, yq P FK pz
0, w0q with

�
xIx

, yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy



we may take pz1, w1q

sufficiently close to pz0, w0q so
�
xIx

, yTy

	
�

��
z0
Ix

	
|S|
, w0

Iy



�
�
z1
Ix
, w1

Ty

	
.

If the second stage variables are pure integer we then have pz1, w1q � pz0, w0q � px, yq and hence

ϕρ pz
1, w1q ¥ ϕρ

�
z0, w0

�
for pz1, w1q sufficiently close to pz0, w0q, which completes the proof for the first condition.

If the second stage variables are mixed integer then we know that ϕρ is locally minimised in the

integer variables at
�
z0
Ix
, w0

Iy

	
. Suppose the local minimum of ϕρ lies at

�
z0
Ix
, w0

Iy
, w1

Ry

	
; then by

Lemma 7.14 we have
�
z0
Ix
, w0

Iy
, w1

Ry

	
P F and the second condition gives w1

Ry
� w0

Ry
, which implies

that ϕρ is locally minimised at pz0, w0q.

We finish this section by making a comparison with the results of [18] and [37]. The following

version of the strong augmented duality is a version of these results applied to SIP reproduced from

Chapter 6. The results of [37] can be used to show that this theorem may extend to mixed integer

SIP. In effect this is augmented Lagrangian duality for a SIP where we have put the dual multipliers

to zero.

Theorem 7.17 Suppose that ψρss , for all s P S, satisfies the assumption to be an ICRF� (see

Assumption 7.3), and in addition we have a pure SIP that contains no first stage real variables.

Then the there exists ρ̄ ¥ 0 such that for all ρ ¥ ρ̄ we have the global minimisers of ϕρ are exactly

the optimal solutions of the SIP. Indeed

min
pz,wqPRn�Rm�|S|

ϕρ pz, wq � ζSIP :� min
px,yq

#¸
sPS

ps
�
cJx� dJs ys

�
| px, ysq P Ks for all s P S

+
,

the optimal value of the SIP.

Proof. We note that the previous proof shows that even when the second condition does not

hold, the only way that a given pz0, w0q is not a local minimum of ϕρ is for there to exist some

other
�
z0,

�
w0

Iy
, w1

Ry

		
P F (by Lemma 7.14 for which ϕρ pz

0, w0q ¡ ϕρ

�
z0,

�
w0

Iy
, w1

Ry

		
. Thus the

minimum of all such feasible solutions must result in the smallest and hence the optimal one.



175

7.2.3 Analysis of the Gauss-Seidel Step

Guass-Seidel is usually only studied for differentiable optimisation problems. We need to perform

Gauss-Seidel for a nonsmooth functions of special structure and hence develop the necessary theory

here to facilitate this analysis.

Definition 7.18 A function f : X ÞÑ R Y �8 is Fréchet subdifferentiable at x if there exists

a Fréchet subderivative x� such that

lim inf
hÑ0

fpx� hq � fpxq � xx�, hy

}h}
¥ 0.

We denote the collection of all such subderivatives by Bfpxq, the Fréchet subdifferential of f at

x.

Lemmas 7.19 and 7.20 allow us to characterise the stationary points of ϕρ as its partial minima,

which are points satisfying the stopping criteria of the Gauss-Seidel algorithm. Denote the unit

sphere by S1p0q :� tx P X | }x} � 1u.

Lemma 7.19 Suppose that G px, yq : X � Y Ñ R is such that ∇xG p�, y
�q P C1 pXq exists and

the Fréchet partial subdifferential ByG px
�, y�q exists. Suppose in addition that px�, y�q is a partial

minimum of G in that

G px�, yq ¥ G px�, y�q for all y and

G px, y�q ¥ G px�, y�q for all x. (7.17)

Then p0, 0q P BG px�, y�q (the Fréchet subdifferential) implying px�, y�q is a stationary point. When

G px, yq is jointly convex we have px�, y�q a global minimum of G.

Proof. Clearly ∇xG px
�, y�q � 0 and 0 P ByG px

�, y�q . We now show that

BG px�, y�q � t∇xG px
�, y�qu � ByG px

�, y�q .

Consider pzx, zyq P BG px
�, y�q then by the definition of the Fréchet subdifferential

G px, yq �G px�, y�q � xzx, x� x�y � xzy, y � y�y ¥ o p}px, yq � px�, y�q}q (7.18)



176

within some neighbourhood of px�, y�q . Now fix y � y� and consider the restricted version of (7.18)

which says that

G px, y�q �G px�, y�q � xzx, x� x�y ¥ o p}x� x�}q

in a neighbourhood of x� (in X). But as ∇xG p�, y
�q P C1 pXq we must have Gpx,y�q�Gpx�,y�q

}x�x�}
�

x∇xG px
�, y�q , x�x�

}x�x�}
y Ñ 0 as }x� x�} Ñ 0 and so taking x�x�

}x�x�}
Ñ d P S1 p0q we have�

G px, y�q �G px�, y�q

}x� x�}
� x∇xG px

�, y�q ,
x� x�

}x� x�}
y

�
� x∇xG px

�, y�q � zx,
x� x�

}x� x�}
y ¥

o p}x� x�}q

}x� x�}
Ñ 0

implying x∇xG px
�, y�q � zx, dy ¥ 0 for all d P S1 p0q .

Hence∇xG px
�, y�q � zx and BG px�, y�q � t∇xG px

�, y�qu�ByG px
�, y�q. Thus∇xG px

�, y�q � 0

and 0 P ByG px
�, y�q implies p0, 0q P BG px�, y�q with the rest following immediately from known

results.

Lemma 7.20 Suppose G px, yq �
°
s gs pysq�

°
s h px, ysq where gs p�q and h px, �q are proper, convex

functions and h p�, yq P C1 pRnq for each y. Suppose in addition that (7.17) holds. Then px�, y�q is

a Fréchet stationary point of G and when h is jointly convex actually a global minimum.

Proof. Since the subdifferential of the sum of convex functions is the sum of their subdifferentials,

and the non-smooth component of G is separable in ys for each s P S, we have

0 P ByG px
�, y�q �

¹
s

pBysgs py
�
s q � Bysh px

�, y�s qq and

0 � ∇xG px
�, y�q �

¸
s

t∇xh px
�, y�s qu exists.

Hence it follows from Lemma 7.19 that

p0, 0q P BG px�, y�q � t∇xG px
�, y�qu � ByG px

�, y�q .

This in turn implies px�, y�q is a minimum for G when h is jointly convex (as the convex subdiffer-

ential equals the Fréchet subdifferential).

Remark 7.21 The proof of Lemma 7.20 holds under the less restrictive assumption that h p�, y�q P

C1 pRnq for the y� given in (7.17).



177

7.2.4 Properties of the Consensus Variable Update Step

In this section we address the existence of descent for ϕρ when the Guass-Seidel step in x in ϕρ is

replaced by the consensus step. By convK we denote the smallest convex set containing K.

Lemma 7.22 Suppose ψ P C1 pRnq is a finite, proper convex function and K a set defined by linear

inequality and the integrality constraints. Let ψ̂ be the largest convex function on Rn � convK

majorised by:

px̄, xq ÞÑ ψ px̄� xq � δRn�K px̄, xq .

Then ψ̂ px̄, uq � ψ px̄� uq for all px̄, uq P Rn � K and so ∇xψ̂ p�, uq px̄q exists for each u P K.

Furthermore, if

ψ px̄� xq ¥ ψ
�
x̄0 � x0

�
@ px̄, xq P Rn �K (7.19)

holds then we have

ψ̂ px̄� xq ¥ ψ
�
x̄0 � x0

�
@ px̄, xq P Rn � convK.

Proof. First we note that as ψ P C1 pRnq is a finite, proper convex function by definition

ψ P U :� tg : Rn � convK Ñ R |g convex and g px̄, uq ¤ ψ px̄� uq , @ px̄, uq P Rn �Ku .

