
O S - L E V E L AT TA C K S A N D D E F E N S E S :
F R O M S O F T WA R E T O H A R D WA R E - B A S E D E X P L O I T S

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurswissenschaften (Dr.-Ing.)

genehmigt durch den Fachbereich Informatik (FB 20)
der Technischen Universtität Darmstadt

von
D AV I D G E N S

aus Wiesbaden, Deutschland

Gutachter:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (Erstreferent)

Prof. Dr. Thorsten Holz (Zweitreferent)

Tag der Einreichung: 14. Dezember 2018

Tag der Disputation: 13. Februar 2019

CYSEC/System Security Lab
Intel Collaborative Research Institute (ICRI-CARS)

Fachbereich für Informatik
Technische Universität Darmstadt

Hochschulkennziffer: D17

OS-level Attacks and Defenses: from Software to Hardware-based Exploits
© December 2018 by David Gens

phd referees:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (1st PhD Referee)
Prof. Dr. Thorsten Holz (2nd PhD Referee)

further phd commission members:
Prof. Dr. Sebastian Faust
Prof. Dr. Guido Salvaneschi
Prof. Dr.-Ing. Thomas Schneider

Darmstadt, Germany December 2018

Veröffentlichung unter CC-BY-SA 4.0 International
https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

A B S T R A C T

Run-time attacks have plagued computer systems for more than three decades,
with control-flow hijacking attacks such as return-oriented programming repre-
senting the long-standing state-of-the-art in memory-corruption based exploits.
These attacks exploit memory-corruption vulnerabilities in widely deployed soft-
ware, e.g., through malicious inputs, to gain full control over the platform remotely
at run time, and many defenses have been proposed and thoroughly studied in the
past. Among those defenses, control-flow integrity emerged as a powerful and ef-
fective protection against code-reuse attacks in practice. As a result, we now start
to see attackers shifting their focus towards novel techniques through a number of
increasingly sophisticated attacks that combine software and hardware vulnerabil-
ities to construct successful exploits. These emerging attacks have a high impact on
computer security, since they completely bypass existing defenses that assume ei-
ther hardware or software adversaries. For instance, they leverage physical effects
to provoke hardware faults or force the system into transient micro-architectural
states. This enables adversaries to exploit hardware vulnerabilities from software
without requiring physical presence or software bugs.

In this dissertation, we explore the real-world threat of hardware and software-
based run-time attacks against operating systems. While memory-corruption-based
exploits have been studied for more than three decades, we show that data-only
attacks can completely bypass state-of-the-art defenses such as Control-Flow In-
tegrity which are also deployed in practice. Additionally, hardware vulnerabili-
ties such as Rowhammer, CLKScrew, and Meltdown enable sophisticated adver-
saries to exploit the system remotely at run time without requiring any memory-
corruption vulnerabilities in the system’s software. We develop novel design strate-
gies to defend the OS against hardware-based attacks such as Rowhammer and
Meltdown to tackle the limitations of existing defenses. First, we present two novel
data-only attacks that completely break current code-reuse defenses deployed in
real-world software and propose a randomization-based defense against such data-
only attacks in the kernel. Second, we introduce a compiler-based framework
to automatically uncover memory-corruption vulnerabilities in real-world kernel
code. Third, we demonstrate the threat of Rowhammer-based attacks in security-
sensitive applications and how to enable a partitioning policy in the system’s phys-
ical memory allocator to effectively and efficiently defend against such attacks. We
demonstrate feasibility and real-world performance through our prototype for the
popular and widely used Linux kernel. Finally, we develop a side-channel defense
to eliminate Meltdown-style cache attacks by strictly isolating the address space of
kernel and user memory.

iii

Z U S A M M E N FA S S U N G

Softwarebasierte Laufzeitangriffe stellen Rechnerplattformen seit mehr als drei
Jahrzehnten vor große Sicherheitsprobleme. In Form weit verbreiteter Offensivtech-
niken wie Return-Oriented Programming, die Programmierfehler durch bösartige
Eingaben gezielt ausnutzen, können Angreifer im Extremfall so die vollständige
Kontrolle über die Plattform erlangen. Daher wurden über die Jahre eine Vielzahl
von Defensivmaßnahmen wie Control-Flow Integrity und Fine-Grained Randomi-
zation vorgeschlagen und die Effektivität dieser Schutzmechanismen war lange
Zeit Gegenstand intensiver Forschungsarbeit. In jüngster Zeit wurden jedoch eine
Reihe zunehmend ausgefeilterer Angriffe auf Hardwareschwachstellen aus Softwa-
re heraus vorgestellt, die bei Beibehaltung des Angreifersmodells zur kompletten
Kompromittierung dieser Systeme führen können. Diese neuartige Entwicklung
stellt bestehende Verteidigungen, die traditionelle Softwareangriffe annehmen, so-
mit in der Praxis vor große Herausforderungen.

Diese Dissertation erforscht eine Reihe solcher neuartigen Angriffsszenarien, um
die reale Bedrohung auf das Betriebssystem trotz bestehender Verteidigungsme-
chanismen abschätzen zu können. Insbesondere geht die Arbeit im ersten Teil auf
die Problematik sogenannter Data-Only Angriffe im Kontext von Defensivmaß-
nahmen wie Control-Flow Integrity ein und demonstriert, wie diese unter Aus-
nutzung von Softwarefehlern vollständig ausgehebelt werden können. Der zweite
Teil erforscht die Bedrohung von Laufzeitangriffen durch Hardwarefehler, auch
in Abwesenheit von Softwarefehlern auf welche sich bisherige Verteidigungen be-
schränken. Um die bisherigen Problem in den vorhandenen Schutzmechanismen
anzugehen wurden neue Designstrategien entwickelt, mit Hilfe derer sich das Be-
triebssystem vor solch weiterführenden Angriffen durch geeignete Maßnahmen
in Software schützen kann. Zunächst demonstrieren wir eine randomisierungs-
basierte Verteidigung gegen Data-Only Angriffe auf Seitentabellen. Des weiteren
wird ein Framework zur automatisierten Identifikation von Softwarefehlern im
Betriebssystem anhand des Quelltexts auf Basis des LLVM Compilers vorgestellt.
Außerdem erforscht die Arbeit eine Absicherung des Betriebbsystems vor Seitenka-
nalangriffen durch geeignete Isolation des Addressraumes. Ferner entwickeln wir
eine Schutzmaßnahme vor Rowhammer-basierten Angriffen auf das OS, indem
der physische Speicherallokator des Systems um eine Partitionierungsstrategie er-
weitert wird.

v

A C K N O W L E D G M E N T S

First and foremost I would like to thank my thesis advisor Professor Ahmad-Reza
Sadeghi for his excellent supervision and continuous support. I am grateful to have
Professor Thorsten Holz as thesis co-advisor. I thank Professor Sebastian Faust,
Professor Guido Salvaneschi, and Professor Thomas Schneider for being members
of my thesis committee.

Additional thanks go to Professor Lucas Davi with whom I had the privilege
to collaborate and work with while he was still based in Darmstadt and who
offered me an initial position in his Junior Research Group funded by DFG’s Emmy
Noether program.

My research work and travels were funded in part by the Federal Ministry of
Education and Research (BMBF) through SAL and by the DFG through CROSS-
ING, both of which provided a great working environment and allowed me to
collaborate with renowned and leading researchers from academia and industry
worldwide.

Further, I thank all my co-authors besides Ahmad and Lucas: Orlando Arias, Fer-
dinand Brasser, Poulami Das, Ghada Dessouky, Lisa Eckey, Rolf Egert, Sebastian
Faust, Marc Fischlin, Tommaso Frassetto, Jason M. Fung, Patrick Haney, Kristina
Hostakova, Sven Jacob, Patrick Jauernig, Yier Jin, Arun Karthik Kanuparthi, Ha-
reesh Khattri, Christopher Liebchen, Garrett Persyn, Jeyavijayan Rajendran, Si-
mon Schmitt, Matthias Senker, Emmanuel Stapf, Dean Sullivan, Jörg Tillmans, and
Shaza Zeitouni.

Thanks to all my colleagues of the System Security Lab at Technische Universität
Darmstadt for fruitful and interesting technical discussion, as well as their help in
organizing courses, and a great time.

Finally, I would like to thank my family and in particular my parents Monika
and Andreas for their continuing encouragement. Special thanks to Miriam for her
enduring sympathy, support, and friendship.

vii

C O N T E N T S

I introduction

1 overview 3

1.1 Goals and Scope 5

1.2 Summary of Contributions 5

1.3 Organization 7

1.4 Publications 8

2 background 9

2.1 Basic OS-level Defenses 9

2.1.1 Privilege-Level Separation 9

2.1.2 Virtual-Memory Protection 10

2.2 The Traditional Threat Models 11

2.3 Memory-Corruption Attacks 12

2.3.1 Causes of Memory Corruption 12

2.3.2 A Model for Exploitation 13

2.3.3 Typical Attack Workflow 14

2.4 State-of-the-art Attacks and Defenses 15

2.4.1 Return-to-libc and Return-Oriented Programming 15

2.4.2 Code-Reuse Defenses and Advanced Attacks 16

2.4.3 Data-only attacks 17

2.5 Modern Hardware Platforms 18

2.5.1 Overall System Architecture 18

2.5.2 Processor Design Principles 19

2.5.3 Remote Hardware Exploits 21

II memory corruption : the threat of data-only attacks

3 bypassing cfi in modern browsers . 25

3.1 Data-Only Attacks on Dynamic Code Generation 25

3.2 Assumptions and Threat Model 26

3.3 Generically Bypassing CFI by Exploiting JIT-Compilers 27

3.3.1 Attack Overview 27

3.3.2 Corrupting the Intermediate Representation 28

3.3.3 Attack Framework 29

3.4 On the Prevalence of Data-Only Attacks 29

3.5 Possible Mitigations 30

4 breaking and fixing cfi in os kernels . 31

4.1 OS Kernels as Targets of Data-Only Attacks 31

4.2 Assumptions and Threat Model 31

4.3 Our Page Table Exploit 32

4.3.1 Attack Overview 32

4.3.2 Exploiting the Kernel by Corrupting the Page Table 33

4.4 PT-Rand: Mitigating Data-Only Attacks against the Page Tables 34

4.4.1 Design and Overview 34

ix

x contents

4.4.2 Challenges 36

4.5 Implementation 37

4.5.1 Page Table Allocations 37

4.5.2 Generating a Randomized Area 39

4.5.3 Page Table References 39

4.5.4 Handling of the one-to-one mapping 40

4.5.5 Translation of Physical Addresses 40

4.6 Evaluation 41

4.6.1 Methodology 41

4.6.2 Leakage Resilience and Randomization Entropy 41

4.6.3 Performance 42

4.6.4 Compatibility and Stability 44

5 automatically uncovering memory corruption in kernel code . 47

5.1 Run-time defenses vs. compile-time verification 47

5.2 Data-Flow Analysis 48

5.3 Problem Description 50

5.4 Design of K-Miner 50

5.4.1 Goals and assumptions 51

5.4.2 Overview 51

5.4.3 Uncovering Memory Corruption 52

5.4.4 Challenges 53

5.5 Implementation 54

5.5.1 Global Analysis Context 55

5.5.2 Analyzing Kernel Code Per System Call 56

5.5.3 Minimizing False Positives 57

5.5.4 Efficiently Combining Multiple Analyses 58

5.6 Evaluation 59

5.6.1 Security 59

5.6.2 Performance 61

5.6.3 Usability 62

5.7 Possible Extensions 64

6 related work 67

6.1 Data-only Attacks and Defenses for Static Code 67

6.2 Data-only attacks and defenses for JIT code 68

6.3 Kernel and Page Table Protection 69

6.4 Static Analysis Frameworks 71

6.4.1 Kernel Static Analysis Frameworks 71

6.4.2 User Space Static Analysis 72

III remote hardware exploits : an emerging attack paradigm

7 hammer time : remote attacks on dram and initial defenses . 77

7.1 DRAM and the Rowhammer Bug 77

7.2 Rowhammer in the Context of Security-sensitive Applications 78

7.3 Rowhammer as an Exploit Primitive 80

7.4 On the Distribution of Bit Flips 82

7.5 Initial Rowhammer Defense 83

8 mitigating rowhammer attacks against os kernels . 85

contents xi

8.1 On the Necessity of Software Defenses against Rowhammer 85

8.2 Assumptions and Threat Model 86

8.3 Design of CATT 87

8.3.1 Overview 87

8.3.2 Security Domains 88

8.3.3 Challenges 89

8.4 Implementation 89

8.4.1 Mapping Page Frames to Domains 90

8.4.2 Tracking Security Domains 90

8.4.3 Modifying the Physical Page Allocator 91

8.4.4 Defining DRAM Partitioning Policies 91

8.5 Security Evaluation 92

8.5.1 Rowhammer Testing Tool 93

8.5.2 Real-world Rowhammer Exploit 94

8.6 Performance Evaluation 96

8.6.1 Run-time Overhead 96

8.6.2 Memory Overhead 97

8.6.3 Robustness 97

8.7 Discussion 98

8.7.1 Applying CATT to Mobile Systems 98

8.7.2 Single-sided Rowhammer Attacks 98

8.7.3 Benchmarks Selection 98

8.7.4 Vicinity-less Rowhammering 99

9 side-channel resilient kernel-space randomization. 101

9.1 Side-channel attacks against KASLR 101

9.2 Adversary Model and Assumptions 103

9.3 Our Side-Channel Defense for the Kernel 103

9.3.1 Overview 104

9.3.2 Challenges for Fine-grained Address Space Isolation 105

9.4 Prototype Implementation 106

9.4.1 Initialization 107

9.4.2 Interrupts 107

9.4.3 Fine-grained Page Table Switching 108

9.5 Evaluation 108

9.5.1 Security 108

9.5.2 Performance 111

9.6 Discussion 113

9.6.1 Applying LAZARUS to different KASLR implementations 113

9.6.2 Speculative Execution and Side-channel Attacks 114

9.6.3 Other side-channel attacks on KASLR 114

10 the growing problem of software-exploitable hardware bugs . 117

10.1 Hardware Vulnerabilities from a Software Perspective 117

10.1.1 The Origin of the Hardware Bug 117

10.1.2 Quality Assurance Techniques for Hardware 118

10.2 Assessing the state-of-the-art 119

10.3 Exploiting Hardware Bugs From Software 119

10.3.1 Threat Model and Assumptions 120

xii contents

10.3.2 Attack Details 121

11 related work 125

11.1 Rowhammer 125

11.1.1 Attacks 125

11.1.2 Defenses 126

11.2 Side-channel attacks against the OS 127

11.2.1 Paging-based Side-channel Attacks on KASLR 127

11.2.2 Software Mitigations 128

11.2.3 Hardware Mitigations 129

11.3 Recent Hardware Exploits 129

IV discussion and conclusion

12 dissertation summary 135

13 future work 137

V appendix

a about the author 141

b list of figures 145

c list of tables 149

bibliography 151

Part I

I N T R O D U C T I O N

1
O V E RV I E W

Computer systems are an integral part of our society. We leverage these systems in
controlling large parts of our infrastructure, such as the transportation networks
and energy grids. We use computers on a daily basis to communicate with friends
and family, and consume, create, and publish media. Today, we even entrust those
systems with handling the financial markets and aiding in our democratic pro-
cesses. Consequently, computing platforms represent an extremely valuable tar-
get for adversaries. At the same time computer systems are also highly diverse,
ranging from embedded devices and sensors in planes and cars, to smart phones,
laptops, desktop computers, and powerful servers running the cloud. To manage
this broad array of hardware and abstract the underlying complexity, the Oper-
ating System (OS) provides application developers with a software interface for
user-space programs. The OS is typically considered part of the system’s trusted
computing base (TCB) [8], and usually runs with elevated privileges to protect the
platform from malicious software. To achieve this, the OS enforces strict isolation
policies for user programs utilizing dedicated security mechanisms that are pro-
vided by the hardware.

However, modern platforms execute a large number of applications and many
of these programs are written in low-level languages, which do not provide any
memory safety guarantees in the case of an error. This means that bugs in such
pieces of software leave computer systems vulnerable to run-time attacks based
on memory corruption, e.g., through maliciously crafted inputs. In practice, this
allows attackers to overwrite code pointers that are stored in unprotected memory,
such as the stack or the heap of the program. One of the earliest examples for such
a vulnerability is the buffer overflow [9]: many programs use buffers to temporarily
store user-provided input such as a string of text characters in memory. If the
software developer forgot to properly check the length of the input, a user can
overflow this buffer by providing an input that exceeds the originally defined size
of the storage. This allows an adversary to corrupt parts of the program memory
that are located beyond the storage of the buffer. For instance, by writing beyond
the boundaries of a stack buffer an adversary can overwrite code pointers such as
return addresses, which are typically stored on the stack as well. This enables the
attacker to hijack the control flow of the program and execute code that was not
originally intended by the developer in a code-reuse attack. In this way, an adversary
can in principle achieve arbitrary behavior at run time [10].

Stack-based buffer overflows are one example of a bug class that allows memory
corruption. They are part of a much larger family of vulnerabilities that further
include heap-based errors, format string vulnerabilities, type confusion, uninitial-
ized data usage, use-after-free and double-free errors, dangling pointers, synchro-
nization errors, and integer overflows [11, 12]. These memory-corruption vulnerabil-
ities are introduced due to human error in low-level software code, such as mis-

3

4 overview

takes in memory management or missing corner cases in manually crafted checks.
Memory-corruption vulnerabilities allow adversaries to subvert and take control
of the affected program through malicious inputs, and hence, continue to pose
severe threats for the security of real-world software [13–19].

For this reason, operating systems treat applications as untrusted and the kernel
is designed to act as a reference monitor [20, 21] for user processes. The OS medi-
ates all accesses of application software and enforces a strict separation of privi-
leges to protect the platform. To implement this isolation efficiently and achieve
a strong policy enforcement, the OS usually leverages dedicated hardware mecha-
nisms such as virtual memory and privilege separation. However, for legacy and
performance reasons all major operating systems are written in low-level program-
ming languages that leave the system vulnerable to memory corruption in case
of an error. This means, that a user-space adversary who gained access to the
platform through a vulnerable application can target bugs in OS kernel code in a
second step, e.g., by launching attacks against memory-corruption vulnerabilities
in system calls or drivers in low-level OS code [22–26].

Such multi-staged attacks are increasingly common in practice, as many exam-
ples demonstrate the severe impact of memory-corruption vulnerabilities in large
and complex code bases of major OS kernels: in 2016 Dirty CoW [27] was dis-
covered to be a widely exploited bug in the Linux kernel that also affected all
Android-based phones [28]. In 2017 Project Zero demonstrated a kernel exploit for
iOS based on a double-free bug in Apple’s Mach kernel [29]. Every year we are
seeing memory-corruption-based exploits across all vendors and platforms that af-
fect billions of devices [30–39]. This is why a great amount of time and effort has
been invested over the recent years to systematically develop efficient mitigations
and analyze their effectiveness, with Control-Flow Integrity [40–45], Code-Pointer
Integrity [46], and various randomization-based schemes [46–56] representing the
current state-of-the-art in defenses. In particular, CFI enforces the control flow of
a program by matching the execution against an explicitly defined set of allowed
code locations at run time to mitigate code-reuse attacks. Since CFI offers formal
security guarantees while incurring only modest performance overheads, it is now
in the process of being widely adopted in practice, e.g., through compiler exten-
sions [57, 58], kernel patches [43–45], and hardware support [42, 59–61].

However, all of these defenses assume conventional software attacks in their
threat models and software-based defenses implicitly assume the underlying hard-
ware, particularly the processor and the main memory, to be trustworthy. This
assumption is now being challenged, as researchers are discovering serious and
foundational security vulnerabilities at the hardware level, such as vulnerabilities
in memory or processor chips. Indeed, we are witnessing an unexpected shift in
the traditional attack paradigms through hardware-based exploits. In this emerg-
ing threat the attacker exploits a vulnerability at the hardware level by triggering
it from software at run time. Various hardware bugs have been shown to affect a
wide range of platforms, manufacturers, and vendors, and a number of real-world
exploits have been demonstrated recently [62–67]. So far, state-of-the-art defenses
are entirely oblivious to hardware vulnerabilities, and hence, completely bypassed
by these upcoming techniques. As a result, there currently exists a protection gap
in practice, leaving operating systems vulnerable to remote attacks on hardware.

1.1 goals and scope 5

1.1 goals and scope

The main goals of this dissertation are (1) revisiting state-of-the-art defenses with
respect to their assumption that mitigating control-flow hijacking solves the prob-
lem of memory-corruption-based exploits, and (2) exploring cross-layer attacks in
the form of remote hardware exploits, introducing novel design strategies to de-
fend against these profound attacks in practice.

Due to the advances in effectiveness and deployment of defenses such as CFI, an
increasing number of exploits aim at attacking the data of applications or the OS
rather than their control flows. While control-flow hijacking was shown to give rise
to a general and powerful attack framework granting the attacker Turing-complete
computational capabilities [10], no analogous construction has been found for data-
only attacks, since data accesses heavily depend on the structure of the target pro-
gram [68]. As we will discuss in the first part of this dissertation the extensive
focus of the related work in this area towards the computational capabilities of
attack techniques might be to no avail. In practice, adversaries do not require ar-
bitrary computation as part of individual attacks but rather achieve their goals
through a multi-step approach, i.e., by initially compromising an application, and
then escalating privileges, or leaking sensitive information such as the adminis-
trator password the attacker can successfully gain full control over the platform.
None of these steps require Turing-complete computation.

Further, we can already see that adversaries are moving from attacking soft-
ware vulnerabilities towards exploiting hardware vulnerabilities remotely from
software—marking a shift in the traditional attack paradigms and threat models
that raises a number of significant challenges for existing defenses. Thus, in the
second part of this dissertation we explore emerging attacks and introduce novel
design strategies to defend the OS in light of these evolving threats.

1.2 summary of contributions

The main contributions of this dissertation are as follows:
Bypassing CFI in Microsoft’s Edge Browser. We demonstrate the power of data-
only attacks, by constructing a Data-Only JIT Attack (DOJITA) [1] for Microsoft’s
Edge browser despite its deployed code-reuse defenses. In particular, we show
that just-in-time (JIT) compilers can be tricked into generating arbitrary malicious
payloads dynamically in a pure data-only attack by corrupting the intermediate
representation in memory. Our attack works despite existing code-injection and
code-reuse defenses being deployed and active in the JIT engine and browser.
Breaking and Fixing CFI in the Kernel. By exploiting a vulnerability in kernel
code, the attacker can escalate privileges in a second step, again only resorting
to data-only attacks. In our work PT-Rand [2], we craft a page-table based attack
that completely bypasses all existing defenses in the kernel. It exploits the fact that
the kernel manages memory permissions dynamically at run time using data ob-
jects, which are called page tables. The attacker leverages the memory-corruption
vulnerability to walk the page tables and maliciously modify memory access per-
missions, e.g., to make code pages writable in the kernel. Our exploit works despite
code-injection and code-reuse defenses being deployed and active.

6 overview

Automatically Uncovering Memory Corruption in Linux. In our work K-Miner [3],
we conclude that software-based memory corruption still poses a significant threat
and propose the first data-flow analysis framework for the kernel to identify any
causes of memory corruption statically in the code and enable fixing vulnerabil-
ities before they are deployed. K-Miner is able to analyze recent Linux kernels
completely automatically and was used to uncover real-world vulnerabilities. Our
prototype framework implementation builds on top of the popular open-source
LLVM compiler and is available online [69]. K-Miner already sparked significant
interest from the community and is actively used in follow-up publications [70].
Attacking DRAM hardware from Software. Today, Dynamic Random Access Mem-
ory (DRAM) represents the standard choice for practically all computer systems
due to cheap prices and widespread availability. However, several independent
studies found that frequently accessing physically co-located memory cells in
DRAM chips leads to bit flips in adjacent cells [63, 71], an effect called Rowham-
mer. In our work Hammer Time [4] we demonstrate that these software-based
fault-injection attacks pose significant security challenges for security-sensitive ap-
plications, and we present an initial blacklisting-based defense [5], which leverages
the fact that reproducible bit flips tend to cluster around characteristic areas for a
given memory module. We demonstrate that this simple strategy can be imple-
mented in a straightforward and OS-independent way in the boot loader.
Practical Software-only Defenses against Rowhammer. Since DRAM chips rep-
resent the basic hardware building blocks for main memory on most platforms,
Rowhammer represents a general threat to many computer systems. This was also
demonstrated through a number of attacks [72–74] even in the remote setting [75–
77] to completely break the security guarantees provided by existing software de-
fenses. In particular, these attacks demonstrate that an adversary can allocate mem-
ory locations that are physically adjacent to kernel memory on the DRAM chips
and subsequently influence the contents of privileged memory cells by exploiting
the Rowhammer effect. Since the security of our initial bootloader-based defense
approach relies on the quality of the blacklist, we designed a generic software-
only defense, called CATT [5], which does not require any information about the
distribution of bit flips and can be implemented through a patch to the physical
memory allocator in the OS kernel. The basic idea underlying our defense is to par-
tition physical memory into a privileged and an unprivileged zone. In this way we
prevent allocation of adjacent rows that belong to different security domains such
as the kernel and userland. We evaluated our prototype on a number of test sys-
tems and were able to show that it successfully prevents real-world Rowhammer
attacks efficiently.
Sidechannel-resilient Kernel-Space Randomization. Even if software-based mem-
ory corruption is excluded from the threat model (e.g., because the OS is formally
verified [78, 79]), software-exploitable hardware bugs are becoming an increasingly
relevant problem. One example are vulnerabilities in the hardware design, for in-
stance, shared caches in the processor can leak information between privileged
and unprivileged software and were previously demonstrated to be able to break
randomization-based defenses such as KASLR [80–83]. In our work LAZARUS [6]
we design and implement a patch for the low-level address space switching mecha-
nism in the OS to protect randomization-based defenses in the kernel against such

1.3 organization 7

micro-architectural sidechannels. Interestingly, a processor vulnerability dubbed
Meltdown [66] was discovered concurrently to our work, which exploits specula-
tive execution to load arbitrary memory from an unprivileged process. Since the
responsible disclosure process was ongoing at the time, we did not have prior
knowledge of this vulnerability, yet, our design of LAZARUS mitigates the exploit
by eliminating the side channel created by the shared address space between user-
land and OS. A similar strategy has since been adopted by all major operating
systems to protect against this widespread hardware vulnerability [84].
Looking ahead on Software-exploitable Hardware Vulnerabilities. Since software-
exploitable hardware vulnerabilities represent an emerging threat, we take a deep
dive into micro-architectural security from a software perspective [7]. In joint work
with experts from the semiconductor industry and academia we systematically re-
view existing security-auditing tools for hardware and found fundamental limita-
tions. In particular, existing methodologies fail to adequately model specific classes
of vulnerabilities in hardware-description code and suffer from scalability prob-
lems in practice. Since all major processor designs are also highly proprietary this
can result in bug classes slipping through even combinations of existing techniques.
We demonstrate the feasibility of such vulnerabilities being exploitable from soft-
ware using the popular open-source RISC-V architecture.

1.3 organization

This dissertation is structured as follows. In Chapter 2 we provide comprehen-
sive background on run-time attacks and defenses with a focus towards memory-
corruption vulnerabilities and software-exploitable hardware vulnerabilities, which
are an upcoming attack vector. Next, in Part II we present two data-only attacks
on CFI. First, we demonstrate a novel attack that completely bypasses CFI in Mi-
crosoft’s Edge browser in Chapter 3. Second, we show that CFI for the Linux kernel
can be broken without modifying code pointers in an attack against the page ta-
bles. We also introduce our design and implementation of an efficient mitigation
in Chapter 4. Third, we present a novel framework to statically analyze real-world
kernel code at scale to automatically uncover memory-corruption vulnerabilities
in Chapter 5. In Part III we then turn towards software-exploitable hardware vul-
nerabilities, which represent an emerging attack paradigm. First, we introduce a
novel attack based on the infamous Rowhammer vulnerability in DRAM chips in
Chapter 7. Second, we present the design and implementation of CATT, the first
software-only defense that successfully stops Rowhammer-based attacks against
kernel memory in Chapter 8. Next, we look at side-channel attacks on the kernel
and present LAZARUS, our practical side-channel defense for the OS in Chapter 9.
Lastly, we show that software-exploitable hardware vulnerabilities represent a
growing problem by systematically reviewing state-of-the-art auditing approaches
used by semiconductor companies to verify real-world SoCs in Chapter 10. We
conclude this dissertation in Part IV.

8 overview

1.4 publications

This dissertation is based on the following previous publications:

Part II: Memory Corruption and the Threat of Data-Only Attacks

[1] JITGuard: Hardening Just-in-time Compilers with SGX.
Tommaso Frassetto, David Gens, Christopher Liebchen, Ahmad-Reza Sadeghi. In
24th ACM Conference on Computer and Communications Security (CCS), Novem-
ber 2017 [Inproceedings].

[2] PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables.
David Gens, Christopher Liebchen, Lucas Davi, Ahmad-Reza Sadeghi. In 24th An-
nual Network and Distributed System Security Symposium (NDSS), February 2017

[Inproceedings].

[3] K-Miner: Uncovering Memory Corruption in Linux.
David Gens, Simon Schmitt, Lucas Davi, Ahmad-Reza Sadeghi. In 25th Annual
Network and Distributed System Security Symposium (NDSS), February 2018 [In-
proceedings].

Part III: Remote Hardware Exploits as an Emerging Attack Paradigm

[4] It’s Hammer Time: How to Attack (Rowhammer-based) DRAM-PUFs
Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. In 55th Design Automa-
tion Conference (DAC’18), June 2018 [Inproceedings].

[5] CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks tar-
geting Kernel Memory.
Ferdinand Brasser, David Gens, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi. In 26th USENIX Security Symposium, August 2017 [Inproceedings].

[6] LAZARUS: Practical Side-channel Resilient Kernel-Space Randomization.
David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier Jin, Ahmad-
Reza Sadeghi. In 20th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), September 2017 [Inproceedings].

[7] When a Patch is Not Enough — HardFails: Software-Exploitable Hardware
Bugs.
Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Karthik Kanu-
parthi, Hareesh Khattri, Jason M. Fung, Jeyavijayan Rajendran, Ahmad-Reza Sadeghi.
[Technical Report].

2
B A C K G R O U N D

In this chapter we first give a short overview of the traditionally deployed defense
mechanisms and operating system security concepts vital to the understanding of
this dissertation. We then introduce the notion of memory-corruption vulnerabili-
ties, which underlie most software-based attacks against those traditional defenses
and discuss advanced attacks and mitigations. Finally, we cover the high-level ar-
chitecture of modern hardware platforms, including the most relevant components
in the context of upcoming and emerging attack scenarios that exploit hardware
vulnerabilities remotely from software.

2.1 basic os-level defenses

As mentioned in Chapter 1 operating systems support a large number of appli-
cations running concurrently or time-shared on a single hardware platform. Since
applications may be vulnerable to attacks, or even malicious in some cases, modern
operating systems are designed as reference monitors and strictly separate access
control and resource management from user processes [8, 20, 21]. Implementing
this separation requires hardware support and modern processors provide two
different isolation mechanisms in the form of privilege separation and virtual mem-
ory. We give a brief introduction into both mechanisms and explain how the OS
leverages them to achieve strict isolation at run time.

