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Abstract

Low retention rates have been an ongoing concern, especially among educational institutions

amidst expanding their student base and catering to large and diverse student cohorts. In-

creasing retention rates without lowering academic standards poses many challenges. The

traditional teaching techniques using a one–size–fits–all approach appear to be less effective,

and the size and diversity of cohorts demand innovative teaching techniques allowing for

adaptive and personalized coaching and learning.

In this thesis, we propose a novel, adaptive and integrated analytics framework for learn-

ing analytics to address the key concerns of educational institutions. The proposed frame-

work comprises three layers: (1) the conceptual layer which is a context–agnostic and generic

analytics layer including descriptive, predictive, and prescriptive techniques; (2) the logical

layer or the context–specific learning analytics processes layer that specializes the conceptual

layer in the context of education; ten key learning analytics processes are formalized, imple-

mented, and linked to the conceptual layer components; finally, (3) the physical layer that

is concerned with education–oriented application implementations and is a context–specific

components/algorithmic implementation of the logical layer processes. Our proposed frame-

work, however, is not limited only to the learning and teaching environment. As a proof of

concept, we chose the education context and applied our framework on it. The three–layered

integrated learning analytics framework proposed allows domain–agnostic elements defined

in the conceptual layer to be realized by domain–specific processes in the logical layer, and

implemented through existing and new components in the physical layer. Please note that the

learning analytics is not confined to the education context alone. The framework, therefore,

can be customized for different domains making the approach more widely applicable.

An adaptive and innovative approach in the physical layer named the personalized pre-

scriptive quiz (PPQ) is introduced as a demonstration of education–oriented applications

assisting the educational institutions. The novel agile learning approach proposed combines



descriptive, predictive and prescriptive analytics to create a personalized iterative and in-

cremental approach to learning. The PPQ allows students to easily analyze their current

problems (especially, identifying their misconceptions), predict future results, and benefit

from personalized intervention tasks. The enhanced PPQ incorporating difficulty and dis-

crimination indexes, run–time question selection, and a hybrid iterative predictive model can

be more beneficial and effective for personalized learning.

The results demonstrate a significant improvement in student academic performance after

applying the PPQ approach. In addition, students claimed that the PPQ helped them elevate

their self–esteem and improve student experience which may eventually lead to improved

retention rates.

2 (March 14, 2019)



Chapter 1

Introduction

“The beginning is the most

important part of the work.”

Plato

1.1 Motivation

The prevalence of high failure and attrition rates is now a well–known problem with novice

learners of programming in Computer Science and cognate disciplines 1 [Watson and Li,

2014; Watlington et al., 2010; Rumberger, 1987; Akoojee and Nkomo, 2007]. The issue might

stem from learners’ lower levels of abstract reasoning and problem–solving skills, primarily

rooted in the misunderstanding of core concepts taught, and partly because of student co-

hort diversity and disparate academic backgrounds [Hmelo-Silver, 2004; Schoenfeld, 2009].

Such cohort diversity, especially in the typically large class settings, makes it challenging for

instructors2 to provide personalized attention to students about their understanding of core

concepts. Core concepts refer to the foundational concepts of a discipline that are taught in

the initial semesters and are necessary to build a solid knowledge framework. The ability to

understand and apply core concepts has a significant impact on raising students’ self–efficacy,

self–esteem, and enhancing student experience. Concepts taught in later courses may rely on

the previously taught core concepts. This means that a solid understanding of foundational

1Our main focus in this research is the context of face–to–face learning in tertiary education; however, our
contribution supports learning in general.

2“Instructor” is the most generic term used throughout the thesis. “Teacher” is an alternative term;
however, to preserve the consistency, “instructor” is used.
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core concepts will help reduce the cognitive gaps of the students as they progress through

their following courses in the curriculum. This way, the students’ academic success can be

guaranteed through more knowledgeable and skillful graduates. Employers also prefer such

graduates as they can avoid retraining them in core skills and problem–solving.

Lack of a deep understanding of fundamental concepts leads to a weak, fragile or in-

adequate knowledge framework, resulting in imparting of unreliable cognitive skills, lower

self–esteem, degradation of academic capabilities, and, more importantly, accretion of failure

and withdrawal/drop–out rates [Trigwell and Prosser, 1991]. This ultimately compromises

the higher educations’ goal of high student retention rates. Thus, incorporation of effective

approaches in addressing students’ misconceptions, and making sure they have properly un-

derstood core concepts, is critical for both instructors and educational institutions: instruc-

tors, because they play a major role in supporting and maximizing the quality of students’

learning experience, and educational institutions, because they need to improve retention

rates.

To alleviate the conceptual misunderstanding of core concepts, instructors and educa-

tional institutions need to periodically and frequently monitor students’ knowledge level of

the core concepts taught, especially during the seminal stages of their learning. To address

this, several pedagogical approaches have been introduced, including [Best and Kahn, 2016;

Cleveland et al., 2018; Michael, 2006; Alters and Nelson, 2002]: (1) Teaching core concepts

earlier in the semester. Teaching the fundamental concepts at the start of a semester gives suf-

ficient amount of time to the students to absorb concepts and effectively build their academic

knowledge framework more reliably. This way, instructors can promote effective learning. (2)

Performing several kinds of assessment [Wiliam and Thompson, 2017; Cleveland et al., 2018].

A number of traditional and state–of–the–art assessment approaches has been enforced to

continuously monitor students’ progress and perform effective interventions when necessary.

To name a few, weekly quizzes, in–class tests, weekly and in–class online assessments, assign-

ments, mid–term tests, and final exams are examples of different assessment approaches. On

way to help students improve their help–seeking and problem solving skills based on their

previous performance is by deploying the ITS [Hooshyar et al., 2016b;a; Roll et al., 2011;

Corbett et al., 1997]. The intelligent tutoring systems (ITS)3 were introduced to target

cohorts of students and provide them with individualized instructions based on their past

3Intelligent tutoring systems (ITS) provide individualized instructions tailored for specific students, the key
feature being the support of cognitive diagnoses and adaptive remediation. They can be made to supplement
traditional teaching and have been shown to outperform traditional teaching for specific cohorts [Ma et al.,
2014].
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performance. Most recently and with the emergence of personalized learning, institutions of

higher education have become more interested in utilizing adaptive and personalized assess-

ment techniques dealing with individual students. (3) Providing a wide range of feedback.

Different types of feedback have been constructed to convey the teaching teams’ comments

regarding students’ responses to the performed assessments [Hattie and Timperley, 2007].

Summative and formative feedback mechanisms are the main categories in this area. In the

former, little or no feedback is provided to the students. Most of the feedback is given very

late (at the end of the semester and after the final exam). In the summative assessment,

students’ final marks will be published without any reference to students’ difficulties. The

formative assessment is focused on the fine–tuned instructions for students covering the ar-

eas of attainment and promotes active and adaptive learning by providing relevant guidance

for improvement in the areas of weakness. The feedback in the latter case is propagated to

the targeted student cohorts to improve their grasp of knowledge and positive engagement

to the developed assessments. The formative feedback can be conveyed to the students in

timely (delayed) or instant (real–time) manners. The recent attention towards personalized

learning environments (PLEs) has demonstrated the adoption of more fine–grained feedback

mechanisms by focusing on each individual student instead of student cohorts.

Recent advancements in technology–enhanced learning (TEL) field has resulted in the

widespread utilization of online learning materials. Consequently, educational institutions

are swamped with large amounts of pedagogical data that is generated, exchanged, and

sometimes streamed (lecture recordings) via e–learning systems, such as the learning man-

agement system (LMS)4,5. Typically, such data is held in LMSs and is accessible to instruc-

tors, either directly or via analytics tools that provide value–added information. Therefore,

robust analytical approaches are the mainstay of educational institutions with vast amounts

of educational data collected [Siemens, 2013]. Several types of educational data are generat-

ed/collected when students interact with the LMS, such as the history of log-ins, profile and

demographic information 6, student credentials, academic records, course discussions and

forum posts, multimedia and text submissions of online assessments. Providing analytical

solutions makes it necessary to collect a variety of student data embedded within the LMS,

cleanse the data (removing redundant or noisy data), reduce its size (based on the important

4Learning management systems are “software applications that automate the administration, tracking,
reporting, and delivery of the educational resources” [Ellis, 2009].

5http://web.csulb.edu/∼arezaei/ETEC551/web/LMS fieldguide 20091.pdf
6Students’ profile and demographic information are usually collected upon enrollment and stored in the

student information systems (SIS).
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attributes defined by instructors), unify the data into one standard format to be used within

the application, and generate multiple analytical reports such as enrolment history, students’

performance during a certain semester and, overall, performing statistical analyses over the

students’ past data, and categorizing students based on their academic performance.

Analytical approaches focusing on students’ past interactions with the LMS to produce

analytical reports are usually denoted descriptive and diagnostic analytics. Descriptive an-

alytics mainly reports the past by helping the educational institutions and the instructors

to understand what has happened until now. The diagnostic analytics, on the other hand,

provides the means to extract possible reasons behind past events using certain statistical

methods. Therefore, using descriptive and diagnostic techniques on the wealth of historical

assessment data is imperative towards understanding various student cohorts’ performances.

Educational institutions are also interested in making informed decisions through predicting

future behavior and choosing appropriate intervention strategies. Predictive analytics is a

kind of analytics that focuses on projecting student performance trends and notifying the

instructors of the likely at–risk students, given students’ past records and utilizing particular

machine learning techniques [Heffernan and Heffernan, 2014]. As a result, relevant inter-

ventions should be applied by the instructors and/or educational institutions in a timely

manner. To assist the teaching team to disseminate effective and actionable feedback to tar-

geted student cohorts, specific analytical approaches with the focus on generating adaptive

courses of actions should also be adopted. Prescriptive analytics was emerged to address this

need by producing targeted recommendations and courses of action(s) based on students’

past performance and future predictions. Please note as per the above elaboration, the de-

scriptive, diagnostic, and predictive analytics are serving different purposes in responding to

analytical needs and thus distinctly explained [Bertsimas and Kallus, 2014; Turban et al.,

2013; Soltanpoor and Sellis, 2016; Larson and Chang, 2016].

Given the need for adopting efficient assessment and feedback mechanisms to facilitate

active and adaptive learning, researchers have become more interested in introducing several

techniques to promote various analytics by identifying and rectifying misconceptions, and at

the same time, building a solid and robust knowledge framework. Learning analytics (LA) is

a growing area of technology–enhanced learning, which has emerged to address the analytical

needs of educational institutions. It takes into account several methods and techniques to

collect educational data from disparate sources, unify and analyze the collected data to

generate required analytical reports of students’ pedagogical activities, project likely trends

in students’ future behavior and academic performance, and provide means of personalized
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learning experiences for students and instructors. Some studies have advocated the blending

of learning analytics methods with intelligent tutoring systems (ITS).

This thesis proposes an integrated and layered learning analytics framework to address

the learning needs of educational institutions. Our framework incorporates several analytical

techniques such as learning analytics, intelligent tutoring systems, and personalized and

prescriptive approaches. In the next section, we elaborate on the research questions that are

addressed in this thesis, followed by the associated contributions.

Prior to the research question, we will review a motivation scenario in the context of

education in Section 1.2.

1.2 Motivation Scenario - Recommending personalized learning material to

each individual student

Let’s consider the case that during a certain semester, the instructor wants to provide each

student with individually selected learning material based on their past performance in prior

assessments. We can simply scatter the process in 10 steps as follows:

1. Question tagging — tagging each assessment question with their corresponding taught

concept(s). This means that when designing each question, the instructor should tag

the question with the concept(s) they cover.

2. Learning material tagging — tagging each learning material with their relevant con-

cept(s). Similarly, the instructor will tag each learning resources with the concept(s)

they cover. In terms of the tagging granularity, the learning material can be tagged

in either coarse- or fine–grained manner. In the former case, the whole textbook (the

online resource) or chapters of them are tagged, while the latter approach is more con-

cerned with providing the tag for each page, paragraph, or even certain lines of the

material.

3. Previous assessment(s) data collection — collecting each student’s past assessment

results. The performance of the students in the tests and assessments since the start

of the semester will be recorded. The past assessment results may be in diverse forms

and kinds of data (tabular, graphical, text).

4. Misconception extraction — extracting the set of misunderstood concepts per student.

If the student responded incorrectly to the questions covering particular concepts, those
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concepts are considered as the student’s misconception. The misconception set will

be calculated and constructed for each student based on their past responses to the

assessment questions. We assume that all assessment questions were tagged with their

corresponding concept(s) from step 1 [Liu et al., 2016].

5. Performance prediction — extrapolating each student’s likely performance/status to-

wards the end of the semester. For each student, the system can project the pass/fail

and likely final mark by the end of the semester.

6. Adaptive and personalized assessment — selecting the next assessment questions for

each student based on their calculated misconception(s), individually. A personalized

set of question(s) for individual students will be generated to cover their misunderstood

concept(s). The number and types of questions for one student may be different than

others.

7. Targeted learning resource(s) dissemination — adaptively recommending learning ma-

terial to individual students, given their misconception(s) or during their assessment.

The system can generate instant, personalized, and adaptive formative feedback to each

student based on their incorrect responses to the assessment questions. This means that

each student will get a list of recommended learning resources, individually calculated

for them, covering the concepts they misunderstood (from their previous assessment

results, or during their ongoing assessment).

8. Notification mechanism — notifying the instructor and the student of the student’s

performance during or after each assessment. Having the knowledge of the student’s

performance, the instructor can plan to perform further interventions if required. The

student, on the other hand, can be directed towards further learning material suitable

for their status so that they can rectify their misconceptions properly.

9. Analytical report generation — generating analytical reports on each student’s perfor-

mance during the semester for the student, the instructor, and the educational insti-

tution. The student–targeted report will simply incorporate their current in–semester

academic records (assessment history) as well as their current set of misconceptions

and the suggested learning material. The instructor–targeted report will include the

student–targeted information, their predicted status/performance by the end of the

semester, and their performance compared to other students in the class. The insti-

tution will also have an analytical report on the student’s overall performance status,
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their projected status towards the end of the semester, and the whole class performance

(current and predicted); an integrated report on all courses and collected surveys from

the students and the instructors to evaluate/calculate the student retention rate and

the student experience metrics will also be available.

10. Ongoing follow–up mechanism — continuous following up on each student’s progress

during a certain semester or throughout their curriculum. This final step ascertains

the benefits of constant formative feedback and adaptive personalized learning material

recommendation to individual students and the educational institution. The goal is to

improve the learning outcomes in skills required by the academia or the industry, higher

levels of self–esteem, and positive student experience. The educational institutions, on

the other hand, can aim for a certain student retention rate which in turn satisfies their

pedagogical objectives.

Table 1.1 demonstrates the mapping of the mentioned sample scenario’s 10–step processes

with their corresponding components within the proposed layered framework. Please note

that each one of these layers is elaborated in detail in the upcoming chapters.

1.3 Research Questions

There has been a large body of research focusing on the analytical requirements of educational

institutions (as mentioned earlier in Section 1.1); however, to the best of our knowledge, there

is no extant research on proposing a holistic analytics approach 7 to address the majority of

educational institutions’ needs. This motivated us to propose a layered, integrated analytics

framework which takes into consideration key educational institutions’ concerns and provides

them with adaptive and actionable solutions. Although our research is capable of being

applied to the whole education landscape, we focus on its “tertiary education” subset8. The

proposed framework is comprised of three different yet related layers similar to the prominent

technique in data modeling [Date, 2006]:

1. The Conceptual Layer — concerning with the overall and high–level analytical tech-

niques.

7By “holistic analytics approach”, we meant solutions addressing most of the educational institutions’
requirements (kind of one–size–fits–all approach).

8Other subsets of the education landscape are “pre-school”, “primary”, ”secondary”, as well as the “ter-
tiary” education.
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Table 1.1: Mapping Of The Sample Scenario’s 10–Step Processes With Their Corresponding
Analytical Components In The Proposed Framework.

Layers Of The Proposed Framework
Steps Physical Logical (LA1 Pro-

cesses)
Conceptual

(1) Question Tagging data annotation (Ques-
tions)

- -

(2) Learning Material
Tagging

data annotation
(Learning Material)

- -

(3) Assessment Data
Collection

data collection, clean-
ing, integration, reduc-
tion, augmentation,
unification

monitoring process descriptive analytics

(4) Misconception Ex-
traction

data mining, in-
formation retrieval
techniques

analysis process descriptive analytics

(5) Performance Pre-
diction

machine learning algo-
rithms

prediction process predictive analytics

(6) Adaptive Assess-
ment Generation

data processing assessment, personal-
ization processes

prescriptive analytics

(7) Feedback data processing, rec-
ommendation engine

personalization, feed-
back, adaptation, in-
tervention processes

prescriptive analytics

(8) Notification report generation,
feedback mechanisms

feedback process feedback and deliver-
ables

(9) Report Generation report generation feedback, intervention
processes

prescriptive analytics

(10) Follow–up data collection, inte-
gration, reduction, uni-
fication

monitoring process descriptive analytics

1 Learning Analytics
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2. The Logical Layer — focusing on the specializations of the conceptual layer which in

our case is translated into the analytics in the context of education (learning analytics).

3. The Physical Layer — that takes into consideration the formalization and implemen-

tation of the conceptual and logical layers in real–world applications.

In the proposed framework, the conceptual layer is domain–agnostic and acts as a generic

solution to most of the analytical scenarios. The logical layer is domain–specific and might

vary based on different analytical contexts that the system is specialized for. Finally, the

physical layer is flexible in allowing for new requirements within the system, and changes in

the components/algorithms.

The main implications and properties of our proposal can be listed as follows:

• adaptive and automatic remediation of students’ misconceptions.

• providing and supporting targeted intervention(s).

• promoting personalized assessment and feedback mechanisms.

• dynamic learning difficulty identification.

• supporting adaptive and personalized learning.

• fostering high–level cognitive skills

Let’s provide an example of how the proposed layered analytical framework can help

educational institutions in achieving their pedagogical objectives in the following section.

To design our proposed integrated analytics–driven framework for the context of educa-

tion, the following research questions were developed in this thesis.

A federated composite analytics architecture (a prescriptive and not a software architec-

ture) comprising key analytical methods (descriptive, predictive, and prescriptive) is intro-

duced. This architecture is not limited to the domain of education and can be applied to

applications of other domains. This is the first step in constructing our analytics framework.

Therefore, the first research question is shaped as follows.

Research Question 1)

How do we design an integrated and adaptive analytics architecture?
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We propose a novel approach in organizing analytical components with the ability to

accept diverse data types and producing dynamic feedback. Descriptive, predictive and pre-

scriptive analytics approaches are incorporated within the architecture to make it serve as a

generic analytical model. The introduced analytics architecture is a generic and domain–

independent solution to analytical needs of enterprises as mentioned in Chapter 4. Its

context–agnostic nature makes it flexible to be applied to a wide range of analytical appli-

cation scenarios. The details of the architecture and some of its applications are elaborated

in Chapter 4. The proposed architecture shapes the conceptual layer of our analytics–driven

framework in Chapter 5.

Since the proposed framework is tailored to the field of learning analytics, the next

research question is focused on specializing the general composite analytics architecture in

the context of education.

Research Question 2)

How do we incorporate the proposed integrated analytics architecture in

the context of learning analytics (proposing the analytics framework for

learning analytics)?

Learning analytics as the major technology–enhanced learning field is discussed in Chap-

ter 3 along with a learning analytics reference model operating in four dimensions. Moreover,

ten key learning analytics processes are extracted based on the main LA needs. Finally, each

of the LA processes is implemented in the business process model and notation (BPMN)

specification9. This step shapes the logical layer of the proposed framework in Chapter 5.

To connect the conceptual and logical layers of the framework together and to justify

the introduced analytics architecture, all logical components (here, all ten learning analytics

processes implemented in BPMN) must be linked to their corresponding conceptual layer

elements. The next research question, therefore, is concerned with the interrelationship

between the conceptual and logical layers.

Research Question 3)

How do we formalize learning analytics processes in the proposed framework

(connecting learning analytics and prescriptive analytics components)?

9http://www.bpmn.org/
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The conceptual and logical layers of the proposed analytics–driven framework are con-

nected to address this research question. This step is further elaborated in Chapter 5.

All learning analytics processes in the logical layer are formalized and implemented (in

terms of algorithms and coding) to form the physical layer in Chapter 5 to assess the degree to

which our proposed approach can address the major concerns of students, instructors, and ed-

ucational institutions. We also introduce a new approach called the personalized prescriptive

quiz (PPQ) to provide students with individual questions covering their past misconceptions

(concepts they missed or did not understand properly in their previous assessment within a

certain semester). Thus, the final research question is developed as follows.

Research Question 4)

How do we devise and link the physical layer components enforcing higher–

level processes (linking the physical, logical and conceptual layers altogether)?

The proposed framework takes into consideration real students data collected from their

interactions (multiple assessments and their assessment performance history) and is evalu-

ated using well–known qualitative and quantitative techniques. The details and acquired

results of the PPQ approach are discussed in Chapter 6. Furthermore, the PPQ components

are connected to their corresponding logical and conceptual layers, to make the proposed

framework complete. Also, all physical layer components are linked to their corresponding

higher level components in the logical and conceptual layers.

To address the mentioned research questions, the next section reviews the major contri-

butions.

1.3.1 Major Contributions

The main contributions of this thesis can be listed as follows:

1. An adaptive and federated composite analytics architecture incorporating descriptive,

predictive, and prescriptive analytics approaches with dynamic feedback mechanisms.

The proposed architecture in Section 4.3, uniquely combines descriptive, predictive, and

prescriptive analytics and links them together. The architecture also aims for adaptive

and timely generation of courses of actions with the help of certain feedback lines

designed within the system. We also introduce a composite design for the prescriptive

component which comprises the simulation, optimization, and evaluation parts. This

contribution addresses the first research question mention in Section 1.3.
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2. A four–dimensional learning analytics reference model covering key learning analytics

processes. A four–dimensional model is introduced in Section 3.3 that comprising (1)

collecting several educational data types in the WHAT dimension, (2) taking into ac-

count the main stakeholders (students, instructors, and educational institutions) in the

WHO dimension, (3) deployment of certain analytics techniques to analyze collected

educational data in the HOW dimension, and (4) capturing and formalizing the top

10 key learning analytics requirements and processes in the WHY dimension. This

contribution shapes the ground for the second and third research questions mentioned

in Section 1.3.

3. An integrated analytics–driven framework for learning analytics comprising three lay-

ers (conceptual, logical, and physical). The proposed framework is introduced in Sec-

tion 5.2. The conceptual layer is generic and domain-agnostic analytics layer. The

composite analytics architecture of Section 4.3 constructs the conceptual layer of the

framework. The logical layer, on the other hand, is domain-specific and is special-

ized for the context of education. The 10 learning analytics processes are formalized

within the logical layer and linked to corresponding conceptual layer components (link-

ing the logical and conceptual layers). The logical layer is elaborated in 5.4. Finally,

the physical layer is designed to be application-specific. It is mainly focused on the

implementation of educational applications and their connection to learning analytics

processes in the logical layer. This contribution targets the second and third research

questions mentioned in Section 1.3.

4. A novel personalized learning approach implemented in the physical layer called the

personalized prescriptive quiz. The personalized prescriptive quiz (PPQ) approach is

introduced in Section 6.3. The PPQ fills key gaps in traditional assessment approaches

by providing a form of personalized coaching to students. It helps each student to indi-

vidually identify and rectify their misconceptions by providing them with individually

designed sets of questions covering their misunderstood concepts. The results demon-

strate a significant improvement in student academic performance after applying the

PPQ approach. Instructors can design more efficient questions covering taught con-

cepts, by taking into consideration student feedback gathered on PPQ performance.

By linking the physical layer’s components to their corresponding logical and concep-

tual layers, the integrated analytics framework proposed in Section 4.3 is finalized. This

contribution addresses the final research question of Section 1.3 in building the physical
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layer of the proposed framework.

To sum up, as a proof of concept, please refer to Figure 7.1 depicted in Chapter 7 in

linking all layers together as a whole analytics solution for the education context.

1.4 Thesis Organization

The road–map of this thesis is as follows.

• Chapter 2) Background — this chapter is focused on the extensive literature review

regarding several analytical methods including descriptive, predictive and prescriptive

methods. The chapter continues with reviewing the extant body of research of different

analytical approaches in the context of education such as educational data mining,

academic analytics, and learning analytics.

• Chapter 3) Learning Analytics — this chapter is mainly concerned with the technol-

ogy and research advancements in the field of learning analytics as a growing area of

technology–enhanced learning. After a short introduction to the field and review of

the current body of literature in the area, the chapter elaborates on different analyti-

cal techniques of the higher education (i.e. educational data mining (EDM), academic

analytics (AA), and LA). The chapter then reviews the key requirements every LA

solution should support along with recent proposed LA models (LAMs), tools and ap-

plications. A 4–dimensional learning analytics reference model covering the mentioned

LA requirements is proposed based on the work by [Chatti et al., 2012]. The chapter

finally enumerates the field’s challenges and future directions and concludes with refer-

ring to the proposed analytics framework in Chapter 5 as a solution to address most

of LA–related concerns based on the introduced 4–dimensional LA reference model

(LARM).

• Chapter 4) Prescriptive Analytics — the first research question is addressed in this

chapter by proposing a federated composite analytics architecture. At first, a litera-

ture review of the current state–of–the–art research in the field is provided. Prescriptive

analytics relation to other established analytical approaches like descriptive, diagnostic

and predictive analytics is discussed next. Then, three different application scenarios

are investigated to emphasize the importance of prescriptive analytics in different sec-

tors of industry and academia. Finally, an adaptive and integrated composite analytics

15 (March 14, 2019)



CHAPTER 1. INTRODUCTION

architecture is proposed to address the research gaps in the field. This architecture is

the basis for the analytics–driven framework which is elaborated in Chapter 5.

• Chapter 5) Analytics–Driven Framework for Learning Analytics — an analytics–driven

framework for the context of education is proposed incorporating the composite analyt-

ics architecture in Chapter 4 and the 4–dimensional learning analytics reference model

in Chapter 3. The chapter aims to address research questions 2 and 3 with framing a

three–layered analytical framework (i.e. the conceptual, the logical, and the physical

layers). The conceptual layers’ components and their interrelationships are discussed

(with the focus on the generic analytics–driven and prescriptive analytics modules).

The logical layer is also elaborated in this chapter with the focus on illustrating 10 key

learning analytics processes (introduced in Chapter 3) in the business process model

and notation (BPMN) specification. Next, each LA process component is connected

to their corresponding conceptual layer elements to build the first two layers of the

framework. The logical layer covers the third research question in formalizing the LA

processes in the proposed framework. Finally, the physical layer is elaborated in Chap-

ter 6 where the framework is applied to one educational application scenario with real

student data. Overall, the proposed framework covers the second research question.

• Chapter 6) Personalized Prescriptive Quiz (PPQ) — to address the forth research

question, an adaptive and personalized approach (the personalized prescriptive quiz

(PPQ)) is proposed in this chapter that constructs the physical layer of the framework.

Given that the PPQ was applied in several semesters and being used by different core

courses, a wealth of real educational data was captured. In the results section, the

qualitative and quantitative findings are analyzed. Finally, the future directions of the

research and the potential extension points to the PPQ approach are mentioned.

• Chapter 7) Conclusions and Future Work — this chapter is mainly focused on revisiting

the thesis outcomes to assess the extent to which they addressed the research questions.

The chapter concludes by mentioning the future research directions.
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Background

“Research is to see what

everybody else has seen, and to

think what nobody else has

thought.”

Albert Szent–Gyorgyi

An extensive literature review in data analytics is provided in this chapter. The general

analytics techniques such as descriptive, diagnostics, predictive, and prescriptive analytics are

reviewed in Section 2.1. Focusing on the context of education, Section 2.2 reviews the body

of research in learning analytics, educational data mining, and academic analytics. Finally,

Section 2.3 is concerned with the extant research on analytics frameworks in education.

2.1 Data Analytics and Analytical Techniques

Big business organizations or academic institutions possessing big data are interested to adopt

proper analytical solutions to transform data into information and then into insights and

process them to elicit business values and act upon them to maximize their objectives [Baker

and Gourley, 2014]. Big enterprises need to know what has happened in the past, what is

happening now, what is likely to happen in the future, and what are the optimal sequences

of actions they can take to satisfy their goals [Kaisler et al., 2014]. They need to extract

insights from the wealth of data they own to take advantage of future opportunities and

mitigate likely risks [Davenport and Dyché, 2013]. This need translates into operational,

adaptive and optimal courses of actions (in the form of some recommendations) based on
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the extracted insights [Barga et al., 2014]. Prescriptive analytics has emerged as the new

business analytics field to address the mentioned gap and assist the enterprises to meet their

objectives. According to the body of research, business analytics is classified into three major

categories [Delen, 2014], [Sharda et al., 2013], [Banerjee et al., 2013]: descriptive, predictive,

and prescriptive analytics that are elaborated in the following sections.

2.1.1 Descriptive Analytics

“Descriptive Analytics” is often called the “data summarization” or the “data reduction”

process which is focused on the past (reports the past). It answers the question “What

did happen?” and extracts valuable information given the collected data elements from

diverse sources [Delen and Demirkan, 2013]. Several analytical reports and the unified and

aggregated forms of data (to be utilized by other analytical approaches) are among the key

outcomes of this analytical approach. With regard to analyzing the past events, another

analytical technique has emerged as an extension to descriptive analytics which is called the

“diagnostic analytics”. Like descriptive analytics, the diagnostic analytics also reports the

past, but it aims at answering questions such as “Why did it happen?”. It helps business

enterprises to grasp the reasons and causes of the events happened in the past. Diagnostic

analytics gives the organizations the knowledge to understand relationships among different

kinds of data [Karim et al., 2016; Banerjee et al., 2013].