Now ψ̂ px̄, xq � sup tg px̄, xq | g P Uu and as px̄, xq ÞÑ ψ px̄� xq is jointly convex on Rn� convK we

have

ψ px̄� xq ¤ ψ̂ px̄, xq @ px̄, xq P Rn � convK

and so

ψ px̄� uq ¤ ψ̂ px̄, uq ¤ ψ px̄� uq @ px̄, xq P Rn �K.

Hence ψ̂ px̄, uq � ψ px̄� uq for all px̄, uq P Rn �K and so ∇x̄ψ̂ p�, uq px̄q exists for each u P K.

Now assume that (7.19) holds. Let px̄, xq �
°
i λi px̄

i, xiq P Rn� convK where λi ¥ 0,
°
i λi � 1

and px̄i, xiq P Rn �K then ¸
i

λiψ
�
x̄i � xi

�
¥ ψ

�
x̄0 � x0

�
and so by [97, Theorem 5.6] we have

ψ̂ px̄� xq � inf
px̄i,xiqPRn�K
λi¥0,

°
i λi�1

#¸
i

λiψ
�
x̄i � xi

�
| px̄, xq �

¸
i

λi
�
x̄i, xi

�+
¥ ψ

�
x̄0 � x0

�
@ px̄, xq P Rn � convK,



178

as required for the second part of the lemma.

Note that in Lemma 7.23 we assume relatively complete recourse. This implies that projxKs �

X and as a consequence of the linearity of this projection, projxpconvKsq � convX.

Lemma 7.23 Suppose that ψρss P C1 pRnq is a finite, proper convex function for all s P S and K a

set defined by linear inequality and integrality constraints. Further, suppose that ϕρ is as defined in

(7.3) and that it is derived from a SIP (7.1) with relatively complete recourse.

If xk is not a minimum of ϕρ
�
�, yk�1

�
then for

x̄k�1 P arg min
x̄

¸
sPS

psψ
ρs
s

�
x̄� uk�1

s

�
we have

ϕρ
�
xk, yk�1

�
¡ ϕρ

�
x̄k�1, yk�1

�
¥ min

x̄
ϕρ

�
x̄, yk�1

�
. (7.20)

Proof. Suppose there is no strict decrease in step (7.7) above. Then we have

min
x̄

¸
sPS

psψ
ρs
s

�
x̄� uk�1

s

�
�

¸
sPS

psψ
ρs
s

�
xk � uk�1

s

�
.

Denote

G px, y, x̄q �
¸
sPS

ps
�
cJxs � dJs ys

�
�
¸
sPS

psψ
ρs
s px̄� xsq ,

a proper convex function jointly in px, y, x̄q. Then by construction we have

G
�
x, y, xk

�
¥ G

�
uk�1, vk�1, xk

�
@ px, yq P ΠsPSKs (7.21)

and

G
�
uk�1, vk�1, x̄

�
¥ G

�
uk�1, vk�1, xk

�
@x̄. (7.22)

Note that when px̄, x, yq �
°
i λi px̄

i, xi, yiq P Rn � conv ΠsPSKs � Rn � ΠsPS convKs (where°
i λi � 1 with λi ¥ 0) we have

¸
i

λiG
�
xi, yi, x̄i

�
�

¸
i

λi

�¸
sPS

ps
�
cJxis � dJs y

i
s

�
�
¸
sPS

psψ
ρs
s

�
x̄i � xis

��
�

¸
sPS

ps
�
cJxs � dJs ys

�
�
¸
sPS

ps
¸
i

λiψ
ρs
s

�
x̄i � xis

�
.



179

We now form the largest convex function H (defined on pRn � ΠsPS convKq) which is majorised by

G|ΠsPSRn�Ks . Denote

ψ̂sρs px̄, xsq :� inf

#¸
i

λiψ
ρs
s

�
x̄i � xis

�
| x̄i P Rn, xis P X,

¸
i

λi � 1, λi ¥ 0, xs �
¸
i

λix
i
s

+
(7.23)

where ψ̂ρss is the largest convex function majorised by ψρss px̄� xq on Rn � X (noting that by

relatively complete recourse then PxKs � X) and noting that also px̄, xq ÞÑ ψ̂ρss px̄, xsq is jointly

convex on Rn � convKs. Next note that as ψρss P C1 pRnq and ψ̂ρss
�
x̄, uk�1

�
� ψρss

�
x̄� uk�1

�
for a

given
�
uk�1, vk�1

�
P Ks (recall that relatively complete recourse gives uk�1 P X) and for all x̄ P Rn

we have ∇x̄ψ̂
ρs
s

�
�, uk�1

�
existing. As

�
uk�1, vk�1

�
P ΠsKs then

H
�
uk�1, vk�1, x̄

�
� G

�
uk�1, vk�1, x̄

�
.

Thus by (7.21), (7.22) and Lemma 7.22 it follows that

H
�
x, y, xk

�
¥ H

�
uk�1, vk�1, xk

�
for all px, yq P ΠsPS convKs and

H
�
uk�1, vk�1, x̄

�
¥ H

�
uk�1, vk�1, xk

�
for all x̄.

Hence by Lemma 7.20 we have
�
uk�1, vk�1, xk

�
a minimum for H. That is

H px, y, x̄q ¥ H
�
uk�1, vk�1, xk

�
� G

�
uk�1, vk�1, xk

�
� ϕρ

�
xk, yk�1

�
for all px, y, x̄q .

Restricting px, y, x̄q P ΠsPSKs � Rn this implies for all px, y, x̄q P ΠsPSKs � Rn that

G px, y, x̄q ¥ G
�
uk�1, vk�1, xk

�
� G

�
uk�1, vk�1, xk

�
� ϕρ

�
xk, yk�1

�
so ϕρ

�
x̄, yk�1

�
� min

px,yqPΠsPSKs

¸
sPS

ps
�
cJxs � dJs ys

�
�
¸
sPS

psψ
ρs
s

��
x̄, yk�1

�
� pxs, ysq

�
¥ min

px,yqPΠsPSKs

¸
sPS

ps
�
cJxs � dJs ys

�
�
¸
sPS

psψ
ρs
s px̄� xsq

� min
px,yqPΠsPSKs

G px, y, x̄q ¥ ϕρ
�
xk, yk�1

�
for all x̄ P Rn

a contradiction to assumption that xk R arg minϕρ
�
�, yk�1

�
.

Define

diagRn�|S| :�
 
x P Rn�|S| | xs � x P Rn

(
.



180

So x|S| P diagRn�|S| for any x P Rn. Denote ϕ̂ρ
�
x|S|, y

�
:� ϕρ px, yq. Note that

�
x|S|, y, r

�
P

epi ϕ̂ρ if and only if r ¥ ϕ̂ρ
�
x|S|, y

�
. Since epi ϕ̂ρ is a superset of epi f � epiψρ restricted to�

diagRn�|S|
�
� Rm�|S| � R, for all px1, y1, rq P epi f and

�
x|S| � x1, y � y1, r1

�
P epiψρ we have�

x|S|, y, r � r1
�
P epi ϕ̂ρ or ϕ̂ρ

�
x|S|, y

�
¤ r � r1 implying ϕρ px, yq ¤ f px1, y1q � ψρ

�
x|S| � x1, y � y1

�
for all px1, y1q P ΠsPSKs or

ϕρ px, yq ¤ min
px1,y1qPΠsPSKs

�
f px1, y1q � ψρ

�
x|S| � x1, y � y1

��
.

Thus geometrically epi ϕ̂ρ is the largest extended real valued function defined on
�
diagRn�|S|

�
�

Rm�|S| whose epigraph contains the sum epi f � epiψρ restricted to
�
diagRn�|S|

�
�Rm�|S|�R. The

following lemma is derived from [19, Theorem 3.3].

Lemma 7.24 Suppose that the regularized function ϕρ̄px0, y0q is greater than �8 for some px0, y0q

and that ψs are ICRF+ with ψs are Lipschitz continuous (with a global Lipschitz constant). Then

ϕρ is finitely valued for ρ ¥ ρ̄ and globally Lipschitz continuous.