2.1.1 Privilege-Level Separation

OS kernel software normally runs with higher privileges than application software.
Many processors support different privilege levels and allow software to switch be-
tween them at run time, e.g., via dedicated control-transfer instructions. Typically,
there is an unprivileged level for executing applications and a privileged level that
is reserved for the operating system. When the processor executes with the high-
est privilege level, the running software has complete access to any instructions,
can directly access platform hardware, interact with debug and control registers
of the platform, and consequently has full control over the system. Executing code
within the unprivileged level only leaves a limited number of benign instructions
available to software, for instance, it is usually only possible to load and store
unprivileged memory or registers, calculate arithmetic operations, evaluate con-
ditionals, and branch execution. At run time, the hardware maintains separate
execution contexts for the different privilege levels and switching between privi-
lege levels transparently invokes the respective context. For instance, when a user
program crashes due to a benign operation, such as when dividing by zero, the
processor automatically invokes the code in the highest privilege level (i.e., the
operating system). The OS can then handle the error condition caused by the user
program and terminate the application. User-level software can also purposefully

9

10 background

CPU
MMU

Physical Memory

Virtual Memory

Page Table Entry:

Process B

OS

Stack
Heap
Data
Code

0x6DC000 | ... | RPL=3 | X=1 | W=0 | R=1

P
G

D
B

P
U

D
B

P
M

D
B

P
T
E

B

D
a
ta

C
o
d
e

H
e
a
p

S
ta

ck AA AA O
S

O
S

➀

➁

➂

Process A

OS

Stack
Heap
Data
Code

Figure 2.1: Virtual memory represents a page-based memory-protection scheme that can
be enforced in hardware on many platforms.

invoke the OS. For example, if an application requires privileged access, such as
opening a file stored on the platform’s hard disk, it has to issue a request to the OS
for accessing the disk and retrieving the file on its behalf. In this way the OS can
mediate any accesses and enforce security policies. OS services are standardized
in the form of system calls [85] and this interface represents one major part of the
kernel’s attack surface towards user-space software [86].1

2.1.2 Virtual-Memory Protection

In addition to privilege separation, the OS usually also maintains a strict isolation
of memory for application software. On many Central-Processing Units (CPUs),
memory isolation is enforced by a dedicated piece of hardware called the memory-
management unit (MMU), which is part of the processor (as depicted in Figure 2.1).
If the MMU is disabled, all memory accesses from software operate directly on
physical memory, which means that no memory isolation is enforced.2 If the MMU
is enabled by the OS, all memory accesses from software are interpreted as virtual
addresses instead and every process is associated with its own virtual-address space.
This indirection forces all accesses from software to be checked against a set of con-
trols before any actual access to physical memory is allowed. These access control
flags are stored in a hierarchical data structure, called the page table. In the example
from Figure 2.1 Process B accesses a virtual address in Step 1 which is translated
and checked by the MMU. Obtaining the access controls for the given virtual ad-
dress requires a look-up in the page table in Step 2 , which might involve several
layers of indirection in physical memory. Therefore, this page walk is considered
a costly operation and often optimized by the OS and the hardware in various

1 Alongside the file system, drivers, and the network stack in monolithic kernels.
2 This used to be a common mode of operation on old operating systems, such as Microsoft’s Disk

Operating System (MS-DOS).

2.2 the traditional threat models 11

Operating System

Hardware

User A User Z...

Operating System

Hardware

User Z...

Figure 2.2: Today, many attacks involve multi-step exploits, in which the attacker succes-
sively migrates from a remote to a local adversary model to gain full control over
the platform. Since the OS implements most of the security-relevant hardening
techniques, attacks against kernel software in this second step are increasingly
common in practice.

ways.3 Once the page table entry for the given address is retrieved, the virtual
address can be translated in Step 3 to the respective physical address, which can
be interpreted directly by the memory bus of the platform. Alongside the phys-
ical address, the page-table entry stores access-control flags associated with the
entry, such as Requested-Privilege Level (RPL), readable, writable, or executable.
Depending on the nature of the access and the Current-Privilege Level (CPL) of
the code that issued the access, the MMU will grant or deny that access. In case
of a denied access the OS will be notified. When execution switches to Process A,
another set of page tables will be loaded in the MMU. In general, this can result
in entirely different access control policies as page tables of different processes can
be kept completely independent. In this way, different parts of the main memory
can be assigned to different processes exclusively. However, it is also possible to
share memory between applications by mapping the same physical page within
different address spaces or map it multiple times under different aliases within
the same address space.

2.2 the traditional threat models

In combination, both mechanisms enable the OS to enforce strict isolation for ap-
plication software at run time. The adversary models commonly considered in
this setting can loosely be categorized into two variants, which are depicted in
Figure 2.2.4 On the left-hand side we can see the remote adversary attacking the plat-
form from the outside, e.g., through a network connection. In this case, the Trusted-
Computing Base (TCB) of the system includes all user-space programs for which
the attacker is able to provide some form of input. Many real-world scenarios can

3 Since this aspect has important security implications we will in fact discuss it in greater detail in
Section 2.5.2 and Chapter 9.

4 Both cases usually exclude physical attacks (i.e., any techniques requiring physical presence), since
this imposes additional, strong requirements on an adversary.

12 background

be modeled in this way. For instance, the attacker could have access to a shared file
storage on the local network, or there might be a webserver running on the target
system that the attacker can connect to via the internet. If the respective server pro-
gram contains a vulnerability, an adversary can leverage this to exploit the server
and achieve some initial control over the victim machine in the remote setting.
In some cases, the attacker might want to extract information, or the goal could
be modifying the webserver’s configuration. In other cases, an adversary might
utilize the compromised process to attack other parts of the system or even com-
promise other machines. The right-hand side shows the model for a local adversary,
which assumes that the attacker already controls a user process on the victim ma-
chine. This means that the attacker can in principle execute arbitrary unprivileged
code. However, most computer systems nowadays run hundreds of processes in
parallel, and hence, operating systems are designed to consider user processes as
untrusted and potentially malicious a priori. To this end, most major operating sys-
tems employ various hardening techniques, such as mandatory-access control [87],
sandboxing [88, 89], and address-space layout randomization [90] by default. In
practice, we can see that attacks against the kernel as a subsequent step are gaining
more and more relevance for several reasons: first, the kernel executes with higher
privileges, often allowing the attacker to gain full control over the machine based
on a single kernel exploit. Second, the OS implements a major part of the security
hardening techniques mentioned above, and hence, obtaining a root process or es-
caping from sandboxes often requires a kernel compromise. Consequently, many
real-world attacks involve a multi-step approach in which the attacker starts out in
the remote setting and successively migrates to the local setting by first acquiring
code execution in user space and subsequently attacking the OS. Indeed, the OS
has become a high-value target in the recent past as kernel exploits are leveraged
in all of the latest Android root exploits [37–39, 91] and iOS jailbreaks [92], appli-
cation sandbox escapes [23], and even large-scale attacks against industrial control
systems [24].

2.3 memory-corruption attacks

In this section, we explain why run-time attacks based on memory corruption pose a
number of difficult challenges for these basic defenses under the traditional threat
models. First, we give a quick introduction into the underlying root causes of
software-based memory corruption. Second, we provide an abstract model and
definition of what constitutes a memory-corruption exploit. Third, we give a sim-
ple real-world example of a typical exploitation workflow.

2.3.1 Causes of Memory Corruption

The problem of memory corruption has proven uniquely challenging from a secu-
rity perspective. In part, this is due to the fact that memory corruption is closely
tied to the way in which we specify program behavior using low-level languages
like C. Normally, the developer specifies the intended behavior of the program in
the code and a compiler then translates this high-level human-readable descrip-
tion into machine code which can be executed directly by the processor. However,

2.3 memory-corruption attacks 13

these languages explicitly allow for undefined behavior, i.e., programs which do not
adhere to a strict set of technical specifications defined in the language standard
are allowed to exhibit any behavior at run time. A popularly exercised example
states that a program exhibiting undefined behavior could format the user’s hard
drive in full accordance with the standard. While in reality, accidentally formatted
hard drives do not rank among the most frequently reported programming bugs5,
undefined behavior can have severe consequences for the system that executes the
program. In theory, any program that is written in an unsafe language could con-
tain a memory-corruption vulnerability. Unfortunately, empirical evidence from
almost 40 years shows that a large part of real-world software is prone to such
bugs over time: memory-corruption vulnerabilities are a wide-spread problem and
occur frequently in deployed code [13–19]. Even worse, patches that fix a number
of older bugs may also introduce new bugs [11, 12]. Indeed, memory-corruption
vulnerabilities represent a vast number of security-relevant bugs for modern soft-
ware written in low-level languages [98, 99], which can be exploited by adversaries,
e.g., to obtain remote code execution or elevated privileges at run time. Memory-
corruption vulnerabilities are often classified according to their root defect and
integer overflows, use-after-free, dangling pointers, double free, buffer overflows,
missing pointer checks, uninitialized data usage, type errors, or synchronization
errors are commonly listed classes of memory corruption [11–13].

While untrained or inexperienced software developers certainly account for a
number of these vulnerabilities, there are also more fundamental, systemic root
causes for memory corruption. The ANSI C standard [100] explicitly lists 96 in-
stances which will cause undefined behavior6 and further remarks that a language
implementation “may generate warnings in many situations, none of which is specified
as part of the Standard” [100]. This means that in practice software developers can
easily miss one of the listed conditions in their code, accidentally writing a pro-
gram that will exhibit undefined behavior at run time. One of the consequences
can be memory corruption, i.e., a situation in which part of program memory, and
hence, the overall program state is no longer well-defined. A simple real-world
example of such a case is the buffer overflow. In this situation, the size of some
user-controlled input should be written to a memory location but exceeds the ca-
pacity of the buffer reserved at that location. This can be exploited by adversaries
to maliciously modify the data or even hijack the control flow of the program at
run time.

2.3.2 A Model for Exploitation

Abstractly, program execution can be viewed as a sequence of transitions within a
particular finite-state machine (FSMs) as depicted in Figure 2.3. The left-hand side
shows the benign states of the intended state machine as originally specified by the
programmer. In this case, there is a dedicated initial state 1 of the program from
which execution begins. State transitions are specified by the software developer

5 Although, it does happen occasionally [93–97].
6 By comparison, the modernized standard ISO/IEC 9899:1999 [101] (commonly called C99) lists 191

cases and the most recent standard ISO/IEC 9899:2011 [102] (commonly called C11) lists 203 in-
stances of undefined behavior.

14 background

1

2

3

4

(a) Intended states.

1

2

35

4 6

(b) Hidden states.

Figure 2.3: Programs can be represented as finite-state machines (a), with vulnerable pro-
grams containing hidden states (b), which only become reachable through un-
defined behavior to form weird machines [103, 104].

in the code, e.g., in this case the developer intended the program to cycle endlessly
between the three states 2 , 3 , and 4 after leaving its initial state. The right-hand
side shows that in the case of undefined behavior the same program might in fact
exhibit unintended, hidden states or weird states [103], which are not reachable
during benign execution. If it is possible to trigger the vulnerability explicitly, an
adversary might be able to force the program into hidden states that are beneficial
from an attacking perspective. Strictly speaking, the code that the developer spec-
ified for such a program becomes completely meaningless and the intended finite
state machine is replaced by a weird machine [103]. This is also evident from the
program on the right-hand side, which now contains a hidden terminal state 6 ,
contrary to the originally specified intended state machine, which cycles endlessly
between the three benign states. In this abstract view of exploitation, the actual
exploit represents an input or trigger which programs the weird machine to ex-
hibit unspecified or unintended behavior at run time. It is important to note, that
this abstract model is completely supported by the language specification. It was
recently formalized and also shown to allow reasoning about non-exploitability of
a program [104].

2.3.3 Typical Attack Workflow

A classic example for the workflow of such a memory-corruption exploit is given
in Figure 2.4: here, the program in (a) utilizes the legacy function gets to read user
input and store it in a pre-defined buffer storage without checking the length of
the input. So, while the programmer only reserved memory for 17 characters in
the program code a user can provide inputs of arbitrary size at run time. In most
benign cases, this will simply cause the vulnerable program to crash. However, an
adversary can provide a specifically crafted input similar to (b) which will force
the program into a weird state (c) that spawns a terminal program and provides
the attacker with an interactive programming environment. This is achieved by

2.4 state-of-the-art attacks and defenses 15

1 #include <stdio.h>

2 #include <strings.h>

3

4 int main(void) {

5 char buffer[17];

6 gets(buffer);

7 printf(buffer);

8 return 0;

9 }

(a) Program.

4141 4141 4141 4141

4141 4141 4141 4141

4141 4141 4141 4141

4141 4141 4141 4141

4141 4141 4141 4141

0306 4000 0000 0000

579d b9f7 ff7f 0000

9023 a5f7 ff7f 0000

3070 a4f7 ff7f 0000

(b) Exploit.

__GI_exit__GI_exit__GI_exit__GI_exit__GI_exit

__libc_system

address of "/bin/sh"

__libc_csu_init+99

4141..4141

spawns

shell

pop rdi

ret

(c) Corrupted stack.

Figure 2.4: The vulnerable program (a) exhibits undefined behavior for inputs exceeding
the length of the buffer. An adversary can exploit this by providing malicious
input (b) to bring the program into a weird state (c) that will spawn a terminal—
a behavior that was never specified anywhere in the program code.

overwriting the return address of the main function which is stored on the stack.
Any instance of memory corruption leaves the program vulnerable to run-time
attacks, and typical exploitation techniques range from injecting malicious code,
to reusing existing code with a malicious input, to corrupting integral data struc-
tures of the running program without hijacking its control flow. An adversary with
knowledge of any such vulnerability can potentially exploit this at run time by de-
liberately triggering the error to achieve unintended, malicious behavior and take
control over the system.

2.4 state-of-the-art attacks and defenses

Here, we give a quick overview of the relevant literature and state-of-the-art re-
search in run-time attacks and defenses based on memory corruption, such as
Return-Oriented Programming (ROP) [10] and Control-Flow Integrity (CFI) [40].
First, we introduce code-reuse attacks and initial, randomization-based defenses.
Second, we explain the basic concept behind enforcement-based code-reuse de-
fenses like CFI and variants thereof. Since a rich body of literature exists on the
topic of code-reuse attacks and defenses already, we refer the interested reader
to the related work for an in-depth and fully comprehensive discussion [105–111].
Third, we briefly introduce the notion of data-only attacks in that context.

2.4.1 Return-to-libc and Return-Oriented Programming

Run-time attacks based on memory-corruption vulnerabilities have been a persis-
tent threat to application and kernel-level software for more than three decades [13–
19, 22–26]. Initially, code-injection attacks received much attention, since a simple
buffer overflow vulnerability enabled adversaries to inject arbitrary code into a run-
ning program, e.g., by providing malicious inputs that would spawn a shell (hence
the term shellcode). Nonetheless, these attacks were quickly prevented by deploy-
ing hardware-based defenses such as Data Execution Prevention (DEP) [112, 113],

16 background

which disable execution of data memory on the platform as a general policy. Hence,
attackers are no longer able to execute code that they injected into the memory of
the program. However, the underlying attack paradigm was quickly adapted to
bypass DEP as a defense by generalizing code-injection attacks to code-reuse at-
tacks [10, 114]. In a code-reuse attack an adversary exploits a memory-corruption
vulnerability to hijack the control flow of a running program by maliciously mod-
ifying a code pointer instead of injecting any code, e.g., the return address which
is usually stored on the stack of the program can be modified to point to some
arbitrary code location that is already present in the memory. In the simplest case,
this enables the attacker to redirect execution to another function, such as a library
function that forks another program, and supply a malicious input (e.g., “/bin/sh”
to launch a shell). However, the most prominent example is return-oriented pro-
gramming (ROP) [10, 115], in which execution is redirected to small snippets of
individual instructions (called gadgets) that end in a return instruction. Since the
attacker is able to chain arbitrary sequences of gadgets together, ROP attacks have
been shown to be Turing-complete. This means, that the attacker can achieve arbi-
trary computation in theory, and hence, ROP attacks represent a powerful exploita-
tion tool in practice. It is important to note that code-reuse attacks are possible on
a wide range of system, some of which do not even offer a dedicated return in-
struction. In particular, the possibility of dynamic (or indirect) branching suffices
to construct code-reuse attacks [116–118].

2.4.2 Code-Reuse Defenses and Advanced Attacks

Consequently, a number of advanced defenses have been proposed in the related
work to protect existing systems against such attacks. Most approaches fall into
either of two categories: (1) randomization-based, or (2) policy-based defenses.

Randomization-based approaches aim to lower the portability of a vulnerability
among identical systems by randomizing parts of the virtual-address space be-
tween applications. Thus, these approaches are sometimes referred to as software
diversification as well [110]. The idea of address space layout randomization (ASLR)
dates back to 1997 [119] and was first implemented in 2000 [90] to randomize
the virtual memory layout for user processes. In particular, ASLR randomizes the
stack, heap and shared libraries prior to program loading. Randomization-based
defenses usually come with a security-performance trade-off, where increased ran-
domization granularity amounts to higher entropy while typically also introducing
more overhead [50]. Besides brute-force guessing attacks, which are rendered in-
feasible in practice by requiring more than 20 to 30 bits of entropy, randomization-
based defenses are subject to information-disclosure attacks. An information leak
discloses information about the memory layout or individual addresses of a pro-
cess giving an adversary the opportunity to adjust the exploit. There are multiple
examples of memory-disclosure vulnerabilities exploited in the real world, such
as in Adobe’s Flash [120], Adobe’s PDF Reader [121], and Microsoft’s Internet
Explorer [122]. For this reason, more fine-grained randomization techniques were
proposed, e.g., by randomizing at the function-level [50], or even at the instruction-
level [47, 123]. However, the run-time penalties associated with those schemes is
generally considered too high in practice. Moreover, even a single leaked code

2.4 state-of-the-art attacks and defenses 17

pointer enables an adversary to completely de-randomize an application at run
time by disassembling randomized code pages while following newly discovered
code pointers. In this way, the attacker can dynamically assemble a gadget payload
via indirect disclosure of code pages, a technique dubbed just-in-time code reuse,
or JIT-ROP [17]. While information leaks pose significant challenges to fine-grained
randomization schemes, a proposed defense technique is to make code pages non-
readable [54, 55]. This was demonstrated to defeat indirect information-disclosure
attacks. However, standard hardware does not support non-readable code pages,
and hence, implementing this defense requires a hypervisor and extended page
table support. Code-Pointer Integrity [46] proposes to partition a program’s data
memory into a region for code pointers and a region for the remaining data. By
randomizing the location of the code-pointer region, all accesses to code pointers
can then be assumed to be safe. While this compiler-based approach was shown
to introduce a lower overhead than fine-grained randomization defenses against
code-reuse attacks, the location of the safe region was subsequently shown to be
prone to timing sidechannels [124].

In contrast to these probabilistic randomization-based defenses, Control-Flow
Integrity (CFI) [40] emerged as a promising defense mechanism that offers formal
security guarantees, while incurring modest overheads. The high-level idea behind
CFI is to analyze the program code at compile time to compute labels at all possible
branch locations and insert checks that restrict the control flow to the correct label
set. Since this approach requires additional checks to be executed at run time for
indirect jumps, initial implementations induced overheads from 5 to 20 percent,
which is still considered impractical for many applications [41]. Moreover, the ac-
curacy of the pre-computed and enforced label sets is essential to achieve a high
level of security. Deploying CFI in the context of object-oriented code has proven
challenging, as implementations that neglect the detailed semantics of languages
like C++ were shown to be subject to attacks [18]. For binary code, imprecise label
sets can lead to attacks despite coarse-grained CFI policies being enforced [125].
Hence, secure CFI implementation typically require an in-depth static analysis
and instrumentation phase at compile time, costly run-time checks, and a shadow
stack implementation [126]. To reduce the performance hit, hardware-assisted CFI
implementation have been investigated [42, 60] and hardware extensions have been
announced to offer dedicated CFI support for upcoming CPU architectures [61].

2.4.3 Data-only attacks

In contrast to code-injection and code-reuse attacks, data-only attacks [13] do not
hijack the control flow of an application. Instead, the attacker tampers with the
input data of functions or directly corrupts data structures in memory. Although
data flows are in general heavily application-dependent, data-only attacks were
previously shown to severely affect the security of vulnerable software [68]. Addi-
tionally, while data-only attacks may not always offer the same flexibility and ex-
pressiveness as code-reuse attacks, they can pose a significant threat in practice. For
example, the attacker can change the current user id to elevate privileges, or change
file names to disclose secrets such as configuration files or cryptographic keys. So
far, no efficient and general data-only defense exists as all intended data flows

18 background

UncoreLLC

CORECORE

CORECORE
iMC

PCH

I/O

DRAM PCIe

GFX

PeripheralsSPI

Figure 2.5: Modern computer platforms feature complex SoC architectures that combine
multi-core designs with performance-critical elements uncore inside the CPU
package. Components inside the CPU package share a large last-level cache
and are tightly coupled through high-speed interconnect fabric on the die. Pe-
ripherals are connected to the processor package via the system bus.

must be protected to construct an effective mitigation, resulting in prohibitively
expensive overheads for existing schemes [49, 127, 128]. We demonstrate the real-
world threat of data-only attacks in the context of multi-step attack approaches
against OS kernels and also present possible mitigations in depth in Part II.

2.5 modern hardware platforms

Since many defenses against memory-corruption-based attacks have been presented
and also deployed over the years, adversaries are looking for new ways to attack
systems at run time. Naturally, software runs on physical hardware, which has
grown quite complex over time. As it turns out, this also opens up novel oppor-
tunities for attacks. Computer platforms have evolved significantly during the last
30 years, trading their relatively simple, discrete layouts in the beginning for more
complex, but faster system-on-chip (SoC) designs. In this section, we first look into
the overall system architecture of modern platforms. We then discuss the processor
design principles underlying recent computing platforms in more detail and fur-
ther outline in which ways this can prove problematic from a security perspective.

2.5.1 Overall System Architecture

In particular, earlier architectures connected a large number of these discrete and
specialized components through hard-wired or printed circuit lanes on the main-
board. In contrast to that, modern processors integrate many of these tradition-
ally separate chip elements on a single die, minimizing the number of required
communication pathways off-chip to enable faster and wider data connections.
The basic platform architecture of such an integrated, SoC-based design is de-
picted in Figure 2.5. At the highest level, multi-core architectures typically have an
intricate interconnect fabric between individual cores, the last-level cache (LLC),
the uncore elements, and the system bus which connects to the off-chip peripher-

2.5 modern hardware platforms 19

Logical Cores REGS REGSPIC PIC

Decode Fetch

Out-of-Order

Engine

BPU ROB

Scheduler

Functional Units
FPUALU

VSU LSU

L2-$ L2-TLB

L1-d$

L1-i$ L1-iTLB

L1-dTLB

MMU

Figure 2.6: Semiconductor manufacturers aim to enhance single-core performance by max-
imizing instruction-level parallelism. For this, chip designers leverage techniques
such as super-scalar processing, simultaneous multi-threading, and out-of-
order execution, which heavily increase implementation complexity of modern
processors.

als. While the main components have remained largely the same, many elements
were moved from off-chip to uncore in recent years. Traditionally, the mainboard
chipset employed a north- and southbridge architecture, which used to connect
peripherals with faster and slower data connections respectively. However, since
many peripherals rapidly increased their communication speed and maximal ca-
pacity, the Platform Controller Hub (PCH) has replaced this older layout. On recent
CPUs, it was moved into the processor package to allow for more direct links, en-
abling faster communication and more fine-granular control. It now also combines
power management and security services, e.g., in the form of the Converged Se-
curity and Management Engine (CSME) [129]. Moreover, modern CPUs typically
also directly contain dedicated graphics processing capabilities (GFX), as well as
complex configurable hardware controllers (I/O). Lastly, they incorporate an in-
tegrated memory controller (iMC), which usually resided on the mainboard as
well on older platforms. The main peripheral connections that remain on the main-
board on modern platforms represent the flash ROM chip7 attached via Serial-
Peripheral Interface (SPI), main memory in the form of Dynamic Random-Access
Memory (DRAM), and high-speed peripherals such as SSDs and GPUs which are
connected over Peripheral Component Interconnect Express (PCIe).

2.5.2 Processor Design Principles

The bi-annual doubling of transistor density no longer drives performance im-
provements in integrated circuit designs, as Moore’s Law is hitting the physical
limits of silicon-based semiconductor technology [130]. Thus, processors are in-
creasingly designed to optimize execution, e.g., by heavily improving the num-
ber of instructions executed per unit time (dubbed instruction-level parallelism). For
instance, practically all modern processors are super-scalar architectures, which

7 Which contains the firmware (i.e., boot ROM, CSME code and data partitions, BIOS, and µ-code).

20 background

means they are able to utilize functional units in parallel to execute more than
one instruction per cycle. This requires careful management of the instruction
pipeline to identify data dependencies between consecutive instructions and puts
additional constraints on the design of the decode and fetch stages. Further, Si-
multaneous Multithreading (SMT) [131] subdivides a single physical core into a
number of logical cores, introducing the ability to simultaneously process different
instruction streams within a single core.

The high-level design of such a processor is depicted in Figure 2.6 and usu-
ally simply replicated for each physical core on a multi-core chip. Individual in-
structions are loaded into the pipeline by the fetch stage of the processor, and
decoded into a number of microcode instructions (µ-ops), which are executed by
the functional units. High-end processors often feature complex Out-of-Order En-
gines that may schedule and process µ-ops of the same instruction stream ahead of
time, leveraging Re-Order Buffers (ROB) to emit the results of re-ordered instruc-
tions in the correct sequence before finalizing execution. Some processors addi-
tionally employ Branch-Prediction Units (BPUs) to speculate on the target address
of branch instructions, e.g., to make loop iterations cheaper. The functional units,
such as Arithmetic Logic Units (ALU), Floating-Point Units (FPU), Vector-Scalar
Units (VSU), and the Load-Store Units (LSU) represent the fundamental building
blocks that are contained in some form on every processor. Usually, the LSUs are
the only functional units that operate on external memory. DRAM access laten-
cies are many orders of magnitude slower than processor cycles, and hence, CPUs
leverage complex, multi-level caching hierarchies to close this gap and enhance
performance in practice [132]. The fastest level, L1, is divided into an instruction
cache (L1-i$), which contains the machine code of the currently executed thread,
and a data cache (L1-d$). Typically, its size is in the order of a few memory pages
and access latencies are in the range of a single CPU cycle. The second level, L2,
usually unifies code and data, and while its access latency is about an order of
magnitude slower than the L1, its size can be a magnitude larger. SMT processors
contain multiple Register Sets (REGS) and Programmable-Interrupt Controllers
(PICs) to maintain separate threads independently at run time, and hence, threads
running on two logical cores share all of the core’s physical resources. Since in-
dividual instructions can exhibit large differences in execution time, one thread
may often stall the core while waiting for a scheduled instruction to finalize op-
eration. The instruction stream from other threads running on the same physical
core can then be used to maximize resource utilization by executing its instruc-
tions in parallel to the instruction stream from the stalled thread. As mentioned
in Section 2.1.2, many processors support virtual-memory protection through a
Memory-Management Unit (MMU). While MMUs allow for a fine-granular, page-
based policy management and enforcement, this also requires an indirection for
every memory access, which strongly affects run-time performance. For this rea-
son, processors which include an MMU typically also feature a series of faster
caches for these policy look-ups, called the Translation-Lookaside Buffers (TLBs),
which usually mirror the cache hierarchy for code and data memory. Again, these
hardware resources are shared among all logical cores of a physical package.

2.5 modern hardware platforms 21

2.5.3 Remote Hardware Exploits

Resource sharing maximizes utilization, and hence, optimizes run-time perfor-
mance. However, the added complexity and extreme transistor densities of today’s
chips also lead to side effects that can be leveraged by malicious software.

One example of this are side-channel attacks. The goal behind a side-channel at-
tack is usually to leak information, such as passwords or cryptographic keys and
many practical attacks have been presented in the past. Side-channel attacks are es-
pecially problematic when processor resources are shared across different privilege
levels, as this may allow an unprivileged adversary to disclose privileged informa-
tion. For instance, by leaking internal data from the OS through a side channel an
adversary can break fine-grained randomization and subsequently launch a code-
reuse attack [22, 80]. Additionally, many architectures offer dedicated prefetching
and flushing instructions to load or empty out caches to allow manual optimiza-
tion from software. These operations directly influence and disclose information
about the state of the caches and allow co-located attackers to probe and measure
the effects of accesses by victim software [82, 83, 133].

While side-channel attacks are limited to information disclosure, remote-fault in-
jection attacks enable adversaries to corrupt hardware entirely from software, po-
tentially compromising the security of the entire platform. One recent example
is Rowhammer [63], which leverages a hardware vulnerability in DRAM chips to
generate bit flips in memory from software at run time and many attacks have
been presented that completely bypass existing defense mechanisms [64, 74–77,
134, 135]. Another example is CLKScrew [65], which exploits power management
functionality to produce processor glitches at run time from software. This en-
ables attackers to compromise even dedicated hardware security extensions, such
as ARM TrustZone, which were envisioned as a general defense against software-
based attacks [136].

While both attack classes mentioned above exploit specific vulnerabilities or fea-
tures of bare-metal hardware, it is important to note that firmware attacks may also
enable remote attacks against hardware. Firmware represents software that is em-
bedded into the chip by the manufacturer and (contrary to the OS) cannot easily be
modified by the owner of the platform. To this end, it serves as a bridging technol-
ogy by managing low-level control tasks, such as platform bring-up, power-saving
stages, and chip-level peripheral control. Although these tasks could in principle be
implemented through additional hardware, firmware allows for greater flexibility
across different product lines and, in contrast to hard-wired circuitry, can also be
updated after deployment. Naturally, as firmware grows more complex it is prone
to similar attacks as traditional system software: for instance, firmware attacks
have been demonstrated against Intel ME [137] and NVIDIA’s Tegra Cores [138]
recently, affecting millions of platforms such as many recent Intel’s x86 proces-
sors [139] and Nintendo’s Switch gaming consoles [140].

Overall, we can see all three techniques are increasingly gaining attention, as re-
mote hardware exploits represent an upcoming threat. Recently, successful hardware-
based exploits have been demonstrated from malicious software against applica-
tions [141], the OS [66], and even against advanced hardware-security architectures
like Intel SGX [67] and ARM TrustZone [65]. Since firmware could in principle be

22 background

protected by adapting software-based defenses, we focus on the first two tech-
niques in this dissertation. We discuss remote hardware-based attacks as well as
possible mitigations in depth in Part III.

Part II

M E M O RY C O R R U P T I O N : T H E T H R E AT O F D ATA - O N LY
AT TA C K S

based on JIT-Guard [1], PT-Rand [2], and K-Miner [3].

3
B Y PA S S I N G C F I I N M O D E R N B R O W S E R S .

In this chapter, we demonstrate that state-of-the-art code-reuse defenses like CFI
are not sufficient to stop the threat of memory-corruption attacks. In particular, we
present a data-only attack, termed DOJITA [1], which completely defeats CFI in
the browser context.

3.1 data-only attacks on dynamic code generation

Big applications, such as web browsers and document editors support a large num-
ber of features, for instance, to support a variety of file formats, and increasingly
offer highly customizable functionality to end users. To achieve a high level of flex-
ibility, many of these applications leverage dynamic code. These scripting languages,
like JavaScript, are interpreted at run time and can easily be updated or modified
without changing the static code of the surrounding application. In contrast to
static programming languages, like C and C++, this requires a dedicated run-time
environment, that additionally takes care of memory management and provides
an interface to a rich set of functions. For instance, dynamic scripting languages
are typically included in most web browsers, as today many websites require a
form of dynamic interaction with the user. As such, high-performance execution
of dynamically generated code can be essential. To this end, static code that in-
cludes dynamic scripting components usually employs just-in-time (JIT) compilers
to translate the interpreted, high-level scripting code into machine code at run
time, since interpretation is orders of magnitude slower than native execution.

