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In this paper we study the periodic solutions bifurcating from a non-isolated zero-Hopf equilib-
rium in a polynomial differential system of degree two in R3. More specifically, we use recent
results of averaging theory to improve the conditions for the existence of one or two periodic
solutions bifurcating from such a zero—Hopf equilibrium. This new result is applied for studying
the periodic solutions of differential systems in R3 having n-scroll chaotic attractors.
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1. Introduction and Statement of the Main Result

In this paper we study the periodic orbits bifurcating from a non-isolated zero—Hopf equilibrium of a
three-dimensional autonomous differential system, it means that the differential system has a continuum of
equilibria containing a point with a zero eigenvalue and a pair of purely imaginary eigenvalues. The zero-
Hopf bifurcation is an interesting subject in differential systems and have been studied by Guckenheimer
[1981]; Guckenheimer & Holmes [2013]; Scheurle & Marsden [1984]; Kuznetsov [2013] and many other
authors. Usually the zero-Hopf bifurcation is a two-parameter unfolding of a three-dimensional autonomous
differential system with an isolated zero—Hopf equilibrium. It is known that some complicated invariant
sets can bifurcate from an isolated zero-Hopf equilibrium, for instance zero-Hopf bifurcation can imply
local birth of “chaos”, see for instance Scheurle & Marsden [1984].

Most papers study isolated zero—Hopf equilibrium. One of the few works about non-isolated zero—Hopf
equilibrium was done in 2012 by Llibre & Xiao [2014]. The authors studied the periodic orbits bifurcating
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from the non-isolated zero-Hopf equilibrium located at the origin of the following family of polynomial
differential systems of degree two

dU o
—r =AU —wV + | Z aijn(e) U VIWE,
i+j+k=2
dVv itk
—- =wU +eAV + > b U VIWE, (1)
i+j+k=2
AW PP
5 :euW+' Z cijk(e)U'VIW?E,
i+j+k=2

with ¢ =1 and where the coefficients functions are of the form

1
aijk(s) = Zaijkl&'l + 0(62),
=0

1
bijr(e) =) bijme' + O(?), (2)
1=0

1
cijk(e) = Z cijrie’ + O(e?).
1=0

When ¢ = 0, this system has a continuum of equilibria which fill a segment, or a half-straight line.
As shown by Llibre & Xiao [2014, Proposition 2.2 | this continuum of equilibria will have a (non-isolated)
zero-Hopf equilibrium at the origin if and only if system (1) satisfies the following hypothesis

(Ho) : apo20 = boo20 = coo20 = 0.

In a small neighbourhood of the origin the authors reduced system (1) to a 2w-periodic differential
system using a kind of cylindrical coordinates and a scaling of the variables. Then second order averaging
theory was used for providing explicit conditions for the existence of one or two periodic orbits bifurcating
from the non-isolated zero—Hopf equilibrium, see Llibre & Xiao [2014, Theorem 2.4].

We shall use recent results obtained in the averaging theory to weak the hypotheses of Llibre & Xiao
[2014, Theorem 2.4] improving those results. Mainly their result was obtained assuming the following
hypothesis

(H1) : c2000 = €1100 = €o200 = 0.

We extend these results giving sufficient conditions for the existence of e—families of periodic orbits bifur-
cating from the origin of system (1) using the weaker hypothesis
(H1) : 2000 = —C0200-

This will be our main result, see Theorem 1. In section 2 we formulate the averaging theorem (see Theorem
2) used for proving our main result. We use averaging theory in this paper, although the same kind of
study could be done by Melnikov method. In particular, the Melnikov functions recently developed by
Tian & Han [2017] could also be applied here. In section 3 we shall apply Theorem 1 to study three
polynomial differential systems of degree two that cannot be studied using Llibre & Xiao [2014, Theorem
2.4]. More precisely these three polynomial differential systems are system (11) proposed by Li [2008],
system (12) provided by Pan et al. [2010] and system (10) proposed by Elhadj & Sprott [2013]. For certain
coefficients values all these systems present n-scroll chaotic attractors. They also have non-isolated zero-
Hopf equilibria, and we shall use Theorem 1 to give sufficient conditions for the existence of periodic orbits
for these systems.

Our main result is the following.
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Theorem 1. Assume that (Hg) holds. Then system (1) has a non-isolated zero—Hopf equilibrium at the
origin when € = 0. Furthermore if the assumption (H;) holds, there is €* such that 0 < e* < 1 and for any
€ and 0 < e < ¥, the following statements hold.