2.1.2 Predictive Analytics

“Predictive Analytics” is also called the “forecasting” process and takes the unified data

elements generated by descriptive analytics, and builds accurate predictive models by incor-

porating proper machine learning techniques [Siegel, 2016; Waller and Fawcett, 2013; Hazen

et al., 2014]. By utilizing these models, enterprises can detect future opportunities and risks

and plan to face them accordingly. It answers the questions “What will happen?” and “Why

will it happen?” in the future [Delen and Demirkan, 2013; Eckerson, 2007; Shmueli and

Koppius, 2011]. One key challenge is to feed as much data as possible because more data

means more accurate models and predictions. Some well–known techniques in predictive

analytics are data mining, text/web/media mining, and forecasting approaches [Shmueli

and Koppius, 2011; Waller and Fawcett, 2013]. Predictive analytics produces several future

extrapolations along with their corresponding probability scores.
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2.1.3 Prescriptive Analytics

“Prescriptive Analytics” is called the “recommender or guidance” process which provides

business organizations with adaptive, automated, time–dependent, and optimal decisions

[Basu, 2013; Adomavicius and Tuzhilin, 2005]. It is mainly focused on bringing the business

value through better strategic and operational decisions through relevant recommendations

(courses of actions). Generally, prescriptive analytics is one predictive analytics which is

expanded to prescribe sequences of actions and illustrate the likely outcome of each action

along with their mutual influence. It answers the questions “What should I do?” and

“Why should I do it?” using the built–in “what–if” scenarios [Haas et al., 2011]. Core

components of a given prescriptive analytics solution are optimization [Liberatore and Luo,

2011; Schniederjans et al., 2014], simulation, and evaluation methods [Bertsimas and Kallus,

2014]. Prescriptive analytics takes predictive analytics outcome into consideration along

with the enterprise’s business constraints, compliance rules and objectives to generate the

optimal courses of actions. It means that prescriptive analytics takes an actionable predictive

model into account and generates optimal recommendations to help organizations with their

informed decision making processes [Marathe et al., 2014; Apte, 2010]. Prescriptive analytics

solutions usually express two major characteristics [Basu, 2013]:

1. Providing the business organizations with the optimal and actionable recommendations

in terms of comprehensible prescriptions, and

2. Supporting feedback mechanisms to keep track of the recommendations’ effectiveness

and occurrence of unprecedented events throughout the system’s life–cycle.

Prescriptive analytics is capable of being applied in a wide variety of use cases and real–

world application scenarios, some of which are listed as follows:

• Transportation — prescriptive analytics helps active companies in the field to manage

transportation capacities, recommend different ticket prices at different rates during

times of increased or decreased demand to maximize capacity and profitability (inten-

tional price fluctuations), and so forth.

• Oil and gas industry — prescriptive analytics can help the oil and gas companies to

locate and produce oil and gas in a cost–effective manner, recommend where and how

to drill to maximize production and minimize cost as well as environmental impacts

based on the collected data from past drilling processes and production history.

19 (March 14, 2019)



CHAPTER 2. BACKGROUND

Figure 2.1: Several Prescriptive Analytics Application Varieties

• Logistics — prescriptive analytics can help the organizations to reach the most optimal

route for their deliveries and freights that can be updated in near real–time (adaptive),

given past performances, load information, current conditions, and vehicle specifica-

tions.

• Healthcare — healthcare providers can utilize prescriptive analytics solutions to lever-

age operational, demographic, economic and health trends, to plan for investments in

new facilities and equipment. Examples in hospitals and health–care related organiza-

tions can be providing optimal resource allocation solutions (such as the arrangement of

beds in wards, allocation of health professionals to the designated locations, timely and

optimal orderings of medical equipment in–line with the predicted future requirements),

and so on.

• Price optimization, inventory management, supply chain optimization, and resource

allocation — prescriptive analytics approaches can be used to make specific offers and

modifications to subscriptions or purchasing plans based on the nature and progression

of a customer’s interaction with the current system.

Figure 2.1 depicts some of the main real–world application scenarios capable of adopting

prescriptive analytics solutions.

Figure 2.2 depicts the main business analytics approaches (descriptive, predictive and
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Business Analytics

Descriptive Analytics Predictive Analytics Prescriptive Analytics

Q
u

e
st

io
n

s
T

e
ch

n
iq

u
e

s
O

u
tp

u
ts

- What has happened?

- Why did it happen      

  (Diagnostic Analytics)?

- Statistical Analytics

- Data Integration

- Data Augmentation

- Data Reduction

...

- Reports on the historical data

- Extracted insight from the raw 

  data

...

- What will happen?

- Why will it happen?

- Data Mining

- Machine Learning

...

- Future opportunities

- Future risks

...

- What should be done?

- Why should it be done?

- Optimization

- Simulation

- Operations Research

- Management Science

...

- Recommended business 

  decisions

- Optimal courses of actions

...

Figure 2.2: Business Analytics Stages

prescriptive analytics) in terms of the questions they answer, the set of techniques they

incorporate, and the result(s) of each analytical processes.

Figure 2.3, in addition, illustrates different analytical approaches’ spectrum in a successful

business analytics value escalator in terms of the provided value of each analytical approach

as well as their adoption difficulty levels (according to the Gartner’s report on 20171). Start-

ing from left, descriptive analytics tries to answer the question “what happened?” which

provides less value to enterprises by generating analytical reports regarding the past. The

information is the main player in this stage which means the approaches to transform the

collected data into the desired information with the help of statistical methods. This part

1https://www.gartner.com/doc/3698935/forecast-snapshot-prescriptive-analytics-worldwide
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is called the “hindsight” and is the easiest analytical stage to deal with. Moving forward,

another analytical approach emerges which is more concerned with the rationale behind the

events happened in the past and tries to understand why something has happened (answer-

ing the question “why did it happen?”). It is called diagnostic analytics and provides the

organizations with in–depth analytical reports to help them understand the relationships

among past events and extracting the reasons those events happened. Diagnostic analytics

contributes to the inception of the “insight” phase in analytics and brings medium–level

business value and is still moderate to deal with (in terms of implementation and adoption

difficulty within the enterprise). Next, predictive analytics emerges that is mainly focused

on the future and tries to complete the chain of the “insight” phase started by the diag-

nostic analytics by adopting proper predictive models and answering questions like “what

will happen and why?”. Providing the likely future opportunities and risks along with their

probabilistic trends is of crucial importance to any organization. Therefore, predictive ana-

lytics incorporation provides a considerable amount of business value to enterprises and its

adoption process is considered difficult. Finally, prescriptive analytics plays the ultimate role

in providing enterprises with optimal and adaptive courses of action(s) to help them make

informed decisions and meet their business objectives. It answers the question “how can

we make it happen and why?” and has a significant value within the organizations and its

adoption difficulty is considered the hardest within the enterprises.

According to the literature, the following lists some of the main research gaps in the area

of prescriptive analytics:

• A concrete definition of prescriptive analytics — according to the body of research,

there is a wide range of definitions associated with the term “prescriptive analytics”:

a recommender system, an optimization engine, a simulator, etc. We will propose a

holistic definition of prescriptive analytics which entails all mentioned analytical com-

ponents.

• An extant and valid federated analytics architecture — to the best of our knowledge, the

literature lacks the design and implementation of an integrated analytics architecture

incorporating descriptive, predictive and prescriptive components. Furthermore, the

relationships among different components should be elaborated clearly. We will address

this issue as well.

2https://www.smartdatacollective.com/how-risk-management-ecosystem-evolving-data-analytics/
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Figure 2.3: Business Analytics Value Escalator (Different Analytics Spectrum) – Gart-
ner’s Report2

• An adaptive prescriptive technique — most of the current proposed prescriptive ap-

proaches are incapable of change in terms of the support for back–propagation feedback

mechanisms within the system. We will cover this gap by providing and supporting

backward feedback lines throughout different analytical components of the proposed

architecture.

Given the above–mentioned definitions of descriptive, predictive and prescriptive ana-

lytics, a successful analytical solution for current business enterprises seems to be the one

incorporating the integrated benefits of all the three approaches. To the best of our knowl-

edge and based on the extant literature, there is no specific study taking into consideration

all the mentioned analytical approaches in one framework . This was our main motivation

to propose a novel integrated prescriptive analytics to address the mentioned requirements

in Section 4.3. Our proposed architecture is capable of handling heterogeneous data from

diverse sources, building accurate predictive models based on the acquired data, and gen-

erating the adaptive and optimal sequences of actions to help the decision making process

2Given that we are discussing the analytics approaches in general, our focus in on any domain (and not
just the learning context).
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in near real–time with operational recommendations. But prior to elaborating on our ap-

proach, some critical application scenarios are reviewed in Section 4.2 to demonstrate the

crucial importance of adopting a prescriptive solution in addressing their requirements.

2.2 Analytics in Education

Analytics, in general, is a multi–disciplinary concept and is concerned with data acquisi-

tion from diverse sources, performing analytical calculations on the collected data items to

extract useful patterns and valuable insights, and distributing the computed outcomes to

the corresponding targets [Chen et al., 2012; Power, 2014; Van Barneveld et al., 2012].

Approaches incorporating different data analytics methods have contiguously been evolving

over the last decade. An enormous amount of educational data has been produced due to

the technological advancements in the digital education, the increasing tendency regarding

the generation, sharing and dissemination, and online learning resources utilization (both

in traditional on–campus and online educational approaches). Also, learners and instruc-

tors’ interactions with the learning management systems (LMS) have caused the exponential

growth in the volumes of educational data lately [Baer and Norris, 2015; Ferguson et al.,

2016; Adams Becker et al., 2017]. Therefore, institutions of higher education need proper an-

alytical tools to process those data elements to improve student experience, increase learners’

retention rates, help them pick the optimum learning pathways in accordance to students’

objectives, aptitudes and academic records, and provide the institutions of higher education

with relevant analytical reports to assist them make strategic and informed decisions [Chen

et al., 2012; Van Barneveld et al., 2012; Siemens and Long, 2011; Adams Becker et al., 2017;

Siemens et al., 2011]. Given that, educational institutions need to incorporate relevant an-

alytical techniques to process their wealth of educational data [Ferguson, 2012b;a; Freitas

et al., 2015].

2.2.1 Learning Analytics

Learning analytics, as a key area of research in the context of education and technology–

enhanced learning, has attracted a huge attention recently. A huge amount of research has

been conducted in learning analytics definition, its requirements identification, LA proposed

models, and its developed tools and applications [Peña-Ayala et al., 2017; Peña-Ayala, 2017;

2018; Baker and Inventado, 2014; Siemens and Long, 2011; Siemens and d Baker, 2012;

Ferguson, 2012a; Ihantola et al., 2015; Arnold and Pistilli, 2012; Siemens, 2013; Chatti et al.,
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2012].

Learning analytics has emerged to effectively help institutions of higher education to per-

form desired data analyses over the wealth of students’ data and produce actionable outcomes

to satisfy their pedagogical objectives. Learning analytics is mostly focused on techniques to

collect, unify, aggregate and process educational data from diverse sources (which is called

the insight part), predict future trends based on those data elements with the help of proper

machine learning techniques (which is called the foresight part), and act upon the produced

outcomes to improve the process of learning [Peña-Ayala, 2018; Martin and Sherin, 2013;

Pea and Jacks, 2014; Elias, 2011; Ferguson, 2012a; Siemens et al., 2011]. LA has also common

interests with other technology–enhanced learning research areas such as educational data

mining, academic analytics, personalized and adaptive learning, recommender systems, and

action research [Chatti et al., 2014]. The most established definition for LA according to

the first international conference on learning analytics and knowledge 2011 (LAK’11)3 and

adopted by the society for learning analytics research (SoLAR)4 is:

“The measurement, collection, analysis and reporting of data about learners and

their contexts, for purposes of understanding and optimizing learning and envi-

ronments in which it occurs” [Siemens and Long, 2011].

According to the Horizon Report [Jaramillo, 2017], learning analytics is currently considered

a key trend in the future of teaching and learning in higher education.

E–learning systems – aka as the virtual learning environments (VLE) – are web–based

solutions and applications that provide the course resources and materials online. Recently,

the increasing tendency in implementing several types of VLEs has drawn further attention

towards the adoption of learning analytics techniques [Šumak et al., 2010; Van Raaij and

Schepers, 2008]. Learning management systems and courseware management systems (CMS)

are among the well–known examples of VLE implementations [Oliveira et al., 2016; Coates

et al., 2005; Gibbons, 2005; Romero et al., 2008]. The state–of–the–art VLEs help learners

build their own learning pathways by personalizing the published resources and in turn assist

them to develop their personalized learning environments (PLE) [Van Raaij and Schepers,

2008; Chatti et al., 2014]. Institutions of higher education are capable of getting benefit from

the power of learning analytics and virtual learning environments by taking the emerging

concepts of blended and computer–supported collaborative learning (CSCL) into account

3https://tekri.athabascau.ca/analytics/
4https://solaresearch.org/
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[Garrison and Kanuka, 2004; Stahl et al., 2006; O’Malley, 2012].

A large amount of heterogeneous data is generated from learners’ interactions with edu-

cational systems (including learning management systems) and even the social media [Bi-

enkowski et al., 2012; Shum and Ferguson, 2012; Blikstein and Worsley, 2016]. Also, recent

studies have demonstrated a paradigm shift in learning analytics approaches from knowledge–

based to empirical experiences and community–based learning which take into consideration

the contents produced from mobile, immersive learning, the Internet of Things (IoT), and

other online sources (like massive open online courses (MOOCs) [Loizzo and Ertmer, 2016],

social network services (SNS), etc.) [de Freitas, 2013; Gibson and de Freitas, 2016; Siemens,

2005; 2014; Jülicher, 2018]. Virtual learning environments provide institutions of higher edu-

cation with the wealth of learners’ usage data such as the number of clicks, posted messages

in discussion forums (message analysis), login trends, content usage, attempted assessments

and the number of times they were provided with formative feedback (performance analysis

and results), and more [Tempelaar et al., 2015; Rienties et al., 2016]. Consequently, recent

forms of analytical techniques in the context of education should be considered. Multi–

modal learning analytics (MMLA) which incorporate students’ text, audio, video, gestures,

behavior, biometric figures, and activity logs to analyze learning process in a more realis-

tic ecosystem is an example of such techniques [Blikstein and Worsley, 2016; Schneider and

Blikstein, 2015; Worsley, 2014; Worsley and Blikstein, 2015].

Overall, learning analytics as a bricolage of disciplines is specifically focused on education

[Ferguson, 2012a; Shum and Ferguson, 2012]. LA also covers a wide range of research areas

related to the teaching and learning. Some of which are mentioned in the following [Peña-

Ayala, 2018]:

• Social Learning Analytics — which is concerned with the techniques and approaches

to collect, calculate and evaluate the impact of learning related social media utilization

of the students. This category incorporates several social network analysis methods

including the social media text and network analysis [Martin et al., 2016].

• Smart Learning Analytics — which supports the intelligent educational data processing

techniques to extract valuable insights from the collected data from diverse sources

[Giannakos et al., 2016].

• Multimedia and Video Learning Analytics — which is focused on the techniques to cap-

ture useful information from the learning resources with the streaming media (including
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the video) [Giannakos et al., 2016].

• Ubiquitous Learning Analytics — which acquires rich meta–data from the learners’

interactions with the learning management systems and extracts the data and their

corresponding contexts to help them connect to their desired relevant contextual learn-

ing materials [Mouri and Ogata, 2015].

• Visual Learning Analytics — which is mostly concerned with relevant data visualization

techniques (from the educational data collection to their interactive visual representa-

tion processes) to assist the institutions of higher education with their decision making

process [Hillaire et al., 2016].

• Multimodal Learning Analytics — which is focused on acquiring and processing hetero-

geneous data collected from human interactions and activities with the help of sensors

and their related technologies [Andrade et al., 2016; Ochoa and Worsley, 2016].

• Dispositional Learning Analytics — which supports rapid formative feedback of data

at several levels, integrates the process data with the performance data, and produces

complex visualizations for both learners and instructors [Tempelaar et al., 2017].

• Open Learning Analytics (OLA)5 — which is concerned with learning analytics solu-

tions that support openness of processes, algorithms and technologies in collecting and

processing the educational data, modularized integration of several learning analytics

processes, and open technologies for the researchers in the area to get access to differ-

ent implemented data mining, analytics and adaptive contents [Muslim et al., 2016;

Siemens et al., 2011].

Given the abovementioned information, institutions of higher education have become

more interested in adopting effective learning analytics techniques with the focus on trans-

forming educational data into useful actions to foster learning processes and help to make

better decisions [Chatti et al., 2014].

Learning analytics is capable of covering processes in a wide range of academic levels and

stakeholders, including [Ifenthaler and Widanapathirana, 2014; MacNeill et al., 2014; Shum

et al., 2012]:

5https://solaresearch.org/initiatives/ola/
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• “mega–level” or cross–institutional analytics — is concerned with identifying patterns

across multiple institutions. Such rich datasets and invaluable insights could be of help

in policy–making processes within the government.

• “macro–level” or institution–wide analytics — is focused on integrating generated data

from diverse sources, optimize pedagogical processes, perform desired analyses, and

produce relevant visualizations to convey current and future (predicted) performance

of student cohorts within the institution of higher education. In a long run, the macro–

level analytics can assist institutions to decrease their attrition rates, improve student

experience, and make adaptive and coherent academic decisions.

• “meso–level” or the curriculum and instructor analytics — which deals with the design

process of course materials and resources from the instructors’ perspective. Analyses in

this level facilitate the learning process by improving the course quality and optimizing

the course resources/materials which lead to a more successful experience for both

learners and instructors.

• “micro-level” or the learner–centric analytics — that is concerned with each individual

learner’s success in their learning pathways. The analyses in the micro–level collect

each student’s interaction data with the learning management system and support

them through adaptive interventions and relevant recommendations.

A holistic learning analytics solution should be capable of adopting techniques from

gaming, educational data mining, computer–supported collaborative learning, recommender

systems, intelligent tutoring systems (ITS), social network analysis (SNA), computational

linguistics, and information visualization fields to be effective in this level [Shum et al.,

2012]. Some studies considered three levels by merging the mega and macro levels as cross–

institutional analytics [MacNeill et al., 2014; Shum et al., 2012].

2.2.2 Learning Analytics, Educational Data Mining, Academic Analytics

With the increasing interest of HE institutions in utilizing high–quality analytical techniques

to process the wealth of educational data and to meet their academic objectives, several

analytical approaches in the context of education have been introduced [Sclater et al., 2016;

Siemens and d Baker, 2012]. Academic analytics (AA), educational data mining (EDM), and

learning analytics (LA) are examples of such key disciplines [Sclater et al., 2016]. Although

LA, EDM, and AA are closely related, the body of research is more focused on the learning
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analytics–educational data mining overlap [Siemens and d Baker, 2012; Baker and Inventado,

2014; Papamitsiou and Economides, 2014; Berland et al., 2014; Bienkowski et al., 2012; Liñán

and Pérez, 2015; Vahdat et al., 2015; Jülicher, 2018]. The definition of each discipline along

with their inter–relationships are elaborated as follows:

• Academic analytics (AA) — is a specific field of research concerning with the economic

and policy issues of higher education. AA is mostly focused on the administrative

processes of educational institutions where admission policies, funding directions, and

other relevant processes are taking place. It is referred to as the data–intensive decision–

making process at the macro (and in some cases meso) level(s) that aims to improve

institutions’ effectiveness by using the data and enhancing their processes, resource

allocation and evaluation approach [Goldstein and Katz, 2005; Campbell et al., 2007;

Baepler and Murdoch, 2010]. The acknowledged definition for AA according to the

literature is:

“Academic analytics combines select institutional data, statistical analysis,

and predictive modeling to create intelligence upon which students, instruc-

tors, or administrators can change academic behavior” [Baepler and Mur-

doch, 2010].

Academic analytics focuses more on utilizing data for marketing and administrative

purposes [Sclater et al., 2016].

• Educational data mining (EDM) — is primarily focused on the technical challenges re-

garding the analysis of a large amount of educational data (utilizing automated meth-

ods) to extract valuable insights [Romero and Ventura, 2010; Baker and Yacef, 2009;

Romero et al., 2010; Garćıa-Saiz et al., 2014; Peña-Ayala, 2014; Sclater et al., 2016;

Baker and Inventado, 2014]. EDM is mostly concerned with the technical issues and

is categorized as a special area of data mining for HE. The official definition for EDM

according to the literature is:

“developing, researching, and applying computerized methods to detect pat-

terns in large collections of educational data that would otherwise be hard or

impossible to analyze due to the enormous volume of data within which they

exist” [Romero and Ventura, 2013; Papamitsiou and Economides, 2014].
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Educational data mining was thriving under the hood of intelligent tutoring systems

(ITS), artificial intelligence in education (AIED), user modeling (UM), technology–

enhanced learning, and adaptive and intelligent educational hypermedia (AIEH) prior

to being introduced as an independent area of research [Romero and Ventura, 2013].

The first international conference on EDM was held in 2008 after the first EDM work-

shop in 2005 [Siemens and d Baker, 2012]. Key acknowledged methods incorporated

in educational data mining include but not limited to prediction (classification, re-

gression, latent knowledge estimation), structure discovery (clustering, factor analysis,

domain structure discovery), outlier detecting, relationship mining (association rule

mining, sequential pattern mining, correlation mining, casual data mining), social net-

work analysis, process mining, and text mining. Other methods with great saliency in

educational data mining are the distillation of data for human judgment, the discov-

ery with models, knowledge tracing (KT) and nonnegative matrix factorization (NMF)

[Romero and Ventura, 2013; Baker and Inventado, 2014].

• Learning analytics (LA) — is mostly concerned with educational issues, learner success,

and enhancing aspects of learning [Sclater et al., 2016]. Learning analytics utilizes

methods in collecting learners’ data, analyzing data and extracting valuable information

from them, and reporting the results to the learner, educator, and the institute. The

ultimate goal of learning analytics is to develop new ways to analyze educational data

and constantly improve the learning and teaching processes [Baker and Inventado,

2014]. LA aims at transforming the educational data into useful actions to enhance the

quality of learning [Bienkowski et al., 2012].

With regard to LA–EDM related studies, although learning analytics and educational

data mining share several analytical objectives and methodologies in higher education, they

adopt different perspectives toward their approaches [Baker and Inventado, 2014; Siemens

and d Baker, 2012]. A short review over their similarities and differences is elaborated as

follows:

• Similarities — both are concerned with the data–driven approaches in education [Siemens

and d Baker, 2012]. Both are keen to extract valuable insights from the wealth of edu-

cational data to help the institutions of higher education with their planning, interven-

tion, and decision–making processes and improve the quality of teaching and student

experience [Siemens and Long, 2011].
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• Differences — according to [Siemens and Long, 2011], several differences between the

two can be listed as follows:

1. Prioritization of discovery types — automated in educational data mining vs.

human judgment–based in learning analytics,

2. Supported types of adaptation and personalization — automated adoption (with-

out human involvement such as intelligent tutoring systems) in educational data

mining vs. instructor–learner centric in learning analytics, and

3. Perspective toward models and frameworks — more reductionistic in educational

data mining (reducing the system into its smaller components and analyzing each

one) vs. more holistic in learning analytics (viewing and understanding the system

as a whole) [Siemens and d Baker, 2012; Baker and Inventado, 2014; Papamitsiou

and Economides, 2014; Berland et al., 2014; Bienkowski et al., 2012; Liñán and

Pérez, 2015; Vahdat et al., 2015; Jülicher, 2018].

Figure 2.4 illustrates the number of published articles in learning analytics, educational

data mining, and academic analytics disciplines along with their mutual studies in the course

of eight years (from 2011 to 2018)6. Please note that the statistics for 2018 is based on the

conducted search on mid–February 2018. As per Figure 2.4, learning analytics has attracted

a huge amount of researchers’ attention since its establishment in 2011 compared to it other

analytical counterparts. According to Figure 2.4, educational data mining seconds learning

analytics and the LA–EDM joint study seem to be an appealing topic after learning analytics

and educational data mining research areas. Academic analytics also had a spark in 2014,

but like LA–AA joint studies, deprived of full attention in the field.

2.3 Analytical Frameworks For The Context of Education

As mentioned in Section 2.2, educational institutions have increasingly become interested in

gaining valuable insights using pertinent analytical approaches to help them make informed

pedagogical, timely decisions, given their voluminous data [Siemens and Long, 2011; John-

son et al., 2015; Jaramillo, 2017; Siemens et al., 2011], given that: (1) they possess historical

and streaming data repositories recording their learners’ interactions with the learning man-

agement systems (LMS), and (2) they have commonly been inefficient in utilizing the data

6Based on the results searched on Google Scholar (https://scholar.google.com.au/)
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Figure 2.4: LA, EDM, AA, and Their Mutual Publications [2011 – 2018]

in their analytics to generate useful and timely outcomes and feedback [Siemens and Long,

2011]. Therefore, given the students’ explicit and implicit activities in learning environments,

institutions of higher education can leverage state–of–the–art analytical approaches to ex-

tract insights from student data and pursue proper actions [Jaramillo, 2017; Johnson et al.,

2015; Siemens et al., 2011]. Learning analytics (LA) has emerged to address these require-

ments [Martin and Sherin, 2013; Siemens and d Baker, 2012; Chatti et al., 2014; Ferguson,

2012a; Elias, 2011; Siemens, 2013; Siemens and Long, 2011]. Its aim is to help institutions

of higher education to make proper decisions, based on their wealth of information using

advanced data mining and modeling techniques [Jaramillo, 2017; Johnson et al., 2015].

By considering the learning analytics requirements presented in Section 3.3, it is evident

that LA is an excellent use case for utilizing accurate and coherent analytical techniques. One

way to address those concerns is to propose robust and sustainable models in the context of

LA, which incorporate different analytical techniques in a way that satisfy LA needs. Several

proposed models were investigated to be adapted to the learning analytics context. The one

that suited most of the requirements was selected as the base LA reference model and was

customized to be adjusted to our proposed framework. Given that learning improvement is

a key objective for institutions of higher education, utilizing a systematic approach to meet

pedagogical requirements is of great importance. Educational institutions need clear learn-

ing analytics models (LAM) to satisfy their needs, by analyzing educational data, producing

comprehensible insights, assisting them in their decision–making processes and, finally, im-

proving the learning and teaching processes. Considerable research has been conducted in

proposing LAMs and researchers have been working towards developing robust and exhaus-

tive LAMs [Bienkowski et al., 2012; Siemens et al., 2011; Elias, 2011; Siemens, 2013; Greller
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Table 2.1: Learning Analytics Requirements Coverage By Learning Analytics Models

Surveyed LA Models
Learning Analytics Requirements [1] [2] [3] [4] [5] [6]

Data Collection and Integration X X X X X X
Learner Profiling X X X X X
Data Interpretation and Insight Extraction X X X X X X
Prediction X X X X X X
Decision–Making and Intervention X X X X X X
Adaptation and Personalization X X X X X
Ethics and Privacy X X
Information Visualization X X X X X X
1 [Siemens et al., 2011] 2 [Elias, 2011] 3 [Siemens, 2013] 4 [Bienkowski et al.,
2012] 5 [Chatti et al., 2012] 6 [Greller and Drachsler, 2012]

and Drachsler, 2012; Chatti et al., 2012]. Table 2.1 summarizes some oft–cited studies in this

area and maps proposed LA models to the key learning analytics requirements mentioned in

Section 3.3.

According to our literature survey, the body of learning analytics research has agreed

on a prominent four–dimensional reference model for learning analytics [Chatti et al., 2012;

Greller and Drachsler, 2012]. We picked the proposed model in the work of [Chatti et al.,

2012] as the base for our logical module, described in Section 5.4, since it widely covers the

main learning analytics requirements in detail, as well as serving as an adequate example

of our proposed framework. This model presents a systematic view of learning analytics

and its related concepts. Our proposed four–dimensional learning analytics model – named

the LA reference model – was elaborated in Section 3.3 and was illustrated in Figure 3.1

of Chapter 3. The mentioned LA reference model frames the scope of the logical layer of

the proposed framework in Chapter 5. It accounts for identifying the key learning analytics

requirements within the proposed framework.

The utilization of LA, however, entails meeting particular criteria in the context of edu-

cation which translate into major learning analytics requirements [Siemens and Long, 2011;

Siemens et al., 2011; Chatti et al., 2014]. Data collection, insight extraction, prediction,

intervention, personalization, adaptation, and visualization are examples of important LA

requirements which are elaborated in detail in Chapter 3. One way to address learning ana-

lytics challenges is utilizing a clear and generic analytical model [Siemens, 2013; Bienkowski

et al., 2012; Greller and Drachsler, 2012]. It is essential for learning analytics to be formalized
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in the context of analytics. Fulfillment of LA requirements calls for a novel federated ana-

lytics solution which is generic enough to cover most learning analytics needs. An example

of why we need an integrated analytics solution to address the main needs of educational

institutes can be as follows: during a given semester, students are taught several concepts

through a diverse set of learning resources. They also sit for different assessments evaluating

their progress in their learning process. At any given point of time, the descriptive analyt-

ics will help us generate analytical report on each student’s performance in terms of their

previous assessment results; the predictive analytics will also help us extrapolate individual

student’s likelihood of being at risk of failure (based on their past performance); the pre-

scriptive analytics, finally, will give us the opportunity to perform informed and personalized

interventions for each student and help them with their productive learning pathways. One

integrated analytics solution could give the educational institutions the opportunity of pro-

viding each student with personalized and to the point of their needs pedagogical means to

improve their student experience and elevate their self–esteem.

Finally, it is worth mentioning that the main novelty of our proposed work compared to

ITS could be categorized as follows.

• ITS usually provides students with instant formative feedback based on their previous

interactions with the LMS. This is the case in our approach as well. However, our

framework goes one level in detail and deals with each individual student as well as

cohorts of students (the granularity of the process can be directed towards individuals

or groups).

• ITS usually deploys the descriptive (and in rare cases, prescriptive) analytics methods.

However, our proposal incorporates descriptive, predictive, and prescriptive approached

to provide an enriched set of recommendations to students.