Proof. Clearly ϕρpx, yq ¥ ϕρ̄px, yq for all y and ρ ¥ ρ̄. Thus when ϕρ̄px, yq ¡ �8 for all y then

ϕρpx, yq ¡ �8 for all ρ ¥ ρ̄. Moreover as ϕρpx̄, ȳq ¤ fpx, yq � ψρ
��
x̄|S|, ȳ

�
� px, yq

�
  �8 for

any px, yq P ΠsPSKs finiteness of ϕρ follows. Thus if we can show ϕρpx, yq is bounded away from

negative infinity for px, yq then we would have shown it to be finite valued.

Let Cµ denote the cone epiµ}�} in Rpn�mq�|S|�1 . Note next that the Lipschitz continuity property

of 1
ρ
ψρ corresponds to the existence of a Lipschitz constant µ ¡ 0 such that epi 1

ρ
ψρ�Cµ � epi 1

ρ
ψρ.

Now epi 1
ρ
ψρ�Cµ � epi 1

ρ
ψρ in turn implies epiψρ�Cρµ � epiψρ with intCρµ � H for all ρ. Suppose

ϕρpx, yq � �8 for some px, yq then

px|S|,y,�nq P epi f � epiψρ

for all n P Z� and so (using intCρµ � H)

R|S|�pn�mq�1 �
8¤
n�1

�
px|S|,y,�nq � Cρµ

�
� rpepi f � epiψρq � Cρµs X

��
diagRn�|S|

�
� Rm�|S| � R

�
� repi f � pepiψρ � Cρµqs X

��
diagRn�|S|

�
� Rm�|S| � R

�
� repi f � epiψρs X

��
diagRn�|S|

�
� Rm�|S| � R

�
� epi ϕ̂ρ



181

implying ϕρ � �8, contradicting ϕρpx0, y0q finite. Let ϕρpx, yq   α and take px1, y1q such that

fpx1, y1q � ψρp
�
x|S|, y

�
� px1, y1qq   α. Let pu, vq P Rn�m�|S| then

ϕρpu, vq ¤ fpx1, y1q � ψρp
�
u|S|, v

�
� px1, y1qq

¤
�
fpx1, y1q � ψρp

�
x|S|, y

�
� px1, y1qq

�
� ρ

�
1

ρ
ψρp

�
u|S|, v

�
� px1, y1qq �

1

ρ
ψρp

�
x|S|, y

�
� px1, y1qq



  α � ρ

�
1

ρ
ψρp

�
u|S|, v

�
� px1, y1qq �

1

ρ
ψρp

�
x|S|, y

�
� px1, y1qq



¤ α � µ} pu, vq � px, yq },

where we have used the Lipschitz continuity of 1
ρ
ψρ again. As this holds for all α ¡ ϕρpx, yq we

have ϕρppu, vq ¤ ϕρpx, yq � µ}z � y}. As pu, vq, px, yq P Rn�m�|S| are arbitrary this completes the

proof.

7.2.5 Final Results

In the next lemma we will require ∇xϕρ p�, y
�q to exist; this follows from the non-emptiness of the

partial Fréchet subdifferential since ϕρ px, y
�q ¥ ϕρ px

�, y�q for all x would imply 0 P Bxϕρ p�, y
�q px�q �

H and

px, yq ÞÑ fρppx, yq , px̄, ȳqq :�
¸
sPS

ps
�
cJxs � dJs ys � ψρss ppx̄, ȳsq � pxs, ysqq

�
gives ϕρ px̄, ȳq � min

px,yqPΠsKs
fρppx, yq , px̄, ȳqq. (7.24)

We associate z � px, yq P ΠsKs � K with z P K, fρppx, yq , px̄, ȳqq with fppx, yq , zq and ϕρ px̄, ȳq

with ϕ px̄, ȳq in the following results.

Proposition 7.25 Suppose px, yq Ñ fppx, yq , zq P C2 pRn�mq and K is a compact set. Define

K px, yq :� tz P K | ϕ px, yq � fppx, yq , zqu and

ϕ px, yq � min
zPK

fppx, yq , zq.

Then px, yq Ñ K px, yq has a closed graph and the non-emptiness of the partial Fréchet subdifferential

Bxϕ px̄, ȳq � H implies ∇xϕ px̄, ȳq exists.

If in addition we assume:

1. The mapping px, yq Ñ ϕ px, yq is Lipschitz continuous.



182

2. The functions px, yq Ñ fppx, yq , zq are strictly convex at px̄, ȳq for every z P K.

3. The functions px, y, zq ÞÑ x∇px,yqfppx, yq , zq, hy and px, y, zq ÞÑ x∇2
px,yqfppx, yq , zqh, hy is

jointly lower semi-continuous for any fixed h.

4. We have p0, 0q P Bxϕ px̄, ȳq.

Then the one side directional derivatives

ϕ1 ppx̄, ȳq , hq � min
z̄PKpx̄,ȳq

x∇px,yqfppx̄, ȳq , z̄q, hy � 0 and

ϕ2 ppx̄, ȳq , hq � min
z̄PKpx̄,ȳq

x∇2
px,yqfppx̄, ȳq , z̄q, hy ¡ 0 for all h

and so px̄, ȳq is a strict local minimum.

Proof. We first show that px, yq ÞÑ K px, yq has a closed graph. Let pxk, ykq Ñ px̄, ȳq and zk P

K pxk, ykq then there exists a subsequence zkm Ñ z̄ P K with

ϕ pxkm , ykmq � fppxkm , ykmq , zkmq Ñ f ppx̄, ȳq , z̄q .

By the Berge maximum principle [8, Theorem 6.3.8] we have px, yq Ñ ϕ px, yq continuous and so

ϕ px̄, ȳq � f ppx̄, ȳq , z̄q

and so z̄ P K px̄, ȳq .

Now consider z� P Bxϕ px̄, ȳq and so locally around x̄ we have

ϕ px, ȳq � ϕ px̄, ȳq � xx�, x� x̄y ¥ o p}x� x̄}q

and for z̄ P K px̄, ȳq we have f ppx, ȳq , z̄q ¥ ϕ px, ȳq and f ppx̄, ȳq , z̄q � ϕ px̄, ȳq so

f ppx, ȳq , z̄q � f ppx̄, ȳq , z̄q � xx�, x� x̄y ¥ o p}x� x̄}q .

That is, for x�x̄
}x�x̄}

Ñ d P S1 p0q as xÑ x̄, we have

fppx,ȳq,z̄q�fppx̄,ȳq,z̄q
}x�x̄}

� xx�, x�x̄
}x�x̄}

y ¥ op}x�x̄}q
}x�x̄}

implying x∇xf ppx̄, ȳq , z̄q � x�, dy ¥ 0 for all d P S1 p0q .

Hence

∇xf ppx̄, ȳq , z̄q � x�



183

and so Bxϕ px̄, ȳq � t∇xf ppx̄, ȳq , z̄qu implying ∇xϕ px̄, ȳq exists.

Finally we assume in addition that px, yq Ñ fppx, yq , zq are strictly convex for every z P K then

p0, 0q P Bϕ px̄, ȳq . Then the previous argument can be adapted to show that p0, 0q � ∇px,yqϕ px̄, ȳq

exists. We next characterise that the one side directional derivative in the direction h :� ph1, h2q

ϕ1x ppx̄, ȳq , hq :� lim inf
tÓ0,h1Ñh

1

t
pϕ px̄� th11, ȳ � th12q � ϕ px̄, ȳqq

� min
z̄PKpx̄,ȳq

f 1 ppx̄, ȳq , hq � min
z̄PKpx̄,ȳq

x∇px,yqfppx̄, ȳq , z̄q, hy.

First note that as px, yq ÞÑ ϕ px, yq is Lipschitz continuous we have the first equality below (the

second inequality follows from definitions) and so for z̄ P K px̄, ȳq

ϕ1 ppx̄, ȳq , hq � lim inf
tÓ0

1

t
pϕ px̄� th1, ȳ � th2q � ϕ px̄, ȳqq

¤ lim inf
tÓ0

1

t
pf ppx̄� th1, ȳ � th2q , z̄q � f ppx̄, ȳq , z̄qq � x∇px,yqfppx̄, ȳq , z̄q, hy.