(i) System (1) has one family of periodic orbits bifurcating from the origin if one of the following
conditions holds:

(a) @010 + bo110 = 0, ABy < 0 and (B + By) # Bip,
(b) a1o10 + bo110 # 0, A =0 and Q1Q2 < 0,

(c) a1o10 +bor1o # 0, Q1 =0 and QaAp <0,

(d) a1010 + bo110 # 0, Q2 =0, A > 0 and Q1 <0,

e) aio10 + bo11o # 0, 3Q% —4Q1 A # 0, Q2 # 0, uA > 0 and Q1 < 0,
f) a1010 + bo11o # 0, 3Q3 — 4Q1 A # 0, Q2 # 0, puA < 0 and Q1 > 0.

(ii) System (1) has two families of periodic orbits bifurcating from the origin if one of the following
condition holds:

(8) ai010 + bor1o # 0, 3Q3 — 4Q1Au #0, Q2 <0, A >0 and 0 < Q1 < 3Q3/(4 ),
(h) ai010 + bor1o # 0, 3Q3 —4Q1 A\ # 0, Q2 > 0, A < 0 and 3Q3/(4\p) < Q1 <0,

—

where

B1 =4a2000 (b2000 + 2co110) — 2a0200(@1100 + 2bo200 — 4¢o110)
—c1100(@1010 + 11bo110 — 8cpo20) — 10¢2000 (@0110 + b1010)
—2a1100a2000 + 2 (bo200 + b2000) (b1100 — 4c1010) 5

Bs =2a0200 (181azp00 + 67b1100 — 80¢c1010) — 2a1100(61b0200
+67b2000 — 8co110) — 16¢1010(8az000 + b1100) + 72c1100(@0110
+b1o10) + 122a2000b1100 + 2352500 + 503100 + 12303000 + 32(4bo200
+5b2000) o110 — 123b2500 — 5b2100 — 235b2000 — 3626020002000,

B3 =ao200 (a1100 — 233bo200 — 47b2000 + 112¢0110) + @1100(7a2000
+b1100 — 8c1010) — 303200000200 — 137200002000 + 128az000c0110
—8b1100c0110 + 16 (2b0200 + b2000) 1010 + 36C1100 (C0020 — 2b0110)
+55b1100b0200 + 490110002000,

By =4a2000 (b2000 + 2co110) — 2a0200 (a1100 + 2b0200 — 4c0110)

—c1100 (@1010 + 11bo110 — 8co020) — 10¢2000 (@0110 + b1010)
—2a1100a2000 + 2 (bo200 + b2000) (b1100 — 4€1010) 5

Q1 = (a1010 + bo110) (2000 (48c2000 (@1010 + bo110) + B3) — Baci1oo)
+3B1 (Bl + B4),

Q2 = — 2 (a1010 + bo110) (c1100(pt — 2A) + 2w (co,2,0,1 + €2,0,0,1))
+B1(A+ p) + By

2. Averaging Theory and Proof of Theorem 1

To find the periodic orbits bifurcating from a non-isolated zero—Hopf equibilbrium of the differential system
(1) we use averaging theory. The averaging theory has a long history and for a modern exposition of this
topic the reader is addressed to Murdock et al. [2007].

We are interested in the formulation of the averaging theory for systems with non-trivial unperturbed
part, i.e., we consider the differential system
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i(t) =Fy(t,x) + eFi(t,2) + 2 Fa(t, ) + 2 R(t, x, ), (3)

where F; : Rx D — R" for i = 1,2, and R : Rx D x (—¢&g,e9) — R™ are continuous functions, T-periodic in
the first variable and D is an open subset of R". There are several recent works developing and improving
the averaging theory for this kind of systems, see for instance [Céandido et al., 2016; Coll et al., 2012; Llibre
et al., 2014; Giné et al., 2016]. For the convenience of the reader we present here the second order averaging
theory for system (3). Let ®(-, z) : [0,¢,] — R™ be the solution of the unperturbed system, &(t) = Fy(t, x),
such that ®(0, z) = z. For i = 1,2 we define the following averaged functions g; : D — R™ of order i as

gi(z) = M(T, 2 92, (4)

7!

where

(b 2) =M(t, 2) /0 M(r, 2)" Fy(r, ®(r, 2))dr,

yo(t, =) =M(t, 2) /0 M(r, )1 [2F2(T,<1>(T, z))—l—%(ﬂ@(n ) (7 2)

d*Fy

(8 ()7

and M (t, z) is the fundamental matrix of the variational differential equation of the unperturbed system
along the solution ®(t, z), such that M (0, z) is the identity matrix. The next theorem provides the second
order averaging theory, for a proof see Llibre et al. [2014].