2.4 Summary

The current body of research in data analytics (descriptive, predictive, prescriptive analytics),

in the context of education (EDM, AA, LA), and proposed analytics framework in education

are reviewed in this chapter. Starting from the next chapter (Chapter 3), the basis for our

proposed analytics framework is built by introducing a four–dimensional learning analytics

reference model that covers the main learning analytics requirements.
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Chapter 3

Learning Analytics

“Develop a passion for learning.

If you do, you will never cease to

grow.”

Anthony J. D’Angelo

This chapter completes the discussion around learning analytics in Chapter 2 and prepares

the ground for the analytics framework in Chapter 5. The key learning analytics processes

and their interrelationships are elaborated and a four-dimensional learning analytics refer-

ence model will be introduced which will be the basis for the logical layer of the proposed

framework.

3.1 Introduction

Educational institutions are increasingly relying on data–intensive analytics to make timely

pedagogical decisions [Siemens and Long, 2011; Johnson et al., 2015; Australian Govern-

ment and Training, 2017; Siemens et al., 2011]. They possess large amounts of historical

and streaming data generated by students’ interactions with the digital learning systems

such as learning management systems (LMSs). In addition, Institutions of higher educa-

tion have traditionally been unsuccessful in taking advantage of the relevant data processing

techniques which in turn generates a gap between owning the data and exploiting valuable

and meaningful insights based on the data to meet their objectives. Therefore, they have

become interested in adopting analytics approaches suitable to their needs to overcome the

mentioned gap [Siemens and Long, 2011]. Another critical factor is transforming the avail-
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able information into insights and acting upon them to address pedagogical purposes of the

educational institutions. Learning analytics (LA), a thriving area in technology–enhanced

learning (TEL) research, has emerged to address the aforementioned concerns by combining

data collection, insight extraction, prediction, and recommendation techniques [Martin and

Sherin, 2013; Siemens and d Baker, 2012; Chatti et al., 2014; Ferguson, 2012a; Elias, 2011;

Siemens, 2013; Siemens and Long, 2011].

LA shares some functionalities with other major higher education (HE) data analytics

such as educational data mining (EDM) and academic analytics (AA) [Siemens and d Baker,

2012; Baker and Inventado, 2014; Baepler and Murdoch, 2010; Campbell et al., 2007; Gold-

stein and Katz, 2005]. Learning analytics also emerges in the research fields where the

education and computer science disciplines have the majority of the impact on such as so-

ciology, education, learning sciences, statistics, machine learning, and intelligent systems as

well as linguistics and philosophy [Sclater et al., 2016; Dawson et al., 2014].

Successful adoption of learning analytics calls for the satisfaction of certain criteria in the

context of education which are referred to as the learning analytics requirements [Siemens

and Long, 2011; Siemens et al., 2011; Chatti et al., 2014]. Data collection, insight extrac-

tion, prediction, intervention, personalization, adaptation, and visualization are examples of

key learning analytics requirements. One way of addressing learning analytics concerns is to

utilize a clear and generic analytics approach capable of performing data collection and ac-

quisition, storage and retrieval, cleaning, integration, analysis, visualization, and intervention

to deploy analytics in educational settings [Siemens, 2013; Bienkowski et al., 2012; Greller

and Drachsler, 2012]. According to the literature, the incorporation of learning analytics

solutions entails certain benefits and drawbacks that could be taken into consideration by

educational institutions. Major factors are summarized in the following [Sclater et al., 2016;

Papamitsiou and Economides, 2014].

• Advantages — a large amount of educational data is taken into account. Learning

analytics is capable of utilizing simple and complex analytical approaches, a wide range

of visualization tools are produced for learners, instructors, and institutional staff. LA

also promotes adaptive and personalized learning which in turn help students improve

their experience, self–esteem, self–assessment, reflection, awareness, and self–efficacy.

• Disadvantages — there are several major ethical and data privacy concerns associated

with learning analytics applications. There is no generic solution for similar educational

problems in current LA solutions. Most LA systems lack proper visualization tools and
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proper illustration of analytical results to help the instructors and the institutions of

higher education make informed decisions. Finally, learning analytics solutions are

usually inefficient in acquiring the educational data from diverse sources, unify, and

process several data types.

To construct the basis for the thesis, this chapter aims at providing a systematic literature

review of learning analytics, its definition, history, relation with other analytical techniques

in higher education, requirements, tools, techniques, applications, models, challenges, and

future directions along with a 4–dimensional learning analytics reference model introduction

based on the work proposed by [Chatti et al., 2012]. Furthermore, major learning analytics

concerns and requirements extracted in this chapter are addressed in the proposed data–

driven analytical framework is in Chapter 5 based on the material discussed in this chapter.

For an extensive literature review of several studies in the field of learning analytics,

LA definition, different aspects of LA, multiple disciplines of LA involvement, and several

academic levels LA–oriented solutions can cover, please refer to Chapter 2. Moreover, a

comparative review of different analytical approaches in the context of education along with

their definitions, similarities, and differences, and the extent to which the academics have

been conducting research on each technique is provided in Chapter 2 as well.

Section 3.2 is dedicated to capturing a clear and comprehensive list of LA needs according

to the extant body of research in the field. Key LA requirements are listed in this section.

Section 3.3 reviews the top academic literature proposing several models to address the ma-

jority of LA needs. By taking into consideration multiple actors within educational systems

and key LA requirements extracted in Section 3.2, a 4–dimensional learning analytics refer-

ence model is introduced which is capable of addressing most LA processes. Section 3.4 is

concerned with several prestigious and active tools and applications introduced in LA along

with their functionalities and differences. Section 3.5 is mostly focused on the current issues

and challenges most LA solutions face and provides grounds for future research directions

in the field. Finally, in Section 3.6, a concise review of the chapter’s discussed material is

performed along with contribution highlights and the connection to the next chapter.

3.2 Learning Analytics Requirements

Given its definition and objectives in assisting the institutions of higher education, LA needs

to ground specific requirements such as data collection, measurement, analysis, reporting

and interpretation processes given the educational data repositories [Gašević et al., 2015].
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It is critical for a learning analytics solution to be capable of predicting learners’ perfor-

mance and modeling their behavior. The learners’ performance extrapolation and modeling

have extensively been researched with the help of educational data mining, educational user

modeling, and educational adaptive hypermedia communities. The objective is to estimate

the unknown value of a variable that describes the learner, such as performance, knowledge,

scores or learner grades [Marquez-Vera et al., 2010; Romero et al., 2008]. Such forecasts

are for example utilized by intelligent tutoring systems (ITS) [Kulik and Fletcher, 2016]

to provide hints, instant comments or any other sort of formative feedback when a student

is responding to a question. A plethora of research has also been conducted in the field of

dynamic learner models to support the adaptation of the educational hypermedia systems

[Brusilovsky and Millán, 2007].

A beneficial learning analytics system could also be able to suggest relevant and proper

learning resources/materials. Recommender systems for learning have also gained increased

attention recently. A recent survey of technology–enhanced learning recommender systems

has been elaborated by [Manouselis et al., 2011]. These systems typically analyze learner

data to suggest relevant learning resources/materials, peer learners or learning pathways.

Furthermore, increasing reflection and awareness of the learner is another important

attribute. Several researchers are turning their focus on the analysis and visualization of

different learning indicators to foster awareness and reflection about learning processes. These

indicators include resource accesses, time spending, and knowledge level indicators [Mazza

and Milani, 2005].

An effective learning analytics solution could also be capable of enhancing social learning

environments. A considerable amount of research has been conducted in the analysis and

visualization of the learners’ social interactions to make people aware of their social context

and to enable them to explore the context [Heer and Boyd, 2005]. In technology–enhanced

learning, this is particularly, but not only, relevant for computer–supported collaborative

learning (CSCL) [Stahl and Hesse, 2009], where the interactions with peer learners are

a core aspect of how learning is organized. In CSCL, much research has focused on the

analysis of networks of learners, typically with a social network analysis approach [Reffay

and Chanier, 2003].

A perfect learning analytics solution is also able to detect undesirable learner behaviors.

The objective of detecting undesirable learner behavior is to discover learners who have some

type of problem or unusual behavior, such as erroneous actions, misuse, cheating, dropping

out or academic failure [Romero and Ventura, 2007].
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Another useful detection attribute of a learning analytics system is learners’ affective

states detection. Researchers in technology–enhanced learning often refer to the affective

states defined by [D’Mello et al., 2007]. These states are classified as boredom, confusion,

frustration, eureka, flow/engagement, versus neutral. Among others, the detection of effects

is researched to adjust pedagogical strategies during learning of complex material.

According to the body of research, key learning analytics requirements can be classified

into the following categories:

• Data collection and integration — gathering and unifying educational data from the

learning management system, virtual and personalized learning environment (VLE,

PLE) sources. Data collection, integration, transformation, and dimensionality re-

duction using accurate data reduction methods and coherent statistical analysis and

data mining techniques are key elements to accomplish this task [Chatti et al., 2012;

Jaramillo, 2017; Ferguson, 2012a; Siemens and Long, 2011; Chatti et al., 2014; Brown,

2011; Elias, 2011].

• Learner profiling — collecting and processing learners’ data from their interactions

with the learning management system, utilizing consistent analytics to extract valuable

information from the data to build better pedagogies, enrich learning processes, and

better educational resource allocation [Siemens and Long, 2011; Jaramillo, 2017; Kay,

2008].

• Data interpretation and insight extraction — applying relevant descriptive analytics

techniques to understand what has happened until now. It requires special result

description and diagnosis approaches to elicit beneficial insights from the educational

data [Siemens and Long, 2011; Jaramillo, 2017; Chatti et al., 2012; 2014; Elias, 2011].

• Prediction — extrapolating likely scenarios in the future such as student retention rates,

students at–risk of failure, resource utilization ratios, and the effects of educational

policies by adopting accurate predictive analytics techniques [Siemens and Long, 2011;

Jaramillo, 2017; Chatti et al., 2012; 2014; Brown, 2011; Elias, 2011; Siemens et al.,

2011; Romero and Ventura, 2013].

• Decision–making and intervention — suggesting intelligent courses of action in accor-

dance with the higher education institution’s objectives to promote learning processes

and academic success. Taking optimal and influential actions can assist educational
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stakeholders (students, faculty, staff, and tutors) to meet their goals. Sophisticated

and data–driven analytical approaches should be adopted to produce actionable rec-

ommendations [Siemens and Long, 2011; Jaramillo, 2017; Chatti et al., 2012; 2014;

Brown, 2011; Elias, 2011; Siemens et al., 2011; Verbert et al., 2012].

• Adaptive and personalized learning technologies — given the diverse range of learners’

needs, objectives and aptitudes, learning analytics should be capable of addressing their

dynamic requirements and adapt its educational materials to learners’ needs by utilizing

sustainable and robust analytical approaches and optimization and recommendation

techniques [Siemens and Long, 2011; Jaramillo, 2017; Chatti et al., 2012; 2014; Kay,

2008; Siemens et al., 2011].

• Ethical issues and privacy preservation — protecting learners’ data in the learning

management system. Devising accurate access levels, making data anonymous, and

getting learners’ consent (as well as institution’s ethics approval) prior to processing

their data are among the critical issues every system in the context of learning analytics

should be concerned with [Siemens and Long, 2011; Ferguson, 2012a; Brown, 2011].

• Information Visualization — developing approaches to properly convey processed out-

comes to the educational stakeholders. Clear, simple, and yet effective illustrations of

the complex analytical results is a critical task. Comprehensible illustration of trends,

predictions, recommended actions and extracted insights from the educational data is

beneficial to students, instructors and academic institutes [Chatti et al., 2012; 2014;

Elias, 2011; Kay, 2008; Siemens et al., 2011; Mazza and Milani, 2005; Mazza and Dim-

itrova, 2004].

3.3 Learning Analytics Models

One way to address the mentioned requirements in Section 3.2 is to adopt a robust learning

analytics model (LAM) that utilizes accurate and coherent analytical techniques. A success-

ful solution covering mentioned concerns could be proposed in the form of one sustainable

model which incorporates several analytical techniques (including descriptive, predictive and

prescriptive analytics) [Daniel, 2015; Soltanpoor and Sellis, 2016]. An effective LAM is ca-

pable of coupling the big data and learning analytics to provide benefits for the following key

higher education stakeholders:
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• Administrators — academic programming, resource allocation, and support ongoing

efforts,

• Students (learners) — proactive feedback, learning pathways, and plan learning activ-

ities, and

• Instructors — help students at risk, improve teaching, and instant feedback [Daniel,

2015].

Given the current body of research in proposing learning analytics models and frameworks

with the focus on addressing the majority of LA requirements, key studies in this area can

be categorized and depicted in Table 3.1.

The body of research has agreed upon a four–dimensional reference model and a six–

dimensional framework for learning analytics [Chatti et al., 2012; Greller and Drachsler,

2012]. To build the required ground of our learning analytics reference model (LARM), we

picked the work in [Chatti et al., 2012], because it includes all the six–dimensions of [Greller

and Drachsler, 2012]. Considering the incoming sources of the educational data (learning

management system, virtual or personalized learning environment), the four dimensions of

the learning analytics reference model can be elaborated as follows.

1. What kinds of data, context, and environment does the system collect and utilize (the

“WHAT” dimension)? — Learning analytics is a data–driven approach. It deals with

a wide range of educational data from different sources and types. Generally, two main

sources of data in higher education are centralized educational systems like learning

management systems and distributed learning environments like PLEs.

2. Who is the stakeholder of the final product (the “WHO” dimension)? — There are

several stakeholders to whom learning analytics can be oriented such as:

– Students — to improve their grades, enhance student experience, get benefit from

adaptive and timely feedback from their lecturers and tutors, make more informed

decisions about enrolling in selected courses and building their personalized learn-

ing pathways (such as PLEs),

– Instructors — to augment the effectiveness of their teaching practices and to adapt

their teaching offerings with students’ needs, provide more enriched learning ma-

terial, elevate their teaching quality, adopt more advanced pedagogical techniques
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Table 3.1: Key Learning Analytics Models and Frameworks

LA Models LA Frameworks

a reference model for learning analytics1 an open learner model (OLM) framework to
shed light into several forms of OLMs10

a maturity LA model to guide practices of stu-
dents engagement assessments2

a holistic learning analytics framework con-
necting diverse types of educational informa-
tion which is validated with two case studies11

a complexity–grounded learning analytics
model for assessment automation in the small–
scale3

a classroom discussions argument development
analysis framework12

an infrastructure for learning analytics to
adopt ranges of analytical techniques to sup-
port real–time summaries along with visual
analytics4

an evaluation framework (analytics4action)
for evidence–based learning analytics
interventions13

an intervention–oriented learning analytics
model for online discussions with embedded
analytics5

a learning analytics intervention and evalua-
tion framework (LA–IEF)14

massive open online courses’ discussion forums
analysis utilizing an unsupervised technique6

a generic framework for LA15

a learning analytics model for learner profiling
to support personalized learning7

a learning analytics framework elaborating
on LA implementation with its educational–
related processes16

a foundational LA model for higher education
concerning with stakeholders’ dynamic inter-
actions with their data using visual analytics8

a conceptual framework which links learning
design with LA17

a multimodal learning analytics model in com-
plex learning environments to help extract new
insights in students’ learning trajectories9

a learning analytics framework for multilitera-
cies (new media literacies) assessment18

1 [Chatti et al., 2012] 2 [Clarke et al., 2013] 3 [Goggins et al., 2015] 4 [Shum and Crick, 2012]
5 [Wise et al., 2013] 6 [Ezen-Can et al., 2015] 7 [Kay, 2008] 8 [Freitas et al., 2015]
9 [Blikstein and Worsley, 2016] 10 [Bull and Kay, 2016] 11 [Ifenthaler and Widanapathirana, 2014]
12 [Sionti et al., 2011] 13 [Rienties et al., 2016] 14 [Rienties et al., 2017] 15 [Greller and Drachsler, 2012]
16 [Colvin et al., 2015] 17 [Bakharia et al., 2016] 18 [Dawson and Siemens, 2014]
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to identify at–risk students, and get constructive feedback from students’ side to

be able to provide them with effective interventions (such as formative feedback),

and

– Educational institutions — to support their decision makings, improve students’

success, develop student admission policies, adjust course planning, determine

hiring needs, and make financial decisions based on the wealth of relevant and

comprehensible analytical visualizations and reports.

3. How does the learning system incorporate proper analytical methods over the collected

data (the “HOW” dimension)? — learning analytics utilizes a wide range of techniques

to extract patterns from educational data. According to [Chatti et al., 2012; Greller

and Drachsler, 2012], different computational approaches have been used in HE such as

data mining, statistical analysis, information visualization, and recently social network

analysis.

4. Why the accumulated data should be processed (the “objectives” or the “WHY” dimen-

sion)? — Any learning analytics solution should focus on key LA objectives such as

increasing the retention rates, improving student experience, providing adaptive feed-

back to learners based on their interactions with the learning management system,

helping the institutions of higher education with their critical academic decision mak-

ing processes, and fostering the administration, teaching and learning processes. To

address mentioned goals, a set of learning analytics processes could be implemented.

LA processes are the driving force and functional units of the learning analytics frame-

work. Key LA processes, according to the extant body of research, can be categorized

as follows. Please note that some of these processes are interrelated as depicted in

Figure 3.2. Please also note that all of the following processes are the building blocks

of the logical layer proposed in Chapter 5:

4.1. Monitoring — given students’ previous activities and accomplishments in the LMS,

the system tracks their digital footprints and provides instructors and educational

institutes with students’ data. For example, the system can collect each student’s

assessment results within a certain semester and aggregate them into one unified

format to be used by other processes. This process also helps instructors evaluate

the learning process in order to improve the learning environment and student

experience. The monitoring process is explained in Section 5.4.1.
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4.2. Analysis — refers to the statistical analysis of the educational data which is avail-

able through the learning system (usually LMS). Analysis can help instructors

identify patterns and distinguish behaviors of students and produce proper in-

sights to help with the decision–making process. The analysis also provides in-

structors with proper information to design future learning activities and enhance

the student experience. For example, the process can utilize several descriptive

and diagnostics techniques on the unified student data to calculate the ratio of cor-

rect responses, extract misunderstood concepts, and categorize students in specific

performance cohorts. The analysis process is described in Section 5.4.2.

4.3. Prediction — builds accurate predictive models to extrapolate students’ future

performance, behavior and status, given students’ activities within the learning

management system. Instructors and institutions of higher education can prop-

erly intervene in students’ tracks and provide them with actionable and effective

suggestions and recommendations. For example, incorporating certain predictive

algorithms such as Näıve Bayes or Neural Networks to project the students’ final

marks at the end of the semester, given their assessment results in a semester,

and can notify the instructors to take informed actions. The prediction process is

elaborated in Section 5.4.3.

4.4. Intervention — provides 1 students with proper and actionable suggestions and

recommendations based on the effective analysis of activities and accurate predic-

tion of their future performance to improve the academic performanceand enhance

student experience. Some examples can be providing students with learning ma-

terial corresponding to their incorrect assessment responses, or asking them to at-

tend tutorial/mentoring sessions covering the concepts they misunderstood. The

intervention process is described in Section 5.4.4.

4.5. Tutoring and mentoring — given the analysis results of the students’ previous

activities and accomplishments, tutors and mentors can provide students with

personalized guidance and support. It covers a broad range of activities includ-

ing learners’ orientation, new learning resources (subject–based or interest–based)

suggestion, and goal achievement plans. The tutoring and mentoring process is

explained in Section 5.4.5.

4.6. Assessment — considering students’ interactions with the learning management

1The interventions are assumed to be generated by the recommendation algorithms.
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system and their preferences, the assessment process will help learners to improve

their learning processes and enhance their experience using specific assessment and

self–assessment techniques to identify learners’ strengths and weaknesses in their

journey. The communication media with learners is intelligent feedback which is

disseminated to both students and instructors/mentors/educational institutes as

well. For example, adaptive sets of designed questions covering each student’s

misconceptions throughout the semester will help them identify and rectify their

misunderstood concepts. This process is elaborated in Section 5.4.6 and is one of

the major components of the PPQ approach proposed in Chapter 6.

4.7. Feedback — feedback process plays a critical role in the whole learning analytics

environment which collects useful information and disseminates them to relevant

stakeholders [Pardo, 2018]. Its main objective is to improve the overall learning

process, enhance student experience, elevate learning performance, increase reten-

tion rates as well as decline the drop–outs, and minimize the number of poten-

tial at–risk students. Almost all other processes communicate with the feedback

process to deliver their recommended actions to their pertinent targets (mostly

students). One example is to provide an instant formative feedback to each stu-

dent right after they responded incorrectly to one question and explaining why

the response was incorrect. The feedback process is described in Section 5.4.7.

4.8. Adaptation — by collecting and analyzing students’ data as well as their personal

preferences, instructors and higher education institutions can trigger specific and

effective interventions for learners. Adaptation process provides beneficial learning

resources and instructional activities to students based on their requirements,

goals, and interests. Adapting the learning material or the suggested actions

for each student based on their previous assessment results are examples of the

adaptation process that is further elaborated in Section 5.4.8.

4.9. Personalization — there has been a shift in learning processes from the learning

management systems with the knowledge–push approach to personalized learning

environments with the knowledge–pull approach. In the former, information flow

is managed by instructors. In the latter, on the other hand, it is the learner who

discovers knowledge through the information provided to them based on their

personalized and preferred objectives, goals and needs. Well–defined recommender

systems can provide the learner with specific learning material/resources (both
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implicit and explicit). One example is providing each student with personalized

and adaptive sets of questions, specifically designed for that individual student,

covering their mistakes from the previous assessment in a certain course. We

focused on this process further in Chapter 6 by proposing the PPQ approach.

The personalization process is also explained in Section 5.4.9.

4.10. Reflection and Self–Reflection — by collecting and analyzing students and in-

structors’ previous activities and experiences in the learning system, the reflection

process can help them compare their performance (students and instructors) and

teaching approaches (instructors) with other courses, other classes or even other

educational institutions. The reflection process is further elaborated in Section

5.4.10.

Based on the learning analytics model proposed by [Chatti et al., 2012], the discus-

sion in Section 3.3, and the aforementioned learning analytics processes, we introduce a

4–dimensional learning analytics model which is illustrated in Figure 3.1.

As per Figure 3.1, the first axis represents the “What” dimension which deals with several

educational data types from diverse sources; the second axis is concerned with the “Who”

dimension which corresponds to the LA solution’s stakeholders; the third axis is related

to the methods of educational data mining and analytics of the “How” dimension; and

finally, the fourth axis is focused on the “Why” dimension and its 10 different LA processes.

For each given learning analytics process, we have its corresponding methods, data types,

and stakeholders. Later in Chapter 5, we propose one integrated analytics framework that

incorporates this 4–dimensional model and relates each LA process of the “WHY” dimension

with their corresponding components of other dimensions.

A graphical representation of learning analytics processes and their interrelationships is

depicted in Figure 3.2. The monitoring process is initiated by collecting the educational data

from learners/instructors interactions with the learning management system and provides

the input to all other LA processes (except the feedback process) for further analysis of

the data. The feedback process, on the other hand, receives the processed results from all

LA processes (except the monitoring process), and disseminates them back to the targeted

learners/instructors.
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Figure 3.1: The Proposed 4–Dimensional Learning Analytics Model.

3.4 Learning Analytics Tools and Applications

A considerable amount of research has been conducted on developing effective learning ana-

lytics tools and applications to address major concerns of the institutions of higher education

such as increasing retention rates, precisely identifying at–risk students, providing the learn-

ers with supportive interventions, and regulating influential academic policies [Shacklock,

2016; Colvin et al., 2015]. A qualified learning analytics application could be capable of

including but not limited to the following features.

• Performance prediction — by analyzing students’ interactions with the learning man-

agement system (which is addressed in the “prediction process” of the proposed ana-

lytics framework in the “logical layer” - Chapter 5),

• Attrition risk detection — by monitoring students’ behavior and analyzing their drop–

out patterns (which is addressed in “analysis” and “prediction” processes of the pro-

posed analytics framework in the “logical layer” - Chapter 5),
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• Data visualization — by utilizing effective visualization techniques to detect valuable

trends in learners’ performance and producing visual reports (which is addressed in the

proposed PPQ approach in Chapter 6),

• Intelligent feedback — by providing near real–time feedback regarding students’ inter-

actions with the LMS to help them improve their performance and experience (which is

addressed in the “feedback process” of the proposed analytics framework in the “logical

layer” of Chapter 5),

• Course recommendation by suggesting adaptive courses to students based on their

interest, activities, performance, and aptitude (which is addressed in the “intervention

process” of the proposed analytics framework in the “logical layer” of Chapter 5) as

well as the proposed PPQ approach in Chapter 6 as the “physical layer”,

• Student estimation and behavior detection — by collecting students’ interactions and

behavior data from the LMS and other means of pedagogy (like designed educational

games) - this is addressed in “monitoring”, “analysis”, and “prediction” processes of

the proposed analytics framework in the “logical layer” Chapter 5, and

• Social network analysis — by gathering students’ public social data and constructing

courseware and concept maps [Charlton et al., 2013; Sin and Muthu, 2015].

Some flagship academic/commercial software and applications (sometimes referred to as

“Learning Analytics Dashboards” [Verbert et al., 2013]) are listed in Table 3.2.

3.5 Learning Analytics Challenges and Future Directions

Due to the complex nature of learning analytics and its inherent usage issues with simplified

conceptualizations, the institutional adoption of LA has been hampered recently [Colvin

et al., 2015]. Furthermore, the learning analytics pedagogy function in data analysis processes

has encountered problems in some cases [Dietz-Uhler and Hurn, 2013; Colvin et al., 2015].

It means that there should be pedagogy that drives learning analytics and not the other way.

Some key concerns of adopting education–based analytical solutions (including educational

data mining, learning analytics, academic analytics) can be categorized as follows [Nunn

et al., 2016; Rubel and Jones, 2016; Campbell et al., 2007].

• Data privacy and security,
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Table 3.2: Well–Known LA Tools and Applications

LA Tools/Applications Description

Course Signals1,2,3 improving retention & performance by effective interventions.
Student–centricb,c.

GLASS3,6 visualization of learning performance, comparison. Teacherα–
Student–centrica,c.

LOCO–Analyst3,9 providing feedback on students’ activities & performance.
Teacher–centrica,c.

Student Success System3,10 spotting and treating at–risk students. Teacher–centricb,d.

SNAPP3,11 evolution visualization of learners’ relationships within discussion
forums. Teacher–centrica,d.

Student Inspector3 monitoring students’ interactions with the LMS. Teacher–
Student–centrica,c.

SAM3,12 enabling students’ self–reflection and awareness. Teacher–
Student–centrica,c.

StepUp!3 promoting learners’ reflection and awareness. Teacher–Student–
centrica,d.

Narcissus3 improving students’ teamwork skills (providing contribution re-
ports). Student–centrica,d.

CAMERA4,5 promoting self–regulated learning in PLEs by providing students’
self–reflection reports.

CourseVis4,7 monitoring students’ activities in distant courses using Web log
data. Teacher–centrica.

Moodog4,8 monitoring learners’ online activities by analyzing CMS logs.
Teacher–Student–centrica.

BlackBoard Analytics2 assisting institutions of HE to optimize student experience.

Civitas Learning2 optimizing data, maximizing insights, informing actions, and con-
tinuing learning.

D2L BrightSpace Insights2 monitoring students’ activities in the LMS, real–time interven-
tions.

α “Teacher” here is an alternative to “instructor”.
a descriptive: the simple representation of raw data.
b partial–prescriptive: involvement of prediction algorithms & early warning systems.
c formal : secured, scalable and traceable from the LMS.
d informal : more open and social. 1 [Arnold and Pistilli, 2012; Gašević et al., 2015; Barber and Sharkey, 2012]
2 [Jayaprakash et al., 2014] 3 [Park and Jo, 2015; Corrin and de Barba, 2014; Verbert et al., 2014]
4 [Ruipérez-Valiente et al., 2015] 5 [Schmitz et al., 2009] 6 [Leony et al., 2012]
7 [Mazza and Dimitrova, 2004] 8 [Zhang et al., 2007] 9 [Jovanovic et al., 2008] 10 [Essa and Ayad, 2012]
11 [Dawson et al., 2010] 12 [Govaerts et al., 2010]
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• Holistic solutions (entailing descriptive, predictive, and prescriptive analytics),

• Multiple stakeholders (including the institution, students, instructors) involvement,

• Proper user profiling,

• Obligation to act on the produced analytical results,

• Proper educational data tracking,

• Collection and analysis, and

• The academic resource dissemination policy.

Moreover, building strong connections with the learning sciences, developing methods ca-

pable of interacting with a wide range of datasets to optimize learning environments, focusing

on learners’ perspectives, and regulating and enforcing an explicit set of ethical guidelines are

critical factors to be considered in adopting a learning analytics solution [Ferguson, 2012a].

Implementing learning analytics in large–scale (such as the faculty, institutions of higher

education, or nation–wide), and performing institutional planning require the involvement

of a wide variety of professionals from education, administration and staff [Ferguson et al.,

2014]. However, according to [Macfadyen and Dawson, 2012], the process carries multiple

shortcomings such as adopting solutions based on the particular culture of institutions of

higher education, awareness of the extent to which the institution is inclined to changes

and proposing incentive factors to encourage the institutions to adopt changes (behavioral

modifications). Also, providing the institutions with adaptive learning analytics solutions

based on their evolving requirements is another concern [Ferguson et al., 2014].

Some critical issues (referred to as “gaps”) in scaling–up the current learning analytics

solutions mentioned in [Lonn et al., 2013] can be illustrated as follows.