It is noteworthy to mention that dynamic code is not limited to the application
level, but represents a common technique to increase flexibility of large software
in general: even some operating systems include a dedicated JIT engine in the
form of the Berkley Packet Filter (BPF) [142], which was originally designed as a
user-programmable network filter in the kernel, however, it has been significantly
extended over time to support a variety of use cases (e.g., sandboxing).

However, adversaries can leverage memory-corruption vulnerabilities in the static
component of the application or OS to attack dynamically generated code at run
time as a means to circumvent hardening techniques deployed for static code. In
particular, adversaries with access to a memory-corruption vulnerability can usu-
ally achieve arbitrary read-write capabilities and exploit this access to corrupt code
pointers or data and take full control at run time. Code-injection attacks [9] nor-
mally represent a legacy exploit method on modern system due to the extensive
deployment of non-executable memory [112, 113]. Interestingly, this type of attack
has seen a revival in the context of dynamically generated code, since JIT-engines
have to be able to write code pages at run time [143, 144]. If an application contains
a memory region that is writable and executable at the same time the attacker can
inject arbitrary instructions into this region and then hijack the control flow to ex-

25

26 bypassing cfi in modern browsers .

ecute them. This is why browsers soon deployed non-executable memory for JIT
engines [145].

Nonetheless, even if code generated by the JIT engine can no longer be modi-
fied by the attacker, code-reuse attacks are still possible [146, 147]. Hence, state-of-
the-art code-reuse defenses have increasingly seen adoption in the JIT context as
well [55, 144, 148], by verifying the destination addresses of dynamically generated
branches with a pre-defined security policy.

3.2 assumptions and threat model

We aim to showcase the power of data-only attacks in the context of dynamically
generated code, despite state-of-the-art defenses being deployed and active. In par-
ticular, we consider attacks against the static component of the application to be
prevented by these defenses. Below, we list our detailed, standard assumptions
that are also consistent with the prior art in this field [55, 144, 147–149].

• Code-Injection and Code-Reuse Defenses. Under our model, code-reuse
and code-injection defenses are supported and enforced. Hence, injecting ma-
licious instructions is prevented by non-executable data pages [113]. Further,
control-flow integrity [40, 148, 150, 151] is assumed to prevent code-reuse at-
tacks against the static or dynamic parts of the application. The application
and the operating system code are considered as trusted.

• Address-space layout randomization. We additionally assume a form of Ad-
dress Space Layout Randomization (ASLR) [90], which hides the location of
allocated data regions from an adversary.

• Memory corruption. Under our threat model, the application contains a
memory-corruption vulnerability which is known to the attacker, which rep-
resents a realistic scenario [17, 18, 152]. Consequently, the attacker can exploit
this to disclose and manipulate data memory.

• Scripting Environment. The dynamic component of the application allows
an adversary to execute sandboxed, interpreted code.

The goal of the attacker in this setting to execute arbitrary native code in the ex-
ecution context of the static component (e.g., a browser process or the OS kernel).
The attacker can then try and further compromise the system, or leak sensitive in-
formation from the web page by launching the attack using some malicious input,
such as a injected advertisement code in the browser. 1 For applications, the use
of additional defense mechanisms like sandboxing [88, 89] can make this second
step harder to achieve in practice. However, such defenses are not available for the
OS and also do not generally prevent the first step, hence we consider them as
orthogonal to our model.

1 For the scenario of attacking an OS-level JIT engine the malicious JavaScript ad would be replaced
by a user-provided network filter script.

3.3 generically bypassing cfi by exploiting jit-compilers 27

Figure 3.1: Our attack bypasses CFI enforcement by maliciously modifying the interme-
diate representation (IR), which resides in data memory and is never executed
directly. Instead, it is used by the compiler to output machine code for an attack
payload which the attacker can then invoke in a subsequent step.

3.3 generically bypassing cfi by exploiting jit-compilers

All previously discussed defenses for the JIT compiler aim to prevent code-injection
or code-reuse attacks. To assess those defenses we conducted initial tests that
showed that the attacker can use data-only attacks, i.e., memory-corruption attacks
that do not corrupt any code pointers to achieve arbitrary remote code execution.

3.3.1 Attack Overview

Our attack, dubbed DOJITA (Data-Only JIT Attack), maliciously modifies the inter-
mediate representation (IR) that is used internally by the JIT compiler. This results
in the JIT engine generating an attacker-controlled native code. The high-level at-
tack workflow is depicted in Figure 3.1: an adversary starts out by triggering a
memory-corruption vulnerability, which grants the attacker read and write priv-
ileges within the application memory in the first step 1 . Next, the attacker pro-
vokes the JIT engine to start an optimization pass for a particular, previously only
interpreted dynamic function 2 . By default, dynamic code is interpreted and the
intermediate representation is only generated if run-time optimization is required
for that function. This can usually be triggered automatically, e.g., by executing
the same function in a loop to trigger the JIT compiler and compile the function to
native code. In the next step 3 , the attacker maliciously modifies the data objects
that form the intermediate representation to correspond to an arbitrary, malicious
payload. Since only code pointers are protected by control-flow integrity enforce-
ment (regardless of the enforced granularity), this is possible despite CFI being
deployed and active. The JIT compiler then uses the IR to optimize and eventually
compile it 4 to machine code that can be executed natively. This generated native
code will even be protected by a CFI policy accordingly, however, since the gener-
ated code is itself malicious the attacker only has to trigger its execution to invoke
the exploit in the last step 5 .

28 bypassing cfi in modern browsers .

Figure 3.2: Within the JIT engine the currently optimized instruction stream is represented
in the form of a doubly linked list of data objects. By inserting crafted or mod-
ifying existing objects an adversary can inject arbitrary instructions into the
generated machine code. Since DOJITA [1] only involves data accesses it can-
not be prevented by means of code-reuse defenses and completely bypasses
CFI for the browser.

We note, that our attack emphasizes the threat of data-only attacks, despite de-
fenses against control-flow hijacking being deployed and active.

3.3.2 Corrupting the Intermediate Representation

In our initial tests, we utilized the Chakra [153] JavaScript engine, which is used
by Microsoft’s Edge browser. Starting from a memory-corruption vulnerability, the
goal of the attacker is to generate a malicious native payload in a pure data-only
attack. This means that an adversary cannot modify any code pointers, since our
threat model assumes a state-of-the-art code-reuse and code-injection defense to
be deployed for the static and dynamic component of the application.

While reverse-engineering Chakra we focused on the JIT engine and how native
code generation is triggered from the interpreted bytecode. Chakra’s implemen-
tation of the intermediate representation uses a doubly linked list of data objects.
Interestingly, this C++ object type already encodes the required data, which is used
by the JIT engine to compile IR objects into native instruction sequences. In partic-
ular, opcode describes the type of operation, and dst, src1, and src2 denote the
respective operands to be used. A straightforward approach is to craft malicious
memory objects using this layout and connecting them to the linked list. Hence,
our attack then involves modifying the data pointers of existing list elements to
point to the newly created, maliciously crafted C++ objects. The corrupted state of

3.4 on the prevalence of data-only attacks 29

the linked list is also shown in Figure 3.2. Subsequently, the corrupted linked list
will be used by the JIT engine to compile the IR to a sequence of machine code
instructions which will already encode the attacker payload.

Unfortunately, the operation type field opcode is restricted to a set of benign
instructions, such as arithmetic, branches, and memory accesses. For this reason,
generating system calls is not supported directly and we resort to using unaligned
instructions [10] by generating an add instruction with an argument that is set to
the immediate value 12780815 (i.e., hexadecimal 0xC3050F). When interpreted as
a native opcode, this corresponds to syscall; ret. At the end, the attacker emits
an indirect call with the target register pointing to the beginning of the immediate
value of this add instruction, which causes the numerical constant representation of
the operand to be executed as an unaligned instruction. This enables our payload
to issue arbitrary system calls, and hence, interact fully with the system.

3.3.3 Attack Framework

In the prototype for our attack we leveraged the dynamic code generation to imple-
ment a framework for encoding arbitrary attack payloads. To this end, the attack
payload is automatically converted into the corresponding memory objects, using
the required memory layout and alignments for easy testing. We utilized an ex-
isting heap-corruption vulnerability in Chakra to obtain arbitrary read and write
capabilities within application memory. We then disclose and modify a series of
pointers using our framework to automatically compile the corresponding mali-
cious structures and link them to the existing IR objects. Consequently, Chakra’s
JIT compiler engine will utilize our crafted memory objects while emitting native
code.

State-of-the-art defenses [55, 148] cannot prevent our data-only jit attack, since
they cannot differentiate between the malicious data objects and the genuine data
objects in the JIT engine. During our experiments the attack succeeded with high
probability.

3.4 on the prevalence of data-only attacks

Interestingly, a related data-only attack [154] was presented concurrently to our
DOJITA attack that also targets the data structures used by Microsoft’s JIT compiler.
However, the presented approach differs from ours in so far as the authors target
the temporary output buffer that contains the emitted native code for a certain
time frame during compilation, and hence, this buffer is readable and writable
during that time. After compilation the JIT engine moves and remaps the emitted
code as readable and executable. As a response to this, Microsoft patched their JIT
compiler by adding a check-sum to the generated instructions. If the check-sum
of the remapped code does not match the check-sum of the buffer, the emitted
JIT code is never executed. It is noteworthy to mention that while this defense
mechanism stops the attack presented by Theori [154], our attack is completely
unaffected and this patch does not prevent DOJITA. The reason is that we modify
the IR before a check-sum is generated, and hence, the inserted check will always
pass. This is why this latest patch cannot detect DOJITA.

30 bypassing cfi in modern browsers .

3.5 possible mitigations

To mitigate our attack, the JIT compiler has to be hardened against code-injection,
code-reuse and data-only attacks. Achieving this requires to isolate all critical com-
ponents of the JIT compiler from the main application, potentially containing a
number of exploitable vulnerabilities. To isolate the JIT compiler one could use
randomized segments protected through segment registers, or a separate process.
Using the randomized segments to hide the compiler, its stack, and its heap would
be possible, but would require a considerable effort to make sure that no informa-
tion leak is possible. Using a separate process for the compiler, instead, requires
a substantial redesign to support the asynchronous communication used during
the resulting inter-process communication. Recent versions of Chakra have been
redesigned [155] around an out-of-process compiler, which required 27 000 addi-
tional lines of code, compared to 640 000 lines of C/C++ code in the Chakra source.
Using separate processes also means the processes have different address spaces
and, thus, a higher overhead is required due to additional communication and syn-
chronization. Moreover, a remote procedure call from the browser to the separate
compiler process incurs additional latency.

On the other hand, in joint work with our colleagues we recently presented a
mitigation that enforces the isolation through hardware by utilizing Intel SGX [1].
Existing browsers can be retrofitted with an SGX-based design, since it preserves
the synchronous call semantics of existing code, while at the same time providing
a clean separation. Moreover, the SGX enclave launched by the browser process
is executed on the same core, so it does not require any action from the system
scheduler to run. This also means that the enclave can leverage the data already
stored in the CPU caches, resulting in a low overhead of less than 1%. Applying
this retrofit to a JIT engine requires manual effort, however, they argue this one-
time effort scales due to the similarity in the high-level design of major JIT engines
and their limited number. As noted by the authors other mitigations, like CFI [61,
150, 156], require individual effort for each JIT engine as well.

4
B R E A K I N G A N D F I X I N G C F I I N O S K E R N E L S .

This chapter introduces a new data-only attack that generically bypasses CFI im-
plementations in the OS context by subverting the page table, which is managed
by the kernel as a data object. We also present the design and implementation
of a novel randomization-based defense mechanism to protect page tables against
such attacks. Through rigorous evaluation we demonstrate the effectiveness of our
technique, called PT-Rand [2], and further show that it is also highly efficient.

4.1 os kernels as targets of data-only attacks

The OS represents the fundamental building block in the software stack underlying
all user applications. To this end, the kernel abstracts and manages the complex-
ity of real-world hardware and provides well-defined interfaces for user processes.
In addition to that, the kernel usually runs with elevated privileges, and hence,
constitutes a valuable target for attacks. This is aggravated by the fact that all ma-
jor operating system kernels are implemented in unsafe programming languages.
As explained in Section 2.3 this makes them prone to memory-corruption-based
attacks. Since major kernels further offer increased support for new hardware fea-
tures, diverse configurations, and a large number of devices, they also often incor-
porate third-party drivers which typically receive less maintenance.

As a response to various kernel attacks, additional architectural hardening tech-
niques have been designed and deployed in practice. For instance, Supervisor Mode
Execution Protection (SMEP) and Supervisor Mode Access Protection (SMAP) [157,
158] ensure that user pages cannot be accessed during kernel execution to protect
against ret2usr attacks [159]. To defeat code-injection attacks, modern operating
systems enforce the principle of non-writable code page [113]. However, this as-
sumes that the integrity of page tables is assured. While a number of kernel-CFI
implementations have been proposed to tackle OS-level code-reuse attacks [43, 45,
160], implementing code-reuse defenses in the kernel is more challenging. One
of the reasons is that the data objects that enforce memory isolation (namely,
page tables) are not protected against malicious accesses in the case of a memory-
corruption vulnerability in the kernel.

4.2 assumptions and threat model

Our goal is to demonstrate the threat of data-only attacks against the OS kernel,
especially in light of deployed state-of-the-art defenses being enforced. To this end,
we assume that code-reuse attacks, including return-to-user [159] and return-to-
dir [161] attacks in the kernel context are prevented by the respective architectural
and software-based defenses. The adversarial setting for our attack is based on
the following standard assumptions, which are consistent with the related work in
that area [43, 45, 159–161].

31

32 breaking and fixing cfi in os kernels .

• Code-Injection and Code-Reuse Defenses. We assume that the architecture
provides a means to make code pages not writable through a globally en-
forced W⊕X policy (especially also for kernel code pages). We also require
dynamically loaded kernel modules to be cryptographically signed. This
means that an adversary cannot by default inject malicious code into the
kernel.

Further, we assume a code-reuse defense to be deployed in the kernel [41, 43,
45, 160] and that user pages are not accessible when executing kernel code,
which is the case by default on recent architectures [92, 157, 158].

Consequently, the attacker cannot modify the page tables by means of control-
flow hijacking.

• Kernel-Address Space Layout Randomization. Most major operating sys-
tems additionally deploy a basic form of Kernel-ASLR (KASLR) by default [162–
164], to randomize the location of the kernel code section, and we assume
KASLR to be deployed and active.

• Compromised User Process. Next, we assume that the attacker gained full
control over a user-space process, e.g., by exploiting a vulnerable application
such as a webbrowser (cf., Chapter 3). Therefore, the attacker is able to exe-
cute arbitrary unprivileged code and can fully interact with the system , e.g.,
by issuing system calls.

• Memory Corruption. Finally, under our model the attacker has knowledge
of a memory-corruption vulnerability in the kernel code. By triggering the
vulnerability an adversary can read and write arbitrary kernel memory to
attempt gaining kernel privileges. However, the enforced code-injection and
code-reuse defenses prevent the attacker from hijacking the control flow of
the kernel.

4.3 our page table exploit

To demonstrate the power of data-only attacks on page tables, we implemented
a real world exploit to bypass the popular CFI-based protection for Linux kernel
RAP [160]. Modern architectural [157, 158] and software-based [161, 165] hard-
ening solutions cannot prevent data-only attacks, since they either focus on user
memory not being accessed with kernel privileges or on mitigating code-reuse at-
tacks. While control-flow hijacking attacks compromise code pointers, data-only
attacks only affect non-control data, such as variables, data structures, and flags
stored in memory.

4.3.1 Attack Overview

The high-level idea behind our attack is depicted in Figure 4.1. A user-level ad-
versary can deactivate the enforced code-injection defense for a kernel code page
by maliciously updating the respective page table object which controls the access
control flags of that memory page (a mechanism explained in detail Section 2.1.2).

4.3 our page table exploit 33

Figure 4.1: Our page-table exploit enables code injection attacks in kernel mode despite
CFI being deployed and active in the kernel. This motivated us to design an
efficient randomization-based defense approach to complement kernel CFI im-
plementations by protecting the page tables against such attacks.

To achieve this, an adversary triggers the memory-corruption vulnerability in the
kernel code, which allows the attacker to read and write kernel memory. Next, the
attacker has to scan and locate the kernel memory for data pointers to page table
objects that control his own address space.

Since the page table is structured hierarchically, this only requires disclosing
the address of the root node of the respective page table objects, since afterwards
the page table entry for the kernel code page can be located in a straightforward
manner by walking the page table in software. Finally, the attacker can update
the permission bits stored in that page table entry to make the kernel code page
writable and executable. From that point, code-injection attacks are possible again
in the kernel context, and an adversary can execute arbitrary malicious code with
kernel privileges.

4.3.2 Exploiting the Kernel by Corrupting the Page Table

To construct our attack we utilized the popular and freely available operating sys-
tem Linux (v4.6) hardened with GRSecurity’s RAP [160], which represents an open-
source CFI implementation for the Linux kernel. This means, in our threat model
the kernel is protected against control-flow hijacking and the attacker is not al-
lowed to overwrite any code pointers. However, overwriting data and non-control
pointers is still possible.

In that setting, corrupting the page table objects that control the virtual-address
space mappings belonging to the attacking process requires several steps: first, the
attacker has to disclose the memory location of the top-level page table leveraging
the read-write primitive that is granted by the memory-corruption vulnerability
in the kernel. This reference can be obtained by locating the process-control block
(called task_struct in Linux) of the attacker’s process. The task_struct contains
a set of data structures for general book-keeping and management of processes.

34 breaking and fixing cfi in os kernels .

Since many components in the kernel make use of these process descriptors these
data structures are connected in a linked list, which is globally accessible. Addi-
tionally, the Linux kernel stores the process descriptor at a fixed offset below the
kernel stack of that process, and hence, the memory location of the task_struct

can be easily computed from a stack address.
Once the process descriptor has been located the attacker has to locate the top-

level page table pointer from it in the second step. To this end, the task_struct

contains a reference to a memory-management descriptor of the process, called
mm_struct. This data structure maintains information about the virtual-address
space of the respective process. Among other data, this structure contains the
pointer to the top-level page table of the managed process, and the data field is
called pgd (for page global directory).

Now we can walk the page table for the virtual address mapping the kernel code
page which we intend to modify. Hence, in this third step the attacker leverages
different parts of the virtual address as offsets into the respective page-table level
until the page table entry is located. While conceptually straightforward this page
walk may involve following up to four indirections in kernel memory (for x86 in
64bit mode).

Finally, once the page table entry for that kernel code page has been located, the
attacker can set the bits that control the access permissions to readable, writable,
and executable, enabling code injection in the kernel context. In the proof-of-
concept implementation of our attack we chose to inject a malicious code into
an unused system call function. In this way, we can trigger the malicious function
from user space without ever hijacking the control flow of the kernel context.

At no point during our attack does an adversary require to modify a code
pointer. Consequently, our data-only attack cannot be prevented by state-of-the-
art defenses, such as CFI and KASLR.

4.4 pt-rand : mitigating data-only attacks against the page tables

Given the importance of page tables for exploit mitigation, and the severe conse-
quences incurred by our data-only attack, it is vital to provide efficient and effective
protection of the page table against malicious modification. In fact, as our proof-
of-concept attack demonstrates, such a defense is required to complement existing
defense like CFI in the kernel. However, in our model the attacker can exploit
a memory-corruption vulnerability to corrupt existing data structures. With arbi-
trary read and write capabilities in the kernel the attacker can alter the memory
management structures to completely bypass existing and deployed defenses to
again launch code-injection and code-reuse attacks.

4.4.1 Design and Overview

For this reason, we design a novel defense, called PT-Rand, to prevent data-only
attacks against the page tables in the kernel, which is also illustrated in Figure 4.2.
The high-level idea behind our defense is two-fold:

4.4 pt-rand : mitigating data-only attacks against the page tables 35

Random
Source

Virtual Memory

PT-Rand Region

1:1 Mapping

Initial Page Tables
(constant address)

Kernel Data

Physical Addresses

A

B

PT-Rand

Generate Randomization Secret
Boot
Time

Run
Time

Relocate Existing Page Tables

Substitute Page Table Pointers

Allocate Page Table Memory

Access Page Tables

1

2

3

4

5

C

CPU
Priv-
Reg

Kernel

Figure 4.2: Our design of PT-Rand involves several boot-time and run-time components to
set up the randomized mapping for page tables in the kernel.

1. We randomize the virtual addresses of all page table pages in the kernel using
a common, randomized offset.

2. We provide leakage resilience by keeping this base offset in a privileged regis-
ter and replacing all data pointers to page table objects with their physical
addresses.

During system boot, PT-Rand first generates a randomization secret 1 , which
is stored in a debug register. At that point in time, virtual memory is already en-
abled, and hence, we have to relocate all existing page tables 2 to the hidden
region. We use a debug register for two reasons: first, they require privileged code
access, and second, they are not used during normal operation. Hence, to access
the register that stores our random offset an adversary would have to a successful
code-injection or code-reuse attack, which is prevented under our model. To make
PT-Rand resilient against information-disclosure attacks, we additionally convert
all pointers to physical addresses 3 . Whenever the system allocates a new set of
page tables at run time, e.g., upon spawning a new process, the kernel invokes a
set of wrapper functions that PT-Rand provides instead of the default page table al-
location functions to additionally randomize 4 the virtual address and substitute
all pointers to page table references for that new process. If the kernel requires
benign access to page table objects, for instance, to update a particular memory
mapping, it leverages additional helper functions which will utilize the random-
ization secret to retrieve the respective page table page 5 . In this way, PT-Rand
ensures that benign operation is not impeded and can still run efficiently.

It is noteworthy to recall that physical addresses cannot be used by any software
once virtual memory is enabled by the OS during boot time. This means that all
page table references in PT-Rand can only be accessed by using the randomization
secret. This is a key point to the security of our scheme against data-only attacks:
the attacker gains no knowledge from disclosing physical page table pointers. In
particular, an adversary cannot use them to read the page tables during a page

36 breaking and fixing cfi in os kernels .

walk, or modify the required page table entry. Translating the physical page table
references to usable, virtual addresses requires the randomization secret, which
is stored securely in a register. To this end, we ensure that the register is never
spilled.

4.4.2 Challenges

To enable PT-Rand we had to tackle a number of challenges as we explain in the
following. In Section 4.5, we describe in detail how we address each challenge.
Initial Page Tables. At system start-up, the OS still uses physical memory. In order
to enable virtual memory protection, the kernel temporarily allocates boot-time
page tables, which are stored at a fixed location. Since, these page tables will still
be used under certain circumstances, we have to relocate them in virtual address
space at run time.
Page Table Allocation. Page tables are data objects that are dynamically allocated
in the kernel. These objects are created by the page allocator, which is a central,
low-level service in the kernel that manages physical pages. To randomize the
memory pages where page tables are stored, we need to determine and instrument
all kernel functions that allocate page tables.
Generating a Randomized Space. While the kernel needs to be able to locate ran-
domized pages for performing benign changes, the attacker must not learn the
new mapping. Consequently, we need to provide high entropy to avoid simple
brute-force search. Furthermore, the new location of the page tables must not col-
lide with other existing mappings in the virtual address space. This area must also
be large enough to hold the page tables of all the processes running on the system.
Page Table References. Memory disclosure vulnerabilities allow the attacker to
leak information about code and data pointers. Even fine-grained randomization
schemes can be undermined if the attacker can map a single pointer to an in-
struction [17]. Hence, one of the main challenges in our design is to ensure that
all references to page tables and the base address of the PT-Rand region are not
leaked to the attacker. For this, we need to locate all page table references and
replace them with physical addresses (3 in Figure 4.2). Furthermore, we need to
carefully handle benign page table changes by the kernel. Typically, the kernel pro-
cesses page table pointers using virtual addresses on the kernel’s stack. Since the
stack is readable by the attacker, we need to provide a new mechanism to prevent
leakage of these pointers.
Translation of Physical Addresses. At run-time, the kernel needs to repeatedly
translate physical addresses to virtual addresses, e.g., during a page walk or when
creating a page table entry. Normally, this would require a page walk for every ac-
cess, which is a very costly operation as explained in Section 2.1.2. For this reason,
the kernel linearly maps the complete physical memory in a so-called one-to-one
or direct mapping. Henceforth, the kernel can easily translate physical addresses to
virtual addresses by calculating the virtual address of the page from the the base
address of this region plus the physical address of the page as an offset into the
direct mapping. Since this base address is fixed, the attacker can easily locate and
access physical addresses by calculating their corresponding one-to-one virtual ad-
dress and search this mapping for references to page tables.

4.5 implementation 37

Handling of the Direct Mapping. As explained earlier, 4 in Figure 4.2 removes
the page tables from the direct map in the kernel to prevent an adversary from
learning the page table location. However, there are some interesting technical
challenges with this approach. In particular, removal of page tables is not per-se
possible, due to the fact that the one-to-one mapping deploys so-called large pages
of 2MB by default. Hence, simply removing the page leads to deletion of adjacent
data not related to page tables. In addition, we need to identify all functions that ac-
cess page tables via the direct mapping, and patch them to perform the translation
based on the randomization secret, since without the one-to-one translation the
kernel will not be able to locate randomized page table pages from their physical
addresses anymore.

4.5 implementation

Our design as presented in Section 4.4 requires low-level system modifications
to the operating system kernel. We decided to prototype PT-Rand for the open-
source Linux kernel. However, the concepts underlying our work on PT-Rand can
be integrated into other contemporary operating systems. To this end, our kernel
patch is comprised of 1382 insertions and 15 deletions across 45 source files.

Listing 4.3 shows how we integrate PT-Rand into the Linux kernel. We create
wrapper functions for the page table allocator to randomize the virtual address of
pages that contain page table entries. If the wrapper function is called to allocate
memory which will be used to store page table entries, it allocates the memory at a
random address in the PT-Rand region. The virtual address, pointing to this region,
can only be computed by adding the randomization secret, which is stored in the
third debug register. Pages for regular memory are still allocated in the direct map
and their virtual addresses within this mapping are calculated by adding the base
address of the direct map, called physmap in Linux, to the physical address of the
regular page.

We create wrapper functions for those kernel functions that need to access page
table memory. When the kernel starts executing, the PT-Rand initialization func-
tion will first generate the randomization secret based on the standard kernel func-
tion get_random_bytes(). We enable the kernel to use the hardware-based random
number generator (HW-RNG) to avoid low entropy during boot time. Note, that
since version 3.16 the Linux kernel incorporates the output of HW-RNGs for gen-
erating random numbers by default1.

In the following, we present the implementation details of PT-Rand according to
the challenges we outlined in Section 4.4.2.

4.5.1 Page Table Allocations

The main task of PT-Rand is to map memory which contains page tables to a
random location within the PT-Rand region. Page table allocation involves two
steps: (i) randomization of the initial pages, and (ii) randomization of memory
allocations which are used to store newly created page tables.

1 https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=be4000

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=be4000

38 breaking and fixing cfi in os kernels .

CPU

DR3

Virtual Memory

PT-Rand Region

1:1 Mapping
(physmap)

Linux Kernel

PT-Rand

Page Allocator

Memory Map

Virtual Memory Management

Regular Page

Page Table Page

Physical Address +
Base Address of
physmap (constant)

Physical Address +
DR3 (randomized)

Figure 4.3: We modify the virtual memory location of page table pages by providing a ran-
domization wrapper around the standard page allocator in the kernel. While
randomized pages are removed from the one-to-one mapping, regular page
allocation requests still fall within this region.

To complete the first step, we need precise knowledge of all existing references
to the initial page tables, because after randomization these references need to be
updated. The main challenge we faced is identifying all those references. To tackle
this challenge, we followed a pragmatic approach: we reverse-engineered the ker-
nel code execution after the location of the initial page tables have been random-
ized. Since every page table access based on an old reference leads to a kernel crash,
we could determine the point of execution and associated kernel function which
caused the crash. Thereafter, we inspected the kernel’s source files and updated
all references to use our new base address. After updating all references, kernel
execution continued normally. In our extensive evaluation on different suites of
benchmarks and complex software such as the Chrome browser (see Section 4.6.3)
we have not experienced any kernel crashes.

To handle the second step, we extend the page table management functions in
the kernel. Specifically, we create a wrapper function around the memory alloca-
tor for page tables. This allows us to modify their return values, i.e., they return
physical addresses as a reference to the allocated memory rather than virtual ad-
dresses. Since there is no relation between physical and virtual memory addresses,
the attacker cannot infer the location in the virtual memory by leaking the physical
address.

We also create wrapper functions for every other kernel function that interacts
with page tables to translate page table references (physical addresses) to virtual
memory addresses before accessing the page tables.

4.5 implementation 39

4.5.2 Generating a Randomized Area

In order to provide sufficient protection against guessing attacks we require a high
randomization entropy. While 64 bit architectures have a theoretical limit of 16EB
of memory, current hardware is limited to support 256TB resulting in 48 bit ran-
domization entropy.

The Linux kernel organizes the available virtual memory into different regions.
Since the virtual-address space is really huge the kernel in fact does not use all
of the available virtual memory. In particular, there are several memory regions
that are unused and provide a reasonable amount (40 Bits) of freely addressable
memory.2 Our proof-of-concept implementation of PT-Rand utilizes one of these
holes for the PT-Rand region to store the page table mappings.

4.5.3 Page Table References

As described in Section 4.2, the attacker can exploit kernel vulnerabilities to read
from and write to kernel memory. However, these vulnerabilities do not allow the
attacker to access content stored in registers. Hence, we can securely store the
randomization secret into a dedicated register. For our proof-of-concept, we chose
the fourth debug register DR3. We selected this register since it is only used for
debugging purposes. It is noteworthy to mention that application debugging is still
supported under PT-Rand. Typically, debuggers can use software and hardware
breakpoints. The former are the default breakpoints and not affected by PT-Rand.
For the latter, we only use one of the four available hardware breakpoints. Note
that exploiting debugging facilities is a widely-accepted strategy when building
defenses, e.g., TRESOR [166] or kBouncer [167]. Alternatively, we are currently
exploring the feasibility of deploying any of the so-called model-specific registers
(MSRs).

However, even though we store the base address in a privileged register, certain
events (e.g., function calls) can spill temporary registers for several cycles to mem-
ory. As recently shown, this short time window can be exploited to undermine CFI
checks [152]. PT-Rand tackles the attack by instructing the compiler to never spill
registers which contain a randomized address. This is enabled by a GCC feature,
called explicit register variables, which will always keep local variables in regis-
ters. However, given the complexity and many optimization techniques deployed
by modern compilers, we can only guarantee that the above GCC compiler feature
never leaks accordingly flagged variables, but not any intermediate calculation re-
sults. As a consequence, we are currently working on a GCC compiler extension
that explicitly clears any intermediate results held in other registers.

2 Note, that such large holes will always exist for 64 Bit systems due to the vast amount of available
virtual memory.

40 breaking and fixing cfi in os kernels .

4.5.4 Handling of the one-to-one mapping

The typical page size is 4KB. However, the kernel also supports page sizes of 2MB
or 1GB. In particular, for the Linux kernel, the one-to-one mapping is configured
to use 2MB pages by default.