Theorem 2. Assume the following conditions.

(i) There exists an open subset W of D such that for any z € W, ®(t, 2) is T-periodic in the variable t.
(ii) Assume that g1(z) = 0, and that there exists a* € W with ga(a*) = 0 and det(Dga(a*)) # 0.

Then for |e|# 0 sufficiently small there exists a T-periodic solution x(t,z(),e) of system (3) such that
|2(e) — a*|= O(e).

Now we shall use Theorem 2 for proving our main result.

Proof. [Proof of Theorem 1] Assuming hypotheses (Hp) and (Hj), we start by writing system (1) into
the normal form for applying the averaging Theorem 2. We use the change of coordinates U = Rcos?#,
V = Rsinf and W = RZ. Then we scale the system taking R = y/er and Z = \/ez with £ > 0 a small
parameter. These are exactly the same steps used to obtain the equation (2.8) of [Llibre & Xiao, 2014].
Taking 6 as the new independent variable we obtain the following differential system
dr d

(%55 ) = Fo0.7:2) + VER(0,1,2) + eFafO,r.2) + O(eR), )
where F;(0,7,2) = (F}(e, r,z), F2(0,r, z)) are 2w —periodic in the variable 6 for i = 0,1,2, and are given
by

FOQ(G, T, 2) _r (00200 sin® 0 + cos 6 (c1100 8in 6 + 2000 COS 9)) )
w

2
r . .
FL(8,r,2) =2 (CL2000 cos® 0 + a1100 sin 0 cos? 0 + agaoo sin® 6 cos 6

+ bg200 sin® 6 ~+ bopoo sin 0 cos? 6 ~+ b1100 sin? 6 cos (9) R
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r . :
F2(0,r,2) = (r (c2000 €08(28) + c1100 sin(6) cos(6)) (aoz00 sin®(6)
— cos(6) (—a1100 sin?(#) — agooo sin(f) cos(8)
+b0200 Sin2(9) + b2000 COS2 (9) + b1100 sin(@) COS(@)))
— wz (@000 cos3(#) + a1100 sin(6) cos?(A) + agaoo sin’(6) cos(H)
+ boaoo sin®(8) + bagoo sin() cos?(0) + bi1go sin’(0) cos(0)
—C0110 sin(@) — C1010 COS(@)) )
<c()200 sin? @ + cos 6 (c1100 8in 6 4 cagog cos A) )) ,

F21 (9, T, Z) :i <)\ +rz (al(]l[) cos? 0 + ap110sin 6 cos 6 + sin 6
w

2
(bo110 sin @ + big10 cos0)) + % ( sin 0 cos 0( sin 8 (a1100

— bo200) + cos 0 (a2000 — b1100)) + @200 Sin” @ — bagoo cos 9)
(a2000 cos® 0 + a1100 sin 0 cos? 6 + agaoo sin® 0 cos 0

=+ bo200 sin® 6§ + bogop sin 0 cos® 6 + b1100 sin? 0 cos (9) ) ,

_ 3
:z(,u,w)\) + %(sin@ cos 0 (sin §(a1100 — bo200) + cos

(a2000 — b1100)) + @o200 sin® 6 — bagoo cos® 8)? (capno cos(26)
2
+ c1100 sin 6 cos 0) + % ((sin @ cos 0 (sin 6 (bo200 — a1100)
w

F}(0,r,2)

+ cos 6 (b110o — a2000)) — o200 Sin® & + bagoo cos® 0)

(a2000 cos® 0 + a1100 sin 0 cos? 6 + agano sin? 6 cos 0

+ boaoo sin® 0 + baggo sin 6 cos? 6 + by1go sin’ 6 cos @ — coy10 sin d
— c1010 cos ) + ap110 sin? 6 (c2000 c0s(26) + 1100 sin 6 cos 0)

+ a1010 sin 6 cos 0 (capp0 cos(26) + 1100 sin O cos 0)

— byo10 cos? 6 (canon cos(26) + c1100 sin 8 cos §)

— bo110 8in 6 cos 0 (ca000 cos(26) + c1100 sin 0 cos 6))

7"2’2

- ((alolo cos? 0 + ap110sin 0 cos 0 + sin 0(bo110 sin 6
w

co201 5in% 6 4 cos 6 (1101 sin 6 4 2001 cos 0))

+ big10 cosB)) +
w

Consider the unperturbed system corresponding to (5), i. e.

dr

Bt

dg

dz r . 9 .