• Usability gaps (business objects) — issues with the graphical user interface (GUI) on

how to replicate and illustrate the stored data in a database, in learning management

system pages/reports,

• Calculation gaps (errors in manipulating grade book data) — inconsistencies among

different assessment calculations from the student and the instructor’s point of view,

• Access gaps (two–factor authentication) — issues with properly securing sensitive stu-

dent data within the institution’s data warehouse,
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• Performance gaps (impact on enterprise systems) — issues with proper LMS commu-

nication between its archival and production data and performing fast scaled (extract,

transform, load) ETL processes, and

• Automatization gaps (manual maintenance of cohort and advisor information) — issues

with converting traditionally persistent manual processes into automatic routines.

The code of practice for learning analytics is provided in [Sclater, 2014] along with a

comprehensive literature review and suggestions for adopting LA–based solutions with the

focus on the ethical and legal issues. Some key topics/concerns could be listed as:

• Awareness and consent,

• Transparency around algorithms and metrics,

• Ownership and control of data,

• Usage of publicly available data,

• Accuracy of data,

• Respecting privacy,

• Opting out,

• Interpretation of data,

• Stewardship,

• Preservation and deletion of data,

• Interventions and the obligation to act,

• Impacts on student bahavior,

• Staff awareness and training,

• Anonymization, and

• Targeting resources appropriately.

Furthermore, a checklist based on the previous research in the field, critical concerns

regarding learning analytics ethics, privacy and legal frameworks challenges, and the LAK15

workshop suggestions on ethics and privacy in LA (EP4LA)2 is proposed in [Drachsler and

2http://www.laceproject.eu/blog/about-todays-ethics-and-privacy-in-learning-analytics-ep4la/
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Greller, 2016]. The checklist entails eight action points to be taken into consideration by

authorities to establish trusted learning analytics approaches for their institutions 3. The

proposed checklist for a trusted learning analytics solution covering the majority of mentioned

ethical concerns is named “DELICATE” and is comprised of the following elements (according

to [Drachsler and Greller, 2016]):

• D–etermination — Decide on the purpose of learning analytics for your institution.

• E–xplain — Define the scope of data collection and usage.

• L–egitimate — Explain how you operate within the legal frameworks, refer to the

essential legislation.

• I–nvolve — Talk to stakeholders and give assurances about the data distribution and

use.

• C–onsent — Seek consent through clear consent questions.

• A–nonymise — De–identify individuals as much as possible

• T–echnical aspects — Monitor who has access to data, especially in areas with high

staff turn–over.

• E–xternal partners — Make sure externals provide highest data security standards.

3.6 Summary

Learning analytics (LA) as a fast–growing field of technology–enhanced learning (TEL) is con-

cerned with the means to collect and analyze educational data from diverse sources (mostly

from learning management systems) and produce valuable insights from the wealth of in-

formation for the institutions of higher education to help them with their decision making

processes. Due to the nature of education and learning that span through multiple dimen-

sions and generation of several data types, LA has attracted researchers’ interest in the field.

A plethora of research, therefore, has been conducted to define learning analytics and identify

its key requirements, models, applications, challenges, and future opportunities.

In this chapter, we aimed at performing a systematic and extensive literature review

considering the extant research in LA. A 4–dimensional learning analytics reference model

3http://www.laceproject.eu/ethics-privacy/
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based on the study of [Chatti et al., 2012] was also introduced, and key learning analytics

processes were categorized in 10 different processes to be used in our proposed analytics–

driven framework in Chapter 5. This chapter’s material is used as an application scenario in

Section 4.2.1 of Chapter 4, the construction of the logical layer in Section 5.4 of Chapter 5,

the physical layer’s construction in Chapter 6, and the physical layer’s connection to the

logical layer in Section 7.1.2 of Chapter 7.
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Chapter 4

Adaptive Composite Analytics

Architecture

“Act as if what you do makes a

difference. It does.”

William James

4.1 Introduction

Big enterprises always seek for the most optimal data–driven analytical solutions relevant to

their business situation in order to improve their business values, given the vast amount of

data they own [Chen et al., 2012]. They are keen to adopt adaptive analytical techniques in

data processing and insight extraction to take advantage of available business opportunities,

mitigate likely future risks, and meet their current and future business objectives [Chen

et al., 2012]. They need effective tools to help them transform information into insights,

extract business values from those insights and act upon them to guarantee their success.

Given the above–mentioned facts, the incorporation of relevant business analytics solutions

is of crucial importance to big firms to help them satisfy their short– and long–term business

objectives [Chen et al., 2012].

Analytics, in general, is a multidisciplinary concept that is defined as the means to collect

data (several data–types) from diverse sources (historic, static, streaming), perform relevant

data processing operations on them to extract meaningful patterns, trends and insights,

and disseminate the outcomes to targeted stakeholders [Power, 2014; Chen et al., 2012;
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Van Barneveld et al., 2012]. A considerable amount of research has been conducted in dis-

covering effective methods in collecting, reporting, processing, comprehending and extracting

insight from big data. Big data processing solutions assist enterprises with realizing what

has happened in the past (analytical reports regarding the past events), and what is likely

to happen in the future (likely patterns/trends occurrences and extrapolations in the future)

[Kaisler et al., 2014].

To address the mentioned needs in extracting the knowledge of proper hindsight and

foresight, two essential types of analytics were introduced: “descriptive analytics” and “pre-

dictive analytics” [Schölkopf et al., 2001] which are elaborated in Sections 2.1.1 and 2.1.2,

respectively.

Big enterprises (possessing big data repositories) are keen to adopt proper analytical

approaches to process the historic/streaming data (descriptive analytics) and extract valuable

insights (predictive analytics) to act upon them and meet their business objectives. They

need to get the full benefit of business opportunities and taking advantage of them having

the knowledge of what has happened in the past (the outcome of descriptive analytics) and

what might happen in the future (predictive analytics result). They need to adopt proper

analytical approaches to transform the information into insights and then act upon them to

satisfy their business objectives [Baker and Gourley, 2014; Chen et al., 2012; Kaisler et al.,

2014]. Therefore, there is a gap between the extracted insights and adaptive and operational

sequences of actions related to those insights to be recommended to the enterprises to meet

their objectives [Barga et al., 2014].

To address this gap, “Prescriptive Analytics” as a new frontier in business analytics has

emerged [Evans and Lindner, 2012]. It is concerned with the recommendation and guid-

ance that generates optimal, adaptive and near real–time courses of operational actions for

organizations based on their predefined constraints and objectives [Basu, 2013]. Prescrip-

tive analytics in its essence is a predictive analytics which prescribes one or more courses of

actions and shows the likely outcome or influence of each action. It is purely built based on

the “what–if” scenarios. The key components of a prescriptive analytics solution are opti-

mization (acting as the core of prescriptive analytics), simulation (such as Monte Carlo), and

decision analysis (evaluation) elements. Prescriptive analytics tries to answer questions such

as “What should be done?” and “Why that action should be done?”. It also generates com-

prehensible prescriptions in terms of operational actions for the target organizations. The

prescriptive solution will take a solid and actionable predictive model along with the feed-

back data collected from those actions and recommends decision options to help stakeholders
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and decision makers to reach their desired outcomes. Some of the incorporated methods

and techniques in prescriptive analytics are as follows: graph analytics, operations research,

heuristics and rules engines, complex event processing, neural networks along with the fol-

lowing techniques and algorithms: machine learning, applied statistics, operations research,

natural language processing, signal processing, pattern recognition, computer vision, image

processing, speech recognition, and so forth. The ultimate goal of prescriptive analytics

is to bring business value through better strategic and operational decisions to enterprises

based on their objectives and constraints. Also, any prescriptive analytics solution will help

improve profitability, increase customer satisfaction, mitigate likely business risks and in-

crease business value by providing the decision makers with strategic, optimal, adaptive,

time–dependent and operational recommendations.

In this chapter, an integrated and data–driven composite analytics architecture is pro-

posed to address the analytical needs of big enterprises. The proposed technique is comprised

of descriptive, predictive and prescriptive components and is capable of being applied to a

wide range of real–world application scenarios with diverse sources of data to facilitate their

decision–making processes. The details of the architecture, research gaps, and our contribu-

tions are elaborated more in Section 4.3.

In terms of the overall thesis road–map, this chapter addresses the first research question

(Section 1.3 of Chapter 1)

Research Question 1)

How do we design an integrated and adaptive analytics architecture?

by proposing a federated analytics architecture. The architecture also constitutes a key

module in the conceptual layer of the proposed analytical framework in Chapter 5, by pro-

viding the main analytical driving force of the framework.

The rest of this chapter is organized as follows: Section 4.2 mentions a couple of major

real–world applications to demonstrate the significance of prescriptive analytics solutions and

their application in helping the enterprises make better informed decisions. The integrated

analytics architecture covering the major gaps in the field are proposed in Section 4.3. Fi-

nally, Section 4.4 will conclude the chapter by reviewing the bullet points of the research and

addressing corresponding research questions in the thesis and mentions some future direc-

tions. In addition, for a comprehensive review of the extant body of research in descriptive,

predictive and prescriptive analytics fields, please refer to Chapter 2.
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4.2 Application Scenarios

In this section, we focus on prescriptive analytics applications in the following areas: ed-

ucation and a particularly emerging field named “learning analytics” in Section 4.2.1, the

body of the Government and one specific case of “Government building authority” in Sec-

tion 4.2.2, and finally, the popular industry–related scenario which is the “project planning”

that is elaborated in Section 4.2.3.

4.2.1 Use–Case 1: Learning Analytics in Educational Institutions

Institutions of higher education own huge arrays of educational data comprising heteroge-

neous data (grades, several academic entities’ profiles, published courses information, aca-

demic resources repository information, and so on) from diverse sources (different e–learning

systems such as learning management systems, personalized learning environments, social

media, etc). Recently, due to the technological advancements in the e–learning systems area

and digital media, the possessed wealth of educational data has grown exponentially. There-

fore, making informed decisions based on huge volumes of data becomes a critical requirement

for institutions of higher education. Also, educational institutions were not historically capa-

ble of analyzing and extracting adequate insights from their growing data repositories. Thus,

those institutions became interested in adopting pertinent analytical solutions to address this

issue.

Given the above–mentioned facts, institutions of higher education are proper use cases

to consider because they possess big educational data and are interested in hiring relevant

analytical approaches to extract insights from the wealth of data they own, make proper

decisions and act upon them to enhance their learning processes and meet their pedagogical

objectives.

“Learning analytics” (LA) as a growing area of technology–enhanced learning (TEL)

has emerged to address the mentioned gaps. It is mainly focused on the means to collect

educational data from diverse sources, build accurate predictive models based on the acquired

data items, and make operational and optimal decisions based on the produced predictions

to enhance the quality of learning. For further information regarding the learning analytics,

its requirements, models, applications, and challenges, please refer to Chapter 3. A sample

learning analytics environment and its key components is depicted in Figure 4.1.

Each one of the three analytical approaches’ tasks can be elaborated as follows.

1http://epubgeneration.weebly.com/learning-analytics.html
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Figure 4.1: Learning Analytics Application Scenario1

• Descriptive Analytics — collects different types of educational data from diverse sources

which are results of learners’ interactions with the e–learning systems such as learning

management systems (LMSs), reduces those data elements, aggregates and unifies them

into one standard format to be used by other analytical approaches, and applies dif-

ferent statistical techniques on the unified data to extract meaningful information and

to generate analytical reports to help institutions of higher education understand what

has happened in the past and why. The analytical reports can be focused on student

level (portraying their academic history and performance throughout a specific course

or the academic program), instructor level (providing their teaching performance based

on students’ feedback and their academic performance), or the educational institution

level (reports on allocated resources, financial and fiscal demonstrations, admission and

retention rates). Both descriptive and diagnostic analytics were taken into considera-

tion in the mentioned processes.
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• Predictive Analytics — like descriptive analytics, predictive analytics can be applied

to several levels and disciplines. It takes the unified data from the descriptive com-

ponent and builds relevant predictive models incorporating specific machine learning

algorithms to extract valuable insights regarding students’ likely behavioral and aca-

demic patterns and extrapolated trends of their successes/failures (such as students at

risk of failure) in the future. Predictive analytics can also forecast the future students’

admission or retention (or attrition) rates as well as likely academic staff recruitments

(instructors, tutors, researchers). Furthermore, some future opportunities and risks

can be predicted as well (such as putting more focus on generating online learning

materials and running more online courses compared to the traditional on–campus

arrangements).

• Prescriptive Analytics — by taking into consideration the unified data from descriptive

part and multiple trends and extrapolations from the predictive analytics unit, pre-

scriptive analytics can help the institutions of higher education to make more informed

and adaptive pedagogical and academic decisions in terms of operational and optimal

recommendations. These suggestions can be administering specific intervention actions

towards at–risk students, notify lecturers on clustered learners’ performance in their

given assessments throughout the semester, or providing the vision for the educational

institutions to refine their admission policies and financial goals to adapt to their ob-

jectives, and the list goes on.

4.2.2 Use–Case 2: Government Building Authority

A hypothetical governmental authority is responsible for passing regulations on safety, liv-

ability, and sustainability of the built environment by enforcing the building and plumbing

industries. The authority runs periodic and regular audits and test routines to ensure that

the licensed building organizations meet their high standards. Those organizations who do

not follow the enforced regulations are considered as “none–compliance” units. The “none–

compliance” term is generally defined in terms of some delays and other factors including

delays in building permits, delays in certificate returns, and delays in levy payments. It can

be defined as subjective (from “compliance” to “none–compliance”) or objective (from 0 to

5 for instance) measurement values. A risk factor can be defined as a likelihood of being

non–compliance. The governmental building authority is a proper case study due to the real

data they have and the real–world issues that the proposed prescriptive analytics framework
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Figure 4.2: Government Building Authority Application Scenario

would help them to resolve. The objective of the authority can be distinguishing the fu-

ture likely noncompliance organizations given their past historic data and providing a proper

set of actions regarding those organizations. The actions can be defined in terms of triage

support which constitutes further investigations, more inspections, thorough audit processes

and some disciplinary actions (from recording the number of complaints towards a particu-

lar organization to registration or license cancellation of non–compliance units). Figure 4.2

represents such application scenario.

Each of the three analytical approaches can be elaborated as follows in this scenario:

• Descriptive Analytics — different types of data from diverse sources is unified to be

utilized across the organization as the one source of truth (integration and augmenta-

tion processes). The unified data can be correlated with additional data sources such

as geospatial, social networks and so forth. It also is scalable across several disciplines

(like electrical, plumbing, etc.). The combination of descriptive and diagnostic ana-

lytics methods can help the authority to extract meaning from the input data and

depict connections among them, such as tagging complaints and authority’s interven-

tion history per organization for meaning extraction and the connection between the

complaints and disputes for the connections. Various analytical reports can be pro-

duced as results of this stage like data visualizations in levy payments, actions, work

history, outcome status, and connections (who did what and when). In some cases, a

dynamic “risk matrix” can be provided as well.
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• Predictive Analytics — the predictive model can help the authority to calculate the

likelihood of organizations to become “none–compliance”, reporting on possible group-

s/clusters of organizations with similar behavior in the future to be “none–compliance”,

predicting the effect of current “risk’ on future “none–compliance” and the effect of

current “none–compliance” on future “none–compliance”, and forecasting the future

interventions’ likelihood based on the historical data (according to the HR and other

resource allocation limitations of the authority).

• Prescriptive Analytics — prescriptive analytics solution in this scenario can address

different issues of the authority such as

– “triage support” — which recommends a sequence of business actions to tackle

escalated issues with none–compliance organizations.

– “license issuance recommendation” which includes both re–issuance of licenses for

previously registered organizations or issuing the licenses for the new practitioners

considering their history and risk/action profiles.

– “specific business warnings generation” — to the organizations who might cross

the borderline of non–compliance.

– a “guideline” — which is provided by the authority to the organizations to ad-

vise them in following particular sequences of actions to improve their level of

compliance and prevent them from becoming none–compliance units.

4.2.3 Use–Case 3: Project Planning

Precise planning of different projects is of crucial importance nowadays. According to the

increased complexity in the number of parameters affecting the whole process, enterprises

put a lot of effort in proposing accurate plans which take into consideration current resources,

their constraints and the organizations’ objectives in a more accurate way.

We assume that a default project plan is defined for a hypothetical company to deliver

specific results at time tn. This plan can be of any form: sequential, parallel, or combined

(combination of sequential and parallel forms). For the sake of simplicity, we assume that we

are dealing with sequential project planning. Given a sequence of tasks (single or composite)

to be performed starting from time t1 and ending at time tn, the enterprise defines a set

of resources which should be allocated to each task. We assume that we are in the middle

of the project; then, we have passed ti−1 steps already. It is assumed that we have reports
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Figure 4.3: Project Planning Application Scenario2

regarding the real progress the project has achieved, its KPI (Key Performance Indicator),

number of hours per person which has been dedicated to tasks, the offset between the planned

tasks times and their actual completion times, types of risks that the project has faced,

and resource utilization from the descriptive part. Furthermore, we assume that we have

different forecasts according to different types of parameters for the project plan’s future

which will give the organization different completion times highlighting the ones that go

beyond the predefined deadline(s). At each time, the enterprise has the capability to go back

and update the prediction model(s) according to the update/feedback requests regarding

the model change. By issuing the update/feedback request to the descriptive part, the

company can also change the way the reports are generated in descriptive stage (including

summarization over the historical data and considering other parameters in the generated

reports). Figure 4.3 displays this scenario.

Each of the three analytical approaches can be elaborated as follows in this scenario:

• Descriptive Analytics — generates the progress reports, KPIs, number of hours spent,

number and types of resources allocated, gaps and risks reports, delays reasons/causes

and planned schedule’s progress and issues reports.

• Predictive Analytics — predicts multiple project completion times according to the

future risks (HR risks such as firing or leaving staff, time, budget, organization policy

and management changes, framework changes), and previous or historical performance

2http://www.projectengineer.net/planning-the-project-schedule/
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and reports.

• Prescriptive Analytics — prescriptive analytics solution in this scenario helps the en-

terprise in recommending a precise project plan as follows: given the “variables”

(number of current human resources, number of hardware/software resources, etc.),

“constraints” (limitation in the budget, time constraints, legal issues, and number of

available resources of any kind), and Enterprises’ “objectives” (maximizing the profit,

minimizing the time to delivery, lead–time, and minimizing the likely risks), the pre-

scriptive module gets the set of predicted futures from the predictive part and the set

of predefined < variables, constraints, objectives > tuples from the data warehouse.

Then, its optimization part tries to provide an optimal plan for allocating resources in

a way that the project ends before the deadline. Actually, the result of the prescriptive

part could be a diverse range of actions including recommending new project plans (to

utilize resources more efficiently, to allocate tasks effectively, to reduce production time

properly, ...) and prescribing changes in the processes (methodology, framework, ...).

The prescriptive part also incorporates a simulation unit to simulate each proposed

recommendation and evaluates their effects in accordance with the whole business ob-

jective(s). In the prescriptive module, like the predictive module, the system considers

updates/feedback to change the predictive model(s), input data and business rules data

generator parts.

4.3 Proposed Composite Analytics Architecture

A federated composite analytics architecture is proposed in this section. Our main contribu-

tions in addressing the research gaps mentioned in Section 2.1.3 can be listed as follows:

• Proposing an integrated analytics architecture — which constitutes all three analytical

approaches (descriptive, predictive and prescriptive) with their interrelationships. The

unique way of connecting analytical components in the proposed architecture allows

every data–driven analytical scenario to get benefit from its outcomes. Also, a holistic

prescriptive solution definition is introduced based on the proposed system.

• Supporting the adaptive and optimal generation of sequences of action(s) — by incor-

porating certain feedback lines from each analytical approaches within the system to

other components, near real–time recommendations will be generated to adapt the sys-
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tem to dynamic changes in the outside world. The architecture can also provide the

enterprises with comprehensible and operational outputs in terms of action sets.

To the best of our knowledge, there is no specific study taking into consideration all the

mentioned analytical approaches in one framework as mentioned in Section 2.1 of Chapter 2.

Apart from the references noted in Chapter 2, we compared our work with others such

as [Delen and Demirkan, 2013] and [Deka, 2016] that analyzed each analytical technique

separately without considering a consolidated solution incorporating all three, [Bilal et al.,

2016] which mainly applied predictive and prescriptive analytics without the usage of the

proper descriptive analytics component. Moreover, the technical study of [Bertsimas and

Kallus, 2014] is mostly concerned with the migration from predictive to prescriptive analytics

with a mathematical perspective without proposing one unified framework. This was our

main motivation to propose a novel integrated prescriptive analytics technique to address

the mentioned requirements in Section 4.3.

The proposed integrated architecture comprising descriptive, predictive and prescriptive

approaches along with the support for diverse data types (by introducing data generator

models) and one holistic data storage/retrieval component (the data warehouse) is introduced

in this section. The overall architecture is illustrated in Figure 4.4. The high–level analytics

architecture is depicted in Figure 4.4a and the prescriptive module’s main components are

displayed in Figure 4.4b. Please note that Figure 4.4 is a generic (context–agnostic) analytics

architecture which is applicable to any domain. We will later apply this architecture in the

context of education in Chapter 5 as a proof of concept.

To formally express the proposed architecture, we can formulate each main component

as follows.

• Descriptive Analytics result at time ti (DsAti) is calculated by:

DsAti = analysis(unify(datati , bizRulesti))

where

unify(datati , bizRulesti) = f
(
coll(datati , bizRulesti), integr(datati , bizRulesti),

transf(datati , bizRulesti), reduce(datati , bizRulesti)
)

where, the datati and the bizRulesti correspond to the data and business rules col-
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Figure 4.4: The Proposed Composite Analytics Architecture: (a) The Overall Federated
Analytics Architecture, and (b) The Prescriptive Module’s Main Components.

66 (March 14, 2019)



CHAPTER 4. ADAPTIVE COMPOSITE ANALYTICS ARCHITECTURE

lected at time ti, the coll(datati , bizRulesti) refers to the data collection phase at

time ti, the integr(datati , bizRulesti) relates to the data integration at time ti, the

transf(datati , bizRulesti) refers to the data transformation at time ti, and the reduce(datati , bizRulesti)

corresponds to the data reduction at time ti. Finally, the analysis(unify(datati , bizRulesti))

generates descriptive analytics results in terms of the analytical reports based on the

unified data.

• The Predictive Analytics result at time ti (PdAti) is calculated by:

PdAti = extrapolate(DsAti)

where, the extrapolate(DsAti) function generates the data projection at time ti, given

the unified data from the descriptive analytics component.

• The Prescriptive Analytics result at time ti (PsAti) is calculated by:

PsAti = action(PsAt(i−1)
, DsAti , PdAti , simulti , optti , evalti)

where initially (at time zero − t0)

PsAt0 = action(∅, DsAt0 , PdAt0 , simult0 , optt0 , evalt0)

where, simulti , optti , evalti correspond to the simulation, optimization, and evaluation

components of the architecture at time ti. Please note that at each time segment, the

current PsAi action list is a function of the previous PsAi−1 as well.

According to Figure 4.4, our architecture gets its input from diverse sources that generate

heterogeneous data types provide them to data and business rules generator models. The

input data elements will be unified within the descriptive analytics unit. Next, the predictive

unit will build pertinent predictive model(s) to extrapolate the likely future trends. Finally,

the prescriptive technique will act as a predictive unit incorporating certain functionalities like

optimization, simulation, evaluation and intervention to produce the optimal and operational

actions as the system’s output(s). Key elements of the proposed architecture are listed as

follows.
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• Data and Business Rules Generator Models — all the general and domain–specific data

for each enterprise will be generated in this model. It is divided into two main models:

– Data Generator Model — any kind of static or streaming data generated within

the system (historical, transactional, derivative, and so forth).

– Business Rules Generator Model — any domain–specific data such as enterprise’s

context (organization’s objectives, requirements, and interests) and environment

data (operations, constraints, and definitions).

• The Descriptive Analytics Module — as mentioned earlier in Sections 4.1 and 2.1.2,

this module is focused on the events happened in the past and is called the data sum-

marization and reduction unit. All the collected data from the data and business rules

generator models will be processed for cleaning, reduction, aggregation, and unifica-

tion. The descriptive component is also responsible for generating analytical reports

based on the fed historical data. In summary, this module will be answering questions

like “what has happened?” and “what did that happen?”.

• The Predictive Analytics Module — is mainly concerned with the future and is called

the forecasting component of the architecture. Accurate predictive models are built in

this module, given the unified data from the descriptive module. To best adapt with the

ongoing trends of the organization and provide more accurate extrapolations, the pre-

dictive module is propagating specific feedback lines to certain architecture components

(the descriptive module and the data generator model unit) that are illustrated with

“α” in Figure 4.4a. The predictive module is responsible for answering the question

“what will happen in the future?”.

• The Prescriptive Analytics Module — is the main component of the proposed architec-

ture that is concerned with the recommendation and guidance. It generates operational

sequences of actions based on the unified data of the descriptive module and the forecast

trends from the predictive module. The prescriptive analytics module is responsible for

answering questions like “what should be done?” and “why should it be done?”. The

prescriptive module is comprised of certain key elements such as simulation, optimiza-

tion and evaluation/feedback depicted in Figure 4.4b. To provide the enterprise with

adaptive and optimal courses of actions, the module forwards feedback lines to par-

ticular components within the architecture which are labeled with “β” in Figure 4.4a.

The mentioned key components in Figure 4.4b comprise certain sub–components such

68 (March 14, 2019)



CHAPTER 4. ADAPTIVE COMPOSITE ANALYTICS ARCHITECTURE

as decision–making, feedback and adaptation which are taken into consideration in-

side these core elements. The Simulation component is responsible for answering the

question “what should be done?” by running several what–if scenario simulations. By

ranking the simulation component’s results based on the system’s pre–defined objec-

tives and constraints, the Optimization component selects the most optimal result and

answers the question “why should it be done?”. The Evaluation component validates

simulation and optimization units’ results in the background.

• The Holistic Data Warehouse Component — is the data storage/retrieval unit of the

architecture that deals with a diverse range of data types and interim and/or final

analytical modules’ outcomes. The data warehouse units depicted in Figures 4.4a

and 4.4b are the same.

The overall work–flow within the architecture can be elaborated in four simple steps

elaborated as follows.

Step1) Initially, the data generated in the Data Generator Model and the Business Rules

Generator Model is collected and fed into the Data Integration and Augmentation unit.

Next, different data cleaning, reduction, and unification techniques are applied to the

collected data and the result is stored in the Data Warehouse unit. The unified data of

the data generator model is utilized in descriptive, predictive and prescriptive modules;

where the unified business rules data will be used in the prescriptive module only.

Step2) The Descriptive Module will also generate requested statistical and analytical

reports over the historical data and stores them into the data warehouse module as

well.

Step3) Next, the Predictive Module queries the unified data elements from the data

warehouse unit and builds accurate predictive models by incorporating a rich set of

machine learning algorithms. The module then extracts valuable patterns from the

unified data and perform forecast regarding several likely future trends along with

their probability scores. By utilizing the produced future trends and patterns, the

enterprise can spot future opportunities and risks and consult the prescriptive unit to

generate corresponding action plans accordingly. The predictive module then stores the

outcomes (the predictions, trends, and extrapolations) into the data warehouse unit. In

particular situations, to increase the accuracy of the predictions and getting more data

69 (March 14, 2019)



CHAPTER 4. ADAPTIVE COMPOSITE ANALYTICS ARCHITECTURE

(more data means more accurate results), the predictive module sends feedback lines

towards certain components within the architecture such as the data generator model

(to get more data elements or collecting different types of data) or the descriptive

module (to perform other unification techniques in terms of the selected final data

attributes).

Step4) Finally, the Prescriptive Module takes the extrapolations from the predictive

module, the unified data (including general data and business rules) from the descriptive

module, all of which stored in the data warehouse unit and generates relevant courses

of actions as output. The prescriptive module constitutes three key elements (as shown

in Figure 4.4b):

1. The Simulation Unit — The simulation unit generates several scenarios and tries

to answer the question “What should be done?” by generating a set of operational

and actionable recommendations.

2. The Optimization Unit — The optimization unit collects the validated simu-

lated scenarios and applies certain optimization techniques given the system’s

constraints and objectives to produce the best and optimal courses of action(s)

which answers the question “Why should we do it?”.

3. The Evaluation Unit — The evaluation unit filters the produced simulated sce-

narios (from the simulation unit) based on the pre–defined metrics in accordance

with the mentioned objectives and business rules. The results of this part will be

stored in the data warehouse unit. In addition, the evaluation unit is responsi-

ble to assess the optimization unit’s outcome compatibility with the enterprise’s

objectives.

The final output of the system in terms of decisions (yes/no recommendations), scalar

or vector values (suggested prices, amounts, fairs, etc.) or a complete production plan

will be stored in the data warehouse unit.

4.3.1 An Example – Learning Analytics Application

3 The proposed composite analytics architecture can be applied to a diverse range of

analytics–driven and real–world scenarios (mentioned in Section 4.2). For example, the

3Please note that the “Learning Design” is outside the scope of the analytics architecture applications.
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learning analytics scenario is selected as one popular analytical and data–driven use–case

to utilize the proposed architecture. We also elaborate on how the introduced analytics

architecture is capable of addressing most of learning analytics requirements (discussed in

Chapter 3) in this section. At first, we bring one pedagogical scenario and then explain what

we can get from each component of the architecture.

Imagine that the course instructor is able to perform certain analyses on week 04 to un-

derstand the students’ performance so far. Descriptive analytics can help to collect students’

data (previous assessment results in the course) from week 01 to week 04, unify and aggregate

the data, and produce an analytical report on students’ performance over the covered con-

cepts. Predictive analytics will project the students’ end of the semester performance/results

in terms of being passed/failed to raise alarm to the instructor. Given the analytical report

and the extrapolated end of the semester result, prescriptive analytics can produce certain

interventions (such as recommending particular learning material, attending mentor/consul-

tation sessions, or even come and visit the instructor) to promote adaptive learning. Next,

by applying the same procedure on weeks 06, 08, 10, and 12, the instructor is able to keep

track of each student’s performance and can provide them with informed and personalized

recommendations. In each round, the statistical analysis, the predictions, and the generated

courses of actions may be different, due to the likely changes in each student’s performance

as they progress towards the final weeks of the semester.