Hence minz̄PKpx̄,ȳqx∇xfppx̄, ȳq , z̄q, hy ¥ ϕ1 ppx̄, ȳq , hq . Now let tk Ó 0 be such that

ϕ1 ppx̄, ȳq , hq � lim inf
k

1

tk
�
ϕ
�
x̄� tkh1, ȳ � tkh2

�
� ϕ px̄, ȳq

�
.

Now take zk P K
�
x̄� tkh1, ȳ � tkh2

�
such that ϕ

�
x̄� tkh1, ȳ � tkh2

�
� f

��
x̄� tkh1, ȳ � tkh2

�
, zk

�
for all k. Using the closed graph property of K p�q and the compactness of K we may assume (by

taking subsequences and re-numbering accordingly) that zk Ñ z̄ P K px̄, ȳq . Then by the mean

value theorem

ϕ1 ppx̄, ȳq , hq � lim
k

1

tk
�
f
��
x̄� tkh1, ȳ � tkh2

�
, zk

�
� f ppx̄, ȳq , z̄q

�
¥ inf

µPp0,1q
lim inf

k
x∇f

��
x̄� µtkh1, ȳ � µtkh2

�
, zk

�
, hy

� x∇px,yqf ppx̄, ȳq , z̄q , hy ¥ min
z̄PKpx̄,ȳq

x∇px,yqfppx̄, ȳq , z̄q, hy,

showing equality along with

p0, 0q � x∇px,yqϕ px̄, ȳq , hy � x∇px,yqfppx̄, ȳq , z̄q, hy for all z̄ P K px̄, ȳq .

We now use the fact that each px, yq ÞÑ fppx, yq , z̄q are strictly convex, from which it follows that

for any h we have x∇2
px,yqfppx̄, ȳq , z̄qh, hy ¡ 0. We now show that

f2 px̄, ȳ, hq :� lim inftÓ0,h1Ñh
2
t2
pf px̄� th11, ȳ � th12q � f px̄, ȳq � xp0, 0q , ph11, h

1
2qyq

¥ minz̄PKpx̄,ȳqx∇2
px,yqfppx̄, ȳq , z̄qh, hy ¡ 0



184

which implies the existence of a strict local minimum (see [106]). Take tk Ó 0 and hk Ñ h be such

that

f2 px̄, ȳ, hq � lim inf
k

2

t2k

�
f
�
x̄� tkh

k
1, ȳ � tkh

k
2

�
� f px̄, ȳq

�
.

Let zk P K
�
x̄� tkh

k
1, ȳ � tkh

k
2

�
and by taking subsequences and re-numbering we may assume

zk Ñ z̄ P K px̄, ȳq. Applying the second order Taylor approximation we have

f
��
x̄� tkh

k
1, ȳ � tkh

k
2

�
, zk

�
� f

�
px̄, ȳq , zk

�
�
t2k
2
x∇2

px,yqf
��
x̄� µktkh

k
1, ȳ � µktkh

k
2

�
, zk

�
hk, hky

for some µk P p0, 1q. Hence

f2 px̄, ȳ, hq � lim inf
k

x∇2
px,yqf

��
x̄� µktkh

k
1, ȳ � µktkh

k
2

�
, zk

�
hk, hky

¥ x∇2
px,yqf ppx̄, ȳq , z̄qh, hy ¥ min

zPKpx̄,ȳq
x∇2

px,yqf ppx̄, ȳq , zqh, hy.

Now suppose minzPKpx̄,ȳqx∇2
px,yqf ppx̄, ȳq , zqh, hy � 0 for any h then by the compactness of K px̄, ȳq

and the lower semi-continuity of z ÞÑ x∇2
px,yqfppx, yq , zqh, hy the minimum is attained and we have

the contradiction to the strict convexity of x∇2
px,yqf ppx̄, ȳq , zqh, hy � 0 for some z P K px̄, ȳq.

We will need the following result from [8, Propositions 1.3.5 and 1.3.6] or [99, Proposition 7.30

and Theorem 7.31].

Proposition 7.26 [8, Propositions 1.3.5 and 1.3.6] Let tfλuλPΛ be a net of lower semi-continuous

functions to the extended real line defined on a fixed Hausdorf space X. Suppose f : X Ñ R�8 :�

RYt�8u is lower semi-continuous.

1. Suppose λ ÞÑ epi fλ is a lower semi-continuous with respect to f as a multi-function i.e. for

any open set V in X � R such that epi f X V � H we have epi fλ X V � H eventually.

2. The set epi f contains all cluster points of nets tpxλ, αλquλPΛ where pxλ, αλq P epi fλ.

3. There exists a net txλuλPΛ such that limλ pf pxλq � infX fq � 0.

If txλu converges to x then infX f � limλ infX fλ and x P arg min f .

Proposition 7.27 demonstrates that the mapping defined by one full Gauss-Seidel iterate of

Algorithm 7.3, forms a multi-value mapping which has a closed graph. This allows us to analyse

the descent properties of Algorithm 7.3. To do so we will need to exploit the previous result

regarding the convergence of the objective values of parametrised problems.



185

Proposition 7.27 Suppose that ψρss P C1 pRnq is a finite, coercive, proper convex function for all

s P S and the associated SIP has pure integer first stage variables. Consider the following iterated

optimisation process: Given px, yq for all s P S to find pus, vsq P Ks (a closed compact set) that is a

solution to:

min
pus,vsqPKs

cJus � dJs vs � ψρss px� usq , (7.25)

place y�1 � vs and then place

x�1 P arg min
x

¸
sPS

psψ
ρs
s px� usq (7.26)

returning px�1, y�1q. Then the mapping px, yq ÞÑ px�1, y�1q has a closed graph.

Proof. Suppose
�
xk, yk

�
Ñ px, yq and for each k we have pykq�1 � vk�1

s where
�
uk�1
s , vk�1

s

�
solves

min
pus,vsqPKs

cJus � dJs vs � ψρss
�
xk � us

�
,

and

pxkq�1 P arg min
x

¸
sPS

psψ
ρs
s

�
x� uk�1

s

�
. (7.27)

We show that if
�
pxkq�1, pykq�1

�
Ñ px�1, y�1q then px�1, y�1q solve (7.25) and (7.26). Both prob-

lems are parametrised optimisation problems. Denote fk pus, vsq :� cJus � dJs vs � ψρss
�
xk � us

�
�

δKs pus, vsq, f pus, vsq :� cJus�d
J
s vs�ψ

ρs
s px� usq�δKs pus, vsq and g px, uq :�

°
sPS psψ

ρs
s px� usq .

First note that without loss of generality we may take a member of the neighbourhood basis

V � Bδ pūs, v̄sq � pα, βq and suppose

epi f X rBδ pūs, v̄sq � pα, βqs � H.

Then there exists pu1s, v
1
sq P Bδ pūs, v̄sq XKs for which f pu1s, v

1
sq P pα, βq. Now consider xk Ñ x and

note that by continuity of ψρss we have
��ψρss �

xk � u1s
�
� ψρss px� u1sq

�� Ñ 0 and hence fk pu
1
s, v

1
sq P

pα, βq eventually. Now take a cluster point pus, vs, αq of a sequence
�
uks , v

k
s , αk

�
P epi fk (with

necessarily
�
uks , v

k
s

�
P Ks). Note that we do not need to consider nets in finite dimensions. Again

by continuity we get

fk
�
uks , v

k
s

�
� cJuks � dJs v

k
s � ψρss

�
xk � uks

�
¤ αk

implying f pus, vsq � cJus � dJs vs � ψρss px� usq ¤ α



186

and so pus, vs, αq P epi f . Finally we note that [8, Proposition 1.3.5] we have

inf
pus,vsqPKs

f pus, vsq ¥ lim sup
k

inf
pus,vsqPKs

fk pus, vsq

and so once can certainly obtain a minimising sequence
 �
uks , v

k
s

�(
with����fk �uks , vks�� inf

pus,vsqPKs
f pus, vsq

����Ñ 0.

