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Abstract Preparation of antibody-coated gold nanopar-

ticles (GNPs) specific to aflatoxins B1, B2, G1 and G2 and

its use in developing aflatoxins diagnostic method were

presented in this paper. The formation of gold-labeled

antibodies was accomplished at optimal condition. Due to

severe overlapping between the emission profiles for the

aflatoxins, they cannot be determined by direct inspection

of data. The strategy used in this study, constituted by

artificial neural network (ANN), was easy to implement

and to originate reliable results. ANN can be successfully

applied to spectrofluorimetric spectra matrices to simulta-

neous determination of total aflatoxins. Quantitative results

obtained using ANN method for aflatoxins in pistachio nuts

samples were compared to those obtained using the HPLC

method. Obtained results using these two methods did not

show significant differences.

Keywords Aflatoxins � Gold nanoparticle � Antibody �
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Introduction

Mycotoxins are secondary metabolites produced by fungi

which frequently contaminate plant products worldwide.

Aflatoxins are among the most toxic mycotoxins [1–3].

These toxic compounds are potent carcinogenic and

mutagenic secondary metabolites produced by the Asper-

gillus genus, especially A. flavus and A. parasiticus [4, 5].

Therefore, the contamination of food products such as

cereals, nuts and the other commodities with these myco-

toxins is controlled by legal limits (as maximum tolerated

level, MTL) [6]. Pistachio nut is one of the food com-

modity classes with the highest risk of aflatoxins contam-

ination [6], with Iran as a major worldwide pistachio

producer. Institute of Standards and Industrial Research of

Iran (ISIRI) has set a MTL of 5 and 15 lg Kg-1 for AfB1

and total aflatoxins, respectively, in 2002. Among 20 types

of aflatoxins, only aflatoxins B1, B2, G1 and G2 play a

vital role in foods and feeds [7, 8]. The simultaneous

identification of total aflatoxins in a single test considerably

reduces the time and costs of each analysis and is the

most attractive approach practically. Currently, many

simultaneous methods, such as high-performance liquid

chromatography (HPLC), liquid chromatography–mass

spectrometry (LC–MS) and magneto resistive-based

immunoassay and also, several immunological methods

such as enzyme-linked immunosorbent assay and fluores-

cence polarization immunoassay have been developed for

the detection and identification of aflatoxins in food and

feedstuffs [9–14]. However, most of these methods are

time consuming, costly, laborious, and require expensive

instruments. The measurement of antibody or antigen

concentrations based on biospecific recognition interac-

tions such as biosensors has been considered as a major

analytical method and used in environmental and bio-

chemical studies. This method has generated much interest

due to its cost-effectiveness, sensitivity and specificity [15–

19]. Gold nanoparticles (GNPs) have recently attracted

significant attention due to their non-toxic nature and

excellent biological compatibility [20, 21]. Therefore,

gold-labeled antibodies have provided attractive means for

developing biosensors without the handling of toxic

reagents [22–25]. Unlike fluorescence or enzyme-detection

systems, gold-labeled antibodies are more stable and easy
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to use. There are no needs for fussy operations as incuba-

tion, washing and enzymatic reactions during signal gen-

eration. Furthermore, nanoscale surfaces provided by

GNPs could accelerate antibody–antigen reaction suffi-

ciently, which supply an amplified signal [26]. One of the

best detection techniques is fluorescence, which has

achieved major developments in bioanalytical applications

due to its wonderful sensitivity and selectivity. Aflatoxins

compounds can be determined by molecular fluorescence,

but the fluorescence spectra of them severely overlapped.

However, in complex mixtures, spectral overlapping is

often a serious problem and separation techniques must be

used after spectrofluorimetric techniques. In order to per-

form a global analysis on the spectral overlapping of total

aflatoxins and simultaneous determination of them, che-

mometric methods must be employed. Recently, chemo-

metric methods such as principal component regression

(PCR), partial least square (PLS) and artificial neural net-

work (ANN) have found increasing applications for mul-

ticomponent determinations [27–30]. The ANN is an

emerging non-linear computational modeling method that

is used in foodstuff analysis recently [31]. This is most

probably due to its properties of non-linearity, input–output

mapping, compatibility, and neurobiological analogy [32].