The following lists examples of each analytical component within the educational context

and learning analytics.

• The descriptive analytics module — is mainly focused on collecting educational data

from diverse sources like students’ interactions with the learning management system

(LMS) or social activities which provide further digital foot–prints such as learners’

activity history on massive open online courses (MOOCs). The acquired data will be

cleaned and transformed into one standard and unified format that will be stored in the

holistic data warehouse unit. Furthermore, relevant analytical reports/visualizations

will be produced as the outcome of this process. The reports are capable of helping

institutions of higher education in understanding what happened in the past (in terms of

their learning processes, pedagogical trends, the progress of learners, feedback towards

instructors, allocation, and utilization of academic resources, and students’ retention

and success rates) and why.

• The predictive analytics module — is mostly concerned with building predictive models
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based on the retrieved unified educational data from the descriptive module (retrieved

from the data warehouse unit) to extrapolate the institution’s likely opportunities and

risks in the future. Some examples can be:

– Targeting at risk of failure students,

– Forecasting the students’ attrition rates based on their academic history and ex-

trapolated patterns/trends,

– Projecting success/failure patterns for learners, and

– Student experience and performance forecasting.

The extrapolated outputs of this stage will be stored in the data warehouse unit. The

predictive module also sends “α” feedback lines to the descriptive module and the data

generator model to ask them to provide further information required for the predictive

model to generate more accurate forecasts.

• The prescriptive analytics module — is focused on generating optimal and operational

courses of action(s) to assist institutions of higher education to enhance learners sat-

isfaction, produce more adaptive learning materials (more personalized resources for

each student given their aptitude, level of knowledge, academic history and preferences),

make informed pedagogical decisions and academic policies, given predictive analytics’

outputs along with the institutions’ pre–defined sets of objectives and business rules

(all of which retrieved from the data warehouse unit). The final produced decisions,

recommendations, and courses of actions will be stored in the data warehouse unit to

be disseminated to relevant targets. Similar to the predictive module, the prescrip-

tive module sends “β” feedback lines to designated system components (the predictive

module, and data generator and business rules generator models) to preserve the ar-

chitecture’s adaptiveness to dynamic changes in enterprises’ requirements, objectives,

or external events influencing the internal behavior of the system.

The more in–depth elaboration and application of the proposed composite analytics ar-

chitecture in learning analytics is discussed in Chapters 5 and 6.

4.4 Summary

Different analytics techniques along with a couple of data–driven real–world application

scenarios were elaborated in this chapter. The new frontier in business analytics – prescriptive
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analytics – was defined and the importance of incorporating prescriptive solutions in big

enterprises possessing big data was discussed as well as the key research gaps (Section 4.3)

in the field.

To address the noted gaps and get the benefit of such analytics–driven approach, an inte-

grated analytics architecture was proposed in Section 4.3 entailing key analytics (descriptive,

predictive, and prescriptive). The unique way of organizing the analytical approaches within

the architecture along with specific feedback lines from predictive and prescriptive modules

to designated targets makes it a novel solution for prescriptive analytics scenarios. The feed-

back lines were designed to guarantee the adaptive and optimal generation of sequences of

actions.

The following lists this chapter’s contributions in addressing the first research question.

• A federated analytics architecture — comprising three analytics (descriptive, predictive,

and prescriptive) along with their interrelationships.

• A novel way of combining the analytical techniques — the unique incorporation of three

analytical approaches, with breaking down and connecting the building blocks of the

prescriptive module is another contribution of this chapter.

• Adaptive and optimal generation of sequences of action(s) — by providing certain feed-

back lines among certain system components, near real–time recommendations will be

generated to adapt the system to dynamic changes of the outside world.

The introduced architecture is incorporated as a key element of the conceptual layer

in the proposed framework in Chapter 5. The connections among several components in

each subsequent (logical and physical) layer with the composite analytics architecture are

depicted in Chapter 5 to justify its importance and to verify its capability in addressing the

analytical requirements of real–world applications. These interrelationships are elaborated

in Chapters 5 (logical to conceptual) and 6 (physical to logical to conceptual).

73 (March 14, 2019)



Chapter 5

Analytics–Driven Framework for

Learning Analytics

“Most decisions are not binary,

and there are usually better

answers waiting to be found if

you do the analysis and involve

the right people.”

Jamie Dimon

5.1 Introduction

The two previous chapters presented a background of learning analytics and a proposed ar-

chitecture. This chapter proposes an analytics framework for the education context, with

the focus on addressing key learning analytics requirements. To provide a quick review,

an architecture1 refers to the abstract design concept of a system and its connected compo-

nents [Maier et al., 2001]. It encompasses the set of principal design decisions made during its

development and any subsequent evolution [Medvidovic and Taylor, 2010]. A framework2, on

the other hand, is a reusable design and building block for a system and/or subsystem [Pree,

1994]. The framework sometimes is comprised of frozen (the architecture which is fixed) and

hot spots that are open for extension based on the scenario and application. To sum up, an

1https://www.ibm.com/developerworks/rational/library/feb06/eeles/index.html
2https://www.igi-global.com/dictionary/software-framework/27680
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architecture is more abstract design and is fixed, while a framework is more adaptable to the

situation and is extensible.

An integrated three–layered framework is proposed, comprising conceptual, logical and

physical 3 components, to support separate yet connected analytical tasks. Each layer is

intimately associated with and strengthens others. This chapter addresses the second and

third research questions, presented in Section 1.3 of Chapter 1,

Research Question 2)

How do we incorporate the proposed integrated analytics architecture in

the context of learning analytics (proposing the analytics framework for

learning analytics)?

and

Research Question 3)

How do we formalize learning analytics processes in the proposed framework

(connecting learning analytics and prescriptive analytics components)?

by linking the logical layer to the conceptual layer (Section 5.6).

In this chapter, we propose a framework capable of being instantiated to the context

of learning analytics. The framework models learning analytics and its major functional

components. It comprises three key layers: conceptual, logical, and physical as follows:

1. The Conceptual Layer — is the generalized, domain–agnostic view of the analytical

environment and entails two inner modules: the “generic analytics–driven” module

which deals with the higher–level design of the analytics environment and “composite

prescriptive analytics” module which is the core analytical engine of the framework and

generates intelligent courses of actions based on the institution of higher education’s

objectives.

2. The Logical Layer — is the domain–specific design which is specialized for the context

of learning analytics and is adapted for LA’s main requirements. Main categories of key

learning analytics operational processes is elaborated in the logical module (according

to the extracted LA processes in Section 3.3 of Chapter 3) and represented in business

3By “Physical”, we mean the “Implementation” of the logical layer’s constructs in concrete scenarios.
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process model and notation (BPMN) specification4. The logical layer is related to the

conceptual layer via the “IS–A” relation5 which makes it the specialized case of the

conceptual layer.

3. The Physical Layer — finally, the conceptual and logical layers’ components are for-

malized, implemented and applied to one particular application scenario (a real–world

use–case) in the physical layer. The details of the physical layer are discussed in Chap-

ter 6; however, the way that it gets connected to the conceptual and logical layers is

elaborated in this chapter and in Section 5.5.

Given the above–mentioned descriptions, this chapter’s key contributions can be listed

as follows.

1. Proposing a generic data–driven design for the context of learning analytics which ad-

dresses key educational environment’s requirements by introducing the conceptual layer.

2. Proposing a specialized analytics–oriented framework to implement 10 learning analytics

functional components.

3. Implementing the conceptual and logical layers in one specific application scenario and

devising a new approach named the personalized prescriptive quiz (PPQ) and forming

the final layer of the framework named the physical layer. The details of the physical

layer and the PPQ’s detailed algorithm and terminology along with the results are

elaborated in Chapter 6.

4. Combining the conceptual, logical, and physical layers together to form the generic

learning analytics–driven framework.

The rest of the chapter is organized as follows. The proposed analytics–driven framework

is elaborated upon in Section 5.2, with the conceptual, logical and physical layers discussed

in Sections 5.3, 5.4, and 5.5, respectively. Finally, we the outcomes and the conclusions in

Sections 5.6 and 5.7, respectively.

4http://www.bpmn.org/
5We refer to the “Inheritance” relation (IS–A) in the object–oriented programming. https://www.oracle.

com/technetwork/java/oo-140949.html#inh,
http://www.ntu.edu.sg/home/ehchua/programming/java/j3b oopinheritancepolymorphism.html
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5.2 Proposed Integrated Analytics Framework

A generic integrated analytics framework is proposed in this section to address key require-

ments of learning analytics systems discussed earlier (Section 3.2 of Chapter 3 and Section 2.3

of Chapter 2). The framework is a novel design concept that takes into consideration all 10

key learning analytics functional processes presented in Section 3.3. The proposed framework

is illustrated in Figure 5.1 and is comprised of three key elements.

1. The Conceptual Layer — this component illustrates a generalized analytics layer which

is elaborated in detail in section 4.3 and encompasses two sub–modules.

1.1 “Generic Analytics–Driven Module” — which is an abstract representation of a

data–driven analytics environment. It provides a generic analytical view and its

constructing components capable of being instantiated to most of the analytics–

oriented application scenarios. The generic module is extended by processes men-

tioned in Section 3.3 in the context of learning analytics. This element is described

in Section 5.3.1.

1.2 “Integrated Prescriptive Analytics Module” — which is the core analytical engine

of the proposed framework. Given the institution’s data and objectives, this mod-

ule generates quality courses of actions to be disseminated to proper destinations.

The prescriptive module is discussed in Section 5.3.2. Moreover, the detailed

elaboration of the composite analytics architecture is provided in Chapter 4 and

Section 4.3.

2. The Logical Layer — which is concerned with the representation of key learning an-

alytics processes (the 10 specialized processes described in Section 3.3). The logical

layer is elaborated in detail in Section 5.4.

3. The Physical Layer — is mainly focused on formalizing, implementing and applying the

proposed framework on one specific and real–world application scenario. The incorpo-

ration and development of relevant algorithms and techniques take place in this layer.

The physical layer is introduced in Section 5.5; its detailed elaboration, corresponding

use–case, and the results justifying its validity are provided in Chapter 6.

The relationship among these layers forms the proposed holistic learning analytics frame-

work, where the logical components extend conceptual components according to the “IS–A”
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Full Stack Prescriptive Analytics Framework
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Figure 5.1: Proposed Analytics Framework

subsumption (inheritance) relationship. The same rule applies to the physical layer compo-

nents interrelationships with their corresponding logical and conceptual components. The

specific inheritance relation between the logical layers’ processes and abstract conceptual
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components justifies the names “Specialized Learning Analytics Module” for the logical mod-

ule, and “Generalized Analytics Module” for the conceptual module in Figure 5.1. It means

that each learning analytics process extends upper–level components (super–classes) from the

conceptual module – prescriptive analytics module components in particular. The relation is

elaborated in detail in Section 5.4. There are two other “IS–A” relationships in Figure 5.1 be-

tween the integrated prescriptive analytics module and the generic analytics–driven module

within the conceptual module, and the physical layer’s relation to the logical layer processes.

Given the former relation, the introduced abstract analytics–oriented design can be instanti-

ated to a wide range of analytical scenarios. Prescriptive analytics module, in our proposed

architecture, extends this generic module and forms the generalized prescriptive analytics

module. Furthermore, the latter relation between the physical and logical layers illustrates

the lower–level relationship (the implementation) between the formalized and implemented

algorithm of the physical layer with their corresponding LA processes in the logical layer

that sets up the holistic analytics framework depicted in Figure 5.1.

5.3 Conceptual Layer

The conceptual layer is an abstract analytics–oriented module which provides actionable

outcomes according to the system’s pre–defined objectives. It is an adequately generic data–

driven design which is able to be extended to a wide range of analytics–oriented application

scenarios. According to Figure 5.1, the conceptual layer is built on top of two main modules

which are related to each other using the “IS–A” relationship:

1. The “generic analytics–driven module” which is elaborated further in Section 5.3.1,

and

2. The “integrated prescriptive analytics module” which is discussed briefly in Section 5.3.2.

The analytics architecture, however, was elaborated in Chapter 4.

The conceptual layer constitutes the top component of the proposed framework as illus-

trated in Figure 5.1. The “IS–A” relation between the two inner modules demonstrates the

prescriptive components as extensions of their abstract analytics–driven elements.

5.3.1 Generic Analytics Module

As depicted at the top component of the framework (Figure 5.1), the generic analytics module

is referred to as the “meta” module, because it represents the high–level analytics–oriented
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view encompassing key attributes of any analytics system. This module comprises three

sub–components, as follows.

• Input — Represents all inputs to the system. This element is capable of collecting any

input of any type and comprises three sub–components:

– The “data” sub–components that capture all types of data, including the stream-

ing and static data elements. The lecture recording is one example of the stream-

ing data. Some examples of the static data items are raw, historic, transaction,

derivative, to name a few.

– The “context” sub–components, which describe the enterprise’s main preferences

in terms of their objectives, requirements and interests.

– The “environment” sub–components, which take into consideration all the en-

terprise’s business rules including the operations, constraints, and organizational

definitions.

• Process — Refers to the functional elements of the system and categorizes analytics

processes and activities. This is the main focus of our research. Any unit of work

in the system extends the process component’s sub–elements. The process component

comprises two sub–components:

– The “analytics” sub–component, which refers to the top–level view of analytics

processes within the system, which, in turn, may be extended into three analytics

elements:

1. Descriptive Analytics to analyze past events and apply statistical/diagnostic

approaches to generate the desired analytics reports,

2. Predictive Analytics to extrapolate the likely events in the future along with

their corresponding probabilistic scores, and

3. Prescriptive Analytics which is concerned with the advice and personalization

in terms of the sequences of operational and optimal courses of action(s), based

on the enterprise’s objectives.

– The “feedback” sub–component—the key communication component among dif-

ferent units of the framework—to disseminate messages from one unit of work to

another.
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• Deliverable — This demonstrates all likely system outcomes and the processed results.

In our design, this element has two main sub–components:

– The “action” that refers to actionable outcomes of the system, and

– The “result” which is any general processed results of the system.

In general, a system receives its data from the “input” component, performs computa-

tional processes on the gathered data in the “process” component, and generates/distributes

the output results to the target “deliverable” component. The UML6 class diagram7 of the

general conceptual layer is illustrated in Figure 5.2 with the generic analytics module con-

stituting its top–level component. The input, process, and deliverable elements, along with

their sub–classes, are also illustrated Figure 5.2.

5.3.2 Integrated Analytics Module

To effectively incorporate analytical methods in producing optimal courses of action(s), an

integrated analytics architecture comprising descriptive, predictive and prescriptive analyt-

ics components was proposed (Section 4.3, Chapter 4). For a detailed representation of

the architecture, please refer to Figure 4.4. To make it more adaptable to the context of

education, each prescriptive component is considered a predictive module with aggregated

functionalities such as intervention, feedback, assessment, adaptation, recommendation, and

personalization. The key building blocks of the integrated analytics module are discussed in

Section 4.3.

The integrated analytics module illustrated in general in Figure 5.1 and in particular along

with its sub–classes in Figure 5.2. Figure 5.2 demonstrates the “IS–A” relationship with

the generic analytics module. For example, “stream data” and “static data” elements in the

prescriptive module are sub–classes (have the “IS–A” relation to) of the “data” element in the

generic analytics module. The same condition applies to other prescriptive elements, such as

“preference”, “business rules”, “descriptive analytics”, “predictive analytics”, “prescriptive

analytics”, “courses of action”, and “report”, to name a few.

6http://www.uml.org/what-is-uml.htm
7https://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html,

https://www.lucidchart.com/pages/uml-class-diagram,
http://www.agilemodeling.com/artifacts/classDiagram.htm
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5.4 Logical Layer

The logical layer represents 10 key learning analytics processes, previously mentioned in Sec-

tion 3.3. As shown in Figure 5.1, the logical layer is specialized for the context of learning

analytics. Each of the 10 processes is explained and their corresponding BPMN representa-

tions are illustrated in this section.

The “intervention” process is selected and illustrated in Section 5.4.4, for the following

reasons.

1. Recommending intelligent and optimal actions (here, in terms of interventions) to the

educational stakeholders is of crucial importance in improving the student experience,

increasing the retention rates, elevating student self–esteem, and helping the institu-

tions make informed pedagogical decisions, and

2. The proposed composite analytics architecture in Section 5.3.2 is the main driving force

of the entire framework, which is at the heart of the intervention process.

The BPMN representation of all 10 learning analytics processes in the logical layer are

illustrated in Sections 5.4.1 to 5.4.10. Please note that the detailed elaboration on the

BPMN representation as well as its example is explained for the “intervention process” in

Section 5.4.4.

Please also note that the connection between each one of the following 10 learning ana-

lytics processes with their corresponding analytics approaches (descriptive, predictive, and

prescriptive) will be depicted in Table 5.1.

5.4.1 Learning Analytics Process 1 – Monitoring

The monitoring process definition (Section 3.3) is summarized thus: given students’ previ-

ous activities and accomplishments within the LMS, the system tracks their digital footprints

and provides instructors and educational institutes with students’ data. Students’ academic

records, assessment history, LMS discussion/forum posts and comments/feedback provided

by the system and instructor(s) are examples of such data. This process also helps instruc-

tors evaluate the learning process in order to improve the learning environment and student

experience, as depicted in Figure 5.3, which illustrates the monitoring process as consisting

of the monitoring and unification lanes. The monitoring lane is responsible for collecting

the educational data elements from learners’ interactions—activities and accomplishments—

with the learning management system, along with their stored preferences and interests. The
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unify data component then gathers the collected data and aggregates them into one standard

and unified data format, later used by all other LA processes. In fact, the result of the mon-

itoring process is utilized in the analysis, prediction, intervention, tutoring and mentoring,

assessment, adaptation, reflection, and personalization processes (Figure 3.2). The resulting

format is stored in the unified learners’ preferences/interests and the corresponding analyt-

ics reports are stored in the report on learners’ activities/accomplishments, both within the

holistic data warehouse unit.

5.4.2 Learning Analytics Process 2 – Analysis

The analysis process is elaborated in this section. Its main function (Section 3.3) can be

defined as follows: analysis can help instructors identify patterns and distinguish behaviors

of students and produce proper insights to help with the decision–making process. The

Analysis also provides instructors with proper information to design future learning activities

and enhance the student experience. This process is illustrated in Figure 5.4.

Based on Figure 5.4 illustration, the analysis process gets its data from the unified format

from the Monitoring process (elaborated in Section 5.4.1), applies relevant analysis techniques

on them and stores the interim results in the analysis report component.

5.4.3 Learning Analytics Process 3 – Prediction

The prediction process builds accurate predictive models to extrapolate students’ future

performances, behaviors, and status, given their activities within the learning management

system. Instructors and institutions of higher education can properly intervene and provide

students with actionable and effective suggestions and recommendations. The prediction

process is illustrated in Figure 5.5.

The prediction process takes the unified data from the monitoring process and builds

accurate predictive models based on the institution of higher education’s objectives, and

stores the results in the predictions on learners’ future performance component.

5.4.4 Learning Analytics Process 4 – Intervention

The intervention process, as described in the learning analytics reference model in Section 3.3,

aims at elevating learner success and improving student experience by providing them with

actionable, intelligent feedback. This process is illustrated in Figure 5.6.
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Figure 5.6: Logical Layer – The Intervention Process in BPMN – The Whole Process
8

Figure 5.6 illustrates the core representation of this process. The entire process is put into

one pool named intervention, which is divided into four related sub–processes: intervention

information collection, which accumulates educational data from different sources and, in

our case (according to the selected use case), the external “intelligent tutoring system (ITS)”

system; simulation, which simulates different likely future scenarios based on the historical
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data; evaluation, which validates the results of both simulation and optimization activities

(represented as the sub–processes) in their accordance to the pre–defined objectives; and

optimization, which provides the best result given the results generated by simulation activity.

Figures 5.7 and 5.8 correspond to the expanded evaluate simulated scenarios and evaluate

optimized scenario sub–components of Figure 5.6, respectively. In both cases, the evaluation

activity is responsible for verifying the simulation/optimization results, makes decisions on

their validity, and sends relevant feedback to pertinent stakeholders. In the final stage of

the optimized scenario evaluation (the feedback part of the “evaluate optimized scenario”

pool) in Figure 5.8, the optimal courses of actions are produced and disseminated to their

pertaining stakeholders.

Intervention Process BPMN Elaboration

In this section, the BPMN representation of the intervention process and its example in the

education context will be explained further. Given Figure 3.2’s LA processes interrelation-

ships, it is evident that the intervention process gets its data from “monitoring”, “predic-

tion”, and “analysis” processes. This means that we have all the data required to perform

an informed intervention per each student. The data regarding the students’ interactions

with the LMS was collected in the “monitoring” process, was processed and its analytical

reports were generated in the “analysis” process, and each student’s likely performance in

the future (here, at the end of the semester) was extrapolated in the “prediction” process.

Therefore, we are in the position to provide individual students with personalized feedback

and recommendations. This is the main intention of the “intervention” process.

Next, we will explain each component of the intervention process’s BPMN specification.

The intervention BPMN is comprised of four lanes (of one Intervention swimlane) according

to Figure 5.6 as follows.

1. The ITS — which is any external system providing the complementary information

regarding students’ performance (misunderstood concepts, root-cause misconceptions,

the previous assessments attempted and the number of attempts and so forth) as well

as learning content information (such as topics, concepts, learning resources, questions

and so on). This information will be used in the “optimize” activity.

2. The Intervention Pool’s Simulation Lane — The whole process starts from this lane.

The “simulate” activity gets students’ activities and accomplishments data (from the
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“Monitoring” process) as well as their analysis reports (from the “Analysis” process)

and performance predictions (from the “Prediction” process) as its input. The simulate

activity is responsible in simulating and generating several intervention scenarios based

on the student’s past data and likely future predictions. The system will produce mul-

tiple simulated scenarios (stored in the “simulated results” data object artifact). But,

we need to evaluate those scenarios to match their validity. Therefore, the simulated

results will be fed into the “evaluate simulated scenarios” activity of the “evaluation”

lane. The qualified scenarios will be stored in the “evaluated simulated scenarios” data

object artifact and will be fed into the “optimize” activity of the “optimization” lane.

3. The Intervention Pool’s Optimization Lane — The optimization lane’s main task is to

produce the best intervention scenario based on the fed input. The “optimize” activity

gets the same data elements as the “simulate” activity, plus the filtered simulated

scenarios and the student’s preferences. The optimization will select the best available

scenario in terms of its proximity to the student’s preferences. However, this output

should be evaluated prior to be disseminated to the student as an intervention feedback.

Therefore, the optimized scenario (stored in the “optimized result”) will be fed into the

“evaluate optimized scenario” activity of the “evaluation” lane. If the selected scenario

meets all the criteria, then the intervention is ready to be sent to the student and

the whole process will end here (by sending the intervention through the “Feedback”

process, according to Figure 3.2).

4. The Intervention Pool’s Evaluation Lane — As mentioned in the “simulation” and the

“optimization” lanes, the “evaluation” lane is responsible for make sure the generated

simulated and optimized intervention scenarios are valid and align with students’ pref-

erences. The details of each one of the “evaluate simulated scenarios” and the “evaluate

optimized scenario” can be found in Figures 5.7 and 5.8, respectively. The “feedback”

lane in each one of the simulation and optimization evaluation swimlanes is responsible

for distributing the results to the targeted actors (students, teachers, LMS, or any of

the internal system components).

5.4.5 Learning Analytics Process 5 – Tutoring and Mentoring

The tutoring and mentoring process, described in Section 3.3, is defined thus: given the

analysis results of the students’ previous activities and accomplishments, tutors and mentors

can provide students with personalized guidance and support. It covers a broad range of
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activities including learners’ orientation, new learning resources (subject–based or interest–

based) suggestion, and goal achievement plans [Gidman et al., 2000; Thonus, 2002]. This

process is illustrated in Figure 5.9.

The main difference between the tutor and the mentor is that9:

• their definition — the “tutor” teaches students privately, but the “mentor” is someone

who provides advise.

• their approaches — the “tutor” is focused in helping students with their learning and

has usually a single–dimensional objective, whereas in the “mentor”’s case, it is a multi–

dimensional task and goes beyond just academic or learning processes (that tutors do)

and is concerned with the student’s life.

The discussed Tutoring and Mentoring process is comprised of mentoring, tutoring, and

feedback lanes.

5.4.6 Learning Analytics Process 6 – Assessment

The assessment process, described in Section 3.3, is as follows. Based on the students’

interactions with the learning management system and their preferences, the assessment

process will help learners to improve their learning processes and enhance their experience

using specific assessment and self–assessment techniques, to identify learners’ strengths and

weaknesses as they progress through the assessments. The communication with learners is

represented as intelligent feedback, which is disseminated to both students and instructors/-

mentors/educational institutes as well. This process is depicted in Figure 5.10.

By taking into consideration both the produced analytical reports for learners’ activi-

ties and accomplishments in the learning management system, and learners’ preferences and

interest, the assessment process generates personalized assessment and self–assessment mate-

rial in both formative and summative approaches. The results are disseminated to students,

instructors, and even the institution of higher education with the help of the feedback process.

5.4.7 Learning Analytics Process 7 – Feedback

The feedback process, as described in Section 3.3, plays a critical role in the entire learning

analytics environment, which collects useful information and disseminates them to relevant

9https://dlb.sa.edu.au/mentmoodle/file.php/20/Mentoringvsturoring˙article.pdf
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Figure 5.11: Logical Layer – The Feedback Process

stakeholders. Its main objective is to improve the overall learning process, enhance student

experience, elevate learning performance, increase retention rates as well as decline the drop

outs, and minimize the number of potential at–risk students. Almost all other processes com-

municate with the feedback process to deliver their recommended actions to their pertinent

targets (mostly students). This process is illustrated in Figure 5.11.

The feedback process is the core communication element of the architecture, especially in

the logical layer. All LA processes, except the monitoring process, utilize different means of

communication through the feedback process (refer to Figure 3.2 for a clearer picture). This

process gets the data to be delivered to the tagged targets as input, generates the relevant

feedback format for them, and distributes them to their pertinent destinations.

5.4.8 Learning Analytics Process 8 – Adaptation

The adaptation process (Section 3.3), by collecting and analyzing students’ data as well as

their personal preferences, allows instructors and higher education institutions to activate

specific and effective learner interventions. The adaptation process provides beneficial learn-

ing resources and instructional activities to students, based on their requirements, goals, and
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Figure 5.12: Logical Layer – The Adaptation Process – The Whole Process

interests. This process is represented in Figures 5.12.

The adaptation process, according to Figure 5.12, is comprised of two parallel sub–

components: the adapt learning material, and the adapt suggested action(s) elements. The

adaptation process is similar in its core functions to the intervention process elaborated in

Section 5.4.4 in that it comprises simulation, optimization and evaluation functionalities. It

is different from the intervention process, however, in that it incorporates the adaptation

sub–component to adapt the learning material or the suggested action(s) to the students’

needs.

The adapt learning material sub–component is illustrated in Figure 5.13, where its eval-

uate simulated scenarios, evaluate optimized scenario, and adapt learning material to the

students’ needs sub–components are further expanded and illustrated in Figures 5.14, 5.15,

and 5.16, respectively.

Figure 5.17, on the other hand, illustrates the adapt suggested action(s) sub–component

and its building blocks. Its evaluate simulated scenarios and evaluate optimized scenario sub–

components are pretty similar to the ones depicted in Figures 5.14 and 5.15, respectively. The
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adapt suggested action(s) sub–component, on the other hand, is represented in Figure 5.18.

5.4.9 Learning Analytics Process 9 – Personalization

The personalization process (Section 3.3) is depicted in Figure 5.19.

According to Figure 5.19, the personalization process takes the analytical reports on

learners’ activities and accomplishments, as well as their preferences and interests from the

unified data elements produced by the monitoring process, adopts relevant personalization

techniques to target each individual student regarding their goals, in order to help them

enhance their student experience within the learning environment.

5.4.10 Learning Analytics Process 10 – Reflection

The reflection process (Section 3.3) collects and analyzes students’ and instructors’ previ-

ous activities and experiences in the learning management system, and allows the reflection

process to help them compare their performances (students and instructors) and teaching

approaches (instructors) with other courses, other classes, or even other educational institu-

tions. This process is illustrated in Figure 5.20.

Based on Figure 5.20, the reflection process is comprised of two parallel sub–components:

the student reflection and the instructor reflection elements illustrated in Figure 5.21, the

detail representations of which are depicted in Figures 5.21a and 5.21b, respectively.

5.5 Physical Layer

The physical layer, the final component of the proposed framework in Section 5.2 and Fig-

ure 5.1, is the formalized analytical layer that implements key LA processes mentioned in

the logical layer in Section 5.4. Given that the proposed framework is formalized and eval-

uated in this layer, a real–world application scenario should be selected to incorporate the

framework to assess the extent to which our approach helped them meet their pedagogical

objectives. As shown in Figure 5.1, the physical layer has the “IS–A” relation with the logi-

cal layer ; therefore, all the implemented elements of the physical layer are specializations of

their corresponding logical layer components. Several data mining techniques and machine

learning algorithms are adopted in this layer.

Details of the physical layer are presented in Chapter 6, where a real–world use case sce-

nario is used to illustrate the proposed framework. A personalized prescriptive quiz (PPQ)

approach is introduced in Chapter 6, which quiz assists each student with identifying their
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Figure 5.19: Logical Layer – The Personalization Process

misunderstood concepts throughout the semester, and provides them with dynamic and in-

dividual sets of questions to rectify their misconceptions. The PPQ algorithm is elaborated

upon, along with its building blocks, the research project.Finally, the components of the pro-

posed approach in the physical layer with their relevant logical layer elements are presented,

to complete the analytics framework of Section 5.2.