Convergence of a suitable such sequence follows from the compactness of the set Ks. Thus we

can use Proposition 7.26 to claim that when
�
uk�1
s , vk�1

s

�
Ñ pu�1

s , v�1
s q we have pu�1

s , v�1
s q P

arg minpus,vsqPKs f pus, vsq establishing the first part of our claim as we take pysq
�1 :� v�1

s . Sim-

ilarly we can consider the associated optimisation problem where uk�1
s Ñ pusq

�1 for all s P S and

the associated solutions to (7.27). We apply the same arguments to the associated coercive ob-

jective g
�
�, uk�1

�
Ñ g p�, u�1q where convergence is uniform on bounded sets. This convergence

is well known to imply epi-convergence which gives us 1 and 2 of the Proposition 7.26 assump-

tions (see [99, Theorem 7.11]). The only deviation from the previous arguments is the existence

of a convergent minimising sequence follows from the equi-coersivity of x ÞÑ g
�
x, uk�1

�
. Indeed as

g
�
�, uk�1

�
Ñ g p�, u�1q in epi-convergent sense its level sets converge (see [99, Proposition 7.7]). As

the level set of x ÞÑ g px, u�1q is bounded we may contain any minimising sequence within a fixed

bounded set and hence a convergent subsequences can again be extracted.

Proposition 7.28 demonstrates that Algorithm 7.3 converges to a partial minimum of ϕρ; this is

not immediate from the general properties of Gauss-Seidel methods since the x update is approxi-

mated with a non-ascent step based on the consensus problem.

Proposition 7.28 Suppose that ϕρ is as defined in (7.3) and that it is derived from a SIP (7.1)

with relatively complete recourse. Suppose that ψρs satisfies the assumptions of Lemma 7.23 and

that the sequence
�
xk, yk

�
generated by Algorithm 7.3 converges to px�, y�q. Then we have for ρ ¡ 0

sufficiently large that

ϕρ px
�, yq ¥ ϕρ px

�, y�q for all y and

ϕρ px, y
�q ¥ ϕρ px

�, y�q for all x.

Proof. Clearly for every k we have

ϕρ
�
xk, yk

�
¥ ϕρ

�
xk, yk�1

�
¥ ϕρ

�
xk�1, yk�1

�



187

and as ϕρ is Lipschitz continuous and bounded below when
�
xk, yk

�
Ñ px�, y�q we have ϕρ

�
xk, yk

�
Ó

ϕρ px
�, y�q so that ϕρ

�
xk, yk

�
¥ ϕρ px

�, y�q for all k. Moreover for each k we also have

ϕρ
�
xk, y

�
¥ ϕρ

�
xk, yk

�
for all y

and so letting k Ñ 8 we obtain ϕρ px
�, yq ¥ ϕρ px

�, y�q for all y. It remains to be shown that

ϕρ px, y
�q ¥ ϕρ px

�, y�q for all x. Suppose to the contrary that x� is not the minimiser of x ÞÑ

ϕρ px, y
�q.

By our earlier observations, made just prior to identity (7.5), we find that as y� P arg minϕρ px
�, �q

implies y�s � py�s q
�1 � v�s for all s P S and pu�s , v

�
s q which solves

min
pus,vsqPKs

cJus � dJs vs � ψρss px� � usq .

This is the first iteration of our GS as applied to the initial point px�, y�q to obtain
�
x�, py�q�1

�
�

px�, y�q . We may now apply the second part of the GS iteration under the assumption that x� is

not the minimiser of x ÞÑ ϕρ px, y
�q. Lemma 7.23 implies for any

px�q�1 P arg min
x

¸
sPS

psψ
ρs
s px� u�s q

that

ϕρ px
�, y�q � ϕρ

�
x�, py�q�1

�
¡ ϕρ

�
px�q�1 , py�q�1

�
.

Let

2γ � ϕρ px
�, y�q � ϕρ

�
px�q�1 , py�q�1

�
and hence for k sufficiently large (i.e. k ¥ k̄) we must have by continuity of ϕρ and of closed graph

of px, yq Ñ
�
pxq�1 , pyq�1

�
proved in Proposition 7.27 and the fact that we take yk�1 � pykq�1 and

xk�1 � pxkq�1 we have

�γ ¥ ϕρ
�
xk�1, yk�1

�
� ϕρ

�
xk, yk

�
implying for any K that

�γK ¥ ϕρ

�
xK�k̄, yK�k̄

	
� ϕρ

�
xk̄, yk̄

	
.

Letting K Ñ 8 we get ϕρ px
�, y�q � �8 a contradiction. Hence x� minimises x ÞÑ ϕρ px, y

�q.

Theorem 7.29 is the culmination of the results in this section, and demonstrates that Algorithm

7.3 always converges to a feasible solution when the first stage of the SIP consists of purely integer

variables.



188

Theorem 7.29 Assume that ψρss , for s P S, satisfy the assumption to be an ICRF� (see Assumption

7.3). Suppose that ϕρ is as defined in (7.3) and that it is derived from a SIP (7.1) with relatively

complete recourse. Suppose that ψρss P C2 pRn�mq is a finite, coercive, proper convex function for all

s P S with ψs for s P S are globally Lipschitz and that the sequence
�
xk, yk

�
generated by Algorithm

7.3 converges to px�, y�q. Then px�, y�q is a stationary point of ϕρ. When we have a SIP with pure

integer first stage variables then for ρ sufficiently large this implies px�, y�q P F i.e. is a feasible

solution.

Proof. Note that by Proposition 7.28 we have ϕρ px, y
�q ¥ ϕρ px

�, y�q for all x and so 0 P

Bxϕρ p�, y
�q px�q. Thus by (7.24) and Proposition 7.25 we have ∇xϕρ p�, y

�q px�q � 0 existing. Fur-

thermore by Proposition 7.28 we have ϕρ px
�, yq ¥ ϕρ px

�, y�q for all y and so 0 P Byϕρ px
�, �q py�q.

Hence by Lemma 7.19 we have p0, 0q P Bϕρ px
�, y�q and px�, y�q is a stationary point and by Propo-

sition 7.25 we have a local minimum. It follows from Lemma 7.14 that px�, y�q P F is a feasible

solution.

7.3 Conclusions

Theorem 7.29 demonstrates that the modified Gauss-Seidel algorithm (Algorithm 7.3) is guaranteed

to converge to a feasible solution of the original SIP, as long as the first-stage decision variables are

purely integer. The results in this chapter can be viewed as providing partial theoretical support

for both Progressive Hedging ([112] and Chapter 4) and PBGS (Chapter 6) as heuristics for solving

SIPs. It does differ from the implementations used in the literature in that no multipliers are used

and there is consequently no multiplier update. Indeed multiplier updates can be viewed as a kind

of penalty strategy, which this analysis provides no insight into.

The most obvious direction for future investigation based on the results in this chapter is to

implement the Gauss-Seidel based algorithm developed in this chapter and compare its perfor-

mance with algorithms present in the literature, as well as other SIP algorithms such as Progressive

Hedging.

The algorithm and results of this chapter could also be extended to multi-stage SIP problems

in which all decision variables, except potentially the final stage variables, are pure integer.



Chapter 8

Conclusions and Future Work

This thesis has investigated algorithms and theory relating to Stochastic Mixed-Integer Program-

ming, in particular approaches based on scenario-wise separation. Each of these algorithms focuses

on calculating either high-quality dual bounds or feasible solutions for SIPs, rather than finding the

optimal solution directly. The algorithms presented herein for calculating dual bounds significantly

improve on all previously known approaches, while the heuristics for finding feasible solutions are

at worst competitive, depending on the choice of algorithm parameters. A large proportion of the

computational work required for each of these algorithms can be performed in parallel, which means

that they can be reasonably applied to large-scale SIP instances.

The FW-PH and SDM-GS-ALM algorithms discussed in Chapters 4 and 5 obtain dual bounds

for a wide variety of SIPs more quickly and effectively than previously known methods. The FW-

PH algorithm obtains dual bounds by applying Progressive Hedging to the convex-hull relaxation

of SIPs, using a simplified form of the simplicial decomposition method to solve the primal update

subproblems. This approach is validated by the theoretical results in Section 3.2, which guarantee

that SDM will eventually generate a sufficiently accurate approximation of the convex hull. By

comparison, the SDM-GS-ALM algorithm utilises a more ’feature-complete’ version of SDM, and

generalises the overall algorithm beyond SIP problems to MIPs of a particular structure (which

includes SIPs).