The use of neural networks in chemometrics has increased

during the last decades [33, 34]. It has been demonstrated

that it is possible to obtain excellent results in multivariate

calibration problems using ANN. This method allowed for

the rapid determination of aflatoxins by spectrofluorimetric

procedures without requiring the prior knowledge of the

involved analytical systems. This paper describes the

application of ANN method to set spectrofluorimetric data

from aflatoxins gold-labeled antibody complex. The anal-

ysis of the spectrofluorimetric data by ANN allows the

simultaneous determination of the concentration of afla-

toxins present in the samples with several advantages, such

as procedure simplicity, rapid operation and immediate

results, low cost, and no requirement for skilled technicians

or expensive equipment. The accuracy and the precision of

the method were established by the analysis of spiked

samples. Validation of the developed method was accom-

plished by HPLC analysis of different samples.

Experimental

Materials

Standard solutions contain mixture of aflatoxins B1, G1

(1,000 lg Kg-1) and B2, G2 (200 lg Kg-1) in methanol

were purchased monthly from Marjaan Khatam (Training,

Research & Q.C. Lab. Services, Tehran, Iran). These

solutions were stored at -18 �C. All needed working

solutions were prepared daily by diluting these standard

solutions. Anti-aflatoxin (B1, B2, G1 and G2) mouse

monoclonal antibody, hydrogen tetrachloroaurate (III)

(HAuCl4�3H2O) and sodium citrate were obtained from

Sigma-Aldrich (USA) and used without further purifica-

tion. Phosphate-buffered saline (PBS, pH 7.4, 0.01 M in

0.85 % NaCl) was prepared. All other chemicals were

of analytical grade and were used without further

purification.

Instruments and software

UV–Vis absorption spectra were carried out on a Spec-

trophotometer (VARIAN Cary 50). The transmission

electron microscopy (TEM) images were taken with a

Philips CM-10 instrument. All the fluorescence measure-

ments were performed on an RF-5301PC spectrofluorim-

eter (Shimadzu Corporation, Japan). HPLC analyses were

performed with a Waters 2690 combined with a RF-

10AXL fluorescence detector. Several programs imple-

mented in MATLAB, obtained, were used to perform ANN

modeling. The SPSS version10.0 software was used for the

statistical treatment of the data.

Synthesis and characterization of GNPs

An aqueous solution of chloroauric acid (50 mL of 0.01 %

[w/v] HAuCl4�3H2O) was heated to the boiling point, and

2 ml of 1 % sodium citrate was added rapidly with con-

stant stirring. The color of the solution changed from yel-

low purple to red within 1 min. The solution was allowed

to boil for another 10 min. After cooling, in dark, the

solution volume was made up to 50 mL with distilled

water. The colloidal solution was stored in a dark bottle at

4 �C and was used in the preparation of the gold-labeled

antibody. The size and shape of the synthesized GNPs were

characterized by TEM.

Formation of gold-labeled antibody

Monoclonal antibody (1 mg L-1, 1 mL) prepared in pH 7.4

phosphate-buffered solution (0.01 M) was added to 1 mL

of colloidal gold solution while stirring. The pH of the

GNP solution was adjusted to pH 7.4 by addition of dilute

0.01 M Na2CO3 before adding the antibody. The solution

was stored for a period of 1.5 h at room temperature and

centrifuged (5,000 rpm at 4 �C) in an Eppendorf centrifuge

(Model 5804R, Germany) for 30 min to remove unconju-

gated antibody from the solution. The obtained pellet was

dispersed in 2 mL PBS at pH 7.4 and stored at 4 �C for

further experiments. The formation of gold-labeled anti-

bodies was monitored by UV–Visible light measurements,

TEM and fluorescence spectroscopy.
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Optimal condition studies for conjugation between gold