5.6 Discussion

Figure 5.1 illustrates how the proposed analytics framework can be instantiated to the context

of learning analytics. We mentioned conceptual (generic), logical (specialized), and physical

(formalized) layers to model key requirements of a given learning analytics system. The

designs of the conceptual, logical and physical layers were elaborated upon in Sections 5.3,

5.4 and 5.5, respectively. Further discussion of the physical layer appears in Chapter 6. As

per the generic analytics architecture (Figure 5.1), each learning analytics process in the

logical layer extends a set of conceptual layer elements. Also, three layers are related to each

other using the “IS–A” relationship.

The proposed framework is one of the contributions of this work, as it is capable of being
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Figure 5.20: Logical Layer – The Reflection Process – The Whole Process

instantiated to the context of learning analytics. Also, the integrated analytics architecture

in the conceptual layer and the unique way of combining the conceptual, logical, and physical

layers altogether, form the generic learning analytics framework. We implemented the “IS–

A” relation representation of all LA processes in the logical layer with their corresponding

components in the conceptual layer, one–by–one. Thus, the framework is capable of covering

all LA processes (4th dimension) described in Section 3.3, which means that the logical layer

is able to represent all LA processes, being specialized for the context of education.

Table 5.1 depicts the mapping of learning analytics processes in the logical layer to their

associated analytics components – descriptive, predictive and prescriptive – in the conceptual

layer. Table 5.1 shows how the proposed federated analytics approach is capable of addressing

all 10 key learning analytics functional processes. For instance, descriptive analytics com-

ponent in the second column addresses the monitoring, analysis, assessment, and reflection

process requirements. Predictive analytics component on the third column is responsible for

the prediction process requirements. Finally, the prescriptive analytics component on the

last column is concerned with satisfying the requirements of the intervention, adaptation,

personalization, reflection, tutoring and mentoring, and feedback processes.
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Table 5.1: Learning Analytics Processes’ Coverage Using The Integrated Analytics Architec-
ture in The Conceptual Layer.

Learning Analytics Analytics Components

Processes Descriptive Predictive Prescriptive

Analytics Analytics Analytics

Monitoring X

Analysis X

Prediction X

Assessment X

Intervention X

Adaptation X

Personalization X

Reflection X X

Tutoring and Mentoring X

Feedback X

As mentioned earlier, all LA processes are represented in BPMN in the logical layer and

their elements are mapped into their corresponding superclasses in the conceptual layer.

In particular, all logical layer processes extend specific components (superclasses) from the

conceptual layer. As per section 5.4, we continue our elaboration with focusing on the

intervention process.

The relationship of the intervention process to its conceptual layer components is pre-

sented in Figure 5.22, which is divided into two sections:

• the conceptual layer — which is corresponding to the conceptual layer depicted in

Figure 5.1. The simplified representation of the conceptual layer is illustrated in Fig-

ure 5.22. By simplification, we meant that only conceptual layer’s classes (Figure 5.2)

corresponding to their related logical layer components (Figures 5.6, 5.7, and 5.8) were

depicted.

• the logical layer — that refers to the logical layer represented in Figure 5.1. The logical

layer section represents the intervention process illustrated in Figure 5.6.

Figure 5.22 represents several components of the conceptual and logical layers’ compo-

nents and their interrelationships.
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Figures 5.23 and 5.24 illustrate the interrelationships between the conceptual and logical

layers in a simplified manner. Each logical layer component is connected to their correspond-

ing conceptual layer class. This justifies the “IS–A” relation between the conceptual layer

and the logical layer.

The same rule applies to all other LA processes (elaborated in Section 5.4) and their

constructing elements are mapped into their corresponding conceptual layer components.

The monitoring process’s logical to conceptual layer connection is depicted in Figure 5.25 to

give an idea about the remaining LA processes representation.

By specializing the proposed framework for LA required processes and illustrating their

relation with the generic analytics–oriented architecture, we demonstrate that the proposed

approach can cover all key learning analytics requirements and justify its validity by repre-

senting those processes’ relations to the generic analytical architecture.

In summary, as outlined in the Section 5.1, the proposed analytics framework in Sec-

tion 5.2, allows an educational institution to address the problem of developing decision

support systems in a systematic way. To achieve this, our framework models and imple-

ments LA functional processes by monitoring, analysis, and assessment of learner activities

in the learning system (centralized or distributed), predicting future learning trends and op-

timally intervening when necessary, adapting and personalizing the learning design according

to learner preferences, capacity and aptitude, and giving intelligent feedback to elevate the

student experience and improve the learning environment. The proposed framework can as-

sist institutions of higher education to fulfill their analytical gaps, towards making intelligent

decisions in–time, and by improving the teaching and learning quality in practice.

5.7 Summary

A generic analytics framework was proposed in this chapter to address the key issues and

requirements in the context of learning analytics in Section 5.2. The framework is com-

posed of three key layers: conceptual, logical, and physical. The conceptual (the abstract

analytics) layer comprises a generic analytics–oriented module, and a prescriptive analytics

module (comprising descriptive, predictive and prescriptive analytics components). It is the

conceptual module’s task to provide a given analytics–based scenario with proper courses

of actions according to the pre–defined system objectives (Section 5.3). The logical (the

specialized learning analytics) layer, on the other hand, is composed of 10 key learning an-

alytics processes which extend the conceptual layer’s components in their building blocks.
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Its goal is to represent learning analytics functional processes (Section 5.4). The physical

(the formalization) layer is focused on implementing the proposed framework in one real–

world application scenario which is elaborated in detail in Chapter 6 along with its algorithm

and results (Section 5.5). We will experimentally validate the effectiveness of the proposed

framework in Chapter 6 using one real use case. Finally, two sample learning analytics pro-

cesses (the intervention process and the monitoring process) representations are investigated

in detail and their logical layers’ “IS–A” relations to the conceptual layer are illustrated.

This chapter addressed the following two research questions mentioned in Section 1.3:

• RQ2 — is covered in Section 5.6 by connecting the logical and conceptual layers to-

gether.

• RQ3 — is addressed in Section 5.4 by representing 10 learning analytics processes in

BPMN.

In the next chapter (Chapter 6), the framework is incorporated in one real–world scenario

to validate its usability in analytical use cases. The physical layer is implemented and a new

approach is proposed to analyze learners’ data and produce desired results.
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Chapter 6

Personalized Prescriptive Quiz

(PPQ) — Enhanced with

Descriptive and Predictive

Analytics

“Fair does not mean giving

every child the same thing, it

means giving every child what

they need.”

Rick Lavoie

6.1 Introduction

Several methods have been proposed to collect, report, process, comprehend, and extract

insight from big educational data [Baer and Norris, 2015], most to assist institutions with

the understanding of what happened in the past and what might happen in the future

through descriptive and predictive Analytics [Delen and Demirkan, 2013; Eckerson, 2007;

Kaisler et al., 2014]. However, having the insight on what has happened in the past and

what might happen in the future does not necessarily improve the outcomes. There is a need

to transform information into insights and act upon them to meet predefined objectives [Chen

et al., 2012; Baker and Gourley, 2014; Kaisler et al., 2014]. Therefore, Prescriptive Analytics
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has emerged as the next frontier in business analytics. It is concerned with recommendations

and guidance, which provides institutions with adaptive, automated and time–dependent

sequences of operational actions [Evans and Lindner, 2012]. The integrated architecture

presented in Chapter 4 combines descriptive, predictive and prescriptive analytics to allow

near–optimal decisions to be made in real–time [Soltanpoor and Sellis, 2016]. Furthermore,

an analytics framework capable of being instantiated in the context of LA was proposed

in Chapter 5. The framework comprises conceptual, logical and physical layers to cover all

major LA requirements and provides students with intelligent academic feedback [Soltanpoor

and Sellis, 2016; Soltanpoor and Yavari, 2017].

In this chapter, we propose a novel approach called personalized prescriptive quiz (PPQ),

which is based on the proposed composite analytics architecture presented in Chapter 4. The

aspects of our contribution (which to the best of our knowledge, not found in the similar

studies) can be listed as follow.

• taking into account the concepts of self–esteem and self–efficacy of students. Stu-

dents lacking the foundational concepts will experience lower levels of self–confidence

and eventually end–up failing or drop–out. The PPQ approach gives the students

the opportunity to shape their learning pathways and perform assessments and self–

assessments to identify and rectify their misconceptions which may lead to the elevated

self–esteem.

• calculating the root–cause conceptual problem(s) for individual students that helps

them target their misunderstood concepts.

• incorporating the question’s difficulty and discrimination indexes which assists the in-

structors to better design the qualified questions assessing students’ knowledge.

• creating the concept graph where and tagging each designed questions with their cor-

responding concept(s).

All together, our contributions are not limited to the proposed algorithms for PPQ, but

helping students improvde their self–efficacy with incorporation of the conceptual depen-

dency, root–cause analysis, difficulty–level designation and providing students with adaptive

and dynamic personalized sets of questions to help them target their misconceptions (and

eventually addressing them).

To shape the fabric of the proposed analytics framework this chapter addresses the fourth

research question:
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Research Question 4)

How do we devise and link the physical layer components enforcing higher–

level processes (linking the physical, logical and conceptual layers altogether)?

The Intelligent Tutoring System (ITS), an in–house web–based application, provided the

testbed for our approach. In the first phase, descriptive analytics were used by labeling all

quiz questions with underlying concepts. Students were able to view concept descriptions

whether or not they had problems. In the second phase, the quiz questions were used to

predict how well they would perform in the exam. In the final phase, the framework was

extended to incorporate prescriptive analytics through pedagogical interventions (such as

recommending relevant learning resources or taking tests covering their misconceptions) to

address the misunderstood concepts.

PPQ can help improve students performance by correcting their misconceptions early.

According to [Robins, 2010], an effective pedagogical tools needs to address the students’

misconceptions issue before it is too late, especially in typical introductory programming

course because of its atypical rates of both failure and high scores! This leads to a bimodal

grade distribution as the nature of such courses characteristic [Robins, 2010]. As students

are struggling with the fundamental concepts in core courses (such as introductory program-

ming), approaches such as PPQ identify and rectify students’ misconceptions and help with

their self–efficacy can address the key gaps in traditional assessment approaches [Robins,

2010]. PPQ provides a form of personalized coaching. It can help each student to individ-

ually identify and rectify their misconceptions (acquisition and transfer of critical concepts)

by providing them with individually designed sets of questions. Our results demonstrate a

significant improvement in student academic performance after applying the PPQ approach.

Instructors can design more efficient questions covering taught concepts, by taking into con-

sideration student feedback gathered on PPQ performance.

The remainder of this chapter is organized as follows. Section 6.2 forms a base for

introducing the PPQ approach by providing issues and challenges with the current available

didactic solutions and approaches. Section 6.3 elaborates on the details of the proposed

approach by discussing PPQ terminology and the PPQ algorithm. Section 6.5 is dedicated

to the qualitative and quantitative results of applying the approach to first–year programming

courses and the impact on student marks. Section 6.6 presents modifications and expansions

to the PPQ approach, based on student and instructor feedback, in order to make it more

adaptable to their needs. Finally, Section 6.8 summarizes the chapter findings and lists the

117 (March 14, 2019)



CHAPTER 6. PERSONALIZED PRESCRIPTIVE QUIZ (PPQ) — ENHANCED WITH

DESCRIPTIVE AND PREDICTIVE ANALYTICS

contributions that address the relevant research question.

6.2 Problem Statement

Introductory programming courses are experiencing high failure and attrition rates1 (up to

40%) partly reflecting incoming student diversity and background [Beaubouef and Mason,

2005; Biggers et al., 2008; Soh et al., 2007; Lang et al., 2007; Denning and McGettrick, 2005].

One reason for poor performance is that a standard assignment common to all students

is not effective in identifying or correcting the misunderstood concepts of each individual

student [Pears et al., 2007; Lang et al., 2007; Venema and Rock, 2014]. The problem is

exacerbated the student cohort diversity as each subsequent test assumes that every stu-

dent has somehow mastered earlier foundational concepts [Harlen and James, 1997; Pears

et al., 2007; Lang et al., 2007]. Given that most concepts are interdependent, there is a need

to explicitly capture dependencies among them. For example, to understand the “array”

concept in programming languages, students need to know the “loop” concept. To figure

out the “loop” concept, students need to know the “operator” and the “variable” concepts.

Therefore, there is a dependency between “array” and “loop” concepts, and so forth. Con-

sequently, if a student misunderstands the “array” concept, we can determine whether they

previously understood the “loop concept. We can continue this process until we find the root

misconception.

Furthermore, some critical drawbacks of traditional teaching and assessment strategies

are listed as follows:

• Lack of effective feedback. Little or no feedback is provided to students regarding their

performance on earlier tests. In some “summative” assessment approaches, students

are notified of their feedback very late (after the final exam) or no such feedback is

presented to them at all. In the latter case, the final marks are published without any

descriptive explanation on exam questions [Lang et al., 2007; Harlen and James, 1997].

In contrast, “formative” assessment approaches are mostly concerned with improving

students’ understanding through conducting multiple diagnostic tests and learning ac-

tivities, administered over several weeks [Lang et al., 2007; Harlen and James, 1997].

However, even formative approaches are comprised of fixed sets of tests covering com-

plex concepts. This means that they deal with all students uniformly [Harlen and

1https://www.education.gov.au/news/release-higher-education-standards-panel-s-discussion-paper-
improving-completion-retention-and (accessed on 10 Apr. 2018)
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James, 1997; Taras, 2005]. To address this concern, a personalized approach should be

designed to give each student the opportunity to overcome their past misconceptions

through appropriate feedback.

• Lack of personalized assessment techniques. Traditionally, all students do the same

quizzes, regardless of their past performance in foundational concepts, which might

have the effect of weaker students falling behind in terms of their understanding of later

concepts [Daempfle, 2003; Baer and Norris, 2015]. For the weaker students, this has

a compounding effect, that is, misunderstandings of even early foundational concepts

propagate into future assessments, and more significantly so. A personalized testing

approach would allow for such compounding effects to be minimized. To address this

issue, personalized question sets must be generated dynamically, based on each indi-

vidual student’s past performances. Such question sets may be interleaved between

regular tests to encourage weaker students to catch up, while allowing above average

students to be challenged through more demanding tasks. Such an approach could

improve the teaching outcomes, especially where diverse student cohorts are involved.

The proposed PPQ approach aims at addressing afore–mentioned concerns and fills the

gaps in order to achieve a more efficient and customized pedagogical process. It helps each

individual student rectify their misconceptions during the semester, by providing novel per-

sonalized quiz sets covering misunderstood concepts.

6.3 PPQ Design

Introductory programming courses impart a range of fundamental programming concepts.

Several compulsory interleaved tests and optional quizzes and assignments are designed to

assess students’ acquired knowledge in those fundamental concepts [Pears et al., 2007; Ven-

ema and Rock, 2014]. All test sets (compulsory or optional) are fixed and uniformly designed

for all students, without accounting for each student’s level of knowledge and understanding

of the taught concepts. To address the gaps mentioned in Section 6.2, we propose a novel

approach–Personalized Prescriptive Quiz (PPQ)—as an optional assessment context, to pro-

vide each student with dynamic and personalized sets of questions, designed to address their

misconceptions. The PPQ is an implementation of the intervention process of the physical

layer, introduced as a part of the analytics framework presented in Chapter 5.

The PPQ approach is a generic technique that may be applied to any course for which
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the questions are tagged with the associated references to concepts and topics covered, the

cognitive levels of the question (discussed in Section 6.3.1) [Anderson et al., 2001], and other

question–dependent meta–data. A dependency graph illustrating all taught concepts and

their relations is constructed and stored. Dependencies among concepts allow the instructor

to probe the root–cause problem of each student’s misconceptions, by traversing the edges

in the graph that represent dependencies. For each concept in the graph, the system com-

putes whether the student has responded correctly. If not, the system checks the student’s

responses in parent concepts, iteratively, until the root causes are identified. Some examples

of dependencies among concepts were provided in Section 6.2.

The PPQ approach was applied in the course Introduction to Programming offered to

first–year Information Technology students at RMIT University, with 274 enrolled under-

graduate students. The rationale behind selecting the introductory programming course was

influenced by the following:

• Technical courses have been acknowledged to be among the most challenging for first–

year undergraduates [Venema and Rock, 2014; Wiedenbeck et al., 2004],

• Introductory programming courses are cornerstones of computer science majors, in

terms of the fundamental concepts taught and the skills developed [Pears et al., 2007;

Denning and McGettrick, 2005], and

• Introductory programming courses have continually been experiencing high dropout and

failure rates, which supports that learning to program is challenging for novices [Beaubouef

and Mason, 2005; Wiedenbeck et al., 2004].

In the subsequent sections, the terminology of PPQ approach is presented first. Next, the

pre–processing phase of the process is discussed. Finally, the PPQ algorithm is introduced.

6.3.1 Terminology

The PPQ approach was applied between weeks 9 and 12 of the semester when almost all

concepts have been taught (in accordance with the syllabus). For the sake of simplicity,

all the assessments (tests/quizzes) prior to the PPQ are called “pre–test(s)”. Similarly,

all assessments completed after the PPQ are denoted “post–test(s)”. By analyzing their

performances by students in pre–tests, the list of misunderstood concepts for each student

is determined. Given the set of extracted misconceptions so determined, the PPQ algorithm
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generates a set of personalized questions covering those misunderstood concepts, packaged

as one prescriptive quiz per student (denoted by ppqi). The intention is to help students to

improve their understanding of the taught concepts (by assisting them to identify and rectify

their misconceptions) before the final exam, by applying the PPQ.

Figure 6.1 illustrates our approach in terms of its intervention process (discussed in Sec-

tion 5.4.4). Given each student’s misconceptions, the system generates individualized sets

of questions per student, before the upcoming post–test(s) (including the final exam). As

noted from Figure 6.1, not only are different sets of questions (aka quizzes or ppqis) provided

to each student, but the number of questions in each quiz (the quiz size, denoted |ppqi|) also

varies. Consequently, stronger students are provided with more challenging sets of questions

with smaller ppqi (fewer questions) and conversely, more question sets (larger ppqi) are for

weaker students. The intervention process occurs between weeks 9 and 12, because:

• All concepts are taught by week 9, and

• The system determines students’ misconceptions more accurately having their enriched

results from previous pre–tests. By getting access to the collective student assessment

results by week 9, compared to the limited early weeks’ assessment results, the system

can analyze and calculate each student’s misconceptions more effectively.

The following list presents the terminology for the PPQ approach:

• Topic (T ) — refers to the fundamental programming topics covered in the IoP course.

The course covers 5 major topics in programming: Sequences, Data types and Operators,

Selection, Loops, and Arrays. The set of topics of the course is displayed as T =

{t1, t2, t3, t4, t5}.

• Concept (C) — each topic comprises several programming concepts. More than 30 dif-

ferent concepts were captured in the system. Not all concepts are covered in each topic.

A concept may be covered in more than one topic. For example, the Logical Operator

concept is covered in both data types and Operators, Selection and Loops topics, and

the list goes on. The set of all taught concepts are denoted as C = {c1, c2, ..., cn}.

• Question (Q) — refers to a regular question which is designed to assess students’

knowledge in their taught concepts. Each question can assess one or more concepts

and links to the corresponding topics. The set of question Q is represented as in

Q = {q1, q2, ..., qn}.
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Pre Test(s) Post
Test

(PPQ) per student

W01 W02 W09 – W11W03 – w08 W12

Figure 6.1: Personalized Prescriptive Quiz (PPQ) Approach – The Intervention Process

• Analysis and Application Level Questions (Anq, Apq) — According to Bloom’s Tax-

onomy [Anderson et al., 2001], educational learning objectives are categorized into

three main classes: Cognitive, Affective, and Psychomotor. We focused on four levels

of the cognitive category: Knowledge, Comprehension, Application, and Analysis. The

Knowledge (Remembering) level is concerned with recalling or retrieving previously

learned information. For example, the number of bytes in the integer data type, or the

type of true or false values. The Comprehension (Understanding) is concerned with

understanding the meaning and interpretation of instructions and problems. For exam-

ple, explain how Java garbage collection works in your own words, or what is the error

in the code segment shown in the test. The Application (Applying) level applies what

was learned to real situations. For example, write a recursive program to calculate the

factorial of a given input number. The Analysis (Analyzing) level distinguishes between

facts and inferences by separating the concepts into component parts, to understand

their organizational structure. For example, a question might ask: What does the given

code segment do? Students need to understand the concepts and analyze the situation

to realize the purpose of the code provided. In this research, we are mainly focused on

the “Analysis” and “Application” levels of Bloom’s Taxonomy, considered to the more
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challenging levels. This gives us a solid understanding of the concepts that students did

not understand properly. Henceforth, for the sake of brevity, we denote the Analysis

and Application level questions as Anq, Apq, respectively.

• Question Pool (QP ) — the finite set of designed questions (Q) covering the taught

concepts for this course. Each question may cover one or more concepts and is linked

to their corresponding topics. The question level (Knowledge, Comprehension, Appli-

cation, and Analysis) is also defined by the designer. The set of all questions in the

question pool is denoted as QP = {q1, q2, ..., qn}.

• Used Question (UQ) — a subset of questions in the question pool (QP ) that have

been asked/answered so far. It is denoted as UQ = {uq1, uq2, ..., uqi} and UQ ⊆ QP .

Initially, UQ = ∅.

• Fresh Question (FQ) — a subset of questions in the question pool (QP ) which have not

been asked/answered yet. It is depicted as FQ = {fqi+1, fqi+2, ..., fqn} and FQ ⊆ QP .

Also, UQ ∪ FQ = QP and UQ ∩ FQ = ∅. Initially, FQ = QP .

• Student (S) — the set of all students who enrolled in the course. The students set is

defined as S = {s1, s2, ..., sn}.

• Misunderstood Concept (MC) — the subset of concepts (C) with more than half

of their covering questions were answered incorrectly. It is represented as MC =

{mc1,mc2, ...,mck}, where k ≤ n and each mci represents the set of misunderstood

concepts for student si.

Please note that in discussions about “misconceptions”, we typically have two main

categories: (1) misunderstanding certain concepts, and (2) having the lack of under-

standing in particular concepts [Cetin and Ozden, 2015; Yadav et al., 2016; Caceffo

et al., 2018; 2016; Kaczmarczyk et al., 2010; Ben-Ari, 2001]. This means that there is a

difference between students who did not understand a concept and the ones who have

formed wrong mental models for that concept. In this study, we are targeting those

with incorrect mental models. For example, students may know the math operations

properly, but when it comes to the computer programming, they might be puzzled

when encounter statements such as x = x + 1, or x + + which do have meaning in

computer programming, but are not correct in math (if you deduct x from both sides

of the equation x = x+ 1 then, it yields 0 = 1 which is incorrect in math)!
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• Personalized Prescriptive Quizzes (PPQ) — a subset of dynamically generated ques-

tions in the question pool (QP ) for each individual student si, given their misunder-

stood concepts mci. It is defined as PPQ = {ppq1, ppq2, ..., ppqn} and PPQ ⊆ QP .

6.3.2 Pre–Processing

Prior to implementing the PPQ algorithm, some derived data elements must be determined,

as follows.

• The maximum number of questions in the system per quiz (n) — in our tests, n is

initialized to 15 (n = 15) but may be defined by the question designer.

• The maximum number of questions per ppqi (ni) — note that the number of questions

per ppqi for each student may vary. The number of questions generated by the PPQ

algorithm per ppqi is ni, where ni = |ppqi|, ni ≤ n. Note too that not all ni question

slots will be populated for the student si, because we are proposing a personalized ap-

proach to dynamically generate the number of questions per student and each question

set (ppqi) might be different from others.

• The number of questions per topic (qt) — given that we have 5 different topics and 15

different questions per ppqi, there will be qt =
⌊
n
t

⌋
=
⌊
15
5

⌋
= 3 questions per topic.

However, for the situations where the
⌊
n
t

⌋
fraction is not a natural number, according

to the Pigeonhole Principle [West et al., 2001], we distribute qt questions based on

the given number in
⌊
n
t

⌋
and will distribute the rest by choosing the Anq, Apq level

questions for the student si. The number of remaining question slots will be calculated

as (n−
⌊
n
t

⌋
× t).

• The set of misunderstood concepts for each student (mci) — technically, if the student si

responded incorrectly to more than half of the questions covering a particular concept ci,

then the concept ci will be considered as the misunderstood concept mci. The process

to calculate the set of misunderstood concepts per student is as follows: The qi is defined

as the number of questions covering the concept ci which have been taken by the student

si so far. Also, wrongi is defined as the number of incorrectly answered (among qi)

questions by the student si. Then, the concept ci is added as a misunderstood concept
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mci to the MC set, if: qi = 2k , and wrongi ≥ qi
2

qi = 2k ± 1, and wrongi >
qi−1
2

• The set of fresh questions covering the misunderstood concepts for each student (mfqi)

— the set of FQ covering the misunderstood concepts for student si is defined as mfqi.

In generating mfqi, we filter mfqi ∈ FQ with the Anq, Apq level. Also, the questions

covering more than one concept (including the misunderstood concepts) are prioritized.

Consequently, the process guarantees that only harder questions in the Analysis and

Application levels are selected.

• The set of used questions covering the misunderstood concepts for each student (muqi)

— the set of UQ covering the misunderstood concepts for student si is defined as

muqi. In generating muqi, we filter muqi ∈ UQ with the Anq, Apq level. Again, the

questions covering more than one concept (including the misunderstood concepts) are

prioritized. The process guarantees that only harder questions in the Analysis and

Application levels are selected.

• The set of used questions with Anq, Apq levels for each student (uuqi) — this is the

set of UQ taken by the student si and answered correctly. These questions generally

cover more than one concept including the misunderstood concept and are designed

as Anq, Apq levels. The set uuqi is generated and provide to the student si because:

first, they are among the toughest questions with the Analysis and Application levels.

Second, the uuqi set questions are covering more than once concept including the

misunderstood concept mci and there is a chance that the student has accidentally

answered them correctly. The logic behind this hypothesis is that the student has

already answered all other similar questions (covering the misunderstood concept mci)

incorrectly. Therefore, it is worth providing them with the uuqi set to assess their

knowledge more accurately.

• The set of used questions with Anq, Apq levels which were answered incorrectly by most

of the students (allmuqi) — the set of questions in UQ which were answered incorrectly

by most of the students is defined as allmuqi and is filtered based on the following

criteria:
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1. The descending order of the total number of wrong answers to any particular

question qi by all students,

2. Prioritizing qis that cover more than one concept, and

3. Picking the top 90% percentile of the generated list of questions after performing

the first and second criteria.

6.3.3 Algorithm

The steps towards generating the prescriptive quizzes for each individual student is specified

by Algorithm 1.

Algorithm 1 PPQ Generator

1: procedure Personalized-Prescriptive-Quiz
2: PPQ←− ∅
3: for each si ∈ S do {
4: input: si, mci, ni, mfqi, muqi, uuqi, allmuq
5: output: ppqi for si
6: ppqi ←− ∅
7: while ni ≥ 0 do {
8: ppqi ←− mfqi
9: ni− = |mfqi|

10: ppqi ←− muqi
11: ni− = |muqi|
12: ppqi ←− uuqi
13: ni− = |uuqi|
14: ppqi ←− allmuq
15: ni− = |allmuq|
16: PPQ←− ppqi
17: }
18: return PPQ
19: }

The inner loop of the algorithm is iterated per student si, given their set of misunderstood

concepts mci, the number of total questions per quiz per student ni, the set of fresh questions

covering the misunderstood concepts for the student mfqi, the set of used questions covering

the misunderstood concepts for the student muqi, the set of correctly answered used question

covering the misunderstood concepts for the student uuqi, and the set of used questions which

were answered incorrectly by most of the students allmuqi. The result is returned as a set

of personalized prescriptive quizzes (ppqi) which are individually designed for the student si.
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By aggregating the generated ppqis for each student, the algorithm will generate the PPQ

set incorporating the personalized prescriptive quizzes for all enrolled students.

Initially, the ppqi is null. In the first step, the PPQ algorithm adds the list of available

fresh questions covering the misunderstood concepts (mfqi) to the ppqi set. Then, if there is

room to add further questions, the system adds the list of used questions covering the mis-

understood concepts (muqi). Next, if there is still room, the list of Analysis and Application

level questions covering the misunderstood concepts (uuqi) will be added to the list. Please

note that these are questions that the student has answered correctly in their previous tests,

but due to their importance, we provide them again. Finally, if there is still room for further

questions, the list of top 90% percentile questions that most of the students have answered

incorrectly (allmuq) will be added to the ppqi list. In the end, the student si will be provided

with the personalized list of prescriptive quizzes. For each student si, the following equation

applies in the algorithm termination: ni = |ppqi|. By iterating the algorithm for all students,

the system will provide the list of ppqis for all students PPQ = {ppq1, ppq2, ..., ppqn}.

6.4 Pedagogy and Course Design for Programming Fundamentals

Most of the experiments were carried out in the introduction to programming course, a

problematic course, which went to major revamp in 2017. This course, a core for the IT

degree is taken by around 300 students with little or no programming skills. These students

come with varying academic performance, but the IT enter scores are much lower than CS

and software engineering degrees. Many students find abstract reasoning difficult and often

fare poorly in the semester end exams. The failure rates in exams that test mainly problem–

solving skills had been as high as 50% though overall failure rates were less than 30% because

they fare better in assignments done in the class. However, most students proceeding to

subsequent programming courses without passing the exam component fared poorly. Student

feedback revealed many found paper–based exams difficult as they have done all their previous

programming tasks on a computer. Most students also skipped the lectures, which focused

mainly on programming constructs and syntax. The exam performance revealed a substantial

number of students did not even master the foundational topics including selection, repetition,

and methods though they fared well in assignments. There was a need to innovate and come

up with new teaching methods.

Hence the pedagogy used in 2017 attempted to address all these difficulties using a mul-

timodal approach combining class programming tests, online class tests, quizzes, prescriptive
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quizzes, YouTube videos and incremental visual constructivist assignments in addition to

the traditional lectures, tutorials, and programming tasks. These components are described

briefly in Section 6.5 below.

6.5 Results

The qualitative and quantitative implications of the work are elaborated in this section.