In PT-Rand, we rely on unmapping memory that contains page tables from the
one-to-one mapping. This becomes challenging when 2MB pages are used because
the page might contain other data than page table memory that should not be re-
moved from the direct map. We tackle this challenge by reconfiguring the page size
to 4KB pages at run time. However, in order to split a 2MB page into 4KB pages, we
need to previously allocate 512 (i.e., 2MB divided by 4KB) new page table entries
within the one-to-one mapping. Note that the 4KB split up only affects memory
that contains page tables. For other memory parts, the kernel will continue to use
large pages. Our performance evaluation in Section 4.6.3 indicates that this change
has no impact on the overall performance. Next, we configure each entry to map
the corresponding memory of the 2MB page, and adopt the permissions and other
metadata. Finally, we update the page table hierarchy to use the 4KB page tables
entries instead of the one 2MB entry. After the conversion, we can relocate and
delete only those 4KB pages that contained page table entries.

4.5.5 Translation of Physical Addresses

Since the page tables are relocated by PT-Rand, they are no longer accessible
through the one-to-one mapping. Hence, as described in Section 4.4.2, the ker-
nel has to utilize two different mechanisms when translating physical addresses
to virtual addresses, namely one for physical addresses of pages that contain page
table entries, and another one to translate physical addresses for non-page table re-
lated memory. Fortunately, the kernel already keeps track of the properties of each
individual physical page in a dedicated data structure called memory map. When
we analyzed this structure, we noticed that certain bits of the flag field are not
used. This allows us to quickly distinguish among the two different types of pages.
Specifically, we reserve one bit to mark if a physical page has been removed from
the one-to-one mapping by PT-Rand. In other words, if the bit is set, the kernel
knows that the requested access is a page table related access which requires han-
dling based on the PT-Rand region.

At run-time, kernel functions that need to translate a physical to a virtual mem-
ory address will check the flag field of the memory map. If the physical page is
not accessible through the one-to-one mapping, the kernel function will use the
randomization secret provided by PT-Rand to determine the virtual memory ad-
dress. Otherwise, the function uses the default translation through the one-to-one
mapping. Hence, PT-Rand preserves the high efficiency for the majority of the
page requests through the direct mapping. In particular, we modified the __va

macro to perform the check on the flag field. This function is the central point for
translating physical to virtual addresses. PT-Rand does not cause any problems
for external drivers, since external kernel drivers (e.g., graphic card drivers) are
supposed to use these kernel functions to translate addresses.

4.6 evaluation 41

During the implementation, we encountered that modifying __va raises another
challenge: in the early boot phase, i.e., before PT-Rand relocates the initial page
tables, a few kernel functions already invoke the modified macro. However, at this
point of system state, the memory map is not yet initialized. Hence, the macro
cannot yet access the flag field. We solved this problem by utilizing an unused
macro called __boot_va which performs the same operation as the uninstrumented
version of the __va macro. We patched all functions that are executed before the
memory map is initialized to use the unmodified __boot_va macro.

4.6 evaluation

In this section, we present the evaluation results for PT-Rand. We first analyze the
security with respect to randomization entropy and leakage resilience. We then
we present our in-depth performance evaluation by conducting a series of bench-
marks.

4.6.1 Methodology

To test our implementation, we assembled three configurational setups for use
with a v4.6 kernel tree. The first is for development and early testing using the
QEMU emulation software. The second setup is for more elaborate testing and
also benchmarking on real hardware. Its configuration includes support for kernel
modules, networking, and some hardware drivers, resulting in 658 options selected
overall. The third setup is similar to the second, but additionally includes support
for a graphical desktop.

Although it is of course possible to boot into a plain single user Linux envi-
ronment3, it is usually a lot more convenient to use one of the popular Linux
distributions. We tested and evaluated the second setup using a default Debian
Jessie installation (version 8.2). We used fakeroot and make-kpkg to build a .deb

package for installation of our custom kernel via the dpkg package manager.

4.6.2 Leakage Resilience and Randomization Entropy

Since PT-Rand mitigates data-only attacks against the page tables by leveraging
randomization, we analyze its security according the two main threats in any
randomization-based scheme, i.e., brute-force search and information-disclosure at-
tacks. Lastly, we evaluate the effectiveness of PT-Rand against our novel exploit.

brute-force search Since the security of randomization-based defenses de-
pends on the amount of entropy, we ensure that PT-Rand achieves a high level
of entropy. In particular, we chose the randomized memory region to be 40bits
(or 1TB) in size. Since PT-Rand is a page-based randomization scheme, this leaves
28bits of entropy by default (assuming a page size of 4KB). To increase the chances
of brute-force attacks a popular technique leverages random spraying of memory
regions with targeted objects. In such a case, the effective entropy of the system

3 For instance, via booting with init=/bin/sh.

42 breaking and fixing cfi in os kernels .

depends on the number of allocated pages. However, we also limit the number
of possible guesses since we configure the kernel to reboot if an invalid memory
access to kernel memory occured. This means that successfully manipulating a
sprayed page table entry requires the adversary to not hit an unallocated page in
the randomized region. We model the probability of such an attack according to
an urn experiment without replacement and three cases: (1) hitting an unmapped
page, (2) mapped pages, which do not map attacker-controlled memory, and (3) a
mapped page that controls attacker virtual memory space. The attacker wins in the
third case, may keep guessing in the second case, but loses in the first case. Hence,
the probability of an adversary winning dependent on the number of allocated
page tables is the sum of all probabilities in which the attacker never hits the first
case.

We calculated this probability with up to 216 memory pages and found that the
attacker’s success probability is about 0.0000003725%. Additionally, this probabil-
ity grows linearly in the number of pages and will ultimately hit an out-of-memory
situation, in which case the attacker loses again. Alternatively, we could thwart
such attacks by providing an option to limit the amount of memory that can be
allocated in the PT-Rand region. This limit would not necessarily affect the execu-
tion of the system under normal circumstances. In our tests even a big, virtualized
server system under heavy load did not exceed this number of page table pages.

information-disclosure attacks The second threat to randomization-based
defenses is information leakage. Under our model, an adversary is able to leak the
address of any non-randomized kernel data structure, such as page table refer-
ences contained in the process control blocks (task_struct). For this reason, we
convert all page table references to physical addresses. Since virtual and physical
addresses are completely independent, an adversary does not obtain any informa-
tion from disclosing physical page table pointers, and hence, these references do
not represent a source of information leakage any longer. Since we additionally
patch all kernel functions dealing with page tables to expect a physical address
and utilize the randomization secret to calculate a virtual address at run time, they
cannot be leveraged by the attacker.

While temporarily spilled registers were previously demonstrated to compro-
mise randomization-based defenses [152], we prevent access to the debug register
that holds the randomization offset by patching all functions in the the Linux ker-
nel that access this register by default. Additionally, we observe that the CPU will
never write debug registers to memory during interrupt situations [157]. By fur-
ther inspecting the functions that access the randomization secret, we also confirm
that the secret is never leaked to the stack.

4.6.3 Performance

We measured the performance overhead incurred by PT-Rand based on SPEC
CPU2006, LMBench, Phoronix, and Chromium benchmarks. All measurements are
taken on an Intel Core i7-4790 CPU running at 3.60GHz with 8 GB RAM using De-
bian 8.2 with a recent Linux kernel, version v4.6.

4.6 evaluation 43

Figure 4.4: Overhead of page table randomization on SPEC CPU2006

spec cpu 2006 The SPEC CPU 2006 benchmarks measure the performance im-
pact of PT-Rand on CPU-intensive applications. We executed the entire benchmark
suite with the default parameters for reference tests: three iterations with reference
input. We did neither encounter any problems during the execution (i.e., crashes)
nor strong deviations in the results of the benchmarks. Figure 4.4 summarizes the
performance impact of PT-Rand compared to a non-modified kernel. The average
performance overhead of PT-Rand is only 0.22% with worst-case overhead of only
1.7%. This confirms the high efficiency and practicality of PT-Rand for contempo-
rary systems.

Note that a few benchmarks perform marginally better when PT-Rand is applied.
Such deviations have been also observed in prior work, and can be attributed to
negligible measurement variances.

lmbench Most of our modifications affect the launch and termination phase of
an application’s lifecycle. This is due to the fact that PT-Rand needs to randomize
the page tables at program start and remove them from the one-to-one mapping.
When an application terminates, PT-Rand needs to de-randomize its page tables
and make this memory again accessible through the one-to-one mapping. Hence,
we additionally tested our approach using the popular LMBench micro benchmark
suite [168] to assess the overhead for these critical phases. Specifically, LMBench
collects timing information for process launch, fork, and exit. We measured an
absolute overhead of less than 0.1 ms on average which is hardly noticeable to the
end-user of a PT-Rand-hardened system

LMBench also includes other benchmarks, e.g., performance impact on memory
accesses, system calls or floating point operations. We successfully executed all
benchmarks and observed no measurable impact on the performance.

phoronix Besides SPEC CPU2006 and LMBench we measured the performance
impact of PT-Rand with the Phoronix benchmark suite [169] which is widely used

44 breaking and fixing cfi in os kernels .

Benchmark Name Relative Overhead

IOZone 1.0%

PostMark 1.8%

OpenSSL -2%

PyBench -0.9%

PHPBench -0.2%

Apache 0.8%

Table 4.1: Phoronix benchmark results.

to benchmark the performance of operating systems. Table 4.14 summarizes the
results which are consistent with the results of the SPEC CPU2006 benchmarks.

chromium Finally, we measured the performance overhead for Google’s browser
Chromium in two scenarios: 1) we ran the popular browser benchmarking frame-
works JetStream, Octane, and Kraken, to measure the run-time overhead for daily
usage, and 2) we modified Chromium such that it terminates directly after loading
to measure the load-time overhead. We repeated both experiments three times and
determined the median to account for small variances.

For the Chromium web browser, we report a run-time overhead of -0.294% and a
load-time overhead of 9.1%. The run-time overhead represents the arithmetic mean
of 0.76% for JetStream, 1.183% for Kraken, and 2.825% for Octane.

The browser frameworks measure browser engine latency and load, with a fo-
cus on JavaScript execution. While these tests do not accurately measure the direct
performance overhead of PT-Rand, they provide a first estimation of the perfor-
mance impact on the popular end-user applications such as a web browser. Given
only -0.294% overhead, we confirm that PT-Rand does not negatively impact per-
formance of user applications.

To measure the load-time overhead, we simply added a return instruction in the
main function of Chromium. This ensures that Chromium immediately terminates
after it is completely loaded. We measured the elapsed time based on the Unix
tool time. With less than 1 ms load-time overhead we assert that PT-Rand does not
impair the user experience. We find these results to be in line with our LMBench
test results for process creation and termination.

4.6.4 Compatibility and Stability

During the development and our tests of PT-Rand there were no incompatibili-
ties between our modifications to the Linux kernel and GRSecurity’s RAP [160].
In addition to executing the previously described benchmarks and tests, we as-
sessed the overall stability and compatibility of our prototype implementation of
PT-Rand by running various widely used applications. Throughout our tests there

4 Note that we excluded some of the benchmarks because we got errors when executing them on a
vanilla system.

4.6 evaluation 45

were no crashes or deviations from the default behavior without our patch ap-
plied to the kernel. Finally, we also ran the relevant test cases from the Linux Test
Project (LTP) [170], which combines various scenarios that are designed to stress
the system. Again, we did not find notable differences from the default system
configuration.

5
A U T O M AT I C A L LY
U N C O V E R I N G M E M O RY C O R R U P T I O N I N K E R N E L C O D E .

As demonstrated in the last chapter, data-only attacks resulting from memory-
corruption vulnerabilities in the kernel represent a powerful exploitation tool against
operating systems. While mitigating the adverse effects of these vulnerabilities by
preventing exploitation at run time is often possible through the design of ap-
propriate defenses, the root cause will still be present in the kernel even if those
defenses are deployed. Moreover, attackers often find new, surprising ways of ex-
ploiting vulnerabilities through unanticipated exploits. In this chapter, we turn
towards automatically identifying the root causes behind memory corruption, i.e.,
bugs in kernel code. We present K-Miner [3], the first data-flow analysis framework
for operating system kernels. As we are able to demonstrate our compiler-based
framework reliably uncovers different classes of memory-corruption vulnerabil-
ities through state-of-the-art static analysis passes in complex real-world kernel
code.

5.1 run-time defenses vs . compile-time verification

Operating system kernels form the foundation of practically all modern software
platforms. The kernel features many important services and provides the interfaces
towards user applications. As explained in Chapter 2, the OS is usually isolated
from applications through hardware mechanisms such as memory protection and
different privilege levels in the processor. However, as demonstrated in the last
chapter memory-corruption vulnerabilities in kernel code open up the possibility
for unprivileged users to subvert control flow or data structures and take con-
trol over the entire system [14–16, 19]. For this reason, many defenses have been
proposed [2, 43, 45, 156, 160, 161, 171–173] specifically for run-time protection of
operating system kernels. Their goal is to provide countermeasures and secure the
kernel against attacks exploiting memory corruption and most of these approaches
can be loosely categorized as run-time monitors [43, 45, 156, 160, 172–174].

Typically, adversaries are modeled according to their capabilities, and reference
monitors are then designed to defend against a specific class of attacks. For in-
stance, CFI [40] is tailored towards control-flow hijacking attacks. However, CFI is
not designed to protect against data-only adversaries resulting in a protection gap
that allows for crucial attacks despite the presence of run-time monitors, such as
CFI, in the kernel [2, 13–15]. Thus, a combination of many different defenses is re-
quired to protect the kernel against multiple classes of adversaries. Consequently,
commodity operating systems will remain vulnerable to new types of software
attacks as long as memory-corruption vulnerabilities are present in the code [12].

An alternative approach to employing run-time monitors is to ensure the ab-
sence of memory-corruption vulnerabilities by analyzing the system before de-
ployment. This was shown to be feasible for small microkernels with less than

47

48 automatically uncovering memory corruption in kernel code .

void *a = alloc();
if (cond(a)) {
 free(a);
 return NULL;
}
return a;

void *f() {

}

void *b = f();
printf("%p\n",b);
return 1;

int main(void) {

}

1
2
3
4
5
6

7
8
9

a = alloc();

cond(a)

free(a);

return;

b = f();

printf("%p\n",b);

return;

b

NULL

alloc
node

a

alloc node

a = alloc();

b = f();

a) Program Code b) Inter-procedural Control-Flow Graph c) Pointer Assignment Graph d) Value-Flow Graph

p1
p2

Figure 5.1: Data-flow analyses utilize graphs to reason about program behavior at compile
time.

10,000 lines of code [78, 79, 175], by building a formal model of the entire ker-
nel and (manually) proving the correctness of the implementation with respect
to this model. The invariants that hold for the formal model then also hold for
the implementation. However, the formal correctness approach is impractical for
commodity monolithic kernels due to their size and extensive use of machine-level
code [176], which provides no safety guarantees. Even for small microkernels for-
mulating such a model and proving its correctness requires more than 10 person
years of work [78, 79]. While dynamic analyses are used to detect vulnerabilities
in OS kernels rather successfully [177–179], static approaches have a major advan-
tage: sound static analysis safely over-approximates program execution, allowing
for strong statements in the case of negative analysis results. In particular, if no
report is generated for a certain code path by a sound analysis, one can assert
that no memory-corruption vulnerability is present. Hence, static analysis is also
a practical and pragmatic alternative to formal verification, as it is able to offer
similar assurances for real-world software by means of automated compile-time
checks [180].

5.2 data-flow analysis

The general idea of static analysis is to take a program and a list of pre-compiled
properties as input, and find all the paths for which a given property is true. Exam-
ples of such properties are liveness analysis, dead-code analysis, typestate analysis,
or nullness analysis [181]. For instance, a nullness analysis for the program a) in
Figure 5.1 could be answered by looking at its pointer-assignment graph (PAG)
depicted in c): since there is a path in which variable b is assigned a NULL value
(b points to NULL in the PAG) a report will be issued. Another commonly used
data structure is the inter-procedural control-flow graph (ICFG) in b) — limited to
the procedures main and f for brevity — which propagates control flow globally.
This can be used to conduct path-sensitive analysis. Finally, taint and source-sink
analysis may track individual memory objects through their associated value-flow
graph (VFG) in d).

Static analysis for tracking individual values in a program is called data-flow anal-
ysis. Most data-flow analysis approaches follow a general concept, or framework,

5.2 data-flow analysis 49

to analyze programs systematically. The naive approach is to enumerate all pos-
sible program paths and test each graph for a given property. This is commonly
referred to as the Meet Over all Paths (MOP). In Figure 5.1, the MOP would be cal-
culated by testing a property against the two alternative program paths p1 and p2.
Unfortunately, in the general case the MOP solution was shown to be undecidable
by reduction to the post correspondence problem [182].

However, the MOP can be approximated through a so-called Monotone Frame-
work, which is a set of mathematically defined objects and rules to analyze pro-
gram behavior. At the heart of the monotone framework is a lattice, i.e., a partial
order with a unique least upper bound that must be defined over the domain of all
possible values during program execution. Further, the analysis framework must
specify monotone flow functions that define how program statements effect lattice
elements (the monotony requirement ensures termination of the analysis). Finally,
sets of domain elements (i.e., values) must be combined using a merge operator. A
commonly used definition for points-to analysis is the domain of points-to sets for
all pointers in a program. The flow functions then select all program statements,
which potentially modify any pointer relations and specify their target transitions
in the lattice. The merge operator defines how to combine the resulting points-to
sets for such a transition. The notion of the monotone framework is significant for
static program analysis: for any monotone framework, there exists a Maximum
Fixed Point (MFP) solution, which safely approximates the MOP solution [182]. If
the flow functions are distributive under the merge operator that is defined by the
lattice, the MFP solution is identical to the MOP solution. The montone framework
is then called a distributive framework, and data-flow analysis problems can be
solved efficiently by solving a corresponding graph reachability problem [183].

As explained in Chapter 2, memory-corruption vulnerabilities represent a vast
number of security relevant bugs for operating system software (e.g., [98, 99]).
Run-time attacks exploit such bugs to inject malicious code, reuse existing code
with a malicious input, or corrupt integral data structures to obtain higher privi-
leges. Recall, that memory-corruption vulnerabilities are often classified according
to their root defect: integer overflows (IO), use-after-free (UAF), dangling pointers
(DP), double free (DF), buffer overflow (BO), missing pointer checks (MPC), unini-
tialized data (UD), type errors (TE), or synchronization errors (SE) are commonly
listed classes of memory corruption [12, 13]. Any instance of memory corruption
leaves the program vulnerable to run-time attacks. Each class represents a viola-
tion of well-defined program behavior as specified by the programming-language
standard or the compiler, and hence, the violating program can exhibit arbitrary
behavior at run time. For this reason an adversary with knowledge about any such
vulnerability can exploit the program by deliberately triggering the error to achieve
unintended, malicious behavior.

Also recall, that the main interface which exposes kernel code to a user space
adversary are system calls [86]. In our approach we aim to combine different data-
flow analysis passes for the classes listed above to report potential bugs in ker-
nel code, which are accessible to a user space program through the system call
interface. Since memory-corruption vulnerabilities account for many real-world
exploits [12], we focus on reporting instances of dangling pointers (DP), user-after-
free (UAF), and double free (DF) in our proof-of-concept implementation. For in-

50 automatically uncovering memory corruption in kernel code .

stance, dangling-pointer vulnerabilities occur when a memory address is assigned
to a pointer variable, and the memory belonging to that address subsequently be-
comes unavailable, or invalid. For heap allocations this can happen, e.g., when a
memory location is freed but the pointer is still accessible. For stack-based alloca-
tions this happens when the stack frame containing the allocated object becomes
invalid, e.g., due to a nested return statement in or below the scope of the alloca-
tion. Our framework is extensible such that new analyses passes can be integrated
to search for additional vulnerability classes (cf., Section 5.7).

5.3 problem description

However, static analysis faces severe scalability challenges, and hence, all analy-
sis frameworks for kernel code are limited to intra-procedural analysis, i.e., local
checks per function. In particular, there are five popular analysis frameworks tar-
geting Linux: Coccinelle [184], Smatch [185], TypeChef [186], APISAN [187], and
EBA [188]. None of these support inter-procedural data-flow analyses, which are
required to conservatively approximate program behavior, and reliably uncover
memory corruption caused by global pointer relationships. For instance, TypeChef
focuses heavily on the construction variability-aware program representations and
does not conduct any data-flow analysis on top of the resulting representation.
EBA is restricted to checking individual source files—similar to Coccinelle and
Smatch—and hence, cannot analyze the entire kernel image. 1 One of the main
reasons why data-flow analysis for operating system kernels is beyond the capabil-
ities of all existing approaches is the huge size and complexity of the code base in
monolithic kernels. Currently, Linux comprises over 24 million lines of code [189].
Just compiling a common distribution kernel takes several hours, even on top-of-
the-line hardware. While some of the existing tools allow for limited, text-based
analysis of kernel code, these are conceptually restricted to local intra-procedural
(i.e., per-function) or simpler file-based analysis. These limitations are due to the
fact that the number of possible data flows to be analyzed generally grows expo-
nentially with the size of the program code, and hence, static analysis approaches
face severe scalability challenges [190–192]. At the same time, analysis methods
have to take all paths and states into account to remain sound, and hence, prun-
ing or skipping certain parts of the code would lead to unreliable results. This is
why the resource requirements for conducting such analyses in the Linux kernel
quickly outgrows any realistic thresholds. As a result, global and inter-procedural
analysis of kernel code, which is required to uncover memory corruption reliably,
remains largely an unsolved problem for all existing approaches.

5.4 design of k-miner

In this section, we explain the goals and assumptions in our model, introduce the
high-level design, and elaborate on challenges to enable precise, inter-procedural
static analysis of complex, real-world kernels.

1 Moreover, EBA specializes in much simpler flow-insensitive analyses.

5.4 design of k-miner 51

5.4.1 Goals and assumptions

With K-Miner we aim to identify and report potential memory-corruption bugs in
the kernel’s user-space interface, so that developers can fix them before shipping
code that includes such vulnerabilities. Regarding potential malicious processes at
run time we make the following standard assumptions:

• The attacker has control over a user-space process and can issue all system
calls to attack the kernel through the subverted process.

• The operating system is isolated from user processes, e.g., through virtual
memory and different privilege levels. Common platforms like x86 and ARM
meet this requirement.

• An adversary cannot insert malicious code into the kernel through mod-
ules, because modern operating systems require kernel modules to be cryp-
tographically signed [193–195].

• K-Miner should reliably report memory-corruption vulnerabilities that can
be triggered by a malicious process.

Our assumptions force the attacker to exploit a memory-corruption vulnerability
in the kernel code to gain kernel privileges through a purely software-based attack.
The goal of K-Miner is to systematically scan the system call interface for these
vulnerabilities.

Since real-world adversaries are not limited to software vulnerabilities, it is im-
portant to note that even with a completely verified kernel (e.g., seL4) hardware
attacks such as rowhammer [63, 72] still pose a serious threat to the integrity of
the kernel. However, for our work we consider hardware implementation defects
to be an orthogonal problem [5].

5.4.2 Overview

K-Miner is a static analysis framework for commodity operating system kernels.
We provide a high-level overview in Figure 5.2.

Our framework builds on top of the existing compiler suite LLVM. The compiler
(cf., step 1) receives two inputs. First, a configuration file, which contains a list of
selected kernel features. This configuration file enables the user to select or deselect
individual kernel features. When a feature is disabled, its code is not included in
the implementation. Hence, an analysis result is only valid for a specific pair of
kernel code and configuration file. Second, the compiler suite parses the kernel
code according to the configuration. It syntactically checks the code and builds an
abstract syntax tree (AST). The compiler then internally transforms the AST into a
so-called intermediate representation (IR), which essentially represents an abstract,
hypothetical machine model. The IR is also used for analyzing and optimizing
kernel code through a series of transformation passes.

In step 2 , the compiler suite passes the IR of the kernel as an input to K-Miner,
which starts to statically check the code by going through the list of all system
calls. For every system call, K-Miner generates a call graph (CG), a value-flow

52 automatically uncovering memory corruption in kernel code .

Kernel
Code

Compiler

Frontend

Config

➀

K-Miner

Value Flow AnalysisSyscall Analysis

sys_call_xyz:

A) Call-Graph
B) Control-Flow Graph
C) Pointer Analysis
D) Allocation Sites

Context Tracking

global_x global_y

➁

sys_call_xyz : possible use-after-return within global-y
 in path do_xyz > __do_xyz > _helper_fun

Memory-Corruption Report

➂

Intermediate
Representation

Figure 5.2: Overview of the different components of K-Miner.

graph (VFG), a pointer-analysis graph (PAG), and several other internal data struc-
tures by taking the entry point of the system call function as a starting point.
Additionally, we compute a list of all globally allocated kernel objects, which are
reachable by any single system call. Once these data structures are generated, K-
Miner can start the actual static analysis passes. There are individual passes for
different types of vulnerabilities, e.g., dangling-pointer, use-after-free, double-free,
and double-lock errors. All of these passes analyze the control flow of a specific sys-
tem call at a time, utilizing the previously generated data structures. The passes are
implemented as context-sensitive value-flow analyses: they track inter-procedural
context information by taking the control flow of the given system call into account
and descend in the call graph.

If a potential memory-corruption bug has been detected, K-Miner generates a re-
port, containing all relevant information (the affected kernel version, configuration
file, system call, program path, and object) in step 3 .

5.4.3 Uncovering Memory Corruption

The goal of K-Miner is to systematically scan the kernel’s interface for different
classes of memory-corruption vulnerabilities using multiple analysis passes, each
tailored to find a specific class of vulnerability. The individual analysis pass uti-
lizes data structures related to the targeted vulnerability class to check if certain
conditions hold true. Reasoning about memory and pointers is essential for ana-
lyzing the behavior of the kernel with respect to memory-corruption vulnerabil-

5.4 design of k-miner 53

ities, hence, the data base for all memory objects (called global context) and the
pointer-analysis graph represent the foundation for many analysis passes. Individ-
ual memory objects are instantiated at allocation sites throughout the entire kernel
and the variables potentially pointing to them are tracked per system call using
the PAG. Forward analysis then reasons about the past behaviour of an individ-
ual memory location, whereas a backward analysis determines future behaviour
(since a forward analysis processes past code constructs before processing future
code and vice versa).

We can also combine such analysis passes, for instance, to find double-free vul-
nerabilities: first, we determine sources and sinks for memory objects, i.e., alloca-
tion sites and the corresponding free functions respectively. We then process the
VFG in the forward direction for every allocation site to determine reachable sinks.
Second, we reconstruct the resulting paths for source-sink pairs in the execution by
following sinks in the backward direction. Finally, we analyze the forward paths
again to check for additional sinks. Since any path containing more than one sink
will report a duplicate de-allocation this approach suffers from a high number of
false positives. For this reason, we determine if the first de-allocation invocation
dominates (i.e., is executed in every path leading to) the second de-allocation invo-
cation in the validation phase.

In similar vein we provide passes that are checking for conditions indicating
dangling pointers, use-after-free, and double-lock errors. We provide more detailed
examples for the implementation of such passes in Section 5.5.

5.4.4 Challenges

Creating a static analysis framework for real-world operating systems comes with
a series of difficult challenges, which we briefly describe in this section. In Section
5.5 we explain how to tackle each challenge in detail.

Global state.
Most classes of memory-corruption vulnerabilities deal with pointers, and the state
or type of the objects in memory that they point to. Conducting inter-procedural
pointer analyses poses a difficult challenge regarding efficiency. Because inter-
procedural analysis allows for global state, local pointer accesses may have non-
local effects due to aliasing. Since our analyses are also flow-sensitive, these alias-
ing relationships are not always static, but can also be updated while traversing
the control-flow graph. To enable complex global analyses, we make use of sparse
program representations: we only take value flows into account that relate to the
currently analyzed call graph and context information.

Huge codebase.
The current Linux kernel comprises more than 24 million lines of code [189], sup-
porting dozens of different architectures, and hundreds of drivers for external hard-
ware. Since K-Miner leverages complex data-flow analysis, creating data structures
and dependence graphs for such large amounts of program code ultimately results
in an explosion of resource requirements. We therefore need to provide techniques
to reduce the amount of code for individual analysis passes without omitting any
code, and allowing reuse of intermediate results. By partitioning the kernel accord-

54 automatically uncovering memory corruption in kernel code .

ing to the system call interface, we are able to achieve significant reduction of the
number of analyzed paths, while taking all the code into account, and allowing
reuse of important data structures (such as the kernel context).

False positives.
False positives represent a common problem of static analysis, caused by too
coarse-grained over approximation of possible program behavior. Such over ap-
proximation results in a high number of reports that cannot be handled by de-
velopers. K-Miner has to minimize the number of false positives to an absolute
minimum. As the number of false positives depends greatly on the implementa-
tion of the individual analysis passes we carefully design our analyses to leverage
as much information as possible to eliminate reports that require impossible cases
at run time, or make too coarse-grained approximations. Moreover, we sanitize,
deduplicate, and filter generated reports before displaying them for developers in
a collaborative, web-based user interface.

Multiple analyses.
A comprehensive framework needs to be able to eliminate all possible causes of
memory corruption. This is why K-Miner must be able to combine the results of
many different analyses. Additionally, individual analyses may depend on inter-
mediate results of each other. Hence, our framework has to be able to synchronize
these with respect to the currently inspected code parts. To this end we leverage the
modern pass infrastructure of LLVM to export intermediary results and partially
re-import them at a later point in time.

5.5 implementation

In this section we describe our implementation of K-Miner, and how we tackle
the challenges mentioned in Section 5.4.4. Our framework builds on the compiler
suite LLVM [196] and the analysis framework SVF [197]. The former provides
the basic underlying data structures, simple pointer analysis, a pass-infrastructure,
and a bitcode file format which associates the source language with the LLVM
intermediate representation (IR). The latter comprises various additional pointer
analyses and a sparse representation of a value-flow dependence graph.

Since it is possible to compile the Linux kernel with LLVM [198], we generate the
required bitcode files by modifying the build process of the kernel, and link them
together to generate a bitcode version of the kernel image. This image file can then
be used as input for K-Miner. Figure 5.3 depicts the structure of our framework
implementation. In particular, it consists of four analysis stages: in step 1 , the
LLVM-IR is passed to K-Miner as a vmlinux bitcode image to start a pre-analysis,
which will initialize and populate the global kernel context. In step 2 , this con-
text information is used to analyze individual system calls. It is possible to run
multiple analysis passes successively, i.e., our dangling pointer, use-after-free, and
double-free checkers, or run each of them independently. In step 3 , bug reports
are sanitized through various validation techniques to reduce the number of false
positives. In step 4 , the sorted reports are rendered using our vulnerability re-
porting engine. In the following, we describe each of the steps in more detail and
explain how each of them tackles the challenges identified in the previous section.

5.5 implementation 55

➂

➀

➁
memory allocation

site tracking

Kernel Memory Context

dangling pointer checker

use-after-free checker

double-free checker

Per-Syscall Value-Flow

initcall context

syscall context
...

path & context checker

callgraph validation

value-flow validation

cross-analysis reuse kernel code partitioning parallelized execution sparse analysis

Analysis Sanitizer

Analysis Optimizations

vmlinux
bitcode
file (IR)

Reporting Engine

Post-processing
Bug Overview
Output Formatting

➃

Figure 5.3: Overview of the K-Miner implementation: we conduct complex data-flow anal-
ysis of the Linux kernel in stages, re-using intermediate results.

5.5.1 Global Analysis Context

The global context stored by K-Miner essentially represents a data base for all the
memory objects that are modeled based on the source code. Managing global con-
text information efficiently is a prerequisite to enable analysis of highly complex
code bases such as the Linux kernel. Additionally, we have to ensure that the con-
text is sufficiently accurate to support precise reporting in our subsequent analysis.
This is why the pre-analysis steps of our framework resemble the execution model
of the kernel to establish and track global kernel context information.