=0 (c0200 sin® 0 4 cos 0 (1100 sin 8 4 c2000 cos 0)) .

Taking (7,Z) € RT x R as initial conditions, the unperturbed system has the solution
(I)(G,F, 5) _ (7‘, TC1100 sin? 6 + 7022000 sin(29) + sz) .
w

Thus the solution ¢(0,7,7) is 2r—periodic for all (7,z) € R xR, then system (5) satisfies the hypotheses (4)
of Theorem 2. Furthermore, the fundamental matrix associated to the variational equation of the solution
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»(0,7,%) is
1 0
M(Q) = | c1100 — C1100 COS2 0+ C2000 sin(29) 1
2w

Thus using (4) the averaged functions of system (5) are ¢1(7,%) = (0,0) and

3

(Ba2c1100

o 2MT2Z (a1010 + bouo) TBiF  ATNF  nT
92(7, %) = ( w * 4w? + w 96w

2772 (a1010 + bo110)
w

— Bscaooo — 48¢3000 (a1010 + bo110) ) — T <

T ((u — 2)\)61100 + 2w (60201 + 62001))> 7TB472§ 47‘(‘5(,& — )\))
— 5 + 5 + .
w 4w w

Now we have to find the simple zeros of the system

92(77 E) = (070) (7)

We are interest only in the solutions (rg, z9) € R? such that go(ro, 20) = 0 and ro > 0. We divide the study
of these solutions in the following cases:

Case 1: a1910 + bo110 = 0. If AB; < 0 and \(By + B4) # Bipu, then system (7) has the solution

(ro, 20) = (4 —Aw 0
0207 B 6w(Bip — A(By + By))

+ 12Biwcg2o1 + 12Biweagoer + BQ/\CQ()OO)).

(c1100(6B11 = A(12B1 + By))

Furthermore we have
322 \((By + By)A — uBy)

det (Dgg(To,Zo)) = (JJ2B1

Consequently (ro, z9) is a simple zero of system (7).

Case 2: aj010 + bo11o # 0. Solving the first equation of system (7) with respect to zZ and 7 > 0 we have that
Z = —(B17? 4+ 16)w)/(8Fw(a1010 + bo110)). Eliminating 7 in the system (7) we obtain the polynomial,

P(r) = Q17 + 48Qy7w + 768\ puw?. (8)
The bi-quadratic polynomial (8) may have one or two real positive roots. Thus we use its discriminant
D : 7247757312Q1 At (3Q3 — 4@ hp)” WP, 9)

to study such roots and then verify when them provide simple zeros of system (7). The discriminant
vanishes if Q1A = 0 or 3Q3 — 4Q1\u = 0, in this case one can verify the following subcases

Subcase 2.1: If A\u =0 and Q1Q2 < 0, system (7) has the zero

(r1,21) = | 4 —3wQs Burg
’ Q1 8wri(a010 + bo110)

96 202
™ QQ ?é 0.
Q1w?
Subcase 2.2: If Q1 = 0 and Q2Ap < 0, system (7) has the zero

(ro2) = (4 —A\pw Bi73 + 16 w
e Q2 " 8wra(aioio + boiwo) |

It is a simple zero because det (Dga(r1,21)) =
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32m2\
-=F #o.

Subcase 2.3: If 3Q3 — 4Q1\u = 0, system (7) has no simple zeros.

It is also a simple zero since det (Dga(r1,21)) =

When the discriminant (9) is non-zero the polynomial (8) has 4 distinct solutions. These solutions may
present zero, one or two positive real values for 7. Then assuming Q1 Ap (3@% — 4@1)\,u) =% 0 we have the
following subcases.

Subcase 2.4: If Q2 < 0, A\ > 0 and 0 < Q1 < 3Q3/(4\u); or Q2 > 0, Au < 0 and Q3/(4A\u) < Q1 < 0
system (7) has two zeros

( | ) —w (6@2 +24/9Q3 — 12Q1Au) Bir? + 16 w
r3,23) = ’
3, 23 O1 8wr3(a1010 + bo110)
( | ) w (6@2 —2,/9Q3 — 12Q1Au) Bir? + 16 \w
T4, 24) = ’

45 24 \ ) 8wr4(aio10 + bo110)

Furthermore for ¢ = 3,4 the Jacobian determinant of system (7) is

A2 9720012
det (Dga(rs, zi)) = _Gdm A 2m7Qor; £0,

w? w3

consequently these zeros are simple.