As compared to FW-PH, the SDM-GS-ALM algorithm is considerably more sophisticated, par-

ticularly with respect to the implementation of the simplicial decomposition component. Despite

this distinction, the computational results which we have obtained with SDM-GS-ALM are not

substantially better in terms of bound quality when compared with the FW-PH results. Since

189



190

SDM-GS-ALM has more ’moving parts’ and hence more parameters which must be set correctly to

obtain ideal performance (a difficult task), this outcome is not entirely unexpected. In any case,

the theoretical results given in the development of SDM-GS-ALM yield valuable insights into the

behaviour of this entire class of algorithms.

In terms of future research, possible improvements to the FW-PH and SDM-GS-ALM algorithms

are discussed in the conclusions of their respective chapters. Further tuning of the heuristics for

selecting algorithm parameters (particularly the initial value and update scheme of the penalty

parameters) would lead to better practical results. A greater understanding of the behaviour of

FW-PH and SDM-GS-ALM when applied to infeasible problems would strengthen their respective

theoretical bases.

The most obvious application of these algorithms is to calculate bounds within a branch-and-

bound type method to find primal SIP solutions. The Dual Decomposition method (discussed in

Section 2.5.2) is a branch-and-bound type method which has previously been modified to calculate

dual bounds using Progressive Hedging. Since FW-PH and SDM-GS-ALM calculate high-quality

dual bounds more reliably and (generally) quickly compared to PH, it seems reasonably likely that

a Dual Decomposition-type method which incorporates FW-PH or SDM-GS-ALM in the place of

PH will outperform previous versions of the Dual Decomposition algorithm.

A separate direction for future investigation would be to formally explore the use of FW-PH

or SDM-GS-ALM as a primal solution heuristic, since both of these algorithms generate primal

feasible solutions as vertices in their respective SDM components.

The PBGS algorithm discussed in Chapter 6 uses augmented Lagrangian duality theory based

on a sharp penalty function to eliminate the need for dual multipliers. A block Gauss-Seidel method

is then applied as a heuristic to find (hopefully high-quality) feasible solutions. In practice PBGS

invariably converged to a feasible solution, although this is not guaranteed by currently known

theory. The variation of PBGS developed in Chapter 7 has stronger theoretical properties in that

it is guaranteed to converge to a feasible solution if the first-stage variables of the SIP are pure

integer.

In computational experiments PBGS tended to generate good feasible solutions more quickly

than Progressive Hedging when applied to SIPs. However, the quality of the solutions generated

by PBGS compared to PH was frequently worse. Since the performance of PBGS is very strongly



191

dependent on the choice of parameters, further investigation into the ideal parameter configuration

for various problem classes is a potentially fruitful area for future research. An alternative potential

direction for improvement is to explore the use of scenario clustering to escape the suboptimal local

minimum. Verifying the speed-up benefits of solving the PBGS subproblems in parallel would also

be valuable.

All of the above mentioned algorithms have the potential to be applied to multi-stage SIPs.

The underlying theory of each algorithm is easily applicable to multi-stage problems due to their

scenario-splitting structure. If and when this is pursued in the future, the most difficult challenges

are likely to be achieving clear and concise notation and implementing the algorithms in an efficient

and effective manner, since multi-stage problems have a much more complicated structure.

A general trend throughout the theoretical and experimental results presented herein is that

two-stage SIPs with pure-integer first stage variables tend to be ’easier’ than those with mixed-

integer first stage. The FW-PH and SDM-GS-ALM algorithms of Chapters 4 and 5, when applied

in practice, tended to discover the exact optimal dual bound of the CAP and SSLP problems (which

have integer first-stage) relatively quickly, whereas in the case of the DCAP problems (which have

mixed-integer first stage) asymptotic convergence was typically observed. Similarly, the feasible

solutions found by PBGS for the DCAP problems were generally of lower quality than those found

for the CAP and SSLP problems. The theoretical convergence proof for the modified version of

PBGS given in Chapter 7 only applies at all when the first stage is pure integer. A potential cause

for this distinction between problem classes is that penalty function based approaches which utilise

smooth penalty functions are more effective when the variables they apply to are discrete, since

non-feasible solutions are always meaningfully penalised.

The use of non-smooth penalty functions offers some hope of tackling mixed-integer first stage

SIPs with more success, since a ’sharp’ penalty function has more latitude to impose a larger

penalty on a ’nearly feasible’ solution while maintaining a reasonably-sized penalty parameter.

Fortunately the Frank-Wolfe-based component of FWPH and SDM-GS-ALM is amenable to non-

smooth optimisation (as demonstrated in Section 3.3). However, these non-smooth functions are

still far more difficult to deal with computationally; the alternating-update approaches like ADMM

and Gauss-Seidel, which are otherwise ideal for Stochastic Integer Programming, generally do not

handle non-smooth objective functions gracefully (recall that the PBGS method of Chapter 6 is



192

merely a heuristic even though the theory guarantees strong duality for a sufficiently large penalty

parameter). The discovery of an algorithm or heuristic capable of dealing more effectively with

these non-smooth penalty functions, and hence (potentially) general mixed-integer SIPs as well,

would have a substantial impact not only on the field of Stochastic Integer Programming, but also

Mixed-Integer Programming in general.



Bibliography

[1] COmputational INfrastructure for Operations Research. Last accessed 28 January, 2016.

[2] S. Ahmed, A scenario decomposition algorithm for 0–1 stochastic programs, Operations Re-

search Letters, 41 (2013), pp. 565–569.

[3] S. Ahmed, R. Garcia, N. Kong, L. Ntaimo, G. Parija, F. Qiu, and S. Sen, SIPLIB:

A stochastic integer programming test problem library, (2015).

[4] S. Ahmed, M. Tawarmalani, and N. V. Sahinidis, A finite branch-and-bound algorithm

for two-stage stochastic integer programs, Math. Program., 100 (2004), pp. 355–377.

[5] H. B. Amor, J. Desrosiers, and A. Frangioni, On the choice of explicit stabilizing

terms in column generation, Discrete Applied Mathematics, 157 (2009), pp. 1167 – 1184.

[6] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives,

Pacific J. Math., 16 (1966), pp. 1–3.

[7] H. Attouch, Variational convergence for functions and operators, Applicable Mathematics

Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.

[8] G. Beer, Topologies on closed and closed convex sets, vol. 268 of Mathematics and its Ap-

plications, Kluwer Academic Publishers Group, Dordrecht, 1993.

[9] C. Beltran, C. Tadonki, and J.-P. Vial, Solving the p-median problem with a semi-

Lagrangian relaxation, Comput. Optim. Appl., 35 (2006), pp. 239–260.

[10] C. Beltran-Royo, J.-P. Vial, and A. Alonso-Ayuso, Semi-Lagrangian relaxation ap-

plied to the uncapacitated facility location problem, Comput. Optim. Appl., 51 (2012), pp. 387–

409.

193



194

[11] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press,

1982.

[12] , Nonlinear Programming, Athena Scientific, 1999.

[13] , Convex Optimization Algorithms, Athena Scientific, 2015.

[14] , Incremental aggregated proximal and augmented Lagrangian algorithms. arXiv preprint

arXiv:1509.09257, 2015.

[15] M. Bodur, S. Dash, O. Günlük, and J. Luedtke, Strengthened Benders cuts for

stochastic integer programs with continuous recourse, (2014). Last accessed on 13 January

2015.

[16] N. Boland, J. Christiansen, B. Dandurand, A. Eberhard, J. Linderoth,

J. Luedtke, and F. Oliveira, Combining Progressive Hedging with a Frank–Wolfe Method

to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming, SIAM J. Op-

tim., 28 (2018), pp. 1312–1336.

[17] N. Boland, J. Christiansen, B. Dandurand, A. Eberhard, and F. Oliveira,

A parallelizable augmented lagrangian method applied to large-scale non-convex-constrained

optimization problems, Mathematical Programming, (2018), pp. 1–34. Article in Press.