Initializing the Kernel Context: The kernel usually initializes its memory con-
text at run time by populating global data structures, such as the list of tasks or
virtual memory regions during early boot phase. This is done by calling a series
of specific functions, called Initcalls. These are one-time functions which are anno-
tated with a macro in the source files of the kernel. The macro signals the compiler
to place these functions in a dedicated code segment. Functions in this segment
will only be executed during boot or if a driver is loaded. Hence, most of the mem-
ory occupied by this segment can be freed once the machine finished booting [199].
To initialize the global kernel context, we populate global kernel variables by sim-
ulating the execution of these initcalls prior to launching the analyses for each
system call. The resulting context information is in the order of several hundred
megabytes, therefore, we export it to a file on disk and re-import it at a later stage
when running individual data-flow analysis passes.

Tracking Heap Allocations: Usually, user space programs use some variant of
malloc for allocating memory dynamically at run time. There are many different

56 automatically uncovering memory corruption in kernel code .

a) Pseudo Systemcall b) Pointer Assignment Graph (PAG)

global_o

local_x

p

global_p

local_o

1

2

3

4

5

6 local_x

4

2

5

6

do_foo

remove_x

add_x

1

global_p

3

c) Value-Flow Graph (VFG)

void sys_foo() {

}

1 do_foo();
2 return;

void do_foo() {

}

3 int local_x = 1;
4 add_x(&local_x);
5 if (cond())
6 remove_x();
7 return;

void add_x(int *p) {

}

8 global_p = p;

void remove_x() {

}

9 global_p = NULL;

null

null

Figure 5.4: Example of a Dangling Pointer vulnerability in a (simplified) system call defi-
nition.

methods for allocating memory dynamically in the kernel, e.g., a slab allocator,
a low-level page-based allocator, or various object caches. To enable tracking of
dynamic memory objects, we have to compile a list of allocation functions which
should be treated as heap allocations. Using this list K-Miner transforms the ana-
lyzed bitcode by marking all call sites of these functions as sources of heap memory.
In this way kernel memory allocations can be tracked within subsequent data-flow
analysis passes.

Establishing a Syscall Context: Because subsequent analysis passes will be run-
ning per system call, we establish a dedicated memory context for each of them.
We do this by collecting the uses of any global variables and functions in each
of the system call graphs. By cross-checking this context information against the
global context, we can establish an accurate description of the memory context
statically.

5.5.2 Analyzing Kernel Code Per System Call

Although analyzing individual system calls already reduces the amount of rele-
vant code significantly, the resource requirements were still unpractical and we
could not collect any data-flow analysis results in our preliminary experiments.
For instance, conducting a simple pointer analysis based on this approach already
caused our server system to quickly run out of memory (i.e., using more than
32G of RAM). Through careful analysis we found that one of the main causes
for the blow-up are function pointers: in particular, the naive approach considers
all global variables and functions to be reachable by any system call. While this
approximation is certainly safe, it is also inefficient. We use several techniques to
improve over this naive approach, which we describe in the following.

Improving Call Graph Accuracy: We start with a simple call-graph analysis,
which over-approximates the potential list of target functions. By analyzing the IR
of all functions in the call graph we determine if a function pointer is reachable
(e.g., by being accessed by a local variable). This allows us to collect possible target

5.5 implementation 57

functions to improve the precision of the initial call graph. Based on this list, we
perform a two-staged pointer analysis in the next step.

Flow-sensitive Pointer-Analysis: To generate the improved call graph we first
perform a simple inclusion-based pointer analysis to resolve the constraints of the
function pointers collected earlier. To further improve the precision, we conduct a
second pointer analysis while also taking the control flow into account. This again
minimizes the number of relevant symbols and yields a very accurate context for
individual system calls. We store these findings as intermediate results per system
call which can be used by subsequent data-flow analysis passes.

Intersecting Global Kernel State: Finally, we combine the previously indenti-
fied context information for a system call with the global kernel context. We do
this by determining the global variables of a system call that contain missing refer-
ences and intersecting these with the list of variables of the global kernel context
populated earlier. While possibly increasing the context information our precision
improvents prevent an infeasible blow-up in this last step.

5.5.3 Minimizing False Positives

False positives are a common problem in static analysis and frequently occur when
over-approximating program behavior: for instance, an analysis may assume an
alias relationship between pointers that do not co-exist at run time, if the control
flow is not taken into account. In the following, we explain how we designed our
analysis to be precise and reduce the number of false positives, using dangling
pointers as an example. We also provide details on how K-Miner sanitizes the
resulting bug reports to further limit the number of false positives.

Precise Data-Flow Analysis: Figure 5.4 a) shows the code of a pseudo system
call with a dangling pointer bug. In step 1 , the address of the local variable in
do_foo is copied into the parameter p of add_x and subsequently stored in the
global pointer global_p in step 2 . In step 3 , we can see that remove_x will only
be called conditionally. Hence, there is a path for which global_p still points to
the address of a local variable after execution of do_foo has returned. Looking
at the PAG in Figure 5.4b) reveals that local_o and global_o represent the ab-
stract memory objects behind these possible pointer values. The (simplified) VFG
in Figure 5.4c) shows the corresponding value flows. Our algorithm to find these
kinds of bugs consists of two phases: first, we traverse the VFG in forward or-
der starting from local nodes. A reference to a local node leaves its valid scope,
if the number of function exits is greater than the number of function entries af-
ter traversing the entire path. For the node local_x we can see, that there is one
entry to add_x, an exit from add_x, and an exit from do_foo at the end of the
path. Consequently, there is a path for which local_x leaves its valid scope, i.e.,
local_x→ 1 → 2 → 3 → 5 → 6 .

In the second phase we traverse the VFG in backward direction to find (global
or local) references to this node, since any such reference represents a dangling
pointer. In this case the second phase yields the path 6 → 5 → 3 → 2 →
global_p. By querying the PAG dynamically during backward traversal we avoid
visiting edges that do not belong to the currently tracked memory location such as
5 → 4 . This allows us to minimize inaccuracies resulting from over-approximation.

58 automatically uncovering memory corruption in kernel code .

Magnitude of Analysis Report Results

Vers. LOC Size Time #Funs #Vars #Refs DP UAF DF

3.19 15.5M 280M 796.69s 99K 433K >5M 7 (40) 3 (131) 1 (13)

4.2 16.3M 298M 1435.62s 104K 466K >6M 11 (46) 2 (106) 0 (19)

4.6 17.1M 298M 1502.54s 105K 468K >6M 3 (50) 2 (104) 0 (31)

4.10 22.1M 353M 1312.41s 121K 535K >7M 1 (30) 2 (105) 0 (22)

4.12 24.1M 364M 2164.96s 126K 558K >7.4M 1 (24) 0 (27) 1 (24)

Table 5.1: Overview of the specifications, resource requirements, and results for the differ-
ent kernel versions and data-flow passes we used in our evaluation of K-Miner.

We store the respective path information along with the list of nodes and contexts
they were visited in as memory-corruption candidate for sanitizing and future
reporting.

Sanitizing Potential Reports: Upon completion of the data-flow analysis, we
cross-check the resulting candidates for impossible conditions or restrictions which
would prevent a path from being taken during run-time execution. Examples for
such conditions include impossible call graphs (e.g., call to function g preceding
return from function f), or invalid combinations of context and path information.
Additionally, we eliminate multiple reports that result in the same nodes for differ-
ent contexts by combining them into a single report.

5.5.4 Efficiently Combining Multiple Analyses

To enable the efficient execution of multiple data-flow analyses, our framework
makes heavy use of various optimizations and highly efficient analysis techniques
as we describe below.

Using Sparse Analysis: An important data structure in our data-flow analysis
is the value-flow graph, which is a directed inter-procedural graph tracking any
operations related to pointer variables. The VFG captures the def-use chains of the
pointers inside the kernel code to build a sparse representation for tracking these
accesses. The graph is created in four steps: first, a pointer analysis determines the
points-to information of each variable. Second, the indirect definitions and uses of
the address-taken variables are determined for certain instructions (e.g. store, load,
callsite). These instructions are then annotated with a set of variables that will be
either defined or used by this instruction. Third, the functions are transformed
into Static Single Assignment form using a standard SSA conversion algorithm
[200]. Finally, the VFG is created by connecting the def-use for each SSA variable
and made partially context-sensitive by labeling the edges of the callsites. Using
this sparse VFG representation in a partially context-sensitive way enables us to
conduct precise analysis while reducing the amount of code.

Revisiting Functions: Using different analysis passes, functions are potentially
visited multiple times with different values as an input. However, one function

5.6 evaluation 59

might call dozens of other functions and forwarding all the resulting nodes mul-
tiple times in the same way would be very inefficient. Our analysis reduces the
amount of nodes that have to be forwarded by processing a function only once for
all of its possible contexts and storing the intermediate results. If a function entry
node is requested by an analysis with a given context, the analysis checks if this
node was already visited and re-uses the pre-computed results.

Parallelizing Execution: Because certain analysis steps can actually run indepen-
dently from each other, we implemented another optimization by parallelizing the
forwarding and backwarding processes using OpenMP [201]. OpenMP provides
additional compiler directives that allow the definition of parallel regions in the
code. In this way, we process some of the heavy container objects used during the
analysis in parallel.

5.6 evaluation

In this section, we evaluate and test our static analysis framework for real-world
operating system kernels. We run our memory-corruption checkers against five
different versions of the Linux kernel, using the default configuration (defconfig).
Our test system running K-Miner features an Intel Xeon E5-4650 with 8 cores
clocked at 2.4GHz and 32G of RAM. Table 5.1 shows an overview of the analyzed
Linux kernel specifications and results: on average, our framework needs around
25 minutes to check a single system call (cf., Avg. Time in Table 5.1). This means
that a check of the entire system call interface on this server with all three analyses
takes between 70 and 200 hours for a single kernel version. 2 In our experiments,
K-Miner found 29 possible vulnerabilities, generating 539 alerts in total, most of
which were classified as false positives (total alerts are given in parenthesis in
Table 5.1). 3 Next, we will evaluate the coverage and impact of those reports and
afterwards also discuss the performance of our framework in more detail.

5.6.1 Security

Since K-Miner aims to uncover memory-corruption vulnerabilities in the context
of system calls, we investigate its security guarantees by inspecting the coverage
of the underlying graph structures. To demonstrate practicality, we also present
some of the publicly known vulnerabilities we were able to find statically using
our framework.

Coverage: Our goal is to uncover all possible sources of memory corruption that
are accessible via the system call interface that the kernel exposes to user processes.
Hence, we have to ensure that the analysis passes for a certain class of vulnerabili-
ties have access to all relevant information required to safely approximate run-time
behavior of the kernel. At the time of writing, our framework contains passes for
DP, DF, and UAF, hence, other sources of memory corruption are not covered in
this evaluation. However, K-Miner is designed to be extensible and we are work-

2 Largely depending on the respective kernel version as seen in the average time per system call in
Table 5.1.

3 Additionally, we are still investigating 158 memory-corruption alerts for the most recent version of
Linux.

60 automatically uncovering memory corruption in kernel code .

ing on implementing further analysis passes to cover all remaining vulnerability
classes.

The most important factors for the coverage of our three analysis passes are
their underlying analysis structures, i.e., PAG, VFG, and context information. Be-
cause the inter-procedural value-flow graph and the context information are de-
rived from the pointer-analysis graph, their accuracy directly depends on the con-
struction of the PAG. Our pointer analysis makes two assumptions: 1) partitioning
the kernel code along its system call graph is sound, and 2) deriving kernel con-
text information from init calls is complete. We would like to note that verifying
both assumptions requires a formal proof, which is beyond the scope of this work.
However, we sketch why these assumptions are reasonable in the following.

The first assumption is sensible, because system calls are triggered by individual
processes to provide services in a synchronous manner, meaning that the calling
process is suspended until execution of the system call finishes. While interrupts
and inter-process communication may enable other processes to query the kernel
asynchronously, this is orthogonal to the partitioning of kernel code, because these
operate under a different context. In particular, our framework allows analyses
to take multiple memory contexts into account, e.g., to uncover synchronization
errors. Individual analysis passes then have to ensure that the associated contexts
are handled accordingly.

Our second assumption is derived from the design of the analyzed kernel code.
The init call infrastructure for Linux is quite elaborate, using a hierarchy of differ-
ent levels that may also specify dependencies on other init calls. Additionally, init
calls are used in many different scenarios, e.g., to populate management structures
for virtual memory and processes during early boot, or to instantiate drivers and
modules at run time. By including all init call levels following their hierarchical or-
dering in the pre-analysis phase, we ensure that the relevant context information
is recorded and initialized accordingly.

Real-world Impact: We cross-checked the reported memory corruptions against
publicly available bug reports and found two interesting matches. In particular, our
dangling pointer analysis automatically found a bug in Linux kernel version 3.19,
which was previously discovered through manual inspection and classified as a
security-relevant vulnerability in Linux in 2014 (i.e., CVE-2014-3153). In fact, this
vulnerability gained some popularity due to being used as a tool to allow users
privilegede access (aka "root") on their locked-down Android devices, such as the
Samsung S5 [91]. The bug was later discovered to be exploited by the HackingTeam
company to spy on freedom fighters and dissidents through a malicious kernel
extension [202].

Further, our double-free analysis found a driver bug (i.e., CVE-2015-8962) in a
disk protocol driver in version 3.19. The vulnerability allows a local user to escalate
privileges and corrupt kernel memory affecting a large range of kernel versions
including Android devices such as Google’s PIXEL [203]. Both vulnerabilities were
classified as critical issues with a high severity and could have been easily found
through K-Miner’s automated analysis. Moreover, we reported two of our use-
after-return alerts to the kernel developers.

5.6 evaluation 61

5.6.2 Performance

We now analyze the performance, in particular, the run time, memory consump-
tion, and number of false positives.

Analysis Run Time: As already mentioned, the average analysis time per sys-
tem call is around 25 minutes. In addition, we analyzed those system calls for
which our analyses took longer than 30 minutes. Most system call analyses are
dominated by the context handling. However there are some exceptions, notably
sys_execve, sys_madvise, and sys_keyctl. The context handling is time consum-
ing, because it represents the first phase of any subsequent data-flow analysis
pass. This means, that it conducts multiple inter-procedural pointer analysis, cross-
references the global kernel context with the syscall context, and populates the
underlying graph data structures for the current system call. This also involves
importing and copying information stored on disk, which is slower than access-
ing RAM. In theory, it should be possible to pre-compute and export the results
of the context handling phase for each system call to disk as well. Any data-flow
analysis pass could then just re-import the respective file for the current system
call, potentially saving some of this overhead (especially in combination with fast
SSD hardware). However, we did not implement this optimization feature in the
current version of K-Miner.

The UAF checker is notably quicker than the remaining passes, which is due
to its reuse of underlying analysis structures from the first pass. In contrast to the
use-after-free pass, the double-free analysis has to reconstruct the value-flow graph,
which accounts for the majority of its run time. Taken separately, the individual
analysis phases require between 5 and 35 minutes run time, which is expected for
graph-based analysis, given the magnitude of the input.

Memory Utilization: Initially, our main concern regarded the memory require-
ments, because of the size of the intermediate representation of the kernel as bit-
code image. However, our approach to partition the kernel per system call proved
to be effective: on average the analyses utilized between 8.7G and 13.2G of RAM,
i.e., around a third of our server’s memory, with a maximum of 26G (cf., version
4.10 in Table 5.2). Granted that these numbers also depend to a large extent on the
respective kernel version and used configuration, our overall results demonstrate
that complex data-flow analysis for OS kernels are feasible and practical. In partic-
ular, the memory requirements of K-Miner show that an analysis of future kernel
releases is realistic, even with the tendency of newer versions to grow in size.

While the default configuration for the kernel offers a good tradeoff between fea-
ture coverage and size, real-world distribution kernels usually have larger config-
urations, because they enable a majority of features for compatibility reasons. Our
current memory utilization is within range of analyzing kernels with such feature
models as well. Although we expect to see increased memory requirements (i.e.,
128G or more), this does not meet the limit of modern hardware, and K-Miner is
able to conduct such analyses without requiring any changes.

62 automatically uncovering memory corruption in kernel code .

Version Avg. Used Max Used

3.19 8,765.08M 18,073.60M

4.2 13,232.28M 24,466.78M

4.6 11,769.13M 22,929.92M

4.10 12,868.30M 25,187.82M

4.12 13,437.01M 26,404.82M

Table 5.2: Average and maximum memory usage of K-Miner

5.6.3 Usability

Our framework can be integrated into the standard build process for the Linux
kernel with some changes to the main build files, which will then generate the
required intermediate representation of the kernel image. Using this bitcode image
as main input, K-Miner can be configured through a number of command line
arguments, such as number of threads, which checkers to use, and output directory
for intermediate results. Results are written to a logfile, which can be inspected
manually or subsequently rendered using our web interface to get an overview
and check reports for false positives.

Reporting Engine: The web interface for our framework is written in Python. It
parses the resulting logfile to construct a JSON-based data model for quick graph-
ing and tabular presentation, and a screenshot is depicted in Figure 5.5 and Fig-
ure 5.6. to give an impression of an exemplified workflow. While relatively simple,
we found this web-based rendering to be extremely helpful in analyzing individ-
ual reports. Developers can already classify and comment upon alerts and reports,
and we plan to incorporate the possibility to schedule and manage the launch and
configuration of analyses from the web interface in future versions.

False Positives: Similar to other static analysis approaches like the Effect-Based
Analyzer (EBA) [188], Coccinelle [184], Smatch [185], or APISAN [187], K-Miner
naturally exhibits a number of false positives due to the necessary over-approx-
imations. For instance, the use-after-free analysis still shows a high number of
false alarms, and leaves room for improvement. In particular, our investigation
showed that there are many cases in the kernel code where a conditional branch
based on a nullness check is reported as potential use-after-free. Including these
cases in our sanitizer component should be straightforward to further reduce this
number. However, there will always be a certain number of false positives for any
static analysis tool and developers have to cross-check these alerts, similar to how
they have to check for compiler-warnings. Overall K-Miner demonstrates that this
scenario is practical through some post-processing and intelligent filtering in our
web-interface.

5.6 evaluation 63

Figure 5.5: Overview of results in the web user interface of K-Miner.

Figure 5.6: Individual bug report in the web user interface of K-Miner.

64 automatically uncovering memory corruption in kernel code .

5.7 possible extensions

While K-Miner currently does not offer a proof of soundness, we sketched an in-
formal reasoning of why the kernel-code partitioning along the system call API
is a sensible strategy in Section 5.6. There are additional challenges for a formal
result: first, in some cases the kernel uses non-standard code constructs and cus-
tom compiler extensions, which may not be covered by LLVM. However, for these
constructs the LLVM Linux project maintains a list of patches, which have to be
applied to the kernel to make it compatible to the LLVM compiler suite. Second,
some pointer variables are still handled via unsigned long instead of the correct
type. These low-level “hacks” are difficult to handle statically, because they exploit
knowledge of the address space organization or underlying architecture specifics.
Nonetheless, such cases can be handled in principle by embedding the required in-
formation in LLVM or by annotating these special cases in the source. Finally, our
memory tracking component currently relies on a list of allocation functions. For
cases like file descriptors or sockets the respective kernel objects are pre-allocated
from globally managed lists and individual objects are retrieved and identified by
referring to their ID (usually an integer number). This can be resolved by consid-
ering all objects from the same list to be modeled as objects of the same type, and
marking functions for retrieval as allocations.

As K-Miner is designed to be a customizable and extensible framework, im-
plementing additional checkers is straightforward. To this end, we already im-
plemented additional double-lock and memory-leak checkers, thereby covering
additional bug classes. Up to this point we only verified that these additional
pass implementations are able to detect intra-procedural bugs.4 However, as our
other analysis passes in K-Miner, the double-lock implementation covers inter-
procedural double-lock errors in principle, including bugs spanning multiple source
files. Due to lack of time we did not conduct a complete analysis of all five kernel
versions, which is why these results are not yet included in Table 5.1. Similarly,
implementing analyses to find buffer overflows, integer overflows, or uninitialized
data usage remains as part of our future work to cover all potential sources of
memory corruption as mentioned in Section 5.2.

Moreover, we note that it is possible to add analyses passes, e.g., to check for
buffer overflows, integer overflows, or uninitialized data usage, and we are actively
pursuing these for the further development of K-Miner. Implementing additional
analyses for the remaining bug classes as mentioned in Section 5.2 is also part of
our future work to cover all potential sources of memory corruption.

While primarily analyzing the system call API, we found that analyzing the
module API in a similar way should be possible and provide interesting results,
since many bugs result from (especially out-of-tree) driver and module code. Al-
though this interface is not as strict as the highly standardized system call API, the
main top-level functions of many drivers are exported as symbols to the entire ker-
nel image, while internal and helper functions are marked as static. Hence, we
should be able to automatically detect the main entry points for most major driver
modules by looking at its exported symbols and building a call graph that starts

4 In particular, the lock errors introduced in commits 09dc3cf [204], e50fb58 [205], 0adb237 [206], and
16da4b1 [207] of Linus’ tree.

5.7 possible extensions 65

with the exported functions. We can then analyze this automatically constructed
control flow of the drivers by applying the data-flow analysis passes to the result-
ing code partitions. In addition to our current approach, this would allow for an
extension of our adversary model to include malicious devices and network proto-
cols. We included a prototypical draft of this functionality to analyze module code
using K-Miner in the future.

6
R E L AT E D W O R K

In this chapter, we give an overview of the related work regarding data-only at-
tacks and defenses, and how they relate to our data-only attack on dynamically
generated code [1]. We then briefly compare existing data-only defenses for the
OS context to our randomization-based defense PT-Rand [2]. Lastly, we discuss
the role of our novel data-flow analysis framework K-Miner [3] with respect to the
existing tools and approaches for static analysis of kernel and user-level code.

6.1 data-only attacks and defenses for static code

One of the earliest instances of a data-only attack was presented in the context
of server applications [13], where authentication checks could be bypassed result-
ing in a privilege escalation without requiring any modification of the control
flow of the application. With FLOWSTITCH [208] data-only attacks where demon-
strated to be automatable in a similar fashion to auto-ROPers [209, 210]. How-
ever, in contrast to finding and compiling gadget chains for a code-reuse attack
this is more challenging for data-only exploits, since it requires careful analysis
of the data flows leading from the starting point to a given vulnerability, and
from that vulnerability to potentially sensitive information or relevant data struc-
tures, which are are highly application-dependent. Under certain assumptions this
can even enable Turing-complete malicious computation, called Data-Oriented Pro-
gramming (DOP) [68], for a given application. A prominent example is changing
the access permissions to a memory page by manipulating the input parameters
of the function that dynamically loads libraries (i.e., dlopen()).

A number of randomization-based schemes have been proposed to tackle the
challenges raised by data-only attacks. For instance, by partitioning all data ac-
cesses of a program based on extensive static analysis, data objects of an appli-
cation can be isolated into different memory compartments [211, 212]. Through
instrumentation of all data accesses in the program, this isolation can be enforced
at run time, e.g., through use of an xor operation in combination with a per-
compartment key, preventing an adversary from leveraging a memory-corruption
vulnerability in one compartment to access or modify data in another compart-
ment. Unfortunately, this incurs overheads of around 30% on average.

Another approach is to constantly re-randomize data objects in time intervals [171].
However, this again leaves a time window during which attacks are possible. While
this can potentially be avoided for applications that handle data with a strict life-
cycle, e.g., based on events or data being handled over the network [213], this does
not represent a general approach.

Many other schemes aim towards leakage resilience against data-only attacks by
keeping the randomization secret outside of memory at all times during operation,
e.g., by storing it in a register. In this way TRESOR [166] demonstrated memory-
less AES encryption on x86. Additionally, some randomization approaches keep

67

68 related work

the random base offset into a sensitive memory region hidden by storing it in
a register. In combination with a code-reuse defense, this enables strong leakage
resilience guarantees against information-disclosure attacks based on memory cor-
ruption [46, 53, 214].

6.2 data-only attacks and defenses for jit code

In contrast to static code, which is normally mapped as readable and executable
pages, attacks on dynamically generated (i.e., just-in-time compiled) code usually
leverage the circumstance that memory pages for JIT code have to be mapped
writable. For this reason, many JIT-defenses proposed various techniques to imple-
ment a W⊕X mapping for just-in-time compiled code [55, 145, 215, 216], to prevent
code injection. Yet, even if a non-writable mapping is enforced during JIT code ex-
ecution, the compiler still has to write newly generated code to memory at some
point. Hence, a (possibly small) time window remains. From a security standpoint
this time window is generally problematic, since an adversary could be able to in-
ject malicious code even during a relatively short period, and hence, code-injection
attacks are still possible in principle. In this way, JIT exploits are also often able to
construct sophisticated exploits without requiring any code-reuse techniques, as
demonstrated in a Chrome browser exploit at pwn2own in 2016 [143].

This is why Song et al. [144] proposed to de-couple JIT code generation and JIT
code execution into separate processes and sharing memory pages for JIT code.
The compiler process then maps JIT code pages as writable, whereas the JIT pro-
cess can map the same code pages as readable and executable, but not writable.
This design avoids the drawback of a time window completely, successfully pre-
venting JIT-based code-injection attacks. Although the required communication
and synchronization overhead between the two processes can severely impact the
run-time performance (i.e., up to 50%), a similar design was subsequently imple-
mented by Microsoft for the JavaScript engine of the Edge browser [217]. However,
Microsoft recently announced that future Edge versions will be using Google’s V8

instead of Chakra [218].
In contrast to code injection, code-reuse attacks do not write malicious code.

Instead, these attacks string existing code snippets together to achieve arbitrary
behavior [10]. As such, both static and dynamic code are prone to code-reuse at-
tacks despite W⊕X being deployed and active. While JIT code generation is usu-
ally limited to a small subset of (benign) machine instructions, several techniques
have been proposed to trick the JIT compiler into generating arbitrary instructions.
For instance, Blazakis [147] demonstrated that numeric constants can be inserted
into the generated, benign instructions as parameters. By utilizing unaligned code
fetches, these parameters can subsequently be interpreted as code, leading to the
possibility of injecting and executing a small number of attacker-chosen bytes into
the JIT code.

For this reason, JIT compilers employ constant blinding, a technique through
which numerical constants are obfuscated using a secret value that is generated
at compile time. This requires that the masked constant is de-obfuscated at run
time, incurring additional run-time overheads. For this reason constant blinding is
only applied to large constants in practice, leading to potential attacks [146].

6.3 kernel and page table protection 69

Further, the underlying technique of hiding unaligned code in instruction pa-
rameters was recently generalized, e.g., demonstrating that the offset parameters
of relative branch instructions can be exploited to trick the JIT compiler into emit-
ting potentially malicious, unaligned instructions [149].

Another line of research proposes to mitigate JIT-based code reuse by apply-
ing fine-grained randomization [219]. However, all fine-grained randomization ap-
proaches are prone to attacks based on information disclosure [17]. This is why
randomization approaches require leakage resilience, for example, by providing
an execute-only mapping of the generated code [54, 55]. However, this is not sup-
ported by current architectures, and hence, it is currently unclear how this should
be implemented efficiently for real-world JIT engines. Other code-reuse defenses
such as destructive code reads [220, 221] disable information disclosure by intercept-
ing memory reads from the code section and overwriting the results with random
data. While this disables code-reuse attacks there are two problems with this ap-
proach: first, it assumes that benign software never reads its own code section.
Second, in the context of dynamically generated code the possibility of blind code-
reuse attacks remains and was successfully demonstrated [222] by forcing required
gadgets to be generated multiple times.

Moreover, Software-Fault Isolation was proposed for JIT code as well, by pre-
venting the dynamically generated code from modifying non-JIT memory through
a sandbox [223]. However, like all other SFI-based techniques this incurs a large
overhead.

While CFI was traditionally designed for static code, it has been ported to dy-
namically generated code with an average overhead of around 15% [148]. However,
as we demonstrate with DOJITA [1] this can be generically bypassed by resorting
to data-only attacks and modifying the intermediate representation of the JIT com-
piler component to generate arbitrary malicious instructions despite CFI being
deployed and active.

6.3 kernel and page table protection

In addition to our data-only attack against the page tables, several page-table based
attacks have been presented, e.g., by industry researchers [224]. As a consequence,
an adversary with access to a memory-corruption vulnerabilities in the kernel is
able to modify the page tables and deactivate any memory protection [225]. These
attacks are enabled by the fact that the location of the page tables in kernel memory
is writable and can easily by determined.

Several defenses have been proposed by the related work to protect the page
table against malicious modification [45, 173, 226, 228, 229], and we provide a
quick overview of these schemes in Table 6.1.

All proposed defenses so far are designed as a run-time monitor, i.e., they in-
clude and check every page-table related operation against a pre-defined set of
security policies. In contrast to this, with PT-Rand [2] we are the first to propose a
randomization-based approach to protect the page tables in the OS.

Both SecVisor [228] and HyperSafe [229] are based on a Virtual-Machine Mon-
itor (VMM) and require a hardware trust anchor in the form of virtualization ex-
tensions. SecVisor deploys a thin hypervisor to ensure integrity of kernel code.

70 related work

SPROBES
[226]

TZ-RKP
[227]

SKEE
[173]

KCoFI
[45]

SecVisor
[228]

HyperSafe
[229]

OS support 3 3 3 3 3 7

VMM-based 7 7 7 3 3 3

TEE-based 3 3 7 7 7 7

RT-checks 3 3 3 7 3 3

Overhead unspecified 7.56% 15% > 100% 14.58% 5%

Table 6.1: Comparison of defense approaches ensuring the integrity of page tables. In
contrast to the related work, PT-Rand [2] does not require hardware trust an-
chors such as Virtual-Machine Monitors (VMMs) or Trusted-Execution Envi-
ronments (TEEs). Since our scheme additionally does not require costly policy
checks at run time, but is based on leakage-resilient randomization instead it
also incurs a low overhead of only 0.22% on average.

This is achieved by utilizing hardware-aided memory virtualization and IOMMU
to enforce memory protection independently from the kernel. While this prevents
an adversary with access to kernel memory from tampering with the hypervisor
page tables, it requires policy-based checks to prevent confused deputy attacks
against the VMM. Similarly, HyperSafe [229] prevents control-flow hijacking at-
tacks against the hypervisor by means of control-flow integrity enforcement, how-
ever, it is not designed to protect OS memory. Moreover, an OS-based attacker
could still compromise the hypervisor page tables from a virtualized guest system
in that scenario [230]. Despite leveraging hardware-supported virtualization exten-
sions, these defenses still visibly affect the run-time performance of the overall
system with 14.58% for SecVisor and 5% for HyperSafe.

Another hypervisor-based defense is KCoFI [45], which enforces control-flow
integrity for the entire operating system kernel. It leverages the Secure-Virtual
Architecture (SVA) built on top of LLVM’s intermediate representation to protect
the page tables and the CFI policies in a memory region that is in-accessible to the
OS kernel. Since this virtualization approach is enforced in software by the SVA,
KCoFI imposes a substantial overhead of more than 100%.

Instead of deploying a hypervisor, SPROBES and TZ-RKP both utilize trusted
execution environments [226, 227]. To this end, they deploy run-time checks for
enforcing a policy on the memory management functionality provided by the OS,
which run inside the TEE. Since isolation between the OS and the TEE is enforced
by hardware, this prevents an adversary from compromising secure memory using
a kernel vulnerability. While the authors of SPROBES [226] unfortunately do not
provide any benchmark numbers or other run time overhead measurements, the
performance impact of TZ-RKP [227] is reported as 7.56%.