Subcase 2.5: If Q2 =0, uX > 0 and Q1 < 0 system (7) has the zero

(o 2e) 2\/—w (2V=T2Q1 1) Bir? + 16)w
5y <5) —

Q1 " 8wrs(aio10 + bo110)

A\
and its Jacobian determinant is det (Dga(r;, 2;)) = S 7r2 a # 0.
w

Subcase 2.6: If Q2 # 0, u\ > 0 and Q1 < 0 system (7) has the simple zero

| @ (602~ 2VOGB=T200) g2 4 1

Q1 " 8wrg(aio1o + boi1o)

(r6,26) =

Subcase 2.7: If Q2 # 0, u\ < 0 and @7 > 0 system (7) has the simple zero

ol (6@ =203 —12000) B2+ 1600

T, 27) = ’
(r7, 27) ) 8wrr(aio10 + boi1o)
64 A 2m2Qor?
for i = 6,7 the Jacobian determinant is det (Dga(7;, 2;)) = — 7T2 b _ I 7 0.

3
w w
The result follows by applying Theorem 2 for each aj = (74, z;) with ¢ =0, 1,...,7. This completes the

proof of Theorem 1. W
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3. Applications

The existence of differential systems with only zero, one or fewer than n equilibrium points generating
n — scroll chaotic attractors is an important open problem whose solution is not easy. For more information
about n — scroll chaotic attractors see Lii & Chen [2006]. This type of system has several real word
applications, for instance in engineering and secure communication. Elhadj & Sprott [2013] have shown that
the simplest family of systems displaying n—scroll chaotic attractors is given by the quadratic polynomial
differential system

T =a1x + agy + azz + agyz,
y =b1x + boy + b3z + bgrz + boyz, (10)
z =c1x + coy + c3z + crxy + cgxz + coyz.

Using Theorem 1 we can find conditions in order that the differential system (10) has two periodic orbits.

Theorem 3. Consider system (10) with the coefficients

— )k
ap = €2, as = M, az = —k1,
k3
—n)k
ag = —ka, by = M, by = 7,
k1
ko (3239K2 + 5616k32)
3 39 8 €, 9 4992k1]€3 )
4 2 2 2 9
01:5 +w ’ 62:5(5+ 51) (3¢ + 5,u)7 ¢ = —e(2e + 510,
kl k3
o T9wky oo ks A+ ksks ok
7= 24k2 g = i ; 9 = —ks.

Assume that w > 0, u > 0 and k; > 0 for alli =1,...,5. Then for e > 0 sufficiently small system (10)
has two periodic orbits bifurcating from the zero-Hopf equilibrium point localized at the origin.

Furthermore we also shall use Theorem 1 for proving the existence of e-families of periodic orbits in
the following two differential systems

& =a(y — ) + dzz, & =a(y — ) + dzz,
§=pr —xz+ fy, (11) g =(fo—a)z — 2z + f1y, (12)
5 =—ex? +ay+cz, f=—ex’+ay+cz+m,

System (11) was derived from the classical Lorenz system by Li [2008]. This system exhibits a three—
scroll chaotic attractor, with two scrolls symmetric with respect to the z—axis as in the Lorenz attractor,
and the third scroll is around the z—axis. System (12) were provided by Pan et al. [2010] with fo = fi.
It was derived from the Chen system and also presents a three—scroll chaotic attractor. The authors show
that the parameter m works as a control parameter that can dramatically change the dynamics of the
system. Theorem 5 will reveal that the parameter m is also important for the existence of periodic orbits
in system (12).

In the next results we used Theorem 1 to provide sufficient conditions for the existence of periodic
orbits in systems (11) and (12) respectively.

Theorem 4. Let c =cep, f=a—2e\, p=— (w?+ (a—eN)?) /a and e = 1 + eX/a. If adp(p — AN)A > 0
then system (11) has a family of periodic solutions bifurcating from the zero—Hopf equilibrium localized at
the origin.
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Theorem 5. Letm = emq, ¢ = —eu, d = (a— f1—2e\)u/my and fo = (mia+a?u—(f1+eX)?u—pw?)/(ap).
If a(fi — a)miA(8X — ) < 0, then system (12) has a family of periodic solutions bifurcating from the zero-

Hopf equilibrium py = | 0,0, mo.
1

3.1. Proofs of Theorems 3, 4 and 5

Proof. [Proof of Theorem 3] Using the linear change of variables
zky€? (677,u2 +e2 4+ 50/&)