[18] N. L. Boland and A. C. Eberhard, On the augmented Lagrangian dual for integer

programming, Math. Program., 150 (2015), pp. 491–509.

[19] N. L. Boland, A. C. Eberhard, F. Engineer, and A. Tsoukalas, A new approach to

the feasibility pump in mixed integer programming, SIAM J. Optim., 22 (2012), pp. 831–861.

[20] S. Bonettini, Inexact block coordinate descent methods with application to non-negative

matrix factorization, IMA Journal of Numerical Analysis, 31 (2011), pp. 1431–1452.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization

and statistical learning via the alternating direction method of multipliers, Foundation and

Trends in Machine Learning, 3 (2011), pp. 1–122.



195

[22] C. C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming,

Oper. Res. Lett., 24 (1999), pp. 37–45.

[23] N. Chatzipanagiotis, D. Dentcheva, and M. Zavlanos, An augmented Lagrangian

method for distributed optimization, Mathematical Programming, 152 (2014), pp. 405–434.

[24] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimiza-

tion problems, Mathematical Programming, 64 (1994), pp. 81–101.

[25] E. W. Cheney and A. A. Goldstein, Newton’s method for convex programming and

Tchebycheff approximation., Numer. Math., 1 (1959), pp. 253–268.

[26] F. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Math-

ematics, 1990.

[27] T. G. Crainic, M. Hewitt, and W. Rei, Scenario grouping in a progressive hedging-based

meta-heuristic for stochastic network design, Computers & Operations Research, 43 (2014),

pp. 90–99.

[28] C. Davis, Theory of positive linear dependence, American Journal of Mathematics, 76 (1954),

pp. 733–746.

[29] W. de Oliveira and C. Sagastizábal, Bundle Methods in the XXIst Century: A Bird’s-

eye view, Pesquisa Operacional, 34 (2014), pp. 647–670.

[30] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal, Convex proximal bundle

methods in depth: a unified analysis for inexact oracles, Mathematical Programming, 148

(2014), pp. 241–277.

[31] J. Eckstein, A practical general approximation criterion for methods of multipliers based on

Bregman distances, Mathematical Programming, 96, pp. 61–86.

[32] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the

proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992),

pp. 293–318.



196

[33] J. Eckstein and P. Silva, A practical relative error criterion for augmented lagrangians,

Mathematical Programming, 141 (2013), pp. 319–348.

[34] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction

method of multipliers: Theoretical and computational perspectives, tech. rep., Rutgers Uni-

versity, 2014.

[35] L. F. Escudero, M. Araceli Gaŕın, G. Pérez, and A. Unzueta, Scenario cluster

decomposition of the Lagrangian dual in two-stage stochastic mixed 0-1 optimization, Comput.

Oper. Res., 40 (2013), pp. 362–377.

[36] L. F. Escudero, M. A. Gaŕın, M. Merino, and G. Pérez, An algorithmic framework

for solving large-scale multistage stochastic mixed 0-1 problems with nonsymmetric scenario

trees, Comput. Oper. Res., 39 (2012), pp. 1133–1144.

[37] M. J. Feizollahi, S. Ahmed, and A. Sun, Exact augmented lagrangian duality for mixed

integer linear programming, Mathematical Programming, 161 (2017), pp. 365–387.

[38] M. J. Feizollahi, M. Costley, S. Ahmed, and S. Grijalva, Large-scale decentralized

unit commitment, International Journal of Electrical Power & Energy Systems, 73 (2015),

pp. 97–106.

[39] F. Fischer and C. Helmberg, A parallel bundle framework for asynchronous subspace op-

timization of nonsmooth convex functions, SIAM Journal on Optimization, 24 (2014), pp. 795–

822.

[40] A. Frangioni, Generalized bundle methods, SIAM Journal on Optimization, 13 (2003),

pp. 117–156.

[41] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval research logistics

quarterly, 3 (1956), pp. 95–110.

[42] R. M. Freund and P. Grigas, New analysis and results for the Frank-Wolfe method,

Math. Program., 155 (2016), pp. 199–230.



197

[43] D. Gabay, Chapter IX Applications of the Method of Multipliers to Variational Inequalities,

vol. 15 of Studies in Mathematics and its Applications, 1983.

[44] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational

problems via finite element approximation, Computers and Mathematics with Applications, 2

(1976), pp. 17–40.

[45] D. Gade, G. Hackebeil, S. M. Ryan, J. . Watson, R. J. . Wets, and D. L.

Woodruff, Obtaining lower bounds from the progressive hedging algorithm for stochastic

mixed-integer programs, Mathematical Programming, (2016), pp. 1–21. Article in Press.

[46] A. M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming

Stud., (1974), pp. 82–114. Approaches to integer programming.

[47] E. Gertz and S. Wright, Object-oriented software for quadratic programming, ACM

Transactions on Mathematical Software, 29 (2003), pp. 58–81.

[48] R. Glowinski and A. Marrocco, Sur l’approximation, par elements finis d’ordre un, et la

resolution, par penalisation-dualité, d’une classe de problems de dirichlet non lineares, Revue

Française d’Automatique, Informatique, et Recherche Opérationelle, 9 (1975), pp. 41–76.

[49] L. Grippo and M. Sciandrone, On the convergence of the block nonlinear Gauss-Seidel

method under convex constraints, Operations Research Letters, 26 (2000), pp. 127–136.

[50] G. Guo, G. Hackebeil, S. M. Ryan, J.-P. Watson, and D. L. Woodruff, Integra-

tion of progressive hedging and dual decomposition in stochastic integer programs, Operations

Research Letters, 43 (2015), pp. 311–316.

[51] A. Hamdi, P. Mahey, and J. P. Dussault, Recent Advances in Optimization: Proceedings

of the 8th French-German Conference on Optimization Trier, July 21–26, 1996, Springer

Berlin Heidelberg, Berlin, Heidelberg, 1997, ch. A New Decomposition Method in Nonconvex

Programming via a Separable Augmented Lagrangian, pp. 90–104.

[52] S. C. S. M. Hare, W., A proximal bundle method for nonsmooth nonconvex functions with

inexact information, Computational Optimization and Applications, 63 (2016), pp. 1–28.



198

[53] R. J. Hathaway and J. C. Bezdek, Grouped coordinate minimization using Newton’s

method for inexact minimization in one vector coordinate, Journal of Optimization Theory

and Applications, 71 (1991), pp. 503–516.

[54] K. K. Haugen, A. Løkketangen, and D. L. Woodruff, Progressive hedging as a meta-

heuristic applied to stochastic lot-sizing, European J. Oper. Res., 132 (2001), pp. 116–122.

[55] B. He, L.-Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method

for monotone variational inequalities, Mathematical Programming, 92 (2002), pp. 103–118.

[56] D. W. Hearn, S. Lawphongpanich, and J. A. Ventura, Restricted simplicial decom-

position: computation and extensions, Math. Programming Stud., (1987), pp. 99–118.

[57] T. Helgason and S. W. Wallace, Approximate scenario solutions in the progressive

hedging algorithm. A numerical study with an application to fisheries management, Ann. Oper.

Res., 31 (1991), pp. 425–444. Stochastic programming, Part II (Ann Arbor, MI, 1989).

[58] M. R. Hestenes, Multiplier and gradient methods, Journal of Optimization Theory and

Applications, (1969), pp. 303–320.

[59] C. Hildreth, A quadratic programming procedure, Naval Research Logistics Quarterly, 4

(1957), pp. 79–85, 361.

[60] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algo-

rithms. II. , Advanced theory and bundle methods, Grundlehren der mathematischen Wis-

senschaften, Springer-Verlag, Berlin, New-york, 1996.

[61] C. A. Holloway, An extension of the Frank and Wolfe method of feasible directions, Math.

Programming, 6 (1974), pp. 14–27.

[62] IBM Corporation, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual. Last

accessed 22 August 2016.

[63] , IBM ILOG CPLEX V12.5. Last accessed 28 Jan 2016.