First, the students’ responses to the survey questionnaires are classified and discussed in

Section 6.5.1. Next, the quantitative data analytics regarding the collected numerical results

are provided in Section 6.5.2. Prior to conducting the research, we had our ethics application

approved by RMIT University College Human Ethics Advisory Network (CHEAN). Before

proceeding with the following sections, some information regarding the course and the assess-

ments within the course is provided. Table 6.1 represents the teaching schedule break–down

for the Introduction to Programming course in Semester 1, 2017.

Table 6.1 can be simplified in Table 6.2, where:

• Wi — indicates the i-th Week, and for each week.

• Li — indicates the i-th Lecture. There are 12 Lectures throughout a semester, one for

each week. Lectures adapted a problem–solving approach using increasingly complex

and authentic problems while introducing new constructs in context. Hence the focus

was no longer on programming constructs or syntax but on problem–solving.

• Tti — indicated the i-th Tutorial. There are 11 Tutorials during a semester, starting

from the second week.

• OLTi — indicated the i-th in–class Online Test. Five different OLTs are designed

for students to be taken during a semester. Online tests administered a week after

the release of quizzes were assessed and provided the incentive for students to do the

quizzes regularly. The results of the class tests were made available as soon as students

submitted their responses.

• PrTi — indicated the i-th Programming Test. There are four different in–class Pro-

gramming Tests throughout a semester. These tests are paper–based and written and

the results of which will be available in one week after the tests were taken (delayed

result). Paper–based programming tests administered in the class required students to
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Table 6.1: Teaching Schedule Break–down for Introduction to Programming Course

Week Topic Tests Quizzes Assignments

(Lectures) (In–Class) (In–Class) (Tute–Lab)

1 Variables, Sequence,

Operations

2 Objects and Methods / Quiz 1

Input Output /

String manipulation /

introduction to selection

3 Selection and Operators Online Test Quiz 2

Test (2%)

4 Repetition Prog. Test 1

(5%)

5 Methods and Argument Online Test Quiz 3

Passing Test (2%)

6 Arrays & Debugging Prog. Test 2 Assignment 1

(5%) Part (1/2)

(5%)

7 Problem solving Online Test Quiz 4

and Collaboration Test (4%)

8 Arrays, Selection, Assignment 1

Repetition, Methods Part (2/2)

& Problem Solving (15%)

9 Classes Prog. Test 3 PPQ

(5%)

10 Class Design 1 Online Test Quiz 5, PPQ

Test (2%)

11 Class Design 2 Prog. Test 4 PPQ

(5%)

12 Revision Final online Quiz 6 Assignment 2

Test (10%)

(10%)
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solve simple problems using control structures, methods, and arrays. To prevent pla-

giarism 6 different tests at the same standard were created. These tests were intended

to get students to start writing their programs within the first three weeks. These tests

were marked and returned to students with a one–week turnaround. The following

depicts one sample in–class programming test:

Test — You are required to complete the program below to compute the gross

salary for all the hourly rated employees. These employees are paid 1.5 times the

normal rate for hours exceeding 40. You are required to print two separate salary

summaries as described below:

(a) Salary Summary for those earning $20.0 or less per hour, and

(b) Salary Summary for those earning more than $20.0 per hour.

Both summaries should display the first name of the employee, the hours worked,

the rate of pay and the gross–pay.

Array Processing Required — The partially completed program has initialized

three separate arrays names, rates and hours. You are required to use them and

introduce another array named grossPays to store all the gross salaries computed.

You are not required to introduce other methods.

Program to be Completed

import java.util.*;

public class SalaryProcessing2A

{

public static void main(String args[])

{

String names[] =

{"Bill","Chew","David","Ravi","Smith","Teo"};

double hours[] = {45,60,60,44,38,45};

double rates[] = {23.0, 18.0, 32.0, 22.0, 46.0, 34.5};

}

}

131 (March 14, 2019)



CHAPTER 6. PERSONALIZED PRESCRIPTIVE QUIZ (PPQ) — ENHANCED WITH

DESCRIPTIVE AND PREDICTIVE ANALYTICS

• Qi — indicated the i-th in–class Quiz. Six different kinds of quizzes are designed to

be taken during a semester. Given that quizzes are online, the results will be available

right after the student submits the quiz (instant result). Please note that students

needed to take quizzes at the end of the week they had taken the in–class Online Test.

Class quizzes were designed for most topics and students were encouraged to assess

themselves regularly. The class quizzes made use of multiple–choice, multiple–selection,

fill in the blanks and Parson’s puzzle type of questions. The sample quiz below requires

the student to specify the exact output from the program below. Students were allowed

to view the answers and the explanations immediately after answering the questions.

If results from previous semesters are available, the system allowed the final results to

be predicted. These predicted results become more accurate as the semester progresses

and more student–specific data become available. However, this feature was not used

in 2017 as there was no prior data.

The following illustrates an example of the in–class quiz:

public class PrintStars2

{

public static void main(String args[])

{

int n[] = {1, 3, 7, 17};

int j = 0;

for (int i=1; i<=15; i++)

{

System.out.print("*");

if (i == n[j])

{

System.out.print(" ");

j++;

}

}

}

}

• PPQ — indicated the Personalized Prescriptive Quiz designed for each individual stu-

dent. Prescriptive quizzes were made available in the school for the first time to identify

and address learning difficulties through personalized coaching. Students were allowed
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to repeat these quizzes between weeks 9 and 11. The quizzes were generated based

on the diagnosis carried out in their performances in standard weekly quizzes. PPQs

are personally designed for each student based on their previous assessment results.

The results of the PPQ will be available right after students submit their quiz (instant

result).

• Ai — indicated the i-th Assignment (for Assignment 1, it was divided into two sub–

assignments in weeks 6 and 8). We also refer to them as “Incremental Visual Construc-

tivist Assignments and Demos”. Incremental visual constructivist assignments were

devised as many average students developed better self–efficacy after implementing

simpler tasks. The first assignment was the Snakes and Ladders game where students

implemented the standard game logic in the first part and created a customized board

in the second. The second assignment was a visual 3–armed robot, which was re-

quired to perform increasingly complex tasks allowing students to gradually develop

the problem–solving skills. Students were asked to demonstrate their progress in the

labs to ensure they are making steady progress. Students are interviewed for their

submitted assignments to demonstrate their running codes and answer to the asked

questions by markers. The assignments’ result availability depends on the lecturer’s

policy, but it is not instant!

Apart from the items mentioned above, extra pedagogical components were also consid-

ered such as:

• YouTube2 Videos and Lecture Recordings — YouTube videos of 10 to 15 minutes du-

ration focusing on specific problem–solving activities were created. These videos were

made available before the lectures to foster more interaction during class time. In

addition, all lectures were recorded allowing average students to learn at their own

pace.

• Incremental Visual Constructivist Assignments and Demos — Incremental visual con-

structivist assignments were devised as many average students developed better self–

efficacy after implementing simpler tasks. The first assignment was the Snakes and

Ladders game where students implemented the standard game logic in the first part and

created a customized board in the second. The second assignment was a visual 3–armed

2https://www.youtube.com/
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Table 6.3: Assessments Result Availability

Assessment Assessment Result Availability

In–Class Online Test Instantly

Programming Test One week after the test

Quiz Instantly

PPQ Instantly

Assignment Depends on the policy (not instant)

robot, which was required to perform increasingly complex tasks allowing students to

gradually develop the problem–solving skills. Students were asked to demonstrate their

progress in the labs to ensure they are making steady progress.

• Exam — The exam was made up of three sections to measure the performance of

students. The multiple choice and fill in the blank in the first section (30%) covered

the breadth of the course. The second section required students to develop simple

algorithms using control structures and arrays. The third section required students to

develop a complete program made up classes and methods.

Given the above–mentioned activities, the following table (Table 6.3) depicts the likely

time during which each assessment result will be ready (availability of the results):

6.5.1 Qualitative Results

At the end of the semester, all enrolled students were asked to complete one survey question-

naire after taking part in the PPQ research project. The survey was designed in two parts

concerning both groups of students: (1) part A for those who took PPQs (the test group 3),

and (2) part B for those who opted not to participate (the control group 4). According to the

collected survey responses, 43.7% of the students in the test group responded to the survey

questionnaire as well as 24.5% of the control group.

A short summary of the designed survey questionnaire is depicted as follows:

• Part A — is intended for those who took the personalized prescriptive quiz that com-

prises 11 questions (7 scale selection and 4 descriptive response questions). The first

3From now on, by the “Test Group”, we mean the group of students who self–selectively chose to participate
in the PPQ approach.

4Similar to the note mentioned on the “Test Group”, from now on, any reference to the “Control Group”
corresponds to the student cohorts who freely chose to opt out taking the PPQ.
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seven questions provide a five–scale range of “strongly agree”, “agree”, “neutral”, “dis-

agree”, and “strongly disagree” per question. These questions are listed as follows:

1. Instant feedback on my response to each question was effective.

2. I found the personalized prescriptive quiz (PPQ) approach beneficial.

3. The PPQ approach helped me clarify concepts I had failed to understand earlier.

4. The PPQ approach presented questions in a logical order.

5. The PPQ approach helped me to proceed to advanced concepts more confidently.

6. After taking the personalized prescriptive quiz (PPQ), my performance in the

normal test improved substantially.

7. I like to see such an approach in other courses.

The remaining four descriptive response questions are:

8. What aspects of the system did you find more beneficial?

9. What aspects of the system could be improved?

10. What other types of personalized quizzes do you recommend to be considered in

the future?

11. How can the overall system be improved?

• Part B — is applicable for those who opted not to take the PPQ and is comprised of

four descriptive response questions as follows:

1. What are your reasons for choosing not to take the Personalized Prescriptive

Quizzes (PPQs)?

2. Do you think taking the PPQ may have impacted your score in the final test (after

the PPQ)?

3. Which concepts of the course did you experience the most difficulties?

4. How can the course learning outcomes be improved?

Among the collected responses to the key question in part A “What aspect(s) of the

system did you find more beneficial?” (question 8, part A), the top five responses being

instant feedback and explanation, personalization, identifying misunderstood concepts, the
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variety of questions, and ease of use. Interestingly, even the majority of students in part B

who opted out (63.5%) also answered “yes” to the question “Do you think taking the PPQ

might have impacted your score in the final test?”.

95

85

91

98

99

75 80 85 90 95 100

PPQ Survey Results

instant feedback on my answers

beneficial approach

made me more confident by removing my misconcep"ons  

performance was improved

should be applied in other courses

Figure 6.2: PPQ Survey Results

Figure 6.2 illustrates the responses to the five Likert scale questions, where:

• 99% found instant feedback to their responses useful,

• 98% benefited from the PPQ intervention,

• 91% found that the PPQ helped them to correct their misconceptions and made them

more confident of their progress,

• 85% acknowledged PPQ has impacted their performance positively, and

• 95% of the novices surveyed wanted the PPQ to be extended to other courses, mainly

because they found the personalized assessment was enjoyable and beneficial.

6.5.2 Quantitative Results

The impact of applying the PPQ approach on students’ performance in their final exam and

post–tests is elaborated in this section. Nearly 64% of enrolled students opted to participate

in the PPQ research project and are labeled the Test Group, and 36% opted not to participate
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and are referred to as the Control Group. Please kindly note that as per the ethics approval

process in getting access to students’ data, it was ethically unfair to choose students delib-

erately for test and control groups. Thus, we asked students to freely choose whether or not

they want to be part of the PPQ experiment (forming two self–selecting groups). Therefore,

both of the test and control groups refer to the self–selecting student groups who chose to

take PPQ, and opted out, respectively5. The two–tailed t–test was selected because we had

two groups and one independent variable (the impact of applying the PPQ approach) to be

assessed. The p − value was calculated with the standard confidence of α = 0.05. The null

hypothesis was “HO: There is no significant difference between the control and test groups

in presence of the PPQ approach” which means the improvement from PPQ in the control

group is the same as that of the test group. The improvement to student performance was

computed based on the difference between pre and post–class tests.

Table 6.4 demonstrates the results for the control and the test groups in pre and post–

tests, both carrying a total of 10 marks. The test group took into consideration (a) all PPQ

takers (regardless of their PPQ marks), and (b) those with PPQ scores ≥ 70. The test group

students with PPQ ≥ 70 were awarded a bonus (2 marks) to encourage weak students to

repeat the PPQs. The # of Students column refers to the number of participants in each

group. The Improvement Difference and the Improvement % columns illustrate the actual

improvements and the percentage improvements for the control and test groups. In addition,

the p − value for the improvements in the two test groups compared to the control group

is computed with the confidence of α = 0.05. As per the last two rows of the Table 6.4,

both cases developed p − values less than 0.05 that demonstrate PPQ’s strong significance

on students’ performance, and therefore the null hypothesis (HO) is rejected. This result

justifies the positive impact of adopting the PPQ approach on students’ post–test results.

Next, other analytical implications of this study are elaborated. First, each one of the

control and test groups’ performance in their final exam responses (broken down into smaller

ingredients) are discussed, the correlation between the test group and their overall grades is

investigated to further justify the positive impact of adopting the PPQ approach on different

clusters of students (from strong to weak), and finally, the performance of undergraduate

and postgraduate students is compared and their academic behaviors are analyzed.

Table 6.5 depicts the comparative performances of the test and the control groups in the

three equally weighted sections of the final exam (ie. the Multiple Choice Questions, the Short

5“Test Group” – those students who chose to be part of the PPQ experiment, and
“Control Group” – those who opted out.
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Table 6.4: PPQ’s Impact on Class Test Results

Pre–Test Post–Test # of Students Improvement Improvement %
(10) (10) Difference

Control Group1 4.6 5.08 96 0.48 10%

Test Group (a)2 6.26 7.42 175 1.16 19%

Test Group (b)3 6.41 7.52 151 1.11 17%

% Difference4 36.09% 46.06%

Significance (p-value)5

Control1 vs. Test Group (a)2 0.003516*

Control vs. Test Group (b)3 0.007592*

1 Non–PPQ Takers 2 All PPQ Takers 3 PPQ Takers with ≥ 70 Marks on Their PPQ
4 Control Group vs. Test Group (a) 5 α = 0.05 * p− value < 0.05

Table 6.5: Control and Test Groups’ Performance in Final Exam

MCQ (10)1 SAQ (10)2 OOP (10)3 # of Students

Control Group 4.35 4.93 1.91 99

Test Group 6.95 7.74 4.12 175

Difference 59.77% 56.99% > 115% –

Statistical Significance4 1.13091E − 11 4.73681E − 10 4.50746E − 09 –

1 Multiple–Choice Questions. 2 Short–Answer Questions (Code Fragments).
3 Object–Oriented Programming (Problem–Solving) Questions.
4 p− value of the t–test

Answer Questions, and the Object–Oriented Programming Questions), which carried 30% of

the overall course marks. Please note that both student groups performed poorly in the

object–oriented programming (OOP) questions which were mainly focused on the students’

problem–solving skills, where they were asked to develop a complete Java program based on

the specified requirements. Nevertheless, as the Difference row of the Table 6.5 represents,

the difference between test and control groups is the highest in the OOP section which

demonstrates that the PPQ approach can contribute to improvement in problem–solving.

Next, the correlation between the PPQ performance and the overall grade for the test

group (63.8% of the total enrolled students) who took part in the PPQ at least once is

calculated. We were mainly interested in identifying the different categories of students in

our diverse cohort, and how best we could fine–tune the PPQ to meet their learning needs.
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Specifically, we aimed to study whether promoting engagement through repeated attempts

to get bonus marks was an effective strategy. Figure 6.3 shows a positive correlation of 0.49

between the PPQ and the final marks, which reveals engaging in PPQs and getting student

specific feedback has a positive overall impact on learning outcomes. Figure 6.3 also reveals

three main clusters: (1) the red cluster to the right shows that the majority of students who

got high marks in PPQs also did well overall in the course, (2) the students in the blue cluster

on the left, however, reveals that there are a number students who performed poorly in the

exam despite their success in PPQs. These students may be the ones repeating the PPQs

blindly to get the bonus marks without making any attempts to clarify their misconceptions.

Hence, we may limit the permissible number of repeated PPQ in future, and (3) the third

yellow cluster, in the bottom–right of the graph, shows a handful of students doing well in the

course despite their low PPQ scores. These are probably the more confident students from

the high band who may have attempted the PPQ once or discontinued midway perceiving it

to be of little value. Though such students were not our main target group, it revealed the

need to develop more PPQ options to challenge our top students.

We also sought to analyze the impact of PPQ on the lower bands of our diverse student

cohort, our main target. We did this by comparing the distribution of marks in the pre and

post–tests. Figure 6.4 clearly shows the greatest impact on the two lower quartiles. The

lowest pre–test value of 24 (left) improved to 36 in the post–test (right). Also, the lower

and the median quartiles in the pre–test (56 and 68) increased to 64 and 76, respectively, in

the post–test. Figure 6.4 also reveals changes in the upper bands though not to the same

extent. These results suggest PPQ is an effective instrument for dealing with diverse student

cohorts.

Also, to compare the performance of the students who took PPQ (depicted in Figure 6.4)

and those who opted out, lets provide the non-PPQ takers results as well. According to our

data-set, the non–PPQ takers results are as per Table 6.6.

6.5.3 Discussion

The student feedback and performance improvements have shown adaptive prescriptive quizzes

generated by such a framework can help boost the confidence of stragglers and help narrow

the differences in diverse student cohorts. The analysis of exam results suggests a frame-

work explicitly capturing cognitive levels can help novices improve their program–writing

and problem–solving skills. Improving learning outcomes, however, requires delving into
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Figure 6.3: Exam Marks vs. PPQ Marks Correlation

pedagogical issues, reasoning about misconceptions, crafting and measuring the effectiveness

of new tasks capable of effecting cognitive changes. Our web–based approach demonstrates

such efforts can be reduced by capturing and sharing misconceptions and effective tasks be-

tween institutions. The courseware, anonymized student data, and the tool for generating

PPQ will be made available to instructors on request, thus facilitating a multi–institutional

study.

Delay in ethics approval prevented us from offering PPQ early in the first run. In the

future, PPQs will be offered in the initial, middle and latter parts of the course offering, which

is likely to further improve the learning outcomes. However, learning patterns identified in

previous semesters (and not individual student data) will be the main basis for the initial
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PPQ. Another problem was that PPQ criteria of improving self–esteem gradually by varying

questions from familiar and unfamiliar concepts did not appeal to some students. To better

cater to our student diversity, we intend to give students greater control in customizing their

own learning pathways, by specifying ranges for discrimination and difficulty indexes. One

limitation of our study was that PPQ and non–PPQ groups were not formed randomly, with

self–selecting PPQ students starting with a much lower base in the pretest. However, PPQs

appear to be effective in lowering the gap between the two groups, which usually widens with

time. We also note that the PPQ, and not simply repeating the quiz, was the main reason for

improvement as both groups were allowed to repeat the standard quizzes without any limit.

In the future, we will analyze aspects of PPQs such as the time spent per attempt, between

attempts and on the number of attempts, as well as the impact of post–test outcomes. We

also plan to improve PPQ question selection by considering the impact of specific tasks in

bringing about cognitive changes.
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Table 6.6: Non–PPQ Takers Performance – Pre– and Post–Test Results (Compared To PPQ
Takers)

Sample Lowest Q1 Q2 – Median Q3 Highest

PPQ Takers (Pre–Test Results) 24 56 68 80 100

PPQ Takers (Post–Test Results) 36 64 76 84 100

Non–PPQ Takers (Pre–Test Results) 2 17 46 56 72

Non–PPQ Takers (Post–Test Results) 14 36 56 68 94

6.6 PPQ Extensions

Given students and instructors’ feedback towards the first conducted experiment of apply-

ing the PPQ, we incorporated several modifications to the PPQ approach to make it more

adaptable and responsive to their needs. These amendments can be elaborated in three main

categories as per the subsequent sections.

1. Taking into consideration major Item Analysis measures for each question designed

such as the Item Difficulty Index and the Item Discrimination to better design quiz

questions and effectively address students’ capabilities in Section 6.6.1.

2. Design the adaptive and dynamic version of the PPQ approach called the Adaptive

PPQ which dynamically designs the next question(s) in real–time. Instead of providing

the student with a static set of pre–designed questions per quiz in Section 6.6.2, the

adaptive PPQ will generate next questions based on the student’s response(s) to the

previous question(s).

3. Expanding the PPQ approach to incorporate further analytical insights for each student

– by plugging–in one novel combined predictive analytics model – and facilitate the

future intervention processes in Section 6.6.3.

6.6.1 Incorporating The Difficulty and Discrimination Indexes

To ensure a multiple choice question (MCQ) quiz is well designed, several metrics can be

used. Item Analysis Measure is one of the most prominent metrics [Gajjar et al., 2014;

Hingorjo and Jaleel, 2012; Considine et al., 2005; Sarin et al., 1998]. Using item analysis,

our approach incorporated a diverse range of metrics, but we take into account the two main
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measures: the difficulty index and the discrimination index. The following provides a short

introduction to each one of these critical metrics.

• Item Difficulty Index (p) — the proportion of students who answered the question

correctly. As it calculates the proportion of examinees’ right answers, sometimes it is

called the Item Easiness Index. It ranges between 0% – 100% and is represented in the

form of percentages. The higher the percentage, the easier the question. The optimal

difficulty range is between 30% – 70% as the questions with lower than 30% difficulty

index are considered too hard, and questions with higher than 70% difficulty index

are categorized as too easy [Linn, 2008; Pajares and Miller, 1994; Hingorjo and Jaleel,

2012]. For each question, the difficulty index can be calculated as the following:

p(qi) = (
Uc(qi) + Lc(qi)

n
)× 100 (6.1)

where:

p(qi) — is the difficulty index (in terms of the percentage) of the i-th question qi,

Uc(qi) — is the number of students in the upper group (high–performing students)

who answered correctly to the i-th question qi,

Lc(qi) — is the number of students in the lower group (low–performing students)

who answered correctly to the i-th question qi, and

n — is the total number of students within a certain class (the total number of

examinees)

Please note that the high– and low–performing student groups can be easily calculated

by having the results of all students’ responses to the exam (i.e. all questions within the

exam), sorting them in the descending order, and dividing them in half (two groups),

where the top group includes the high–performing students and the bottom group

entails the low–performing students. The high– and low–performing groups usually

contain 50% of students each.

• Item Discrimination Index (D) — is the measure of how well a question is able to

distinguish among those students who are knowledgeable and those who lack parts of

the knowledge [Pyrczak, 1973; Kehoe, 1995]. There are several approaches to calculate

the discrimination index for a given question, but the most significant one is called
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the point–biserial correlation (PBC) which takes into consideration the relationship

between the student’s response to the question (either correct or incorrect), and their

performance in the exam (exam mark/score) [Attali and Fraenkel, 2000; Hingorjo and

Jaleel, 2012]. For a question with higher degrees of discrimination, we expect that

students who performed well in the exam responded correctly to the question, while

those who performed poorly in the exam are expected to respond incorrectly to the

question. The item discrimination index ranges between [-1.0, 1.0]. In other words,

it is expected that the students in the high–performing group answer a particular

question correctly more often compared to the students in the low–performing group.

If the result was as expected, then the question is considered the one with the positive

discrimination index which translates into the D(qi) to be in the range [0, 1]. In case of

the results to be the reverse, meaning the low–performing students respond correctly to

particular questions more often than the high–performing students, then the question

is considered to have a negative discrimination index which will be a figure in the range

of [-1, 0]. There are three simple steps to calculate the discrimination index D(qi) for

each question described as follows.

Step 1) — grade students exam; then rank them based on their performance in the exam

from the lowest to the highest. then differentiate the bottom 27% and the top

27% of students to form the low–performing and high–performing student groups

(the middle–group students and those who have not participated in the test will

be excluded).

Step 2) — for each question qi, calculate its discrimination index D(qi) for the low–

performing and high–performing student cohorts (excluding the students in the

middle–of–the–road), given the following formula:

D(qi) =
U ′c(qi)

nu′
− L′c(qi)

nl
′ (6.2)

where:

D(qi) — is the discrimination index (in terms of the percentage) of the i-th

question qi,

U ′c(qi) — is the number of students in the upper group (high–performing or

the top 27% students) who answered correctly to the i-th question qi,

L′c(qi) — is the number of students in the lower group (low–performing or
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the bottom 27% students) who answered correctly to the i-th question qi,

nu′ — is the number of students in the high–performing group,

nl
′ — is the number of students in the low–performing group, and

Please note that in cases where the number of students in both high– and low–

performing groups is exactly the same, the formula is simply converted to:

D(qi) =
U ′c(qi)− L′c(qi)

n′
; nu′ = nl

′ = n′ (6.3)

Please also note that this process is similar to calculating the item difficulty index

for the question qi for the high–performing (the top 27%) and low–performing (the

bottom 27%) students and then subtracting the results as in:

D(qi) = p
U ′(qi)− pL′(qi). (6.4)

where:

p
U ′(qi) — is the difficulty index of the high–performing students for question

qi, and

p
L′(qi) — is the difficulty index of the low–performing students for question

qi

Step 3) — analyze the calculated D(qi) for question qi. For a good question in terms of

discriminating between the high– and low–performing students, the D(qi) will be

in the range [0.4, 0.6]. This means that the question is doing a reasonable job in

differentiating between the high–performers and the low–performers. The closer

the D(qi) to 1, the more discriminating the question qi is between the high– and

low–performing students, and vice versa. Questions with D(qi) values between

0 and 0.2 are considered poorly discriminating. For example, the D(qi) = 0

means that all student cohorts are performing the same (high– and low–performing

students are getting that question right or wrong similarly)! This could mean that

the particular question is either very difficult (that everybody gets it wrong), or

is too easy that all students could answer it correctly. In situations like these, we

should investigate the objective of the question.

We incorporated both the item difficulty index and the item discrimination within the

recent version of the PPQ application to help instructors easier distinguish certain student
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cohorts’ performance on each question and update the question if necessary. Furthermore,

students can be allowed to select questions based on represented difficulty or discrimination

indexes.

6.6.2 Adaptive PPQ

Another improvement to our base PPQ approach, given students and lecturers’ feedback,

is the introduction of the Adaptive PPQ approach which aims at satisfying the following

objectives:

• Providing each student with the real–time generated questions within a certain quiz,

based on their responses to the very recent question, instead of providing each stu-

dent with the pre–defined sets of individualized questions. Although the base PPQ

approach generated personalized sets of questions based on each student’s past perfor-

mance within a particular subject (by identifying their misconceptions and providing

them with questions covering those misunderstood concepts), the solution still lacked

dealing with students’ instant responses to the quiz questions to adaptively generate

next questions based on their answers within that particular quiz. With the introduc-

tion of the adaptive PPQ approach, this gap is addressed and the subsequent questions

within the same quiz will be adaptively designed based on the student’s real–time

response to the current question.

• Identifying and demonstrating each student’s “Root–Cause Concept(s)”. Root–cause

concepts are critical to developing solid knowledge as subsequent concepts are usually

constructed based on them. Therefore, targeting and rectifying root–cause concepts

become of crucial importance.

The adaptive PPQ approach relies on the base PPQ approach to generate individual

questions per student, but its policy to target the misconceptions and providing the student

with the next question within a given quiz is more adaptive and novel. As mentioned above,

the adaptive PPQ approach is based on the previously proposed standard PPQ approach in

Section 6.3. It means that the “adaptive PPQ” is another implementation of the proposed

framework’s “Logical Layer” processes in the “Physical Layer”. The overall connection among

several layers and processes within the proposed framework (from “Physical” to “Logical” to

“Conceptual” layers) was also depicted in Figure 7.1.
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Algorithm 2 Adaptive PPQ

1: procedure Adaptive-Personalized-Prescriptive-Quiz
2: AdaptivePPQ←− ∅
3: RootCause←− ∅
4: for each si ∈ S do {
5: input: si, mci, ni, mfqi, ppqi, CG
6: output: dppqi, rootCausei for si
7: topConcept←− ∅
8: nextConcepts←− ∅
9: responseCorrectness←− FALSE

10: dppqi ←− ∅
11: rootCausei ←− ∅
12: while |dppqi|< ni do {
13: while mci 6= ∅ do {
14: topConcept←− pop(mci)
15: dppqi ←− ppqi(si, topConcept, 1, mfqi, ∅, ∅, ∅)
16: responseCorrectness←− collectedResponse(qi, si)
17: if (responseCorrectness == TRUE) then
18: continue
19: else{
20: if (isRootCause(CG, topConcept)) then {
21: rootCausei ←− topConcept
22: }
23: nextConcepts←− parentConcepts(CG, topConcept)
24: nextConcepts←− prioritizeConcepts(nextConcepts)
25: push(mci, nextConcepts)

26: }
27: }
28: RootCause←− rootCausei
29: AdaptivePPQ←− dppqi
30: }
31: return AdaptivePPQ, RootCause
32: }
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According to the Algorithm 2, the system is capable of generating and disseminating the

adaptive PPQ per student. The steps towards this goal is elaborated in the following:

• The Adaptive PPQ gets the following data as its input:

S — the list of all enrolled students in a given subject. Each individual student

is targeted as si, where si ∈ S.

mci — the list of misunderstood concepts per student si.

ni — the number of questions per quiz ppqi per student si. The default is 15 as

per Section 6.3.2.

mfqi — the set of fresh questions covering the misconceptions of student si.

ppqi — the set of questions specifically designed for student si, according to Al-

gorithm 1.

CG — the concept graph which entails all thought concepts within a particular

subject in a certain semester along with their interrelationships (such as which

concept(s) is(are) the parent(s) of a given concept – the “IS–A” relationship).

and the following as its output:

RootCause which is a set of rootCauseis per each student si, demonstrating their

root concept(s) causing their misconceptions.

AdaptivePPQ which is a set of dppqis for each student si, representing the updated

sets of questions within a particular quiz to be asked based on the student si’s

response to the current question. The dppqi guarantees the instantaneous and

real–time generation of personalized questions for each student.