Tl (21 + BO0pe® — B2t — ) T
rks
Vv Tk +z,
W :x5(25u + 2¢) + yw N ze(e — p) (2e* + 100pe® 4 625472 — w?)
ks ks (e* + 50ued — 52u2e2 — w?) ’
system (10) becomes
U=—e26pl —wV+ > ayule)U'VIWF,
i+j+k=2
V=wU —e26pV + > byn(e)UVIWF, (13)
i+j+k=2

W =euW + Z cijr(e) U VIWE,

it+j+k=2
Where the functions a;jx(€), bijr(e) and c;jx(e) are defined in the appendix. We note that when € = 0 the
origin of system (13) is a non-isolated zero—Hopf equilibrium point. Since

w (3239kiky 4 624kok3)

= — 0
€1100 199253 # 0,
system (13) does not satisfy the hypothesis (H;) of [Llibre & Xiao, 2014, Theorem 2.4]. However, we have
apo20 = boo20 = coo20 = 0 and coggp = —co200 = 0 thus we can apply Theorem 1. From the coefficients of
system (13) we have A = —26y and
aioio = 0,
boiio = —ks,
395k3kaksw? (3239K% + 624k3)
Ql = 3 ) (14)
1038336k7 k3
0 — kapuw (32864k3 ks + 16195kT kaks + 3120k ks )
4992k3 ks ’
32448k2Q% 1% 6241k3k3w? 12
SQ% - 4)\:U’Q1 = 23 21 2 2 42
6241k2k3w 192k3

By equations (14) we have that ajgi0 — bo110 # 0 and SQg — 4puA@1 > 0. Furthermore if ;1 > 0 we have
Q2 > 0, \u = —26p2 < 0 and 3Q3/(4 \u) < Q1 < 0, then system (10) satisfies statement (h) of Theorem
1. Then the theorem is proved. W

Proof. [Proof of Theorem 4] Under the hypothesis of Theorem 4 system (11) has three equilibrium points.
Mainly, the origin and p+ = (£xz., £y., 2-) where

. ape(w? + 2)?)
=\ dw — Xe(a + ad + deX)’
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a?(d + 1) 4 2adXe + d (w? + A?e?)
a(ad + a + 2dXe) ’
L w? + N2
° ad+a+2dXe’

Ye =T¢

The eigenvalues at the origin are ey, e\ — iw and e + iw. Applying the change of variables (z,y,z) =
(U,(Ua —UeA — Vw) Jw, W) the differential system (11) becomes

U =e\U — wV + a101(e)UW,

|4 :wU+5)\V+6101(5)UVV, (15)
W =euW + 6110(8)UV,
a+ ad + edA w
Where CLlOl(E) = d, b]_Ol(E) = T and 6110(5) = g

We note that when ¢ = 0 the origin of system (15) is a non-isolated zero—Hopf equilibrium point.
Consequently we have ajp10 — bo110 = d, @1 = 0 and Q2 = dw(p — 4\)/a. Thus by hypotheses system (15)
satisfies the conditions (¢) of Theorem 1. Hence the theorem is proved. W

Proof.  [Proof of Theorem 5] The point pg = (0,0,m;/u) is an equilibrium of system (12). We translate pg
to the origin doing the following change of variables

(L AUAAT—wV
(vaJ,Z)—(U, a W+ p .

U =AU — wV + a101(e)UW,
V =wU + AV + by (e)UW, (16)
W =epW + c00(e)U? + c110(e)UV.

Where the functions (2) vanishing except for

a— —2eX ami + (a — — 2eX + el
aiol (5) = M, blOl(E) = 1 ( fl )(fl ):u7
mi miw
A w
c200(€) = 55, c1o(e) = e
We note that when ¢ = 0 the origin of system (16) is a non-isolated zero-Hopf equilibrium point. Thus we
have
a— —a)(8\ — w
ai010 — bo11o = M, Q1 =0, Qs = (f1 —a)( ) ‘
mi ami

Consequently system (15) satisfies the conditions (¢) of Theorem 1 since we have by hypothesis that
A —a)BA—pp’w _

amsi

ApQ2 =

This concludes the proof of the theorem. M

4. Appendix

Here we write the coefficients of system (13).