nanoparticle and antibody

For conjugation, antibody was directly adsorbed on the

GNP surfaces, mediated mainly by London-van der waals

force and hydrophobic interaction [35]. The colloidal gold

was formed in solution by virtue of a balance between

electrostatic repulsion and London-van der Waals attrac-

tion among the particles. However, on addition of ionic

substance, the attracting force becomes greater than the

counteraction, which leads to an aggregation accompany-

ing a color change from red (kmax * 520 nm, A520) to blue

(kmax * 580 nm, A580) [35]. Coating the colloidal surfaces

with protein molecules, such as antibody, can prevent this

instability. GNPs in the colloidal and stable state have the

kmax at 520 nm, but in the vicinity at the other ions, the

particles showed red shifted and the color of the solution

changes to blue. This phenomenon is indicative that the

nanoparticles are in coagulum state. Therefore, optimal

conditions of pH and antibody concentration for the coat-

ing can be determined by comparing the absorption

between kmax 520 nm and kmax 580 nm. GNP suspension

adjusted to pH range of 5–9 was pipetted into a series of

tubes. Antibody solution (0.2–2 mg/L, 1 mL) was added to

each colloidal gold solution diluted in a series of concen-

trations. Each tube received 1 mL of 10 % NaCl and was

shaken for 5 min. Absorption of each tube at 520 and

580 nm was determined 10 min later.

Preparation of the pistachio samples

The ground pistachio kernels (100 g) were mixed with

distilled water (150 mL) and grinded. For every 50 g por-

tion of grinded sample, 5 g NaCl and 220 mL methanol:

n-hexane (volumes 120:100 mL) were added into 500 mL

Erlenmeyer flask. The salt probably increases the ionic

strength of the solvent that improves the extraction selec-

tivity and the yield of the aflatoxins extraction process. The

mixture agitated intensively on a stirrer (Heidolph, Ger-

many) for 3 min. The extract was filtered through Whatman

No. 1 filter paper. The mixture of extraction solvent and n-

hexane was collected at the system exit within two phases.

The fat of the pistachio samples was extracted by n-hexane

(upper phase) and it was separated and discarded. Aflatox-

ins were extracted by the solution of 100 % (v/v) methanol

(lower phase). Then 20 mL of extracted solvent was diluted

with 130 mL of distilled water.

Analysis of aflatoxins

Solutions containing a constant concentration of gold-

labeled antibodies equal to 0.05 mg L-1 and a variable

concentration of four aflatoxins have been prepared. The

range of concentration of the total aflatoxins was about

0–54 lg Kg-1. The solutions were centrifuged (5,000 rpm

at 4 �C) for 30 min. The resultant pellets were resuspended

in 2 mL of the methanol–water solution (40:60, v/v). For

each measurement, the final solutions were transferred into

a spectrofluorimetric cell to record the fluorescence versus

wavelength. The selection of the optimum excitation

wavelength for recording fluorescence spectra was exam-

ined and finally excitation wavelength was set to 365 nm,

and emission wavelengths were set from 400 to 600 nm

[36]. Emission wavelength increments were 1 nm with a

slit of 10 mm and using 1 cm path length quartz cell.

Spectrofluorimetric data were analyzed by ANN method.

Artificial neural network

Artificial neural networks (ANNs) are mathematical sys-

tems that simulate biological neural networks. They are

greatly distributed interconnections of compatible non-

linear processing elements or neurons, in which it resem-

bles the human brain in two aspects, i.e., learning process is

needed for the network to acquire knowledge from its

environment, and inter neuron connection strength or

synaptic weights are used to store the acquired knowledge

[32]. These properties of ANN provide higher flexibility

and capability in data fitting, prediction, and modeling of

non-linear relationships. A detailed description of the the-

ory behind a neural network has been adequately described

elsewhere [37–40]. The structure of the network comprised

of three node layers: an input, a hidden and an output layer.

The input nodes transferred the weighted input signal to the

nodes in the hidden layer, and the same as the hidden nodes

for the output layer. A connection between the nodes of

different layers was represented by a weight (wji). During

the training process, the correction of weight (Dwji) was

defined as follows:

Dwji n þ 1ð Þ ¼ g djoi þ aDwji nð Þ ð1Þ

where dj is the error term, oi is the output of node j, g is the

learning rate, a is the momentum and n is the iteration

number. The iteration would be finished when the error of

prediction reached a minimum. A non-linear transforma-

tion, a sigmoidal function, was applied between the input

and output of each node.