In contrast to those TEE-based schemes, SKEE [173] implements a similar policy
enforcement based on the fact that the ARM architecture provides multiple virtual
address spaces at run time. By utilizing this micro-architectural feature, SKEE iso-
lates the run-time checks from the OS. Since the platform now has to maintain
two separate address spaces, and an additional run-time environment, it incurs an
overhead of 15%.

6.4 static analysis frameworks 71

It is noteworthy to mention that all policy-based approaches mark the page ta-
bles read-only to protect them against unauthorized access. This means that the
respective pages have to be remapped as writable for a short period during execu-
tion, enabling timing attacks through parallel accesses by an adversary in principle.

While Microsoft released a patch to enable kernel-space randomization in the
context of page tables for Windows 10 [231], they did not implement any leakage
resilience features, and hence, the location of the randomized page table can still be
leaked by means of information-disclosure attacks. With our work PT-Rand [2] we
show that randomization-based defenses in the kernel require leakage resilience
to protect against such attacks and demonstrate how this can be implemented
efficiently through register-based information hiding techniques.

6.4 static analysis frameworks

In this section we give a brief overview of the related work and compare K-Miner to
existing frameworks and tools. In contrast to dynamic run-time approaches, such
as KASAN [232], TypeSan [233], Credal [234], UBSAN [235], and various random
testing techniques [177–179], our approach aims at static analysis of kernel code,
i.e., operating solely during compile time. As there already exists a large body of
literature around static program analysis [181, 236], we focus on static analysis
tools targeting operating system kernels, and data-flow analysis frameworks for
user space that influenced the design of K-Miner.

It is important to note that applying static analysis frameworks designed for user
space programs is not possible a priori in the kernel setting: data-flow analysis
passes expect a top-level function, and an initial program state from which anal-
ysis passes can start to propagate value flows. These requirements are naturally
satisfied by user space programs by providing a main function, and a complete set
of defined global variables. However, operating systems are driven by events, such
as timer interrupts, exceptions, faults, and traps. Additonally, user space programs
can influence kernel execution, e.g., by issuing system calls. Hence, there is no sin-
gle entry point for data-flow analysis for an operating system. With K-Miner we
present the first data-flow analysis framework that is specifically tailored towards
this kernel setting.

6.4.1 Kernel Static Analysis Frameworks

The Effect-Based Analyzer (EBA) [188] uses a model-checking related, inter-procedural
analysis technique to find a pre-compiled list of bug patterns. In particular, it pro-
vides a specification language for formulating and finding such patterns. EBA
provides lightweight, flow-insensitive analyses, with a focus towards double-lock
bugs. Additionally, EBA restricts analysis to individual source files. K-Miner pro-
vides an expressive pass infrastucture for implementing many different checkers,
and is specifically tailored towards the execution model of the kernel allowing
complex, context and flow-sensitive data-flow analyses, potentially spanning the
entirety of the kernel image.

Coccinelle [184] is an established static analysis tool that is used on a regular ba-
sis to analyze and transform series of patches for the kernel. While originally not

72 related work

intended for security analysis, it can be used to conduct text-based pattern match-
ing without the requirement for semantic knowledge or abstract interpretation of
the code, resulting in highly efficient and scalable analyses. In comparison to our
framework, Coccinelle is not able to conduct any data-flow, or inter-procedural
analysis.

The Source-code Matcher (Smatch) [185] is a tool based on Sparse [237], a parser
framework for the C language developed exclusively for the Linux kernel. Smatch
enriches the Sparse syntax tree with selected semantic information about underly-
ing types and control structures, enabling (limited) data-flow analyses. Like Coc-
cinelle, Smatch is fast, but constrained to intra-procedural checks per source file.

APISAN [187] analyzes function usage patterns in kernel code based on sym-
bolic execution. In contrast to other static analysis approaches, APISAN aims at
finding semantic bugs, i.e., program errors resulting from incorrect usage of exist-
ing APIs. Because specifying the correct usage patterns manually is not feasible
for large code bases, rules are inferred probabilistically, based on the existing us-
age patterns present in the code (the idea being that correct usage patterns should
occur more frequently than incorrect usage patterns). In comparison to K-Miner,
APISAN builds on LLVM as well, but only considers the call graph of the kernel
and is not able to conduct any inter-procedural data-flow analyses.

TypeChef [186] is an analysis framework targeting large C programs, such as
the Linux kernel. In contrast to our work, TypeChef focuses on variability-induced
issues and analyzing all possible feature configurations in combination. For this,
it provides a variability-aware pre-processor, which extracts the resulting feature
model for the kernel, e.g., by treating macros like regular C functions. TypeChef
does not conduct any data-flow analysis on their resulting variability-aware syntax
tree.

6.4.2 User Space Static Analysis

The Clang Static Analyzer [196] consists of a series of checkers that are imple-
mented within the C frontend Clang of the LLVM compiler suite. These checkers
are invoked via command-line arguments during program compilation and can
easily be extended. As part of the Linux LLVM project [198] there was an effort to
implement kernel-specific checkers. However, to the best of our knowledge, this
effort has since been abandoned.

The Static Value-Flow (SVF) [197] analysis famework enhances the built-in analy-
sis capabilities of LLVM with an extended pointer analysis and a sparse value-flow
graph representation. K-Miner builds on top of LLVM and leverages the pointer
analyses provided by SVF to systematically analyze kernel APIs, such as the sys-
tem call interface.

Mélange [238] is a recent data-flow analysis framework for user space, that is
able to conduct complex analyses to find security-sensitive vulnerabilities, such as
unitialized reads. Mélange is able to analyze large C and C++ user space code bases
such as Chromium, Firefox, and MySQL.

Astrée [180] is a proprietary framework for formal verification of C user pro-
grams for embedded systems through elaborate static analysis techniques. It op-
erates on synchronous programs, i.e., analyzed code is not allowed to dynamically

6.4 static analysis frameworks 73

allocate memory, contain backward branches, union types, or other conflicting side
effects. Astrée is able to provably verify the absence of any run-time errors in a pro-
gram obeying these restrictions and was used to formally verify the primary flight
control software of commercial passenger aircraft.

Soot [239] is a popular and widely used static analysis framework capable of
conducting extensible and complex data-flow analyses. However, Soot is targeted
towards Java programs, and hence, cannot analyze programs written in C or C++.

Part III

R E M O T E H A R D WA R E E X P L O I T S : A N E M E R G I N G
AT TA C K PA R A D I G M

based on Hammer Time [4], CAn’t Touch This [5], LAZARUS [6],
and HardFails [7].

7
H A M M E R T I M E : R E M O T E AT TA C K S O N D R A M A N D I N I T I A L
D E F E N S E S .

We now turn towards remote hardware exploits, which represent an emerging
attack vector besides the traditional memory-corruption-based approaches. While
hardware-based exploits typically rely on platform-specific implementation details
they are also more powerful and do not require vulnerable software. In this chapter,
we first introduce Rowhammer which represents a recent class of hardware-based
attacks that are possible from software due to vulnerable DRAM modules, which
are used by the majority of computer systems deployed today. We first present our
remote Denial-of-Service attack [4] and briefly discuss several attacks that were
presented in the literature. We then discuss possible defense approaches such as
blacklisting [5], before introducing our general software-only defense in the next
Chapter.

7.1 dram and the rowhammer bug

Dynamic-Random Access Memory (DRAM) modules, as shown in Figure 7.1, are
structured hierarchically. These individual hardware modules usually come in the
form of Dual Inline Memory Modules (DIMM), which are attached physically to
the mainboard of the platform and directly connected to the memory controller
of the platform through a channel. Modern desktop systems usually feature two
channels facilitating parallel accesses to memory. The DIMM can be divided into
one or two ranks corresponding to its front- and backside. Each rank contains
multiple chips which are comprised of one or multiple banks that contain the
memory cells. Each bank is organized in columns and rows, as shown in Figure 7.2.
DRAM rows contain neighboring memory cells, whereas columns hold adjacent
cells.

An individual memory cell consists of a capacitor and a transistor. To store a
bit in a memory cell, the capacitor is electrically charged. By reading a bit from a
memory cell, the cell is discharged, i.e., read operations are destructive. To prevent
information loss, read operations also trigger a process that writes the bit back to
the cell. A read operation always reads out the bits from a whole row, and the
result is first saved in the row buffer before it is then transferred to the memory
controller. This row buffer is also used to write back the content into the row of
memory cells to restore their content.

While DRAM hardware is highly standardized, cheap, widely used, and com-
mercially available as off-the-shelf components, it also exhibits a number of relia-
bility problems: adverse conditions such as higher temperature or electromagnetic
radiation can lead to bit errors in the information stored digitally on the hard-
ware [240–242]. Moreover, researchers demonstrated that DRAM hardware is in
fact subject to bit errors that are reproducable purely from software under com-
pletely benign operating conditions. In particular, several independent studies found

77

78 hammer time : remote attacks on dram and initial defenses .

Figure 7.1: Organization of a DRAM module.

that frequently accessing physically co-located memory cells leads to bit flips in
adjacent memory cells [63, 71]. This effect, called Rowhammer, was subsequently
shown to be exploitable by remote adversaries to undermine deployed security
mechanisms on computing platforms using DRAM hardware [72–74].

The Rowhammer bug occurs during the write-back operation when accessing co-
located rows of the same bank: frequently triggering (or hammering) an aggressor
row (A) that is physically located on top of the victim row (V) affects the cells of
the victim row due to electromagnetic coupling—although these cells are never ac-
cessed directly. Amplified by the shrinking feature size of the manifactured DRAM
chips, several studies found Rowhammer to be a wide-spread reliability issue, and
conclude that Rowhammer seems to be an inherent design problem of DRAM
chips as all vendors and even ECC DRAM modules are affected [63, 71].

It is noteworthy to mention that there exists a mapping between physical mem-
ory addresses and the respective DRAM structures (i.e., rank, bank, and row index)
on the hardware module that is usually defined by the manufacturer and imple-
mented within the memory controller of the platform. Consequently, two consecu-
tive physical memory addresses can be mapped to memory cells that are located
on different ranks, banks, or rows. For example, on Intel Ivy Bridge CPUs the 20th
bit of the physical address determines the rank. As such, the consecutive physical
addresses 0x2FFFFF and 0x300000 can be located on front and back side of the
DIMM for this architecture. The knowledge of the physical memory location on
the DIMM is important for both Rowhammer attacks and defenses, since bit flips
can only occur within the same bank. For Intel processors, the physical-to-DRAM
mapping is not documented, but has been reverse engineered [76, 243].

7.2 rowhammer in the context of security-sensitive applications

Since DRAM is cheap and widely deployed its use has been considered in the
context of security-sensitive applications. One of those applications are Physically
Unclonable Functions (PUFs), which represent a research technology that promises

7.2 rowhammer in the context of security-sensitive applications 79

Bank

Rows

Row Buffer

Columns

Cells

Figure 7.2: DRAM chips are structured hierarchically, with banks forming one of the inter-
mediate components that can be replicated for individual chips. This diagram
shows the organization inside a bank, which is only accessed via its row buffer
from the outside.

to establish trust anchors in embedded systems with minimal hardware require-
ments. They allow for utilizing inherent manufacturing process variations to ex-
tract unique identifiers or secrets in a reproducable way. Since the generated bits di-
rectly depend on the physical properties of the underlying technology (i.e., DRAM)
it is assumed to be unique. However, the uniqueness property is not sufficient to en-
sure security: the response to a particular challenge must also be unpredictable, i.e.,
it is required that the output looks like a random sequence to a software attacker.
PUFs have been proposed as tamper-evident building blocks for various use cases
such as for authentication, key-derivation, and device identification [244–246].

So far many different implementations in hardware have been proposed and
evaluated over the recent years [246–248] and memory-based PUFs leverage phys-
ical properties of memory cells in SRAM or DRAM technology, which is widely
deployed in practice. The decreasing prices for DRAM hardware aggrevate those
research efforts [249–252].

We demonstrate a Rowhammer-based attack that effectively denies meaningful
operation of a DRAM PUF [4] under the same software adversary model as in
Part II. However, in contrast to the previously presented data-only attacks, we
do not require a memory-corruption vulnerability in the any part of the system
software. Instead, we exploit the Rowhammer hardware bug that is found in many
DRAM modules that are sold on the market today. We stress that our attack works
entirely remotely and does not require physical presence of the attacker. Under
this model, we first revisit the security of security-sensitive applications, such as
PUFs. We implemented and extensively evaluated our attack in a real-world setup
for different configurations. Our results confirm that DRAM hardware is not a
suitable building block for security-sensitive applications.

80 hammer time : remote attacks on dram and initial defenses .

Bank

Row Buffer

A

A

V

Figure 7.3: What makes Rowhammer-based attacks [4, 72–76, 134, 135] so severe is the fact
that only adjacent memory rows (i.e., above and below the attacked memory
region) are accessed by the attacker. Due to the physical-to-DRAM mapping,
these physically neighbouring rows can reside in completely separate parts
of the address space. However, through electro-magnetic coupling effects an
adversary can influence these otherwise inaccessible memory cells which can
even result in flipped bits in the attacked row.

Usually, PUF responses would be used to derive id tokens or secret key mate-
rial in a reproducable way. However, as depicted in Figure 7.3 Rowhammer-based
attacks aim at maliciously modifying the sensitive memory region (V). Crucially,
Rowhammer attacks such as our DoS attack [4] operate without ever accessing the
sensitive memory region itself, i.e., only using adjacent memory locations (A) which
the attacker is allowed to access. This means that the attacker never violates any ex-
isting access-control mechanisms deployed to protect the sensitive memory region
against malicious software accesses. Due to the physical-to-DRAM mapping an
adversary can exploit physically neighbouring memory cells, and hence, Rowham-
mer represents a hardware vulnerability with serious security consequences for
real-world systems. This has also been demonstrated previously to be exploitable
in practice [72–74]: the physical-to-DRAM mapping between physical addresses
on the system and the physical location this corresponds to on the DRAM mod-
ule, the attacker can trick the memory allocator into co-locating its memory with
the sensitive memory region in question. In the context of PUFs this results in a
faulty id or key, since those are directly based on the hammered memory cells.
Consequently, it cannot be used and benign operation is blocked.

7.3 rowhammer as an exploit primitive

Recently, various Rowhammer-based attacks have been presented [72–76, 134, 135].
Specifically, Rowhammer was utilized to undermine isolation of operating sys-

7.3 rowhammer as an exploit primitive 81

tem and hypervisor code, and escape from application sandboxes leveraged in
web browsers. In the following, we describe the challenges and workflow of Row-
hammer attacks. A more elaborated discussion on real-world, Rowhammer-based
exploits will be provided in Chapter 11.

The Rowhammer fault allows an attacker to influence the electrical charge of
individual memory cells by activating neighboring memory cells. Kim et al. [63]
demonstrate that repeatedly activating two rows separated by only one row, called
aggressor rows, lead to a bit flip in the enclosed row, called victim row. To do so, the
attacker has to overcome the following challenges: (i) undermine memory caches to
directly perform repetitive reads on physical DRAM memory, and (ii) gain access
to memory co-located to data critical to memory isolation.

Overcoming challenge (i) is complicated because modern CPUs feature differ-
ent levels of memory caches which mediate read and write access to physical
memory. Caches are important as processors are orders of magnitude faster than
current DRAM hardware, turning memory accesses into a bottleneck for applica-
tions [132]. Usually, caches are transparent to software, but many systems feature
special instructions, e.g., clflush or movnti for x86 [72, 73], to undermine the cache.
Further, caches can be undermined by using certain read-access patterns that force
the cache to reload data from physical memory [253]. Such patterns exist, because
CPU caches are much smaller than physical memory, and system engineers have
to adopt an eviction strategy to effectively utilize caches. Through alternating ac-
cesses to addresses which reside in the same cache line, the attacker can force the
memory contents to be fetched from physical memory.

The attacker’s second challenge (ii) is to achieve the physical memory constel-
lation that results in DRAM co-location. For this, the attacker needs access to the
aggressor rows in order to activate (hammer) them. In addition, the victim row must
contain data which is vulnerable to a bit flip. Both conditions cannot usually be en-
forced by the attacker a priori. However, this memory constellation can be achieved
with high probability using the following approaches: first, the attacker allocates
memory hoping that the aggressor rows are contained in the allocated memory. If
the operating system maps the attacker’s allocated memory to the physical mem-
ory containing the aggressor rows, the attacker has satisfied the first condition.
Since the attacker has no influence on the mapping between virtual memory and
physical memory, she cannot directly influence this step, but she can increase her
probability by repeatedly allocating large amounts of memory. Once control over
the aggressor rows is achieved, the attacker releases all allocated memory except
the parts which contain the aggressor rows. Next, victim data that should be ma-
nipulated has to be placed on the victim row. Again, the attacker cannot influence
which data is stored in the physical memory and needs to resort to a probabilis-
tic approach. The attacker induces the creation of many copies of the victim data
with the goal that one copy of the victim data will be placed in the victim row. The
attacker cannot directly verify whether the second step was successful, but can
simply execute the Rowhammer attack to validate whether the attack was success-
ful. If not, the second step is repeated until the Rowhammer successfully executes.
Seaborn et al. [72] successfully implemented this approach to compromise the ker-
nel from an unprivileged user process. They gain control over the aggressor rows
and then let the OS create huge amounts of page table entries with the goal of plac-

82 hammer time : remote attacks on dram and initial defenses .

ing one page table entry in the victim row. By flipping a bit in a page table entry,
they gained control over a subtree of the page tables allowing them to manipulate
memory access control policies.

7.4 on the distribution of bit flips

While working on our attack we discovered that bit flips do not always stabilize
over time and that relatively stable bit-flip locations do not necessarily adhere to
a random distribution. More specifically, certain bit flips cannot be used by an
attacker since they only appear as transient bit flips that vanish after a short period
of time. We conducted our tests using the Rowhammer testing tool developed
and published by Google [254]. However, there are two factors that impact the
comprehensiveness of identifying vulnerable bits: spatial coverage and temporal
coverage.

The memory coverage of the Rowhammer testing tool is limited to the physical
memory it can access. Since the Rowhammer testing tool executes as an ordinary
process on the system, it has no influence on the physical memory assigned when
allocating memory. In particular, there are parts of physical memory which will
never be assigned to the Rowhammer test tool, as some memory is reserved by
other systems entities, e.g., memory reserved by the kernel. Hence, the Rowham-
mer testing tool can never test these regions for vulnerable bits.

Additionally, the Rowhammer testing tool has to share the system’s memory
with other processes. For instance, the Rowhammer testing tool cannot allocate
all memory since other processes (and other dynamic components like loadable
kernel modules – LKM) also require memory. However, since these memory allo-
cations are dynamic they can easily change among reboots and runs. This means
that the temporal coverage of the tool for each individual run is limited. However,
the cumulative coverage achieves coverage of the entire process’ allocatable memory.
Lastly, even if the Rowhammer testing tool cannot detect all vulnerable memory
bits, it still can detect all bits that are exploitable from the attacker’s point of view,
i.e., the attacker leverages the same techniques as the Rowhammer testing tool to
detect vulnerable bits.

Additionally, we found that stable bit flips tended to cluster around particular re-
gions for a given DRAM module. For instance, in our tests successive bit flips were
highly correlated with respect to their physical location on the DRAM module. For
this reason, bit flips would be much more likely around areas that experienced bit
flips previously. By collecting and observing a number of bit-flip locations for vari-
ous machines and DRAM modules, we were able to formulate a fault-model of the
affected DRAM modules (e.g., to break the unclonability property of the DRAM
PUF [4]) and even predict possible locations of future bit flips with a high accuracy.

Although not representative or statistically significant (we only evaluated five
different systems [4, 5]) our findings motivated us to design an initial defense
that operates by blacklisting vulnerable memory pages that contain stable bit-flip
locations. We will briefly describe our initial defense in the next section.

7.5 initial rowhammer defense 83

Locate Vulnerable
Memory

Phy Addr 1

Phy Addr 2

…

Blacklist of
vulnerable memory

…

Physical Memory Kernel

Bootloader

List of
Available
Memory

Memory
AllocatorX

X

X

Offline Analysis

1

2

3

4

(GRUB)

Figure 7.4: Workflow of ouf bootloader extensions

7.5 initial rowhammer defense

Prior to launching a Rowhammer attack, the attacker needs to probe the memory
to locate vulnerable memory. Hence, a straightforward software-only defense is
to identify the vulnerable memory parts and mark them as unavailable. To vali-
date this, we developed a bootloader extension that locates and disables vulnera-
ble memory parts. While we investigated different implementation strategies, we
opted for a bootloader extension in order to protect a wide range of operating sys-
tems. That is, our bootloader-based approach does not require any changes to the
operating system and is fully compatible with legacy systems.

In general, all bootloaders commit a list of available memory to the operating
system. This list is dynamically obtained during boot time using the system’s
firmware (e.g., BIOS/UEFI). It is common that certain physical memory addresses
cannot be used by the operating system, e.g., the memory reserved for hardware
devices such as graphics or network cards or memory that is already occupied
by the firmware. Our bootloader extension hooks into this workflow. Specifically,
it adds the physical addresses of vulnerable memory to the list of unavailable
memory. To locate vulnerable addresses, we re-use techniques from existing Row-
hammer exploitation tools [75, 254] and slightly adjust them for the purpose of our
approach. This analysis is performed offline prior to activating the blacklisting ap-
proach. From the operating system’s perspective, the vulnerable physical memory
is simply never used.

We exploit the fact that this blacklisting of certain physical addresses is already
supported by the operating system. Specifically, x86 compatible operating systems
detect usable memory through the so-called e820 map [255]. This map contains
a list of usable physical memory. It can be obtained from the BIOS through the
interrupt number 0xe820. On modern systems, this map is not requested at run
time, but forwarded directly at boot-time instead. To prevent Rowhammer attacks,

84 hammer time : remote attacks on dram and initial defenses .

we instrument the GRUB [256] bootloader to add physical addresses of vulnerable
memory to the e820 map. Although the original e820 specification only supports
128 entries, the EFI Platform Initialization specification – which is also supported
by GRUB – does not limit the number of entries [257]. In fact, GRUB first allocates
a buffer to store both the original e820 map and additional entries. Once it has
stored the original e820 entries into this buffer, it passes a pointer to this buffer
to the operating system. Our patch increases the size of the allocated buffer to
additionally fit the entries for the blacklisted pages.

Figure 7.4 depicts the detailed workflow of our bootloader-based defense ap-
proach. After installing our patch the vulnerable memory rows are identified with
the help of publicly available tools during an offline analysis [72, 75, 254]. These
programs scan the memory of the machine for vulnerable pages by allocating large
amounts of memory and trying to produce bit flips. Next, these pages are included
as an environment variable in the boot configuration file of GRUB. When the
BIOS starts the bootloader will request the environment variable and extend the
e820 map using the specified entries. The OS will not use the vulnerable memory
thereby preventing the attacker from leveraging Rowhammer-based attacks using
the identified pages.

8
M I T I G AT I N G R O W H A M M E R AT TA C K S A G A I N S T O S
K E R N E L S .

In the last chapter, we have seen that the Rowhammer hardware bug can be
exploited in a remote adversary setting to launch successful attacks completely
from software. We also discussed that various Rowhammer-based attacks were
presented by the related work in the recent past, such as exploits against the operat-
ing system kernel, and briefly presented an initial defense approach that blacklists
vulnerable memory locations. However, since the security of blacklisting-based
isolation approaches relies on the quality of the blacklist, a more general defense
approach would be desirable. Hence, in this chapter we present CATT [5], the first
software-only defense against Rowhammer attacks targeting kernel memory. The
main idea behind our defense strategy is to partition DRAM allocations in such a
way that unprivileged memory can never be physically co-located with privileged
memory.

8.1 on the necessity of software defenses against rowhammer

CPU-enforced memory protection is fundamental to modern computer security:
for each memory access request, the CPU verifies whether this request meets the
memory access policy. However, the infamous Rowhammer attack [63] undermines
this access control model by exploiting a hardware fault (triggered through soft-
ware) to flip targeted bits in memory. The cause for this hardware fault is due to the
tremendous density increase of memory cells in modern DRAM chips, allowing
electrical charge (or the change thereof) of one memory cell to affect that of an ad-
jacent memory cell. Unfortunately, increased refresh rates of DRAM modules – as
suggested by some hardware manufacturers – cannot eliminate this effect [253]. In
fact, the fault appeared as a surprise to hardware manufacturers, simply because
it does not appear during normal system operation, due to caches. Rowhammer
attacks repetitively read (hammer) from the same physical memory address in very
short time intervals which eventually leads to a bit flip in a physically co-located
memory cell.

Although it might seem that single bit flips are not per-se dangerous, recent
attacks demonstrate that Rowhammer can be used to undermine access control
policies and manipulate data in various ways. In particular, it allows for tamper-
ing with the isolation between user and kernel mode [72]. For this, a malicious
user-mode application locates vulnerable memory cells and forces the operating
system to fill the physical memory with page-table entries (PTEs), i.e., entries that
define access policies to memory pages. Manipulating one PTE by means of a bit
flip allows the malicious application to alter memory access policies, building a cus-
tom page table hierarchy, and finally assigning kernel permissions to a user-mode
memory page. Rowhammer attacks have made use of specific CPU instructions
to force DRAM access and avoid cache effects. However, prohibiting applications

85

86 mitigating rowhammer attacks against os kernels .

from executing these instructions, as suggested in [72], is ineffective because re-
cent Rowhammer attacks do no longer depend on special instructions [253]. As
such, Rowhammer has become a versatile attack technique allowing compromise
of co-located virtual machines [76, 134], and enabling sophisticated control-flow
hijacking attacks [17, 18, 152] without requiring memory corruption bugs [72, 75,
135]. Lastly, Rowhammer is not limited to x86-based systems but also applies to
mobile devices running ARM processors as well [74].

As mentioned before, memory access control is an essential building block of
modern computer security, e.g., to achieve process isolation, isolation of kernel
code, and manage read-write-execute permission on memory pages. Modern sys-
tems feature a variety of mechanisms to isolate memory, e.g., paging [157], virtual-
ization [258, 259], IOMMU [260], and special execution modes like SGX [157] and
SMM [157]. However, these mechanisms enforce their isolation through hardware
that mediates the physical memory accesses (in most cases the CPU). Hence, mem-
ory assigned to isolated entities can potentially be co-located in physical memory
on the same bank. Since a Rowhammer attack induces bit flips in co-located mem-
ory cells, it provides a subtle way to launch a remote attack to undermine memory
isolation.

The common belief is that the Rowhammer fault cannot be fixed by means of any
software update, but requires production and deployment of redesigned DRAM
modules. Hence, existing legacy systems will remain vulnerable for many years,
if not forever. An initial defense approach performed through a BIOS update to
increase the DRAM refresh rate was unsuccessful as it only slightly increased the
difficulty to conduct the attack [72]. The only other software-based mitigation of
rowhammer, we are aware of, is a heuristic-based approach that relies on hardware
performance counters [253]. However, it induces a worst-case overhead of 8% and
suffers from false positives which impedes its deployment in practice.

We present the first practical software-based defense against Rowhammer at-
tacks that can instantly protect existing vulnerable legacy systems without suffer-
ing from any performance overhead and false positives. From all the presented
Rowhammer attacks [72–76, 134, 135], only those which compromise kernel mem-
ory have been publicly reproduced in successful end-to-end attacks. Unfortunately,
attacks that target the OS are also challenging to mitigate without replacing or fix-
ing vulnerable hardware. Other attacks can be either mitigated by disabling certain
system features, or are impractical for real-world attacks: Rowhammer attacks on
virtual machines [76, 134] heavily depend on memory deduplication which is dis-
abled in most production environments by default. Further, attacks launched from
a webbrowser require more than half an hour in practice [135]. Hence, for the
prototype implementation of our partitioning policy we focus on the more prac-
tical Rowhammer attacks that target kernel memory from malicious user-space
processes.

8.2 assumptions and threat model

We present the design and implementation of a practical mitigation scheme, called
CATT, that does not aim to prevent bit flips but rather remove the dangerous effects
(i.e., exploitation) of bit flips. This is achieved by limiting bit flips to memory pages

8.3 design of catt 87

…

Physical Memory

List of
Available
Memory

X

X

Kernel

Security Domain
Memory Tracking

CATT Memory
Allocator

Security Domain A
Memory Handler

(user-mode)

Security Domain B
Memory Handler

(kernel-mode)

Figure 8.1: CATT constrains bit flips to the process’ security domain.

that are already in the address space of the malicious application, i.e., memory
pages that are per-se untrusted. For this, we extend the operating system kernel to
enforce a strong physical isolation of user and kernel space.

Our threat model is in line with related work [72, 73, 75, 76, 134, 135]. The
detailed assumptions for our Rowhammer-defense for the OS, called CATT, are as
follows:

• We assume that the operating system kernel is not vulnerable to software at-
tacks. While this is hard to implement in practice it is a common assumption
in the context of rowhammer attacks.

• The attacker controls an unprivileged process, and hence, can execute arbi-
trary code in userland but has only limited access to other system resources
which are protected by the kernel through mandatory and discretionary ac-
cess control.

• We assume that the system’s RAM is vulnerable to rowhammer attacks.
Many commonly used systems (see Table 8.1) include vulnerable RAM.

8.3 design of catt

In this section, we present the high-level idea and design of our practical software-
based defense against rowhammer attacks. Our defense, called CAn’t Touch This (CATT),
tackles the malicious effect of rowhammer-induced bit flips by instrumenting the
operating system’s memory allocator to constrain bit flips to the boundary where
the attacker’s malicious code executes. CATT is completely transparent to applica-
tions, and does not require any hardware changes.

8.3.1 Overview

Note that our initial defense strategy (presented in the last Chapter) takes a snap-
shot of vulnerable memory addresses. Since there is no security guarantee that

88 mitigating rowhammer attacks against os kernels .

vulnerable memory changes over time or other memory addresses get vulnerable
under different test conditions, we developed a novel, long-term protection strat-
egy against Rowhammer attacks, which does not rely on any knowledge about
vulnerable memory locations. Instead, our second defense, called CATT, follows a
different and more generic defense strategy: it tolerates rowhammer-induced bit
flips, but prevents bit flips from affecting memory belonging to higher-privileged
security domains, e.g., the operating system kernel or co-located virtual machines.
The general idea of CATT is to tolerate bit flips by confining the attacker to mem-
ory that is already under her control. This is fundamentally different from all
previously proposed defense approaches that aimed to prevent bit flips. In particu-
lar, CATT prevents bit flips from affecting memory belonging to higher-privileged
security domains, e.g., the operating system kernel or co-located virtual machines.
As a general requirement, an adversary has to bypass the CPU cache to conduct a
Rowhammer attack. Further, the attacker must arrange the physical memory lay-
out such that the targeted data is stored in a row that is physically adjacent to
rows that are under the control of the attacker. Hence, CATT ensures that memory
between these two entities is physically separated by at least one row. 1

To do so, CATT extends the physical memory allocator to partition the physical
memory into security domains.

Figure 8.1 illustrates the concept. Without CATT the attacker is able to craft
a memory layout, where two aggressor rows enclose a victim row of a higher-
privileged domain. With CATT in place, the rows which are controlled by the
attacker are grouped into the security domain A, whereas memory belonging to
higher-privileged entities resides with their own security domain (e.g., the security
domain B). Both domains are physically separated by at least one row which will
not be assigned to any security domain.