199

[64] K. Jörnsten and A. Klose, An improved lagrangian relaxation and dual ascent approach

to facility location problems, Computational Management Science, (2015). Article in Press.

[65] P. Kall and S. W. Wallace, Stochastic Programming, John Wiley & Sons, 1994.

[66] J. E. Kelley, Jr., The cutting-plane method for solving convex programs, J. Soc. Indust.

Appl. Math., 8 (1960), pp. 703–712.

[67] K. Kiwiel, C. Rosa, and A. Ruszczyński, Proximal decomposition via alternating lin-

earization, SIAM Journal on Optimization, 9 (1999), pp. 668–689.

[68] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimiza-

tion, Math. Programming, 46 (1990), pp. 105–122.

[69] K. C. Kiwiel, Approximations in proximal bundle methods and decomposition of convex

programs, Journal of Optimization Theory and Applications, 84 (1995), pp. 529–548.

[70] S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for

convex optimization, Math. Programming, 83 (1998), pp. 29–53.

[71] G. Laporte and F. V. Louveaux, The integer L-shaped method for stochastic integer

programs with complete recourse, Oper. Res. Lett., 13 (1993), pp. 133–142.

[72] T. Larsson, M. Patriksson, and A. Strömberg, Conditional subgradient optimization

- theory and applications, European Journal of Operational Research, 88 (1996), pp. 382–403.

Cited By :52.

[73] C. Lemaréchal and C. Sagastizábal, Variable metric bundle methods: From conceptual

to implementable forms, Mathematical Programming, Series B, 76 (1997), pp. 393–410.

[74] C. Lemaréchal, An extension of Davidon methods to non differentiable problems, Springer

Berlin Heidelberg, 1975, pp. 95–109.

[75] A. Lenoir and P. Mahey, Global and adaptive scaling in a separable augmented lagrangian

algorithm, Optimization Online, (2007).



200

[76] X. Lin, M. Pham, and A. Ruszczyński, Alternating linearization for structured regular-

ization problems, Journal of Machine Learning Research, 15 (2014), pp. 3447–3481.

[77] O. Listes and R. Dekker, A scenario aggregation-based approach for determining a robust

airline fleet composition for dynamic capacity allocation, Transportation Science, 39 (2005),

pp. 367–382.

[78] A. Løkketangen and D. L. Woodruff, Progressive hedging and tabu search applied

to mixed integer (0,1) multistage stochastic programming, Journal of Heuristics, 2 (1996),

pp. 111–128.

[79] M. Lubin, K. Martin, C. Petra, and B. Sandıkçı, On parallelizing dual decomposition

in stochastic integer programming, Operations Research Letters, 41 (2013), pp. 252–258.

[80] M. Lubin, C. Petra, M. Anitescu, and V. Zavala, Scalable stochastic optimization of

complex energy systems, in Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, ACM, Seattle, WA, 2011, p. 64:1–64:10.

[81] G. Lulli and S. Sen, A branch-and-price algorithm for multistage stochastic integer

programming with application to stochastic batch-sizing problems, Management Science, 50

(2004), pp. 786–796.

[82] P. Mahey, S. Oualibouch, and P. D. Tao, Proximal decomposition on the graph of a

maximal monotone operator, SIAM Journal on Optimization, 5 (1995), pp. 454–466.

[83] The MathWorks, Natick, MATLAB 2012b, 2014.

[84] J. Máyer, Stochastic linear programming algorithms: A comparison based on a model man-

agement system, Gordon and Breach Science Publishers, 1998.

[85] E. Monabbati, An application of a Lagrangian-type relaxation for the uncapacitated facility

location problem, Jpn. J. Ind. Appl. Math., 31 (2014), pp. 483–499.

[86] J. M. Mulvey and A. Ruszczyński, A diagonal quadratic approximation method for large-

scale linear programs, Oper. Res. Lett., 12 (1992), pp. 205–215.



201

[87] , A diagonal quadratic approximation method for linear multistage stochastic programming

problems, in System modelling and optimization (Zurich, 1991), vol. 180 of Lect. Notes Control

Inf. Sci., Springer, Berlin, 1992, pp. 588–597.

[88] J. M. Mulvey and H. Vladimirou, Applying the progressive hedging algorithm to stochas-

tic generalized networks, Ann. Oper. Res., 31 (1991), pp. 399–424. Stochastic programming,

Part II (Ann Arbor, MI, 1989).

[89] National Computing Infrastructure (NCI), NCI Website. Last accessed 19 November

2016.

[90] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization, Wiley-

Interscience series in discrete mathematics and optimization, Wiley, 1988.

[91] L. Ntaimo, Decomposition Algorithms for Stochastic Combinatorial Optimization: Compu-

tational Experiments and Extensions, PhD thesis, 2004.

[92] L. Ntaimo and S. Sen, The million-variable “march” for stochastic combinatorial optimiza-

tion, J. Global Optim., 32 (2005), pp. 385–400.

[93] F. Oliveira, J. Christiansen, B. Dandurand, and A. Eberhard, Combining penalty-

based and gauss-seidel methods for solving stochastic mixed-integer problems, International

Transactions in Operational Research, (2018). Article in Press.

[94] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-

mization, R. Fletcher, ed., New York: Academic Press, 1969.

[95] R. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on

Control and Optimization, 14 (1976), pp. 877–898.

[96] R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algo-

rithm in convex programming, Mathematics of Operations Research, 1 (1976), pp. 97–116.

[97] R. T. Rockafellar, Convex analysis, Princeton Landmarks in Mathematics, Princeton

University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton Paperbacks.



202

[98] R. T. Rockafellar and R. J.-B. Wets, Scenarios and policy aggregation in optimization

under uncertainty, Math. Oper. Res., 16 (1991), pp. 119–147.

[99] R. T. Rockafellar and R. J.-B. Wets, Variational analysis, vol. 317 of Grundlehren

der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],

Springer-Verlag, Berlin, 1998.

[100] A. Ruszczyński, Nonlinear Optimization, Princeton University Press, 2006.

[101] A. Ruszczyński, On convergence of an augmented Lagrangian decomposition method for

sparse convex optimization, Mathematics of Operations Research, 20 (1995), pp. 634–656.

[102] A. P. Ruszczyński, Nonlinear optimization, Princeton, N.J. Princeton University Press,

2006.

[103] N. Shor, Minimization Methods for Non-differentiable Functions, Springer-Verlag, New York,

1985.

[104] M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), pp. 171–176.

[105] J. E. Spingarn, Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math.

Soc., 264 (1981), pp. 77–89.

[106] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth

functions, SIAM J. Control Optim., 24 (1986), pp. 1044–1049.

[107] R. Tappenden, P. Richtárik, and B. Büke, Separable approximations and decomposition

methods for the augmented Lagrangian, Optimization Methods & Software, 30 (2015), pp. 643–

668.

[108] P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimiza-

tion, Journal of Optimization Theory and Applications, 109 (2001), pp. 475–494.

[109] J. A. Ventura and D. W. Hearn, Restricted simplicial decomposition for convex con-

strained problems, Math. Programming, 59 (1993), pp. 71–85.



203

[110] B. von Hohenbalken, Simplicial decomposition in nonlinear programming algorithms,

Math. Programming, 13 (1977), pp. 49–68.

[111] J. Warga, Minimizing certain convex functions, SIAM Journal on Applied Mathematics, 11

(1963), pp. 588–593.

[112] J.-P. Watson and D. L. Woodruff, Progressive hedging innovations for a class of

stochastic mixed-integer resource allocation problems, Computational Management Science,

8 (2011), pp. 355–370.

[113] R. Wenczel and A. Eberhard, Slice convergence of parametrised sums of convex functions

in non-reflexive spaces, Bull. Austral. Math. Soc., 60 (1999), pp. 429–458.

[114] G. L. Zenarosa, O. A. Prokopyev, and A. J. Schaefer, M-smiplib: A multi-

stage stochastic mixed-integer programming test set library. http://www.cs.cmu.edu/ gzen/m-

smiplib/, 2014.

[115] , Scenario-tree decomposition: Bounds for multistage stochastic mixed-integer programs,

Optimization Online, (2014).