_ e(25p + 2¢) (k3e? (4992e? — 3239ks) (6774% + &2 + 50ue))
B 4992k3 ks (w? + 729u%e?)

az00(€)
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£(25p + 2¢) (624k2k3 (8w? + e* + 50ue® + 6509u%?) )
4992k2 k3 (w? + 729p262) ’

ap20(e) =0,

doon(€) = e(e — p) (—w? + 2&* 4+ 100ue® + 625p%?)
4992k3 (—w? + e 4 50ued — 52u2e2)? (w? + T29u2e2)
x (Kfe? (6772 + &% + 50p2) (4992¢* (67742 + €2 + 50pe)
—3239ks (—w? + & + 50ue® — 52u%e?)) — 624kok3( — Sw?
+ €%+ 100ue” + 8957120 + 3228501°% + £* (Tw? — 338468*)
+ 350w — 6925u2w282)>,

W

=— k2e? (3239ky — 499262
a110(¢) 4992k2 ks (w2 + 7294262) (kie” (3239k; <)

(677u% + &2 + 50ue) + 624kak3 (8w? + &* + 50ue® + 6509u%?))
e
a01() 4992k k2 (—w? + e + 50ued — 52u2e2) (w? + T29u262)

(kie? (677u? + € + 50us) (3239k: (3w?(8p + ¢)
—e? (—19254% + 4e® + 223pe” + 1671 %)) + 4992 (w?e®(pu — €)
+e* (1630017 + 4¢® + 223pe® + 3129p%¢)) ) — 624kok3 (8w?
+et + 50ue” 4 6509u%e?) (e (—19250° + 4e® + 223pue? + 1671p°%)
—3w?(8p +¢))) ,

w (2 (6TTu? + % +50ue) (ki (49926 — 3239k;) — 624kok?)

9011() = f5558 < 12 (w? + 729262)
4992kfet (677 + &2 +50ue) 499%2)

k2 (—w? 4 & + 50ue? — 52u2e?)

1
b = k2 (79ks (—208w* + w?e? (—152657u>
200(€) 499242 k3w (729¢2 112 —l—w2)< ¥ (79h2 (~20807 + e ( K

+82e% + 943pe) + 1107pe (251 + 2€) (650u> + &% + TTpe))
+4992¢ (254 + 2¢) (w? (kgky + €%(1 — €)) — 2Tpe® (—2Tkskap + €°
+77uet + 650p%e%))) + 624kakie? (250 + 2¢) (27ue? (60504 + &2
+500p2) + w?(199p + 172)) )
bo2o(e) =0,
boo2(g) = 3 2 5
4992k3 (—w? + e* + 50pe® — 52p2e?)” (w3 + 729pu2we?)
(K3 (79kz (—w? + &t 4 50ue” — 524%2) (~w* (14085742 + 2492
+10318u¢) + 1107ue (e — p) (6254 + 22 + 100ue) (65017 + &2
+77pe) + w?e? (—101909689u* + 82e* + 2829 — 2182572
—82630614%)) — 4992e(e — p) (677u* + €2 + 50ue) (—w? + 2¢*
+100ue® + 625u%e?) (w? (—kska + e* — pe®) + 27pe? (—27kskap
+€° + TTuet + 650p%%))) + 4992k1 k3 ks (e — p) (—w? + 2¢*
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+100pe® + 625u2€2) (w2 + 729u2€2)2 + 624kok3e(e — 1) (—w2
+2e% + 100,u€3 + 625,u252) (64 + 50u53 — 52u252 — wg)
(271 (605042 + €2 + 509pe) + w?(199y + 17¢))) )
_ ki
4992k7 k3 (w? + T2912£2)
+7Tpe) + 134784kskap) + w? (¢ (3239ky — 4992¢%) (e — p)
+4992k3k4)) + 624kak3e (27pe? (60504 + €2 + 5094¢)
+w?(199u + 17¢))

biio(e) (27pe? (e (3239ky — 4992¢7) (650> + £

ki2

4992k k2w (w? + T294:%€2) (le — 2 (=522 + €2 + 50p¢))
(79ko (—208w® + wie? (—226164° + 539¢* + 21661 1)
— 1107ue® (650u% + &% + TTue) (—192543 + 4% + 223pe?
+1671p%) + w?e® (1119602751 — 164<* — 5658ue® + 5261811
+19515022°¢) ) + 4992¢ (pw? + 4e® + 223pe? 4 3129p%?
+16300p°e* — w’e) (w? (—ksks + ' — pe®) + 27pe® (—27kskap
+&° + TTpue® + 650p%e%))) — 4992k k3kse (250 + 2¢)
(w? + 729p%%)° — 624kk2e? (€2 (—19254° + 423 + 223”
+1671p%¢) — 3w?(8u + €)) (27pe? (60501 + €2 + 5094¢)
+w?(199u + 17¢))

bo11(e) =0,

bio1(e)