The most popular method for data compression in

chemometrics is principal component analysis (PCA) [41].

PCA is appropriate, when we have obtained measures on a

number of observed variables and wish to develop a

smaller number of artificial variables that will account for

most of the variance in the observed variables. PCA

became an ideal tool to remove possible complications

caused by multicollinearity from the independent variables.

The main advantage of PCA is that it compresses the data
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by reducing the number of dimensions, without much loss

of information. In the course of performing a PCA, it is

possible to calculate a score for each subject on a given PC.

Although a large number of components may be extracted

in this way, only the first few components will be important

enough to be retained for interpretation. The first compo-

nent extracted in a PCA accounts for a maximal amount of

total variance in the observed variables. The second com-

ponent extracted will account for a maximal amount of

variance in the data set that was not accounted by the first

component. Reducing the number of inputs to a network

reduces training time and, is therefore, a favorable objec-

tive as it allows more network design to be evaluated in a

given time. In practice, principle components (PCs) are

often successfully used as inputs in ANN instead of ori-

ginal data.

In training process, the network weights, the number of

nodes in the hidden layer, number of epoch in the begin-

ning of over-fitting and the kind of training algorithm were

optimized. In order to optimize the number of nodes in the

hidden layer and to control over-fitting of the network,

mean square error (MSE) of training and prediction sets

were monitored during the training procedure. MSE pro-

vides a good index for the average error of different ANN

models. It was defined by Eq. 2.

MSE ¼ 1=n
X
ðycj � yejÞ2 ð2Þ

where n represents the number of samples, and ycj and yej

represent the values of computed and experimental output

of the jth sample, respectively.

Determination of aflatoxins by the HPLC method

HPLC was used as reference method for the determination

of aflatoxins in pistachio nuts [42]. Aflatoxins were iso-

cratically separated using a HPLC (Waters model 2690),

with a C-18 column (200 9 4.6 mm), a fluorescence

detector and 10 lL of sample injection. The mobile phase

was methanol–water (40:60, v/v) at a flow rate of

1 mL min-1. The fluorescence detector was set at the

excitation wavelength of 365 nm and emission wavelength

of 450 nm. Quantification of each toxin was performed by

measuring their peak areas and comparing them with their

relevant standard calibration curve.

Results and discussion

Characterization of gold-labeled antibody conjugates

With the consideration of optimal conditions of antibody

and colloidal gold conjugation, the minimal concentration

of antibody to stabilize colloidal gold was approximately

1 mg L-1 (Fig. 1a), and the pH of the gold-labeled anti-

body solution was determined to be 7.4 (Fig. 1b). Figure 2

shows the UV–Vis spectra of the colloidal gold and con-

jugates, prepared as described previously. Included are the

spectra of the GNP solution (curve a) and gold-labeled

antibody conjugate at pH 7.4 (curve b). A peak at

*519 nm in curve (a) is due to the surface plasmon res-

onance of GNPs. After addition of the antibody, the surface

plasmon band broadened and red shifted due to interaction

of the antibody with colloidal gold particles.

Figure 3 shows the TEM images of the GNPs and the

gold-labeled antibodies formed on a carbon-coated copper

grid. TEM images indicate that the gold colloids are in

monodispersional with a narrow diameter distribution. The

analysis shows that the particles formed were spherical and

the average diameter of GNPs was about 3 nm.

The immunoreactivity of antibody depends upon the

tertiary structure of the antibody remaining unperturbed

after formation of conjugates with GNP [43]. The tertiary

structure of the antibody can be studied by fluorescence

measurements, by exciting the sample at a particular

wavelength and monitoring the fluorescence emission from

the tryptophan or tyrosine residues in the antibody. Fig-

ure 4 (curve a) shows the fluorescence spectrum of free

antibody (pH 7.4, 0.01 M PBS). The sample was excited at

275 nm, and the emission was monitored in the range

300–400 nm. A broad band was observed at 336 nm and

indicates intactness of the tertiary structure of antibody in

solution. The curve of conjugate showed the fluorescence
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spectrum recorded under the same emission conditions