• The algorithm simply iterates over each student si and generates the dynamic subse-

quent questions based on their current responses as follows:

– The adaptive PPQ pops the top element (concept) from the student’s misunder-

stood concept stack (i.e. the mci).

– Having the top concept (referred to as the topConcept, the adaptive PPQ algo-

rithms calls the base PPQ algorithm (Algorithm 1) to generate only one question

for the student to be asked by calling the ppqi method

ppqi(si, topConcept, 1, mfqi, ∅, ∅, ∅),
where:
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si — is the student taking the PPQ.

topConcept — is the concept that has just been popped up from the mci

stack.

1 — is the size of the question set to be retrieved (only one question should

be returned in this case).

mfqi — the set of fresh questions covering student si’s misconceptions.

the first ∅— refers to the muqi (please refer to Section 6.3.2), and in this case

means we do not have any of those questions.

the second ∅ — refers to the uuqi (please refer to Section 6.3.2), and in this

case means we do not have any of those questions.

the third ∅ — refers to the allmuq (please refer to Section 6.3.2), and in this

case means we do not have any of those questions.

Altogether, the adaptive PPQ seeks for only one question from the PPQ algorithm

to ask the student and stores it in the dppqi set.

– The collectedResponse(qi, si) method evaluates the student si’s response to the

question generated by dppqi (which is qi). If the result is true, meaning that

the student si answered to the question correctly, the system will proceed with

generating the next question by popping up the next misconception from the mci

stack. In this case, the adaptive PPQ and the base PPQ approaches are performing

the same. However, if the student si responds to the question qi incorrectly, the

following steps are followed:

1. First of all, the system will check whether the misconception – here, the top-

Concept – is a root–cause, by calling the isRootCause method

isRootCause(CG, topConcept),

where CG is the concept graph, and topConcept is the concept that the stu-

dent si just responded to its covering question qi incorrectly. The mechanism

to detect whether a given concept is root–cause relies on two main conditions,

given the concept graph CG: (1) is the concept topConcepts the root concept

in the concept graph? This means that if a concept does not have any parents

in the CG, then it is considered as the root concept. (2) if the concept is not a

root concept, has the student si responded to its parent concept(s) correctly?

This guarantees that the corresponding concepts in the higher levels were un-

derstood properly by the student, and the current concept in the CG is the
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highest level concept that the student misunderstood. Please note that for

each student there could be more than one root–cause concept (if any).

2. Next, all the parent concepts of the misunderstood concept (topConcept) will

be retrieved, given the concept graph CG, by calling the parentConcepts

methods

parentConcepts(CG, topConcept).

The result is stored in nextConcepts to be used in the next step.

3. Now that we have the list of parent concepts of the misconception, we need to

prioritize them based on the concepts that are residing the highest within the

concept graph. This task is accomplished by calling the prioritizeConcepts

method

prioritizeConcepts(nextConcepts).

The prioritization is performed by considering the level of each retrieved con-

cept within the given concept graph. The higher the concept level, the more

important the concept is. The method takes into consideration concepts in-

terrelationships (the “IS–A” relation) in that it prioritizes concepts that are

parents of others.

At the end, the list of prioritized concepts will be stored in nextConcepts set.

4. The final step is pushing the calculated concepts to the mci stack by calling

the push method

push(mci, nextConcepts).

• Now that we have all the ingredients, we can build the RootCause and AdaptivePPQ

sets by collecting the information provided per each iteration (for each student si).

The system will return both sets to the students to clearly identify which concepts

were among the misconceptions and where they did wrong.

6.6.3 Enhancing PPQ Intervention Incorporating Descriptive and Predictive

Analytics

In the introductory programming, we incentivized the use of non–assessed PPQs and quizzes

by interleaving them with assessed tests covering the same topics. We also awarded bonus

marks to encourage students to attempt the quizzes until they attained the required stan-

dard (70%). The qualitative feedback revealed 91% of the students using the PPQs felt

more confident. In this section, we describe the techniques we have devised to enhance the
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self–efficacy of students by combining PPQs with descriptive and predictive analytics. In our

system, a fine–grained performance summary is provided in individual concepts, a form of

descriptive analytics. Such students were then able to focus on topics and concepts where

most of the misconceptions occurred. The predictive analytics allowed students to project

their overall performance at any stage of the course. The more PPQ attempts a student

made the better the expected performance in the overall progress occurs. While descrip-

tive, predictive, and prescriptive analytics provided students the ability to self assess their

performance, our research was also interested in how students perceive the tasks and their

own progress. The enhanced model, therefore, allows students to give feedback on any task,

which included the quality of questions and the explanation of solutions allowing instructors

to improve the tasks. Students were asked to rank the tasks as very useful, useful, neutral

and confusing. These data also allowed the instructors to create more useful questions for

specific concepts and student cohorts. We have also incorporated an assessed reflection task

in the system, which is enabled after students complete the required PPQs. The students

are asked to respond to their strengths, weaknesses, their main conceptual difficulties, and

how they plan to address their conceptual difficulties. These tasks provide instructors with

qualitative feedback in addition to promoting student self–reflection. Our proposed iterative

and incremental composite analytics model is shown in Figure 6.5. Each round of the iter-

ative process represents 2 weeks period and incorporates the descriptive, prescriptive, and

predictive analytics which ends up with students’ feedback and self–reflection. The upcom-

ing rounds are built on top of previous rounds as the semester proceeds. The techniques for

predictive analytics extending prior work are presented in the rest of this section.

We incorporated the following predictive analytics algorithm based on their significant

impact in the body of research in the context of education [Larusson and White, 2014;

Papamitsiou and Economides, 2014; Berland et al., 2014; Martin and VanLehn, 1995; Storey

et al., 2003; Baker and Inventado, 2014; Siemens and d Baker, 2012]: Näıve Bayes (NB),

Neural Network (NN), and Random Forest (RF). Involving the predictive component within

the framework provides more benefits to both lecturers and students. For example, by

analyzing the early performance of each student, the system can extrapolate the likelihood

of passing/failing of that student prior to the end of the semester and helps the lecturers to

devise relevant intervention mechanisms accordingly.

In this part, we mention two different experiments conducted on students’ data using

predictive methods:
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Figure 6.5: Enhanced PPQ Incorporating Descriptive, Predictive, Prescriptive Analytics
In An Iterative And Incremental Manner

1. Applying each predictive algorithm separately on the student data to assess the effec-

tiveness and accuracy of them in projecting their pass/fail likelihood — As mentioned

earlier, we adopted three predictive algorithms for this purpose – the näıve bayes, the

neural networks, and the random forest. For this part, we collected several data–sets in

terms of students interactions with the learning management systems and the provided

web–based assessments. These data–sets included 69 (ITS takers), 185 (PPQ takers),

and 241 (ITS, PPQ, in–class Online Test, and Written Tests) students, respectively.

The first two data–sets took into account students’ test scores resulted by their inter-

action with the online (web–based) assessment applications such as ITS and PPQ. The

only difference was regarding the number of students participated in those assessments.

The third data–set, however, considered more data elements including the online as-

sessment tools (ITS and PPQ), the in–class online tests, and the written in–class tests.

Given that the majority of students participated in those assessments, the number of

students in the last data–set was the highest compared to the other two. Table 6.7

represents the results of each applied predictive approach on the first (69 students) and

second (185 students) data–sets. Table 6.8, on the other hand, represents the results

of applying different predictive models on the more reach data–set with 241 students.

It seems that as the number of elements per data–set increases, so does the accuracy

of the random forest approach. Also, one can find the accuracy of the neural nets

152 (March 14, 2019)



CHAPTER 6. PERSONALIZED PRESCRIPTIVE QUIZ (PPQ) — ENHANCED WITH

DESCRIPTIVE AND PREDICTIVE ANALYTICS

Table 6.7: Applied Different Predictive Analytics Results – ITS and PPQ Only

Predictive Analytics Number of Accuracy (%)
Algorithm Students 10–fold CV1 90% Train2

Näıve Bayes 694 98.52 100

Neural Networks 69 95.58 100

Random Forest (100–DTs)3 69 97.05 100

Näıve Bayes 1855 95.67 100

Neural Networks 185 98.91 100

Random Forest (100–DTs) 185 99.45 100

1 10–fold cross–validation technique on the predictive model accuracy estimation [Re-
faeilzadeh et al., 2016; Kohavi et al., 1995; Zhang, 1993; Fushiki, 2011]. 2 90% Train-
ing Set technique [Foody et al., 2006; Jaworska et al., 2005; Boser et al., 1992].
3 The Random Forest technique with 100 Decision Trees [Pal, 2005; Svetnik et al.,
2003]. The 100 decision trees were picked based on the system’s performance in con-
verging to the optimal number. According to our conducted experiments, 100 trees
were sufficient to prevent outliers such as false positive and false negative.
4 The number of students who took ITS.
5 The number of students who took PPQ.

Table 6.8: Applied Different Predictive Analytics Results – ITS, PPQ, In–Class Online Test,
and Written Test

Predictive Analytics Number of Accuracy (%)
Algorithm Students 10–fold CV 90% Train

Näıve Bayes 241 97.51 100

Neural Networks 241 98.34 95.83

Random Forest (100–DTs) 241 100 100

approach is increasing with growing the data–set size as well. Altogether, almost all

three predictive techniques perform well with the 90% training set technique with 100%

accurate projections.

2. Combining the three mentioned algorithms in one hybrid predictive model and apply

it on different aspects of student data to predict more complex sets of data such as

students’ pass/fail likelihood, their knowledge level estimation, and the likelihood of

students to withdraw the subject — is further elaborated as one future work in Sec-

tion 7.2.

153 (March 14, 2019)



CHAPTER 6. PERSONALIZED PRESCRIPTIVE QUIZ (PPQ) — ENHANCED WITH

DESCRIPTIVE AND PREDICTIVE ANALYTICS

6.7 Tailoring Quizzes to Specific Cohorts

Educational institutions are catering to increasingly diverse cohorts in terms of age group,

culture, background, and experience, which are known to impact how they learn and progress

through the course. These groups may exhibit different learning patterns, with different

groups responding differently to different types of intervention. Studying and classifying the

learner behaviors through analytics can help to tailor the learning instruments to improve

the overall learning outcomes. While weekly quizzes and personalized quizzes appear to have

benefited the vast majority of students the progress has not been uniform for different groups.

This section attempts to identify different learning patterns with the aim of improving the

design of personalized quizzes in the future.

We chose the software engineering course, as it is a core for all the students in the

computer science and IT discipline. Over 500 students from different levels (postgraduate

and undergraduates) and different disciplines (games, computer science, software engineering

and IT) take this course offered in two semesters. Another reason for choosing this course is

because it imparts many of the soft and technical skills needed for employability. The quizzes

in this course were therefore classified into different concepts and cognitive levels defined by

the Blooms taxonomy. The pedagogy exploited intrinsic and extrinsic motivation to improve

learning outcomes; the former by ungraded quizzes while the latter by class design tests and

the final exam. Moreover, quizzes were made to cover the same concepts as the class tests

that followed them and our analysis attempted to study whether combining intrinsic and

extrinsic motivation lead to improved learning outcomes.

The learning outcomes at synthesis–level constructivist tasks were measured through

volunteer participation, where students were asked to take a pre– and post–test together with

design tasks through the active learning tool. Both tests covered Comprehension, Application

and Analysis level questions with similar difficulty levels. The pre– and post–test results were

released only after the completion of the active learning tasks. Only 68 of the 94 students

who volunteered initially completed both design tasks and tests.

Our results demonstrated that constructivist tasks can improve the performance of all

students. The number of students in the 90–100% range went up from 0 to 6, while those

failing dropped sharply from over 30 to less than 15. Based on these values, we reject the

null hypothesis ”No significant improvement after the active task” as the p-value of 0.000269

is less than 0.01 (with the standard confidence of α = 0.05).

To study whether active learning has a long–term impact, Figure 6.6 compares the per-
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formance of the study group with the control group (the remaining 172 students) in the 4

manual tests (use–case, class, activity, sequence), and the exam (sequence). Note that the

study group, which had 13% weaker performance than the focus group prior to the interven-

tion, performed 4% better in the subsequent test and the final exam.

0
1
2
3
4
5

Study

Control

Active Task for Control Group 

Figure 6.6: Long–term Impact of Constructivist Tasks

Learner characteristics is the main factor in determining the success of formative feed-

back [Shute, 2008]. Initially, we isolate and analyze engagement and performance levels for

groups with major differences in background and prior experience. Specifically, we study

the differences between undergraduates (UGs) and postgraduates (PGs). In the second part,

we use learning analytics to analyze engagement and performance patterns to extract differ-

ent student clusters. Figure 6.7 compares the performance of students in their exams and

quizzes. The X–axis represents the exam marks for design, the Y–axis the sum of all quiz

marks adding up to 45, and the Z–axis is set to either 1 for UGs or 2 for PGs. PGs (2 in the

Z–axis) evidently performed better than UGs with the most quiz and exam marks in the top

right quadrant. Moreover, many UGs have less than 15 for design in the exam while PGs

have none.

Figure 6.8 is color–coded to visually depict the differences between UG and PG engage-
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Figure 6.7: The Overall Undergraduates vs. Postgraduates’ Performance in Quizzes and
The Exam

ment and performance, where UGs and PGs are plotted in blue and red, respectively. PGs

have only 5 students with exam marks below 20, while UGs have 18. It is evident that PGs

perform better in tests with only two students getting less than 50%. We posit the main

reason was their level of motivation, exemplified by over 90% doing the quizzes regularly. UG

performance in quizzes, tests, and exams appears to be very diverse. The strong correlation

between poor coursework (quizzes and tests) and the final exam makes it possible to identify

at–risk students early.

Next, we investigate students’ performance in multiple assessments to arrive at different

clusters, using the k–means algorithm. We attempted a different number of clusters for the

k–means but found 5 to be the optimal number, as with others using different data–sets

[Nyroos et al., 2016]. Figure 6.9 illustrates the relation between the quizzes and the exam

marks, along with their trend lines. The student cohort in cluster 1 performed below average

in both the exam and class quizzes. These students are probably the UGs who are lacking

motivation and are not engaging in class and project activities. A common reason cited by

such students is the high level of abstraction in software engineering. Such students are likely
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Figure 6.8: UG vs. PG – Performance Comparison in Quizzes, In–class Tests, and the
Exam

to benefit from enrolling in additional programming courses prior to software engineering.

Students in cluster 5 performed very poorly in their exam (as per the sharp plummeted

green trend line) though they managed to do well in their quizzes when compared to cluster 1

students. These students are likely to have taken the quizzes several times to get the answers

correct, but without paying attention to feedback. Students in cluster 4 performed above

average in their exams though faring poorly in their quizzes. These are probably the students

who are not disciplined enough to do the quizzes regularly and therefore not reaching their

full potential. Cluster 2 students are likely to be the student group who are well motivated to

complete all the quizzes and performed above average in the exam. Cluster 3 represents the

highly motivated group who benefit the most from all the formative feedback while suggesting

improvements and offering their own questions. These students naturally performed the best

in the exam.

The correlation between the exam and in–class tests are depicted in Figure 6.10 along with

their trend lines. The students were grouped into 5 clusters as before and the clusters were

similar though a stronger correlation was observed between the exam and tests. Generally,
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Figure 6.9: The Exam Marks vs Quiz Marks – Cluster of 5 Student Cohorts

students who did poorly in their in–class tests did poorly in their exams and vice–versa. The

stronger correlation could be the result of many factors. Firstly, students were allowed to

take the test only once, and under exam conditions thus the closer similarity is consistent.

Secondly, most students took the tests only after doing the quizzes and therefore the design

activities also benefited from the many cognitive tasks.

To sum up, learning analytics has been used to predict student results, identify areas of

misconceptions and track student engagement levels. In our work, learning analytics helped

to identify the extent to which formative assessments foster students’ design skills. It is

evident, manual tests, with high correlation with exam performance, play an important role

in building up good design skills. However, formative quizzes appear to play an equally
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Figure 6.10: The Exam Marks vs In–Class Test Marks – Cluster of 5 Student Cohorts

vital role in preparing students for manual tests and the exam. For example, a formative

quiz highlighting coupling and cohesion or contrasting distributed and centralized design can

help students come up with better designs. Our postgraduate students with much higher

quiz completion rates have also scored 10% higher in the exam. Our analysis also reveals

performance in exam correlates well with formative quizzes at higher cognitive levels. It is

therefore beneficial to develop and share such tasks in software engineering. Many such tasks

span across multiple domains, common with most authentic design problems in software

engineering.

Active learning tools combining a constructivist approach with immediate and holistic

feedback appear to improve both short and long–term learning outcomes. Automated forma-
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tive feedback has many advantages over manual marking. Firstly, the marking of paper–based

designs can be very subjective as marker perceptions may vary. Other benefits include instant

feedback and reduced marking costs. Our active learning tools, though effective, need further

work to make them more open–ended. Crafting pedagogically sound active learning tasks

require much initial effort, but these tasks can be reused and shared without any additional

costs.

Formative feedback can be more beneficial when tasks are designed considering the type

of learners. Our analysis of student performance across quizzes, tests, and the exam reveals a

number of student clusters with common characteristics. From our analysis, class tests appear

to be more important for our diverse undergraduate students, as they are less motivated to

self–learn through quizzes. With increasing diversity of incoming undergraduates, learning

analytics is likely to play a vital role in matching student needs to educational resources.

6.8 Summary

In this Chapter, a personalized prescriptive quiz (PPQ) approach was introduced as one im-

plementation of the physical layer to put together all the required ingredients of the proposed

analytics–driven framework of Chapter 5. By doing so, the fourth research question

Research Question 4)

How do we devise and link the physical layer components enforcing higher–

level processes (linking the physical, logical and conceptual layers altogether)?

was addressed by collecting students test results within a particular semester using the

web–based PPQ approach, and providing the students with the individually designed set of

questions (quizzes) to help them identify and then rectify their misconceptions.

In addressing the 4th research question, we made a number of contributions and devised

a new integrated framework for learning analytics highlighted as follows.

• The personalized prescriptive quiz approach — we made automatic remediation for

large cohorts of novice programmers possible which resulted in both short and long–

term gains and greatly improved student self–efficacy. The PPQ approach also made it

possible to identify and correct invalid mental models blocking further progress. The

novelty of our model is that it allows dependencies between concepts to be embedded
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into the system allowing questions to be generated based on student responses. In-

corporating difficulty and discrimination indexes allow diverse students to specify the

most appropriate learning pathway. Average students may initially choose questions

with low difficulty and discrimination index before proceeding to more difficult ones.

The learner characteristics identified allow PPQs to be adjusted for specific cohorts

based on their study patterns and motivational levels.

• The iterative and incremental enhanced PPQ combining descriptive, prescriptive, pre-

dictive, feedback and reflection components — the enhanced PPQ approach incorporat-

ing main analytics techniques provides both instructors and students with invaluable

feedback and analyses to improve their performance throughout the semester.

• The physical layer combining prescriptive, predictive and descriptive analytics compo-

nents provides a systematic approach to translate logical layer processes into physical

layer modules in the learning and teaching domain.

Later, by taking into consideration the valuable feedback from the students and lecturers

participated in PPQ experiment, and to address further requirements of a dynamic and

adaptive learning analytics solution, the base PPQ approach was expanded incorporating

the following features:

• Incorporating the item difficulty and discrimination indexes — to provide more enriched

sets of questions to each student.

• Adaptive PPQ — to make the base PPQ approach more adaptive, dynamic and further

adapted to the real–time responses of the students to the previous questions.

• Combined predictive model — to incorporate the capacity of several predictive analyt-

ics techniques and help both students and lecturers project their likely performance

at the end of a certain semester and provide the ground for effective and informed

interventions.

• Finalizing the overall analytics–driven framework of Chapter 5 — to frame the whole

analytical solution to address the major requirements of learning analytics.

In the next chapter (Chapter 7), we revisit the research questions of this thesis and our

main contributions, along with the future research directions of the work.
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Conclusions and Future Work

“A story really is not truly a

story until it reaches its climax

and conclusion.”

Ted Naifeh

This thesis proposed a three–layered integrated analytics framework to address the key

needs requirements of educational institutions towards adopting learning analytics solutions.

The framework incorporates the conceptual, logical, and physical layers. The conceptual

layer includes a federated composite analytics architecture (comprising descriptive, predic-

tive, and prescriptive analytics) to cover the high–level analytics requirements of educational

institutions. The logical layer incorporates the 10 key learning analytics processes. For the

physical layer, we demonstrated one specific formalization/implementation of the framework

(the PPQ approach) and linked it to other layers. We further evaluated our framework

using real student data in different course offerings, and the results demonstrated the pos-

itive impact of our approach on improving student knowledge, self–esteem, and academic

experience.

The following section (Section 7.1) revisits the key research questions and presents the

contributions which address the research questions. Section 7.2 presents some related future

improvements and research directions.

7.1 Research Objectives Revisited

• Research Question 1) How do we design an integrated and adaptive analytics architec-

ture?
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An adaptive and composite analytics architecture incorporating key analytical tech-

niques (descriptive, predictive, and prescriptive) with dynamic feedback mechanisms

was introduced to address this research question. The architecture is elaborated upon

in Section 4.3 of Chapter 4. The novelty of the work can be depicted as: (1) incorporat-

ing three analytics techniques in one seamless architecture working together with their

interrelationships, (2) constructing the prescriptive analytics part with simulation, op-

timization, and evaluation components and linking them together, and (3) producing

the adaptive and timely courses of actions by providing certain feedback lines among

analytics components.

• Research Question 2) How do we incorporate the proposed integrated analytics architec-

ture in the context of learning analytics (proposing the analytics framework for learning

analytics)?

Key learning analytics processes were captured and a four–dimensional learning ana-

lytics reference model (LARM) was introduced in Chapter 3, to address this research

question. The LARM’s dimensions were designed as (Section 3.3): (1) what? – that

accounts for collecting, recognizing and analyzing diverse data types, (2) who? – which

reflects the main stakeholders of the system (students, instructors, and educational in-

stitutions), (3) how? – that refers to certain analytics techniques deployed to analyze

educational data, and (4) why? – which mentions the main learning analytics require-

ments and the processes responsible for them. We captured 10 major learning analytics

processes and illustrated their interrelationships in Section 3.3.

• Research Question 3) How do we formalize learning analytics processes in the proposed

framework (connecting learning analytics and prescriptive analytics components)?

By specializing the composite analytics architecture in the context of education, an

integrated analytics framework comprising the conceptual, logical, and physical layers

was proposed to address this research question. The framework is elaborated in Sec-

tion 5.2 of Chapter 5. The proposed composite analytics architecture in Chapter 4

constructs the conceptual layer of the framework. All key captured learning analytics

processes (10 processes) are implemented in the business process model and notation

(BPMN) specification and put within the logical layer. Each component of learning

analytics processes in the logical layer was also linked to their corresponding conceptual

layer components.
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• Research Question 4) How do we devise and link the physical layer components enforcing

higher–level processes (linking the physical, logical and conceptual layers altogether)?

To address this research question, the physical layer of the proposed framework was

constructed as a result of formalizing and implementing the components of the con-

ceptual and logical layers in real application scenarios. A novel adaptive learning ap-

proach, the personalized prescriptive quiz (PPQ), was also proposed (Chapter 6) and

later was enhanced by incorporating descriptive, predictive and prescriptive analytics

components. The PPQ accounted for identifying students’ misunderstood concepts,

projecting their likely performance at the end of the semester, and providing certain

intervention mechanisms to help them rectify their misconceptions. By linking the

physical layer’s components to their corresponding logical and conceptual layers, the

integrated analytics framework proposed in Chapter 5 was finalized.

As a final remark regarding each layer of the integrated analytics framework, the con-

ceptual layer is designed to address the high–level analytical requirements and therefore is

kind of a fixed layer which is specialized for different application scenarios (in our case, the

learning analytics and the educational institutions). This means that the conceptual layer

will not change and serves as an abstract domain–agnostic analytics component which may

be applied in a wide range of analytics scenarios. The logical layer, on the other hand, is

domain–specific and is focused on the learning analytics processes and aims to cover as many

requirements as possible. This layer might be adapted to a particular analytics context (in

our case, the learning analytics). Finally, the physical layer, which is concerned with the im-

plementation and formalization of multiple learning analytics processes in certain application

scenarios, may frequently change depending on the emerging requirements of the application.

Given the implementation of the physical layer, Section 7.1.1 brings together the various

ingredients of the proposed analytics framework of Chapter 5 to construct one integrated

learning analytics solution for use by educational institutions.

7.1.1 Finalizing The Framework Layers

By putting together the formalized implementation of the physical layer, we have all the

required ingredients to finalize the proposed analytics framework, which helps us to build

our learning analytics–based solution. Sections 7.1.2, and 7.1.3) are dedicated to constructing

the entire framework, incorporating the conceptual, logical, and physical layers.

164 (March 14, 2019)



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1.2 Linking The Physical Layer To The Logical Layer

The last step to finalize the framework is to connect the implemented physical layer to the

remaining layers of the framework. This task is accomplished as depicted in Figure 7.1 for

the Intervention Process described in Section 5.4.4. For the sake of simplicity, only the major

components of the intervention process were illustrated.

As shown in Figure 7.1, the intervention process was implemented within the physical

layer along with its major components – the simulation, the evaluation, the optimization, and

the PPQ generation elements. Each one of these components is related to their corresponding

components in the logical layer using the “IS–A” relationship. The interrelationships among

several logical to conceptual layer components were further elaborated upon in Chapter 5.

Altogether, all learning analytics processes were implemented within the physical layer and

connected to their corresponding logical layer components. Figure 7.1 also represents the

“IS–A” relationship that occurs between the physical to logical, and the logical to conceptual

layers.

7.1.3 The Overall Analytics–Driven Framework

The whole thesis and its contributions are summarized in Figure 7.2.

Figure 7.2 shows how the proposed framework is capable of covering the major require-

ments of learning analytics, by marrying the two worlds of analytics and education. The

conceptual layer of the framework is responsible for modelling the key analytical approaches

of the analytics world, that is, the descriptive, predictive, and prescriptive analytics. In

addition, the logical and physical layers are focused on addressing the education world re-

quirements, especially the learning analytics, by mapping the proposed composite analytics

architecture of the conceptual layer into the education world scenario. The 10 learning ana-

lytics processes were represented in BPMN specification, and their corresponding components

were implemented and formalized within the physical layer, such as the PPQ.

7.2 Future Research Directions

While the proposed integrated framework for learning analytics is able to support adaptive

learning, there remain several opportunities for future improvements. The following list high-

lights some key promising future research directions in relation to our proposed framework.

• Addition of learning analytics stakeholders. LA stakeholders, also referred to as system
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actors (such as instructors, students, educational institutions), were investigated as part

of the second dimension of the learning analytics reference model, introduced in Sec-

tion 3.3. Their representation within each analytics layer, as well as their contributions

towards the entire framework, may be elaborated upon.

• Covering more learning analytics requirements within the logical layer. As an interest-

ing extension to this work, further learning analytics processes and techniques could

be covered within the proposed framework. Some of these extensions could ostensibly

address ethics and privacy concerns in the area of learning analytics, within the logical

layer. Although there is no one–size–fits–all solution for all learning analytics require-

ments, taking the ethics and privacy issues into account could make the framework

more adaptable to the ongoing needs of educational institutions. Depending on any

emerging learning analytics requirements, the corresponding modifications are expected

to be applied within the logical and the physical layers, accordingly.

• Further physical layer modification/expansion. Given the high diversity of educational

application scenarios, several expansion directions to the physical layer can be consid-

ered. The following lists some major feasible extensions or modifications with respect

to the physical layer.

– The proposed hybrid predictive analytics approach (Section 6.6.3, Chapter 6)

can be applied on more courses and additional student data. By collecting more

data, the accuracy of the predictive model can be improved in terms of projecting

students’ performance at the end of each semester.

– We applied the PPQ approach in weeks 9-11. It can be offered in the initial, middle

and final weeks of the course offering. Given that the PPQ approach is enriched

with analytical power (incorporating descriptive, predictive, and prescriptive ana-

lytics), it is more likely to promote adaptive learning by helping both students and

instructors to achieve their objectives. Furthermore, applying the PPQ approach

in the earlier weeks of the semester will allow students to manage and rectify their

misconceptions in a timely and stress–free manner. It also enables instructors to

identify at–risk students earlier, to perform relevant interventions.

– One issue with the PPQ in improving self–esteem gradually was that varying

questions from familiar to unfamiliar concepts did not appeal to some students.

To better cater to our student diversity, we intended to give students greater
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control in customizing their own learning pathways. One step done within our

research was to specify ranges for discrimination and difficulty indexes. The other

step, the future work, is to give the students the option to choose from multiple

PPQ approaches (such as standard and adaptive PPQs) instead of just enforcing

them to participate in the standard or the adaptive PPQ experiments.

– In future, other aspects of the PPQ, such as the time spent per attempt, between

attempts, and on the number of attempts, as well as the impact of post–test

outcomes, should be incorporated and analyzed. This way, the instructors can get

access to each student’s history of attempts, along with the number of times they

participated with the corresponding score per quiz. This provides a more enriched

data set, to effectively design the next sets of personalized quizzes and perform

more focused and relevant interventions pertaining to the students’ needs.

– Currently, the quiz questions are tagged with their associated concept(s). One

useful extension is to annotate and tag the questions with their corresponding

learning resources as well. Having the question meta–data would allow the PPQ

to instantly provide formative feedback, linking relevant study materials to each

student, in the cases where incorrect answers are presented to the quiz questions.

• Personalized course management system for future recommendations. By taking into

consideration each student’s performance within a given semester or throughout their

educational journey, the framework could recommend them which courses they might

select in future. This way, the system acts as an intelligent course management sys-

tem (CMS). With more accurate predictions and the wealth of students’ academic

records and aptitudes, the system could provide individual students with a personal-

ized curriculum to foster and promote adaptive learning. The personalized CMS can

also contribute to better student retention rates and improved student experience.
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