B (251 + 2¢)
4992k3 (w? + 729u%e2)
(kT (3239ks — 4992¢?) + 624k2k3)

co20(€) =0,

c200(€) (—w2 + & + 50pe® — 52,u252)

(e — p) (—w? + 2e* 4+ 100pe® + 625p%?)
4992k1 k3 (—w? + e* + 50ue® — 52u2e?) (w? + 729u%e?)
(kT (4992¢* (677u® + €2 + 50ue) — 3239k (—w? + e + 50ue®
—52u%e?)) + 624kok3 (w? — % (=52u” + & + 50pue)))
w (—w? + e 4 50ue? — 52u?e?)
4992k3 (w? + 729p%¢2)
(kT (3239ks — 4992¢?) + 624k2K3)
1
~ 4992k2ks (w? + 72922
+4e% + 223pe? + 1671p%) — 3w?(8p + €)) — 499262 (uw? + 4&°
+223pe® + 31294°<% + 16300p%e* — we))
+ 624kyk3e (€2 (—19254° + 4e® + 223u” + 1671 %)
—3w?(8p + £)) ),
w

 4992k2k3 (w? + 7290262)

coo2(e) =

ciio(€) =

c101 () ) (K3 (32395 (% (~19250°

cor1(e) = (kT (4992e* (67712 4 €% + 50pe)
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—3239%k; (e* + 50ue® — 52p%e? — w?))
—624ko k3 (54 + 50pue® — 52p%e? — w2)) .

Acknowledgements

We thank to the reviewer his comments and suggestions which help us to improve the presentation of this
paper.
The first author is partially supported by CNPq 248501/2013-5. The second author is partially sup-

ported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an
AGAUR grant number 2014SGR-568.

References

Candido, M. R., Llibre, J. & Novaes, D. D. [2016] “Persistence of periodic solutions for higher order
perturbed differential systems via lyapunov-schmidt reduction,” arXiv preprint arXiv:1611.04807 .

Coll, B., Gasull, A. & Prohens, R. [2012] “Periodic orbits for perturbed non-autonomous differential equa-
tions,” Bulletin des Sciences Mathématiques 136, 803-819.

Elhadj, Z. & Sprott, J. C. [2013] “Simplest 3d continuous-time quadratic systems as candidates for gener-
ating multiscroll chaotic attractors,” International Journal of Bifurcation and Chaos 23, 1350120.

Giné, J., Llibre, J., Wu, K. & Zhang, X. [2016] “Averaging methods of arbitrary order, periodic solutions
and integrability,” Journal of Differential Equations 260, 4130-4156.

Guckenheimer, J. [1981] “On a codimension two bifurcation,” Dynamical Systems and Turbulence, Warwick
1980 , 99-142.

Guckenheimer, J. & Holmes, P. J. [2013] Nonlinear oscillations, dynamical systems, and bifurcations of
vector fields, Vol. 42 (Springer Science & Business Media).

Kuznetsov, Y. A. [2013] Elements of applied bifurcation theory, Vol. 112 (Springer Science & Business
Media).

Li, D. [2008] “A three-scroll chaotic attractor,” Physics Letters A 372, 387-393.

Llibre, J., Novaes, D. D. & Teixeira, M. A. [2014] “Higher order averaging theory for finding periodic
solutions via brouwer degree,” Nonlinearity 27, 563.

Llibre, J. & Xiao, D. [2014] “Limit cycles bifurcating from a non-isolated zero-hopf equilibrium of three-
dimensional differential systems,” Proceedings of the American Mathematical Society 142, 2047-2062.

Lii, J. & Chen, G. [2006] “Generating multiscroll chaotic attractors: theories, methods and applications,”
International Journal of Bifurcation and Chaos 16, 775-858.

Murdock, J., Sanders, J. & Verhulst, F. [2007] “Averaging methods in nonlinear dynamical systems,” Appl.
Math. Sci 59.

Pan, L., Zhou, W. & Fang, J. [2010] “On dynamics analysis of a novel three-scroll chaotic attractor,”
Journal of the Franklin Institute 347, 508-522.

Scheurle, J. & Marsden, J. [1984] “Bifurcation to quasi-periodic tori in the interaction of steady state and
hopf bifurcations,” SIAM journal on mathematical analysis 15, 1055-1074.

Tian, H. & Han, M. [2017] “Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth
integrable systems,” Journal of Differential FEquations 263, 7448-7474.