(curve b). The nature of the curve and peak position was

quite similar to the free antibody, indicating the intactness

of the antibody after the conjugation. Comparing the

tryptophan emission intensities of the conjugate versus that

of the free antibody, a significant amount of fluorescence

quenching of tryptophan residues in the antibody was

observed. Gold-labeled antibodies were centrifuged. After

separation of pellet from clear phase of solution, the fluo-

rescence of clear solution was recorded. As shown in Fig. 4

(carve c), clear solution was without any antibodies. This

indicates that reaction between antibody and GNPs was

complete.

Multivariate calibration with ANN

In this work, data sets coming from fluorescence intensity

of samples consist of total aflatoxins. As shown in Fig. 5,

the fluorescence spectra of them are severely overlapped.

For simultaneous determination of total aflatoxins, the

spectrofluorimetric data obtained from experiments were

processed by ANN, which was trained with the back-

propagation of errors learning algorithm. The reduced

spectrofluorimetric data with PCA were used as the input

of ANN. A three-layer ANN with a sigmoid transfer

function was considered as primary architecture of the

network. Figure 6 shows the plots of MSE of training and

test as a function of the number of epochs for aflatoxins

components. The minimum MSEs to control over-fitting

appear after 8 epochs. As can be seen from Fig. 6, after 8
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iterations MSE of test set increases while MSE of training set

decreases or changes slightly. The construction of optimized

ANN model is summarized in Table 1. As shown in Fig. 7,

maximum fluorescence intensity was due to the excitation

wavelength at 365 nm. The spectrofluorimetric curves cor-

responding to 50 synthetic mixtures of the considered afla-

toxins were obtained in excitation wavelength 365 nm, and

emission wavelengths between 400 and 600 nm by the

described procedures (Fig. 8). From the 50 synthetic mix-

tures, three sets with sizes 25, 15 and 10 were randomly

selected as training, test and prediction sets, respectively.

The prepared mixtures of four aflatoxins were between

concentration ranges 0 and 54 lg Kg-1. The training and test

sets were used for construction and optimization of ANN

model, and the independent external prediction set was used

to evaluate the quality of the model. The results obtained for

test and prediction samples and their statistical parameters

are given in Tables 2 and 3, respectively. The reasonable

relative errors for each analyte in both sets indicate the

accuracy of the proposed method. Performance of ANN for

the separation of four aflatoxins was summarized in Fig. 9.

Table 1 Architectures of the optimized ANN

Number of nodes in the input layer 1

Number of nodes in the hidden layer 3

Number of nodes in the output layer 4

Number of epoch in the beginning of over-fitting 8

Momentum 0.001

Training function Trainlm
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Fig. 7 Fluorescence intensity of aflatoxins in different excitation

wavelengths

Fig. 8 Fluorescence emission spectra of aflatoxins gold-labeled

antibodies with different concentrations (from bottom to top

2.5–54 lg kg-1)