8.3.2 Security Domains

Privilege escalation attacks are popular and pose a severe threat to modern sys-
tems. In particular, the isolation of kernel and user-mode is critical and the most
appealing attack target. If a user-space application gains kernel privileges, the ad-
versary can typically compromise the entire system. We define and maintain two
security domains: a security domain for kernel memory allocations, and one se-
curity domain for user-mode memory allocations (see also Figure 8.1). While our
prototype focuses on this kernel setting, the underlying principle of spatial DRAM
isolation supports many different scenarios. For instance, in virtualized environ-
ments, virtual machines as well as the hypervisor can be treated as individual se-
curity domains. To prevent Rowhammer attacks crossing the isolation boundaries
of processes in user-mode, CATT would need to assign security domains at the
granularity of processes. However, many security domains associated with many
memory allocations and deallocations could potentially lead to fragmentation. To

1 Kim et al. [63] mention that the rowhammer fault could potentially affect memory cells of directly
adjacent rows, but also memory cells of rows that are next to the adjacent row. Although we did not
encounter such cases in our experiments, CATT supports multiple row separation between adversary
and victim data memory.

8.4 implementation 89

resolve fragmentation issues it would be possible to group untrusted system enti-
ties (such as non-critical processes) into the same domain.

8.3.3 Challenges

The physical isolation of data raises the challenge of how to effectively isolate
the memory of different system entities. To tackle this challenge, we first require
knowledge of the mapping between physical addresses and memory banks. Since
an attacker can only corrupt data within one bank, but not across banks, CATT
only has to ensure that security domains of different system entities are isolated
within each bank. However, as mentioned in Section 7.1, hardware vendors do
not specify the exact mapping between physical address and banks. Fortunately,
Pessl et al. [243] and Xiao et al. [76] provide a methodology to reverse engineer the
mapping. For CATT, we use this methodology to discover the physical addresses
of rows.

We need to ensure that the physical memory management component is aware
of the isolation policy. This is vital as the memory management components have
to ensure that newly allocated memory is adjacent only to memory belonging to
the same security domain. To tackle this challenge, we instrumented the memory
allocator to keep track of the domain association of physical memory and serve
memory requests by selecting free memory from different pools depending on the
security domain of the requested memory.

8.4 implementation

Our software-based defense is based on modifications to low-level system software
components, i.e., the physical memory allocator of the operating system kernel.
In our proof-of-concept implementation of CATT, we focus on hardening Linux
against rowhammer-based attacks since its memory allocator is open-source. We
successfully applied the mentioned changes to the x86-kernel version 4.6 and the
Android kernel for Nexus devices in version 4.4. We chose Linux as our target OS
for our proof-of-concept implementations for two reasons: (1) its source code is
freely available, and (2) it is widely used on workstations and mobile devices. In
the following we will explain the implementation of CATT’s policy enforcement
mechanism in the Linux kernel which allows for the partitioning of physical mem-
ory into isolated security domains. We note that CATT targets both x86 and ARM-
based systems. Until today, rowhammer attacks have only been demonstrated for
these two prominent architectures.

The basic idea underlying our software-based rowhammer defense is to physi-
cally separate rows that belong to different security domains. Operating systems
are not per-se aware of the notions of cells and rows, but rather build memory
management based on paging. Commodity operating systems use paging to map
virtual addresses to physical addresses. The size of a page varies among architec-
tures. On x86 and ARM, the page size is typically 4096 bytes (4K). As we described
in Section 7.1, DRAM hardware consists of much smaller units of memory, i.e.,
individual memory cells storing single bits. Eight consecutive memory cells repre-
sent a byte, 4096 consecutive bytes a page frame, two to four page frames a row.

90 mitigating rowhammer attacks against os kernels .

Hence, our implementation of CATT changes low-level components of the kernel
to make the operating system aware of the concept of memory rows.

In the following, we describe how we map individual memory pages to domains,
keep track of different domains, modify the physical memory allocator, and define
partitioning policies for the system’s DRAM hardware.

8.4.1 Mapping Page Frames to Domains

To be able to decide whether two pages belong to the same security domain we
need to keep track of the security domain for each page frame. Fortunately, the
kernel already maintains meta data about each individual page frame. More specif-
ically, each individual page frame is associated with exactly one meta data object
(struct page). The kernel keeps a large array of these objects in memory. Although
these objects describe physical pages, this array is referred to as virtual memory map,
or vmemmap. The Page Frame Number (PFN) of a physical page is used as an offset
into this array to determine the corresponding struct page object. To be able to
associate a page frame with a security domain, we extend the definition of struct
page to include a field that encodes the security domain. Since our prototype im-
plementation targets rowhammer attacks that aim at violating the separation of
kernel and user-space, we encode security domain 0 for kernel-space, and 1 for
user-space.

8.4.2 Tracking Security Domains

The extension of the page frame meta data objects enables us to assign pages to
security domains. However, this assignment is dynamic and changes over time. In
particular, a page frame may be requested, allocated, and used by one domain,
after it has been freed by another domain. Note that this does not violate our
security guarantees, but is necessary for the system to manage physical memory
dynamically. Yet, we need to ensure that page frames being reallocated continue
to obey our security policy. Therefore, we reset the security domain upon freeing
a page.

Upon memory allocation, CATT needs to correctly set the security domain of the
new page. To do so, we require information about the requesting domain. For our
case, where we aim at separating kernel and user-space domains, CATT utilizes
the call site information, which is propagated to the memory allocator by default.
Specifically, each allocation request passes a range of flags to the page allocator.
These flags encode whether an allocation is intended for the kernel or the user-
space. We leverage this information and separate the two domains by setting the
domain field of the respective page frame.

When processes request memory, the kernel initially only creates a virtual map-
ping without providing actual physical page frames for the process. Instead, it
only assigns physical memory on demand, i.e., when the requesting process ac-
cesses the virtual mapping a page fault is triggered. Thereafter, the kernel invokes
the physical page allocator to search for usable pages and installs them under the
virtual address the process attempted to access. We modified the page fault han-
dler, which initiates the allocation of a new page, to pass information about the

8.4 implementation 91

security domain to the page allocator. Next, the page is allocated according to our
policy and sets the domain field of the page frame’s meta data object to the security
domain of the interrupted process.

8.4.3 Modifying the Physical Page Allocator

The Linux kernel uses different levels of abstraction for different memory alloca-
tion tasks. The physical page allocator, or zoned buddy allocator is the main low-
level facility handling physical page allocations. It exports its interfaces through
functions such as alloc_pages, which can be used by other kernel components to
request physical pages. In contrast to higher-level allocators, the buddy allocator
only allows for allocating sets of memory pages with a cardinality which can be ex-
pressed as a power of two (this is referred to as the order of the allocation). Hence,
the buddy allocator’s smallest level of granularity is a single memory page. We
modify the implementation of the physical page allocator in the kernel to include
a mechanism for separating and isolating allocated pages according to the security
domain of the origin of the allocation request. In particular, the page allocator al-
ready performs maintenance checks on free pages. We extend these maintenance
checks to add our partitioning policy before the allocator returns a physical page.
If this check fails, the page allocator is not allowed to return the page in question,
but has to continue its search for another free page.

8.4.4 Defining DRAM Partitioning Policies

Separating and isolating different security domains is essential to our proposed
mitigation. For this reason, we incorporate detailed knowledge about the platform
and its DRAM hardware configuration into our policy implementation. While our
policy implementation for a target system largely depends on its architecture and
memory configuration, this does not represent a fundamental limitation. Indeed,
independent research [76, 243] has provided the architectural details for the most
prevalent architectures, i.e., it shows that the physical address to DRAM mapping
can be reverse engineered automatically for undocumented architectures. Hence,
it is possible to develop similar policy implementations for architectures and mem-
ory configurations beyond x86 and ARM. We build on this prior research and lever-
age the physical address to DRAM mapping information to enforce strict physical
isolation. In the following, we describe our implementation of the partitioning
strategy for isolating kernel and user-space.
Kernel-User Isolation. To achieve physical separation of user and kernel space we
adopt the following strategy: we divide each bank into a top and a bottom part,
with a separating row in-between. Page frames for one domain are exclusively al-
located from the part that was assigned to that domain. The part belonging to the
kernel domain is determined by the physical location of the kernel image.2 As a
result, user and kernel space allocations may be co-located within one bank, but
never within adjacent rows. Different partitioning policies would be possible in

2 This is usually at 1MB, although Kernel Address Space Layout Randomization (KASLR) may slightly
modify this address according to a limited offset.

92 mitigating rowhammer attacks against os kernels .

System Operating System System Model

S1 Ubuntu 14.04.4 LTS Dell OptiPlex 7010

S2 Debian 8.2 Dell OptiPlex 990

S3 Kali Linux 2.0 Lenovo ThinkPad x220

Table 8.1: Model numbers of the vulnerable systems used for our evaluation.

theory: for instance, we could confine the kernel to a certain DRAM bank to avoid
co-location of user domains within a single bank. However, this would likely re-
sult in a severe increase of memory latency, since reads and writes to a specific
memory bank are served by the bank’s row buffer. The benefit of our partitioning
policy stems from the fact that we distribute memory belonging to the kernel se-
curity domain over multiple banks thereby not negatively impacting performance.
For our solution towards kernel isolation, we only need to calculate the row in-
dex of a page frame. More specifically, we calculate this index from the physical
address (PA) in the following way:

Row(PA) :=
PA

PageSize · PagesPerDIMM · DIMMs

where PagesPerDIMM := PagesPerRow · BanksPerRank · RanksPerDIMM

Since all possible row indices are present once per bank, this equation deter-
mines the row index of the given physical address.3 We note that this computation
is in line with the available rowhammer exploits [72] and the reported physical
to DRAM mapping recently reverse engineered [76, 243]. Since the row size is the
same for all Intel architectures prior to Skylake [75], our implementation for this
policy is applicable to a wide range of system setups, and can be adjusted without
introducing major changes to fit other configurations as well.

8.5 security evaluation

The main goal of our software-based defense is to protect legacy systems from
rowhammer attacks. We tested the effectiveness of CATT on diverse hardware con-
figurations. Among these, we identified three hardware configurations, where we
observed many reproducible bit flips. Table 8.1 and Table 8.2 list the exact configu-
rations of the three platforms we used for our evaluation. We test the effectiveness
of CATT with respect to two different attack scenarios. For the first scenario we
systematically search for reproducible bit flips based on a tool published by Gruss

3 The default values for DDR3 on x86 are 4K for the page size, 2 pages per row, 8 banks per rank, 2

ranks per DIMM and between 1 one 4 DIMMs per machine. For DDR4 the number of banks per rank
was doubled. DDR4 is supported on x86 starting with Intel’s Skylake and AMD’s Zen architecture.

8.5 security evaluation 93

et al.4 Our second attack scenario leverages a real-world rowhammer exploit5 pub-
lished by Google’s Project Zero. We compared the outcome of both attacks on our
vulnerable systems before and after applying CATT. As shown in Table 8.3, both
tests only succeed when our protection is not in place. Next, we elaborate on the
two attack scenarios and their mitigation in more detail.

8.5.1 Rowhammer Testing Tool

We use a slightly modified version of the double-sided rowhammering tool, which
is based on the original test by Google’s Project Zero [72]. Specifically, we extended
the tool to also report the aggressor physical addresses, and adjusted the default
size of the fraction of physical memory that is allocated for the test. The tool scans
the allocated memory for memory cells that are vulnerable to the rowhammer at-
tack. To provide comprehensive results, the tool needs to scan the entire memory
of the system. However, investigating the entire memory is hard to achieve in prac-
tice since some parts of memory are always allocated by other system components.
These parts are therefore not available to the testing tool, i.e., memory reserved by
operating system. To achieve maximum coverage, the tool allocates a huge fraction
of the available memory areas. However, due to the lazy allocation of Linux the al-
located memory is initially not mapped to physical memory. Hence, each mapped
virtual page is accessed at least once, to ensure that the kernel assigns physical
pages. Because user space only has access to the virtual addresses of these map-
pings, the tool exploits the /proc/pagemap kernel interface to retrieve the physical
addresses. As a result, most of the systems physical memory is allocated to the
rowhammering tool.

Afterwards, the tool analyzes the memory in order to identify potential victim
and aggressor pages in the physical memory. As the test uses the double-sided
rowhammering approach two aggressor pages must be identified for every poten-
tial victim page. Next, all potential victim pages are challenged for vulnerable bit
flips. For this, the potential victim page is initialized with a fixed bit pattern and
“hammered” by accessing and flushing the two associated aggressor pages. This
ensures that all of the accesses activate a row in the respective DRAM module. This
process is repeated 106 times.6 Lastly, the potential victim address can be checked
for bit flips by comparing its memory content with the fixed pattern bit. The test
outputs a list of addresses for which bit flips have been observed, i.e., a list of
victim addresses.

preliminary tests for vulnerable systems . Using the rowhammering
testing tool we evaluated our target systems. In particular, we were interested in
systems that yield reproducible bit flips, as only those are relevant for practical
rowhammer attacks. This is because an attacker cannot force the system to allocate
page tables at a certain physical position in RAM. In contrast, the attacker sprays
the memory with page tables to increase her chance of hitting the desired memory
location.

4 https://github.com/IAIK/rowhammerjs/tree/master/native

5 https://bugs.chromium.org/p/project-zero/issues/detail?id=283

6 This value is the hardcoded default value. Prior research [63, 71] reported similar numbers.

https://github.com/IAIK/rowhammerjs/tree/master/native
https://bugs.chromium.org/p/project-zero/issues/detail?id=283

94 mitigating rowhammer attacks against os kernels .

CPU RAM

System Version Cores Speed Size Speed Manufacturer

S1 i5-3570 4 3.40GHz 2x2GB 1333 MHz Hynix Hyundai

1x4GB 1333 MHz Corsair

S2 i7-2600 4 3.4GHz 2x4GB 1333 MHz Samsung

S3 i5-2520M 4 2.5GHz 2x4GB 1333 MHz Samsung

Table 8.2: Technical specifications of the vulnerable systems used for our evaluation.

Rowhammer Exploit: Success (avg. # of tries)

Vanilla System CATT

S1 3(11) 7(3821)

S2 3(42) 7(3096)

S3 3(53) 7(3768)

Table 8.3: Results of our security evaluation. We executed the exploit continuously on each
system for more than 48 hours and found that CATT mitigates real-world Row-
hammer exploits against the kernel.

Hence, we configured the rowhammering tool to only report memory addresses
where bit flips can be triggered repeatedly. We successively confirmed that this list
indeed yields reliable bit flips by individually triggering the reported addresses
and checking for bit flips within an interval of 10 seconds. Additionally, we tested
the bit flips across reboots through random sampling.

The three systems mentioned in Table 8.1 and Table 8.2 are highly susceptible
to reproducible bit flips. Executing the rowhammer test on these three times and
rebooting the system after each test run, we found 133 pages with exploitable bit
flips for S1, 31 pages for S2, and 23 pages for S3.

To install CATT, we patched the Linux kernel of each system to use our modified
memory allocator. Recall that CATT does not aim to prevent bit flips but rather
constrain them to a security domain. Hence, executing the rowhammer test on
CATT-hardened systems still locates vulnerable pages. However, in the following,
we demonstrate based on a real-world exploit that the vulnerable pages are not
exploitable.

8.5.2 Real-world Rowhammer Exploit

To further demonstrate the effectiveness of our mitigation, we tested CATT against
a real-world rowhammer exploit. The goal of the exploit is to escalate the privileges
of the attacker to kernel privileges (i.e., gain root access). To do so, the exploit lever-
ages rowhammer to manipulate the page tables. Specifically, it aims to manipulate

8.5 security evaluation 95

the access permission bits for kernel memory, i.e., reconfigure its access permission
policy.7

To launch the exploit, two conditions need to be satisfied: (1) a page table entry
must be present in a vulnerable row, and (2) the enclosing aggressor pages must
be allocated in attacker-controlled memory.

Since both conditions are not directly controllable by the attacker, the attack
proceeds as follows: the attacker allocates large memory areas. As a result, the op-
erating system needs to create large page tables to maintain the newly allocated
memory. This in turn increases the probability to satisfy the aforementioned con-
ditions, i.e., a page table entry will eventually be allocated to a victim page. Due
to vast allocation of memory, the attacker also increases her chances that aggressor
pages are co-located to the victim page.

Once the preconditions are satisfied, the attacker launches the rowhammer at-
tack to induce a bit flip in victim page. Specifically, the bit flip modifies the page
table entry such that a subtree of the paging hierarchy is under the attacker’s
control. Lastly, the attacker modifies the kernel structure that holds the attacker-
controlled user process privileges to elevate her privileges to the superuser root.
Since the exploit is probabilistic, it only succeeds in five out of hundred runs (5%).
Nevertheless, a single successful run allows the attacker to compromise of the en-
tire system.

effectiveness of catt. Our defense mechanism does not prevent the occur-
rence of bit flips on a system. Hence, we have to verify that bit flips cannot affect
data of another security domain. Rowhammer exploits rely on the fact that such a
cross domain bit flip is possible, i.e., in the case of our exploit it aims to induce a
bit flip in the kernel’s page table entries.

However, since the exploit by itself is probabilistic, an unsuccessful attempt does
not imply the effectiveness of CATT. As described above, the success rate of the
attack is about 5%. After deploying CATT on our test systems we repeatedly ex-
ecuted the exploit to minimize the probability of the exploit failing due to the
random memory layout rather than due to our protection mechanism. We auto-
mated the process of continuously executing the exploit and ran this test for 48 h,
on all three test systems. In this time frame the exploit made on average 3500

attempts of which on average 175 should have succeeded. However, with CATT,
none of the attempts was successful. Hence, as expected, CATT effectively pre-
vents rowhammer-based exploits.

As we have demonstrated, CATT successfully prevents the original attack devel-
oped on x86 by physically isolating pages belonging to the kernel from the user-
space domain. In addition to that, the authors of the Drammer exploit [74] confirm
that CATT prevents their exploit on ARM. The reason is, that they follow the same
strategy as in the original kernel exploit developed by Project Zero, i.e., corrupt-
ing page table entries in the kernel from neighboring pages in user space. Hence,
CATT effectively prevents rowhammer exploits on ARM-based mobile platforms
as well.

7 A second option is to manipulate page table entries in such a way that they point to attacker con-
trolled memory thereby allowing the attacker to install new arbitrary memory mappings. The details
of this attack option are described by Seaborn et al. [72].

96 mitigating rowhammer attacks against os kernels .

8.6 performance evaluation

One of our main goals is practicability, i.e., inducing negligible performance over-
head. To demonstrate practicability of our defense, we thoroughly evaluated the
performance and stability impact of CATT on different benchmark and testing
suites. In particular, we used the SPEC CPU2006 benchmark suite [261] to mea-
sure the impact on CPU-intensive applications, LMBench3 [168] for measuring the
overhead of system operations, and the Phoronix test suite [169] to measure the
overhead for common applications. We use the Linux Test Project, which aims at
stress testing the Linux kernel, to evaluate the stability of our test system after
deploying CATT. We performed all of our performance evaluation on system S2

(cf. Table 8.2).

8.6.1 Run-time Overhead

We briefly summarize the results of our performance benchmarks. In general, the
SPEC CPU2006 benchmarks measure the impact of system modifications on CPU
intensive applications. Since our mitigation mainly affects the physical memory
management, we did not expect a major impact on these benchmarks. However,
since these benchmarks are widely used and well established we included them
in our evaluation. In fact, we observe a minimal performance improvement for
CATT by 0.49% which we attribute to measuring inaccuracy. Such results have
been reported before when executing a set of benchmarks for the same system
with the exact same configuration and settings. Hence, we conclude that CATT
does not incur any performance penalty.

LMBench3 is comprised of a number of micro benchmarks which target very
specific performance parameters, e.g., memory latency. For our evaluation, we fo-
cused on micro benchmarks that are related to memory performance and excluded
networking benchmarks. Similar to the previous benchmarks, the results fluctuate
on average between −0.4% and 0.11%. Hence, we conclude that our mitigation has
no measurable impact on specific memory operations.

Finally, we tested the impact of our modifications on the Phoronix benchmarks.
In particular, we selected a subset of benchmarks8 that, on one hand, aim to mea-
sure memory performance (IOZone and Stream), and, on the other hand, test the
performance of common server applications which usually rely on good memory
performance.

To summarize, our rigorous performance evaluation with the help of different
benchmarking suites did not yield any measurable overhead. This makes CATT a
highly practical mitigation against rowhammer attacks.

8 The Phoronix benchmarking suite features a large number of tests which cover different aspects of
a system. By selecting a subset of the available tests we do not intend to improve our performance
evaluation. On the contrary, we choose a subset of tests that is likely to yield measurable performance
overhead, and excluded tests which are unrelated to our modification, e.g., GPU or machine learning
benchmarks.

8.6 performance evaluation 97

Linux Test Project Vanilla CATT

clone 3 3

ftruncate 3 3

prctl 3 3

ptrace 3 3

rename 3 3

sched_prio_max 3 3

sched_prio_min 3 3

mmstress 3 3

shmt 7 7

vhangup 7 7

ioctl 7 7

Table 8.4: Result for individual stress tests from the Linux Test Project.

8.6.2 Memory Overhead

CATT prevents the operating system from allocating certain physical memory
pages. The memory overhead of CATT is constant and depends solely on num-
ber of memory rows per bank. Per bank, CATT omits one row to provide isolation
between the security domains. Hence, the memory overhead is 1/#rows (#rows
being rows per bank). While the number of rows per bank is dependent on the
system architecture, it is commonly in the order of 215 rows per bank 9, i.e., the
overhead is 2−15 =̂ 0, 003%.

8.6.3 Robustness

Our mitigation restricts the operating system’s access to the physical memory. To
ensure that this has no effect on the overall stability, we performed numerous stress
tests with the help of the Linux Test Project (LTP) [170]. These tests are designed
to stress the operating system to identify problems. We first run these tests on a
vanilla Debian 8.2 installation to receive a baseline for the evaluation of CATT. We
summarize our results in Table 8.4, and report no deviations for our mitigation
compared to the baseline. Further, we also did not encounter any problems during
the execution of the other benchmarks. Thus, we conclude that CATT does not
affect the stability of the protected system.

9 https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.

html

https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.html

98 mitigating rowhammer attacks against os kernels .

8.7 discussion

Our prototype implementation targets Linux-based systems. Linux is open-source
allowing us to implement our defense. Further, all publicly available rowhammer
attacks target this operating system. CATT can be easily ported to memory alloca-
tors deployed in other operating systems. In this section, we discuss in detail the
generality of our software-based defense against rowhammer.

8.7.1 Applying CATT to Mobile Systems

The rowhammer attack is not limited to x86-based systems, but has been recently
shown to also affect the ARM platform [74]. The ARM architecture is predominant
in mobile systems, and used in many smartphones and tablets. As CATT is not
dependent on any x86 specific properties, it can be easily adapted for ARM based
systems. We demonstrate this by applying our extended physical memory alloca-
tor to the Android kernel for Nexus devices in version 4.4. Since there are no major
deviations in the implementation of the physical page allocator of the kernel be-
tween Android and stock Linux kernel, we did not encounter any obstacles during
the port.

8.7.2 Single-sided Rowhammer Attacks

From our detailed description in Section 8.3 one can easily follow that our pro-
posed solution can defeat all known rowhammer-based privilege escalation attacks
in general, and single-sided rowhammer attacks [74] in particular. In contrast to
double-sided rowhammer attacks, single-sided rowhammer attacks relax the ad-
versary’s capabilities by requiring that the attacker has control over only one row
adjacent to the victim memory row. As described in more detail in Section 8.3,
CATT isolates different security domains in the physical memory. In particular, it
ensures that different security domains are separated by at least one buffer row
that is never used by the system. This means that the single-sided rowhammer
adversary can only flip bits in own memory (that it already controls), or flip bits
in buffer rows.

8.7.3 Benchmarks Selection

We selected our benchmarks to be comparable to the related literature. Moreover,
we have done evaluations that go beyond those in the existing work to provide
additional insight. Hereby, we considered different evaluation aspects: We exe-
cuted SPEC CPU2006 to verify that our changes to the operating system impose
no overhead of user-mode applications. Further, SPEC CPU2006 is the most com-
mon benchmark in the field of memory-corruption defenses, hence, our solutions
can be compared to the related work. LMBench3 is specifically designed to evalu-
ate the performance of common system operations, and used by the Linux kernel
developers to test whether changes to the kernel affect the performance. As such
LMBench3 includes many tests. For our evaluation we included those benchmarks

8.7 discussion 99

that perform memory operations and are relevant for our defense. Finally, we se-
lected a number of common applications from the Phoronix test suite as macro
benchmarks, as well as the pts/memory tests which are designed to measure the
RAM and cache performance. For all our benchmarks we did not observe any
measurable overhead.

8.7.4 Vicinity-less Rowhammering

All previous Rowhammer attacks exploit rows which are physically co-located [72,
74, 75, 135]. However, while Kim et al. [63] suggested that physical adjacency ac-
counts for the majority of possible bit flips, they also noted that this was not al-
ways the case. More specifically, they attributed potential aggressor rows with a
greater row distance to the re-mapping of faulty rows: DRAM manufacturers typ-
ically equip their modules with around 2% of spare rows, which can be used to
physically replace failing rows by re-mapping them to a spare row [262]. This
means, that physically adjacent spare rows can be assigned to arbitrary row in-
dices, potentially undermining our isolation policy. For this, an adversary requires
a way of determining pairs of defunct rows, which are re-mapped to physically ad-
jacent spare rows. We note that such a methodology can also be used to adjust our
policy implementation, e.g., by disallowing any spare rows to be assigned to ker-
nel allocations. Hence, re-mapping of rows does not affect the security guarantees
provided by CATT.

9
S I D E - C H A N N E L R E S I L I E N T K E R N E L - S PA C E
R A N D O M I Z AT I O N .

While remote-fault injection attacks, like Rowhammer, are able to corrupt the state
of the victim system, micro-architectural side-channel attacks are generally limited
to information disclosure. However, they can have a high real-world impact, since
an adversary who leaks the root password through a side channel is able to take
remote control over the platform as well. In the recent past, a number of side-
channel attacks against operating systems have been demonstrated. In this chapter,
we present LAZARUS [6], our general side-channel defense for the kernel. As we
will show, our software-only defense successfully stops recent attacks based on
micro-architectural hardware vulnerabilities against the OS.

9.1 side-channel attacks against kaslr

For more than three decades memory-corruption vulnerabilities have challenged
computer security. This class of vulnerabilities enable the attacker to overwrite
memory in a way that was not intended by the developer, resulting in a malicious
control or data flow. In the recent past kernel vulnerabilities became more preva-
lent in exploits due to advances in hardening user-mode applications. For example,
browsers and other popular targets are isolated by executing them in a sandboxed
environment. Consequently, the attacker needs to execute a privilege-escalation
attack in addition to the initial exploit to take full control over the system [27,
263–265]. Operating system kernels are a natural target for attackers because the
kernel is comprised of a large and complex code base and exposes a rich set of
functionality, even to low privileged processes. Molinyawe et al. [266] summarized
the techniques used in the infamous Pwn2Own exploiting contest, and concluded
that a kernel exploit is required for most privilege-escalations attacks.

In the past kernels were hardened using different mitigation techniques to min-
imize the risk of memory-corruption vulnerabilities: for example, enforcing the
address space to be writable or executable (W⊕X), but never both, to prevent the
attacker from injecting new code, and enabling new CPU features like Supervi-
sor Mode Access Prevention (SMAP) and Supervisor Mode Execution Protection
Enable (SMEP) to prevent user-mode-aided attacks. Modern kernels are also forti-
fied with kernel Address Space Layout Randomization (KASLR) [162] which ran-
domizes the base address of the code and data section of the kernel at boot time.
KASLR forces attackers to customize their exploit for each targeted kernel. Specif-
ically, the attack needs to disclose the randomization secret first, before launching
a code-reuse attack.

All modern operating systems leverage kernel-space randomization by means
of kernel code randomization (KASLR) [162–164]. However, kernel-space random-
ization has been shown to be vulnerable to a variety of side-channel attacks. These
attacks leverage micro-architectural implementation details of the underlying hard-

101

102 side-channel resilient kernel-space randomization.

ware. These side channel exist, since modern processors share physical resources
between privileged and unprivileged execution modes.

While in general memory-corruption vulnerabilities can potentially be exploited
to disclose information, recent research demonstrated that side-channel attacks are
more powerful because they do not rely on any kernel vulnerabilities [80–83, 133].
These attacks exploit properties of the underlying micro architecture to infer the
randomization secret of KASLR. In particular, modern processors share resources
such as caches between user mode and kernel mode. The general idea of these
attacks is to probe different kernel addresses and measure the execution time of
the probe. Since probing time for a valid and a invalid kernel addresses is different,
the attacker can infer the randomization secret.

The majority of side-channel attacks against KASLR are based on paging [80,
82, 83, 133]. Here, the attacker exploits the timing difference between an aborted
memory access to an unmapped kernel address and an aborted memory access to
a mapped kernel address.

Side-channel attacks against KASLR exploit the fact that the TLB is shared be-
tween user applications and the kernel. As a consequence, the TLB will contain
page-table entries of the kernel after switching execution from kernel to a user
mode. The attacker then probes parts of the address-space that are expected to
be kernel addresses. Here, the exact method of the access depends on the con-
crete side-channel attack implementation. Since the attacker executes the attack
with user privileges, this access will be aborted by the platform. However, the tim-
ing difference between access attempt and abort depends on whether the guessed
address is cached in the TLB or not, and more specifically, at which level in the
TLB hierarchy. Further, the attacker can also measure the timing between exist-
ing (traversal of the page-table hierarchy) and not existing mappings (immediate
abort). These timing differences can be exploited as a side channel to disclose the
randomization secret and several attacks have been demonstrated recently [80, 82,
83, 133].

Hund, et al. [80] published the first side-channel attack to defeat KASLR. They
trigger a page fault in the kernel from a user process by accessing an address
in kernel space. Although this unprivileged access is correctly denied by the page
fault handler, the TLBs are queried during processing of the memory request. They
show that the timing difference between exceptions for unmapped and mapped
pages can be exploited to disclose the random offset.

Additionally, transactional memory extensions introduced by Intel encapsulate
a series of memory accesses to provide enhanced safety guarantees, such as roll-
backs. While potentially interesting for the implementation of database systems,
erroneous accesses within a transaction are not reported to the operating system.
More specifically, if the MMU detects an access violation, the transaction is aborted
silently. However, an adversary can measure the timing difference between two
aborted transactions to identify privileged addresses, which are cached in TLBs.
This enables the attacker to significantly improve over the original page fault tim-
ing side-channel attack [82, 133]. The reason is that the page fault handler of the
OS is never invoked, significantly reducing the noise in the timing signal.

Furthermore, even individual instructions may leak timing information and can
be leveraged in attacks against kernel randomization [83]. In particular, the ex-

9.2 adversary model and assumptions 103

ecution of the prefetch instruction of recent Intel processors exhibits a timing
difference, which depends directly on the state of the TLBs. As in the case of the
side-channel attack exploiting transactional memory, this unprivileged instruction
can be used to access privileged addresses, but will fail without invoking the page
fault handler of the OS. Its execution time differs for cached kernel addresses. This
yields another stealthy side channel that leaks the randomization secret.

9.2 adversary model and assumptions

We derive our adversary model from the related offensive work [80–83, 133].

• Writable ⊕ Executable Memory. The kernel enforces Writable ⊕ Executable
Memory (W⊕X) which prevents code-injection attacks in the kernel space.
Further, the kernel utilizes modern CPU features like SMAP and SMEP [267]
to prevent user-mode aided code-injection and code-reuse attacks.

• Base-address Randomization. The base address of the kernel code and data
region is randomized during the boot [162, 163].

• Absence of Software-based Information-disclosure Vulnerability. The ker-
nel does not contain any vulnerabilities that can be exploited to disclose the
randomization secret.