Table 2 Calculated concentrations (lg kg-1) of aflatoxins by ANN

model on test and prediction set

Sample

number

AfB1 AfB2 AfG1 AfG2

Actual Found Actual Found Actual Found Actual Found

Test set

1 0.50 0.53 0.10 0.11 0.50 0.38 0.10 0.08

2 0.71 0.71 0.14 0.15 0.71 0.57 0.14 0.12

3 1.16 1.19 0.23 0.24 1.16 1.08 0.23 0.22

4 1.68 1.71 0.34 0.35 1.68 1.62 0.34 0.33

5 2.18 2.22 0.44 0.45 2.18 2.16 0.44 0.44

6 2.42 2.47 0.48 0.50 2.42 2.42 0.48 0.49

7 2.97 3.03 0.59 0.61 2.97 3.01 0.59 0.60

8 3.64 3.69 0.73 0.74 3.64 3.70 0.73 0.74

9 4.25 4.25 0.85 0.85 4.25 4.30 0.85 0.86

10 5.22 5.22 1.04 1.04 5.22 5.30 1.04 1.06

11 6.41 6.27 1.28 1.24 6.41 6.40 1.28 1.27

12 7.87 7.35 1.57 1.46 7.87 7.52 1.57 1.49

13 8.72 8.19 1.74 1.63 8.72 8.38 1.74 1.66

14 13.29 14.23 2.66 2.86 13.29 14.37 2.66 2.84

15 20.25 19.58 4.05 3.93 20.25 19.57 4.05 3.90

Prediction set

1 0.98 1.07 0.20 0.22 0.98 0.95 0.20 0.20

2 1.36 1.37 0.27 0.28 1.36 1.26 0.27 0.26

3 1.97 2.01 0.39 0.40 1.97 1.94 0.39 0.39

4 2.68 2.75 0.54 0.55 2.68 2.72 0.54 0.55

5 3.29 3.36 0.66 0.67 3.29 3.36 0.66 0.67

6 4.71 4.74 0.94 0.94 4.71 4.80 0.94 0.96

7 5.78 5.64 1.16 1.12 5.78 5.75 1.16 1.15

8 7.10 6.78 1.42 1.35 7.10 6.93 1.42 1.38

9 10.76 10.58 2.15 2.11 10.76 10.78 2.15 2.14

10 16.40 17.39 3.28 3.51 16.40 17.48 3.28 3.45

Table 3 Statistical parameters obtained using simultaneous ANN

modeling for total aflatoxins

Aflatoxin MSET MSEP R2
test R2

prediction
Ftest Fprediction

B1 0.1283 0.1158 0.995 0.997 2,870 2,343

B2 0.0057 0.0063 0.995 0.995 2,617 1,751

G1 0.1288 0.1219 0.995 0.998 2,756 4,110

G2 0.0047 0.0033 0.996 0.998 3,188 4,300

MSET mean square error of test set, MSEP mean square error of

prediction set
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Real sample analysis

For evaluation of the method, water and non-contaminated

peanut samples were spiked with four aflatoxins and ana-

lyzed. The results were compared with the results obtained

using the HPLC method. As shown in Table 4, the pro-

posed method can provide successfully comparable

concentration values relative to the routine method of

aflatoxin analysis. In addition, this methodology is easier

and faster than HPLC, which is normally used to monitor

this sort of samples.
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Table 4 Predicted

concentrations (lg kg-1)

obtained for aflatoxins in some

spike samples using ANN

method

a Tap water of Shahid Bahonar

University of Kerman, Kerman,

Iran
b Pistachio of Rafsanjan,

Kerman, Iran
c Mean of three

determinations ± standard

deviation
d Percent average recovery

Reference sample Aflatoxin Added Af HPLC ANNc %Recovery ANNd

Watera B1 1.0 – 1.020 ± (0.05) 102.01

B2 0.2 – 0.204 ± (0.01) 101.82

G1 1.0 – 1.016 ± (0.05) 101.62

G2 0.2 – 0.204 ± (0.01) 101.78

Watera B1 3.0 – 3.151 ± (0.02) 105.02

B2 0.6 – 0.630 ± (0.01) 104.98

G1 3.0 – 3.149 ± (0.02) 104.96

G2 0.6 – 0.630 ± (0.01) 104.94

Pistachiob B1 24.0 23.3 22.6 ± (0.05) 94.35

B2 6.0 5.9 5.7 ± (0.01) 94.33

G1 24.0 23.0 22.6 ± (0.06) 94.27

G2 6.0 5.8 5.7 ± (0.01) 94.33

Pistachiob B1 16.0 15.5 15.0 ± (0.04) 93.73

B2 4.0 3.8 3.7 ± (0.01) 93.80

G1 16.0 15.7 15.0 ± (0.06) 93.85

G2 4.0 3.8 3.7 ± (0.01) 93.84

Pistachiob B1 4.0 3.8 4.2 ± (0.05) 105.87

B2 1.0 0.98 1.06 ± (0.01) 105.63

G1 4.0 3.8 4.2 ± (0.03) 105.30

G2 1.0 0.96 1.06 ± (0.01) 105.68

Fig. 9 Schematic representation of ANN for the separation of four aflatoxins
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