• Malicious Kernel Extension. The attacker cannot load malicious kernel ex-
tensions to gain control over the kernel, i.e., only trusted (or signed) exten-
sions can be loaded.

• Memory-corruption Vulnerability. This is a standard assumption for many
real-world kernel exploits. The kernel, or a kernel extension contains a memory-
corruption vulnerability. The attacker has full control over a user-mode pro-
cess from which it can exploit this vulnerability. The vulnerability enables the
attacker to overwrite a code pointer of the kernel to hijack the control-flow
of the kernel. However, the attacker cannot use this vulnerability to disclose
any addresses.

While modern kernels suffer from software-based information-disclosure vul-
nerabilities, information-disclosure attacks based on side channels pose a more
severe threat because they can be exploited to disclose information in the absence
of software vulnerabilities. We address the problem of side channels, and treat
software-based information-disclosure vulnerabilities as an orthogonal problem.

9.3 our side-channel defense for the kernel

In this section, we give an overview of the idea and architecture of LAZARUS,
elaborate on the main challenges, and explain in detail how we tackle these chal-
lenges.

104 side-channel resilient kernel-space randomization.

Processor

Core MMU

Cache Cache
Kernel
Level 3

Page Tables

Physical RAM

User Memory

Kernel
Thread

User
Process

1

2 3

4

Kernel
Level 2

Kernel
Level 1

User
Level 3

User
Level 2

User
Level 1

Randomized
Kernel Memory

LAZARUS

Figure 9.1: The idea behind our side channel protection: An unprivileged user process (1)
can exploit the timing side channel for kernel addresses through shared cache
access in the MMU paging caches (2). Our defense mitigates this by enforcing
(3) a separation between different privilege levels for randomized addresses
(4).

9.3.1 Overview

Usually, kernel and user mode share the same virtual address space. While legit-
imate accesses to kernel addresses require higher privilege, these addresses still
occupy some parts of the virtual memory space that is visible to user processes.
The idea behind our side-channel defense is to strictly and efficiently separate ran-
domized kernel memory from virtual memory in user space.

Our idea is depicted in Figure 9.1. Kernel execution and user space execution
usually share a common set of architectural resources, such as the execution unit
(Core), and the MMU. The attacker leverages these shared resources in the fol-
lowing way: in step 1 , the attacker sets up the user process and memory setting
that will leak the randomization secret. The user process then initiates a virtual
memory access to a kernel address.

Next, the processor invokes the MMU to check the required privilege level in
step 2 . Since a user space process does not possess the required privileges to
access kernel memory, any such access will ultimately be denied. However, to deny
access the MMU has to look up the required privileges in the page tables. These
are structured hierarchically with multiple levels, and separate caches on every
level. Hence, even denied accesses constitute a timing side-channel that directly
depends on the last cached level.

We address 3 the root of this side channel: we separate the page tables for
kernel and user space. This effectively prevents side-channel information from
kernel addresses to be leaked to user space, because the MMU uses a different
page table hierarchy. Thus, while the processor is in user mode, the MMU will
not be able to refer to any information about kernel space addresses, as shown in
step 4 .

9.3 our side-channel defense for the kernel 105

9.3.2 Challenges for Fine-grained Address Space Isolation

To enable LAZARUS to separate and isolate both execution domains a number of
challenges have to be tackled: first, we must provide a mechanism for switching
between kernel and user execution at any point in time without compromising the
randomized kernel memory (C1). More specifically, while kernel and user space
no longer share the randomized parts of privileged virtual memory, the system
still has to be able to execute code pages in both execution modes. For this reason,
we have to enable switching between kernel and user space. This is challenging,
because such a transition can happen either through explicit invocation, such as a
system call or an exception, or through hardware events, such as interrupts. As we
will show our defense handles both cases securely and efficiently.

Second, we have to prevent the switching mechanism from leaking any side-
channel information (C2). Unmapping kernel pages is also challenging with re-
spect to side-channel information, i.e., unmapped memory pages still exhibit a
timing difference compared to mapped pages. Hence, LAZARUS has to prevent
information leakage through probing of unmapped pages.

Third, our approach has to minimize the overhead for running applications to of-
fer a practical defense mechanism (C3). Implementing strict separation of address
spaces efficiently is involved, since we only separate those parts of the address
space that are privileged and randomized. We have to modify only those parts of
the page table hierarchy which define translations for randomized addresses.

In the following we explain how our defense meets these challenges.
C1: Kernel-User Transitioning. Processor resources are time-shared between pro-
cesses and the operating system. Thus, the kernel eventually takes control over
these resources, either through explicit invocation, or based on a signaling event.
Examples for explicit kernel invocations are system calls and exceptions. These are
synchronous events, meaning that the user process generating the event is sus-
pended and waiting for the kernel code handling the event to finish.

On the one hand, after transitioning from user to kernel mode, the event handler
code is no longer mapped in virtual memory because it is located in the kernel.
Hence, we have to provide a mechanism to restore this mapping when entering
kernel execution from user space.

On the other hand, when the system call or exception handler finishes and re-
turns execution to the user space process, we have to erase those mappings again.
Otherwise, paging entries might be shared between privilege levels. Since all sys-
tem calls enter the kernel through a well-defined hardware interface, we can map
and unmap the page tables by modifying this central entry point.

Transitioning between kernel and user space execution can also happen through
interrupts. A simple example for this type of event is the timer interrupt, which is
programmed by the kernel to trigger periodically in fixed intervals. In contrast to
system calls or exceptions, interrupts are asynchronously occurring events, which
may suspend current kernel or user space execution at any point in time.

Hence, interrupt routines have to store the current process context before han-
dling a pending interrupt. However, interrupts can also occur while the processor
executes kernel code. Therefore, we have to distinguish between interrupts during
user or kernel execution to only restore and erase the kernel entries upon transi-

106 side-channel resilient kernel-space randomization.

tions to and from user space respectively. For this we facilitate the stored state of
the interrupted execution context that is saved by the interrupt handler to distin-
guish privileged from un-privileged contexts.

This enables LAZARUS to still utilize the paging caches for interrupts occuring
during kernel execution.
C2: Protecting the Switching Mechanism. The code performing the address space
switching has to be mapped during user execution. Otherwise, implementing a
switching mechanism in the kernel would not be possible, because the processor
could never access the corresponding code pages. For this reason, it is necessary
to prevent these mapped code pages from leaking any side-channel information.
There are two possibilities for achieving this.

First, we can map the switching code with a separate offset than the rest of the
kernel code section. In this case an adversary would be able to disclose the offset of
the switching code, while the actual randomization secret would remain protected.

Second, we can eliminate the timing channel by inserting dummy mappings
into the unmapped region. This causes the surrounding addresses to exhibit an
identical timing signature compared to the switching code.

Since an adversary would still be able to utilize the switching code to conduct
a code-reuse attack in the first case, LAZARUS inserts dummy mappings into the
user space page table hierarchy.
C3: Minimizing Performance Penalties. Once paging is enabled on a processor,
all memory accesses are mediated through the virtual memory subsystem. This
means that a page table lookup is required for every memory access. Since an
actual page table lookup results in high performance penalties, the MMU caches
the most prominent address translations in the Translation Lookaside Buffer (TLB).

LAZARUS removes kernel addresses from the page table hierarchy upon user
space execution. Hence, the respective TLB entries need to be invalidated. As a
result, subsequent memory accesses to kernel space will be slower, once kernel
execution is resumed.

To minimize these perfomance penalties, we have to reduce the amount of invali-
dated TLB entries to a minimum but still enforce a clear separation between kernel
and user space addresses. In particular, we only remove those virtual mappings,
which fall into the location of a randomized kernel area, such as the kernel code
segment.

9.4 prototype implementation

We implemented LAZARUS as a prototype for the Linux kernel, version 4.8 for
the 64 bit variant of the x86 architecture. However, the techniques we used are
generic and can be applied to all architectures employing multi-level page tables.
Our patch consists of around 300 changes to seven files, where most of the code
results from initialization. Hence, LAZARUS should be easily portable to other
architectures. Next, we will explain our implementation details. It consists of the
initialization setup, switching mechanism, and how we minimize performance im-
pact.

9.4 prototype implementation 107

9.4.1 Initialization

We first setup a second set of page tables, which can be used when execution
switches to user space. These page tables must not include the randomized por-
tions of the address space that belong to the kernel. However, switching between
privileged and unprivileged execution requires some code in the kernel to be
mapped upon transitions from user space. We explicitly create dedicated entry
points mapped in the user page tables, which point to the required switching rou-
tines.
Fixed Mappings. Additionally, there are kernel addresses, which are mapped to
fixed locations in the top address space ranges. These fixmap entries essentially
represent an address-based interface: even if the physical address is determined at
boot time, their virtual address is fixed at compile time. Some of these addresses
are mapped readable to user space, and we have to explicitly add these entries as
well.

We setup this second set of page tables only once at boot time, before the first
user process is started. Every process then switches to this set of page tables during
user execution.
Dummy Mappings. As explained in Section 9.3, one way of protecting the code
pages of the switching mechanism is to insert dummy mappings into the user
space page table hierarchy. In particular, we create mappings for randomly picked
virtual kernel addresses to span the entire code section. We distribute these map-
pings in 2M intervals to cover all third-level page table entries, which are used to
map the code section. Hence, the entire address range which potentially contains
the randomized kernel code section will be mapped in the page table hierarchy
used during user space execution.
System Calls. There is a single entry point in the Linux kernel for system calls,
which is called the system call handler. We add an assembly routine to execute
immediately after execution enters the system call handler. It switches from the
predefined user page tables to the kernel page tables and continues to dispatch
the requested system call. We added a second assembly routine shortly before the
return of the system call handler to remove the kernel page tables from the page
table hierarchy of the process and insert our predefined user page tables.

However, contrary to its single entry, there are multiple exit points for the system
call handler. For instance, there is a dedicated error path, and fast and slow paths
for regular execution. We instrument all of these exit points to ensure that the
kernel page tables are not used during user execution.

9.4.2 Interrupts

Just like the system call handler, we need to modify the interrupt handler to re-
store the kernel page tables. However, unlike system calls, interrupts can occur
when the processor is in privileged execution mode as well. Thus, to handle inter-
rupts, we need to distinguish both cases. Basically we could look up the current
privilege level easily by querying a register. However, this approach provides infor-
mation about the current execution context, whereas to distinguish the two cases
we require the privilege level of the interrupted context.

108 side-channel resilient kernel-space randomization.

Fortunately, the processor saves some hardware context information, such as the
instruction pointer, stack pointer, and the code segment register before invoking
the interrupt handler routine. This means that we can utilize the stored privilege
level associated with the previous code segment selector to test the privilege level
of the interrupted execution context. We then only restore the kernel page tables if
it was a user context.

We still have to handle one exceptional case however: the non-maskable inter-
rupt (NMI). Because NMIs are never maskable, they are handled by a dedicated
interrupt handler. Hence, we modify this dedicated NMI handler in the kernel to
include our mechanism as well.

9.4.3 Fine-grained Page Table Switching

As a software-only defense technique, one of the main goals of LAZARUS is to
offer practical performance. While separating the entire page table hierarchy be-
tween kernel and user mode is tempting, this approach is impractical.

In particular, switching the entire page table hierarchy invalidates all of the
cached TLB entries. This means, that the caches are reset every time and can never
be utilized after a context switch. For this reason, we only replace those parts of
the page table hierarchy, which define virtual memory mappings for randomized
addresses. In the case of KASLR, this corresponds to the code section of the kernel.
More specifically, the kernel code section is managed by the last of the 512 level 4

entries.
Thus, we replace only this entry during a context switch between privileged and

unprivileged execution. As a result, the caches can still be shared between different
privilege levels for non-randomized addresses. As we will discuss in Section 9.5,
this does not impact our security guarantees in any way.

9.5 evaluation

In this section we evaluate our prototypical implementation for the Linux kernel.
First, we show that LAZARUS successfully prevents all of the previously pub-
lished side-channel attacks. Second, we demonstrate that our defense only incurs
negligible performance impact for standard computational workloads.

9.5.1 Security

Our main goal is to prevent the leakage of the randomization secret in the kernel to
an unprivileged process through paging-based side-channel attacks. For this, we
separate the page tables for privileged parts of the address space from the unpriv-
ileged parts. We ensure that this separation is enforced for randomized addresses
to achieve practical performance.

Because all paging-based exploits rely on the timing difference between cached
and uncached entries for privileged virtual addresses, we first conduct a series
of timing experiments to measure the remaining side channel in the presence of
LAZARUS.

9.5 evaluation 109

C05
00

0

C52
00

0

C9F
00

0

CEC00
0

D39
00

0

D86
00

0

DD30
00

E20
00

0

E6D
00

0

EBA00
0

F07
00

0

F54
00

0

FA
10

00

FEE00
0

10
3B

00
0

10
88

00
0

10
D50

00

11
22

00
0

11
6F

00
0

11
BC00

0

12
09

00
0

12
56

00
0

12
A30

00

12
F00

00

13
3D

00
0

13
8A

00
0

13
D70

00

14
24

00
0

14
71

00
0

14
BE00

0

15
0B

00
0

15
58

00
0

15
A50

00

15
F20

00

16
3F

00
0

16
8C

00
0

16
D90

00

17
26

00
0

17
73

00
0

17
C00

00
140

150

160

170

180

190

200

210

220

230

240
KASLR LAZARUS

Address (Offset)

T
im

in
g

 (
C

yc
le

s)

Start of the kernel code section

Figure 9.2: Timing side-channel measurements we conducted before (blue) and after (red)
we applied LAZARUS.

In a second step, we execute all previously presented side-channel attacks on a
system hardened with LAZARUS to verify the effectiveness of our approach.
Effect of LAZARUS on the timing sidechannel. To estimate the remaining timing
side-channel information we measure the timing difference for privileged virtual
addresses. We access each page in the kernel code section at least once and measure
the timing using the rdtscp instruction. By probing the privileged address space
in this way, we collect a timing series of execution cycles for each kernel code page.
The results are shown in Figure 9.2. 1

The timing side channel is clearly visible for the vanilla KASLR implementation:
the start of the actual code section mapping is located around the first visible jump
from 160 cycles up to 180 cycles. Given a reference timing for a corresponding
kernel image, the attacker can easily calculate the random offset by subtracting the
address of the peak from the address in the reference timing.

In contrast to this, the timing of LAZARUS shows a straight line, with a max-
imum cycle distance of two cycles. In particular, there is no correlation between
any addresses and peaks in the timing signal of the hardened kernel. This indi-
cates that our defense approach indeed closes the paging-induced timing channel
successfully. We note, that the average number of cycles depicted for LAZARUS
are also in line with the timings for cached page table entries reported by related
work [82, 83]. To further evaluate the security of our approach, we additionally test
it against all previous side-channel attacks.
Real-world side-channel attacks.

We implemented and ran all of the previous side-channel attacks against a sys-
tem hardened with LAZARUS, to experimentally assess the effectiveness of our
approach against real-world attacks.

The first real-world side-channel attack against KASLR was published by Hund
et al. [80]. They noted that the execution time of the page fault handler in the OS
kernel depends on the state of the paging caches. More specifically, they access
kernel addresses from user space which results in a page fault. While this would
usually terminate the process causing the access violation, the POSIX standard

1 For brevity, we display the addresses on the x-axis as offsets to the start of the code section (i.e.,
0xffffffff80000000). We further corrected the addresses by their random offset, so that both data
series can be shown on top of each other.

110 side-channel resilient kernel-space randomization.

allows for processes to handle such events via signals. By installing a signal handler
for the segmentation violation (SIGSEGV), the user process can recover from the
fault and measure the timing difference from the initial memory access to the
delivery of the signal back to user space. In this way, the entire virtual kernel code
section can be scanned and each address associated with its corresponding timing
measurement, allowing a user space process to reconstruct the start address of the
kernel code section. We implemented and successfully tested the attack against a
vanilla Linux kernel with KASLR. In particular, we found that page fault handler
exhibits a timing difference of around 30 cycles for mapped and unmapped pages,
with an average time of around 2200 cycles. While this represents a rather small
difference compared to the other attacks, this is due to the high amount of noise
that is caused by the execution path of the page fault handler code in the kernel. 2

When we applied LAZARUS to the kernel the attack no longer succeeded.
Recently, the prefetch instruction featured on many Intel x86 processors was

shown to enable side-channel attacks against KASLR [83]. It is intended to provide
a benign way of instrumenting the caches: the programmer (or the compiler) can
use the instruction to provide a hint to the processor to cache a given virtual
address.

Although there is no guarantee that this hint will influence the caches in any
way, the instruction can be used with arbitrary addresses in principle. This means
that a user mode program can prefetch a kernel space address, and execution of
the instruction will fail siltently, i.e., the page fault handler in the kernel will not
be executed, and no exception will be raised.

However, the MMU still has to perform a privilege check on the provided virtual
address, hence the execution time of the prefetch instruction depends directly on
the state of the TLBs.

We implemented the prefetch attack against KASLR for Linux, and succesfully
executed it against a vanilla system to disclose the random offset. Executing the
attack against a system hardened with LAZARUS we found the attack to be un-
successful.

Jang et al. [82] demonstrated yet another KASLR bypass using the Transactional
Synchronization Extension (TSX) present in recent Intel x86 CPUs. TSX provides
a hardware mechanism which boosts the performance of multi-threaded applica-
tions through lock elision [157]. Originally released in Haswell processors, TSX-
enabled processors are capable of dynamically determining to serialize threads
through lock-protected critical sections if necessary. A processor may abort a TSX
transaction if it can not guarantee an atomic view from the software’s perspective.
This may occur when there are conflicting accesses between a logical processor
executing a transaction and another logical processor.

TSX will suppress any faults that must be exposed to software if they occur
within a transactional region. Memory accesses that cause a page-table walk may
abort a transaction, and according to Intel’s manual, will not be made architecturally
visible through the behavior of structures such as TLBs. The timing characteristics of the
abort, however, reveal information as to what took place. Herein lies the low-level
workings of the DrK attack. By causing a page-table walk inside a transactional

2 This was also noted in the original exploit [80].

9.5 evaluation 111

per
lben

ch
bzip

2gcc
m

cf

gobm
k

hm
m

er
sje

ng

lib
quan

tu
m

h2
6
4
re

f

onm
etp

p
as

tar

xa
lan

cb
m

k

bw
av

es
m

ilc

ze
usm

p

gro
m

ac
s

ca
ctu

sA
DM

les
lie

3
d
nam

d
dea

lII

so
plex

pov
ray

ca
lcu

lix

Gem
sF

DTD
to

nto
lbm

sp
hin

x3

av
er

ag
e

0.96

0.98

1

1.02

1.04
O

ve
rh

ea
d

Figure 9.3: SPEC2006 Benchmark Results

block, DrK utilizes timing information on the aborted transaction to disclose the
position of kernel pages that are mapped into a program.

The attack proceeds as follows: attempt a memory access to kernel pages inside
a transactional block. This causes both a page-table walk and a segmentation fault.
Because the TSX hardware masks the segmentation fault, the operating system is
never made aware of the event and the CPU executes the abort handler provided
by the attacking application. The application captures timing information on how
fast the fault aborted. Jang et al. report that a transaction aborts in about 220 or less
cycles if the probed page is mapped, whereas it aborts in about 235 cycles or more
if unmapped [82]. This sidechannel is used to expose the kernel virtual address
space to the userland application.

Probing pages this way under LAZARUS reveals no information. This is be-
cause LAZARUS unmaps all kernel code pages from the process, rendering the
timing side channel useless. Consequently, any probes to kernel pages return as un-
mapped. Only the location of LAZARUS and its dummy mappings can be leaked,
which proves insufficient for the attacker to disclose the location in memory of the
kernel.

9.5.2 Performance

We evaluated LAZARUS on a machine with an Intel Core i7-6820HQ CPU clocked
at 2.70GHz and 16GB of memory. The machine runs a current release of Arch
Linux with kernel version 4.8.14. For our testing, we enabled KASLR in the Linux
kernel that Arch Linux ships. We also compiled a secondary kernel with the same
configuration and the LAZARUS modifications applied.

We first examine the performance overhead with respect to the industry stan-
dard SPEC2006 benchmark [261]. We first ran both the integer and floating point
benchmarks in our test platform under the stock kernel with KASLR enabled. We
collected these results and performed the test again under the LAZARUS kernel.
Our results are shown in Figure 9.3.

The observed performance overhead can be attributed to measurement inac-
curacies. Our computed worst case overhead is of 0.943%. We should note that

112 side-channel resilient kernel-space randomization.

sy
sc

all
re

ad
writ

e
sta

t
fst

at

open
/clo

se

se
lec

t10
fd

se
lec

t10
0
fd

se
lec

t25
0
fd

se
lec

t50
0
fd

se
lec

t10
tcp

se
lec

t10
0
tcp

se
lec

t25
0
tcp

se
lec

t50
0
tcp

han
dler

_in
st

han
dler

_o
v

pro
t_f

au
lt

fo
rk

+ex
it

fo
rk

+ex
ec

ve

fo
rk

+/bin
/sh

av
er

ag
e

1

2

3
N

or
m

.O
ve

rh
ea

d

Figure 9.4: LMBench3 Benchmark Results

ao
i-s

tre
ss
sq

lit
e

fs-
m

ar
k

dben
ch

-12

dben
ch

-48

dben
ch

-12
8

dben
ch

-1

iozo
ne-r

ea
d

iozo
ne-w

rit
e

iozo
ne-d

t-r
ea

d

iozo
ne-d

t-w
rit

e

unpac
k-li

nux

postm
ar

k

str
ea

m
-co

py

str
ea

m
-sc

ale

str
ea

m
-tr

iad

str
ea

m
-ad

d
npb

hm
m

er
m

aff
t

gm
pben

ch

john-th
e-r

ip
per

gm
-h

wb-cs

gm
-o

-h
wb-cs

gm
-la

t

him
en

o
c-r

ay

cm
prss

-p
bzip

2

cm
prss

-g
zip

cm
prss

-lz
m

a
cra

fty

dcra
w

en
co

de-m
p3

en
co

de-o
gg

ffm
peg

m
in

ion

su
dokut

open
ssl

phpben
ch

av
er

ag
e

0.8

1

1.2

N
or

m
.O

ve
rh

ea
d

Figure 9.5: Phoronix Benchmark Suite

9.6 discussion 113

SPEC2006 is meant to test computational workloads and performs little in terms
of context switching.

To better gauge the effects of LAZARUS on the system, we ran the system bench-
marks provided by LMBench3 [168]. LMBench3 improves on the context switching
benchmarks by eliminating some of the issues present in previous versions of the
benchmark, albeit it still suffers issues with multiprocessor machines. For this rea-
son, we disabled SMP during our testing. Our results are presented in Figure 9.4.

We can see how a system call intensive application is affected the most under
LAZARUS. This is to be expected, as the page tables belonging to the kernel must
be remapped upon entering kernel space. In general, we show a 47% performance
overhead when running these benchmarks. We would like to remind the reader,
however, that these benchmarks are meant to stress test the performance of the
operating system when handling interrupts and do not reflect normal system op-
eration.

In order to get a more realistic estimate of LAZARUS, we ran the Phoronix
Test Suite [169]. Specifically, we ran the system and disk benchmarks to test ap-
plication performance. Our results are shown in Figure 9.5. We show an average
performance overhead of 2.1% on this benchmark. This is in agreement with the
results provided by the SPEC and LMBench benchmarks. The worst performers
were benchmarks that are bound to read operations. We speculate that this is due
to the amount of context switches that happen while the read operation is taking
place, as a buffer in kernel space needs to be copied into a buffer from userspace
or remapped there.

Lastly, we ran the pgbench benchmark on a test PostgreSQL databaseand com-
puted a performance overhead of 2.386%.

9.6 discussion

Next we briefly discuss various real-world aspects of LAZARUS, such as portabil-
ity and impact on related attacks against the OS.

9.6.1 Applying LAZARUS to different KASLR implementations

Relocation of kernel code is an example of how randomization approaches can be
used as a defense building block which is implemented by practically all real-
world operating systems [162–164]. While a kernel employing control-flow in-
tegrity (CFI) [41, 45, 160] does not gain security benefit from randomizing the
code section, it might still randomize the memory layout of other kernel memory
regions: for instance, it can be applied to the module section, to hide the start
address of the code of dynamically loadable kernel modules. Further, randomiza-
tion was recently proposed as a means to protect the page tables against malicious
modification through data-only attacks [2].

Since all of the publicly available attacks focus on disclosing the random offset
of the kernel code section, we implemented our proof of concept for KASLR as
well. Nonetheless, we note that LAZARUS is not limited to hardening kernel code
randomization, but can be applied to other randomization implementations as
well. In contrast to the case of protecting KASLR, our defense does not require

114 side-channel resilient kernel-space randomization.

any special treatment for hiding the low-level switching code if applied to other
memory regions.

9.6.2 Speculative Execution and Side-channel Attacks

Recently, several attacks demonstrated that vulnerable speculative execution en-
gines of many processors can be exploited to bypass existing access-control fea-
tures and memory protection [66, 67, 141]. As described in Chapter 2 hardware
usually provides primitives for isolating user processes from the operating sys-
tem by means of virtual memory and privilege separation. When activated, both
techniques are usually enforced by the hardware for all software running on the
platform. However, due to a bug in current architectures this virtual memory pro-
tection can be bypassed during speculative execution with some measurable prob-
ability. While violations during speculative execution are not committed to the
final instruction stream, and hence, do not have any direct effects, they still have
indirect effects, e.g., on the cache hierarchy. The Meltdown attack [66] proceeds
in two steps: (i) the unprivileged attacker forces speculative execution of memory
accesses that violate the enforced memory protection policy on kernel memory.
Afterwards, the attacker (ii) extracts those accessed memory contents through a
micro-architectural sidechannel by probing the processor cache. Crucially, such
cache loads caused by erroneous speculation are never rolled back. The authors
show that an adversary can recover arbitrary physical memory contents through
accesses to the direct mapping that is maintained by the OS with up to 500KB/s.
Since LAZARUS breaks up the virtual-address space into privileged and unprivi-
leged memory it successfully mitigates Meltdown by blocking the second step of
the attack [66].

9.6.3 Other side-channel attacks on KASLR

As explained earlier, almost all previously presented side-channel attacks on KASLR
exploit the paging subsystem. LAZARUS isolates kernel addresses from the virtual
address of user processes by separating their page tables. However, Evtyushkin et
al. [81] recently presented the branch target buffer (BTB) side-channel attack, which
does not exploit the paging subsystem for virtual kernel addresses.

In particular, they demonstrated how to exploit collisions between branch targets
for user and kernel addresses. The attack works by constructing a malicious chain
of branch targets in user space, to fill up the BTB, and then executing a previously
chosen kernel code path. This evicts branch targets previously executed in kernel
mode from the BTB, thus their subsequent execution will take longer.

While the BTB attack was shown to bypass KASLR on Linux, it differs from the
paging-based side channels by making a series of assumptions: 1) the BTB has a
limited capacity of 10 bits, hence it requires KASLR implementations to deploy a
low amount of entropy in order to succeed. 2) it requires the attacker to craft a
chain of branch targets, which cause kernel addresses to be evicted from the BTB.
For this an adversary needs to reverse engineer the hashing algorithm used to
index the BTB. These hashing algorithms are different for every micro architecture,

9.6 discussion 115

which limits the potential set of targets. 3) the result of the attack can be ambiguous,
because any change in the execution path directly effects the BTB contents.

There are multiple ways of mitigating the BTB side-channel attack against KASLR.
A straightforward approach is to increase the amount of entropy for KASLR, as
noted by Evtyushkin et al. [81]. A more general approach would be to introduce
a separation between privileged an unprivileged addresses in the BTB. This could
be achieved by offering a dedicated flush operation, however this requires changes
to the hardware. Alternatively, this flush operation can emulated in software, if
the hashing algorithm used for indexing the BTB has been reverse engineered. We
implemented this approach against the BTB attack by calling a function which
performs a series of jump instructions along with our page tables switching rou-
tine and were unable to recover the correct randomization offset through the BTB
attack in our tests.

10
T H E G R O W I N G P R O B L E M O F S O F T WA R E - E X P L O I TA B L E
H A R D WA R E B U G S .

Lastly, we look towards the future of software-exploitable hardware bugs by re-
viewing micro-architectural security from a design perspective. In particular, we
categorize common features of different hardware vulnerabilities and how they
affect security. We then discuss quality assurance techniques that are traditionally
employed by vendors to assess the security of large hardware designs and illustrate
how such vulnerabilities may slip through the net to be exploited from software
using the popular RISC-V architecture as a test-bed [7].

10.1 hardware vulnerabilities from a software perspective

Until recently, hardware and software security research were mostly conducted
separately due to the inherently different threat models traditionally associated
with these distinct fields—hardware attacks assumed physical presence while soft-
ware attacks could be launched remotely, e.g., by connecting to a vulnerable service
running on any machine on the internet.

However, a number of recently discovered, new attack classes challenge this
assumption: for instance, (i) Rowhammer attacks [72–76, 134, 135] provoke electro-
magnetic coupling effects to induce hardware faults in DRAM modules, (ii) specu-
lative execution attacks [66, 67, 141] deliberately make transient micro-architectural
states visible through cache sidechannels, and (iii) remote-fault injection attacks
such as CLKScrew [65] are able to cause power glitches from software.

These new attack classes have serious repercussions for production systems and
even enable attackers to break dedicated and deployed hardware-security exten-
sions such as Intel SGX [67] and ARM TrustZone [65]. They also affect a wide
range of targets with attacks against low-end devices, mobile phones, and laptops,
all the way to high-end server machines.

10.1.1 The Origin of the Hardware Bug

What these new types of vulnerabilities have in common is that they expose struc-
tural design or implementation weaknesses inherently built into the hardware com-
ponents to unprivileged software, and hence, attackers achieve effects that bear re-
semblance to those of physical attacks while operating completely from software.
Additionally, in stark contrast to software-based exploits these attacks do not rely
on bugs in the software code, but focus on the hardware implementation instead.

Interestingly, sufficiently complex hardware logic is indeed implemented through
human-readable hardware-description languages (HDL) that are in many respects
very similar to software programming languages: register-transfer level (RTL) code
specifies variables, conditions, branches, and even loop constructs that are then
compiled into a lower-level representation suitable for hardware synthesis. The

117

118 the growing problem of software-exploitable hardware bugs .

higher-level RTL statements can also be organized in sub-procedures and grouped
into modules, which can be nested, connected, and copied.

Consequently, RTL implementations of modern hardware can grow quite com-
plex with all the different features that are incorporated into and supported by
recent chips. Indeed, real-world system-on-chips (SoCs) can easily outgrow a mil-
lion lines of RTL code [268] and like software vulnerabilities, bugs in RTL code
can be introduced at any point due to human error. However, while software bugs
typically result in termination of the affected program through various fallback
routines which protect software running on the platform, such precautions do not
exists in the case of a hardware bug.

10.1.2 Quality Assurance Techniques for Hardware

Since today practically all market-relevant SoCs are based on highly proprietary
code bases, their implementation is not available for research or inspection. Con-
sequently, security researchers have to resort to black-box testing and reverse en-
gineering, which are time consuming, error-prone, and costly techniques. Unfortu-
nately, this means that many vulnerabilities can only be identified by the manufac-
turer in a meaningful way.

For this reason, semiconductor manufacturers have established a standardized
process for the security development of hardware components and that matches
their development schedules and production cycles [269–272]. Usually, this pro-
cess starts with the outline of a product sketch based on market research and com-
petitor analysis. This draft is then refined using cycle-accurate simulations and
tweaked or optimized with respect to key metrics such as performance and power
consumption. At that point, the targeted use cases are typically narrowed down
sufficiently to allow for formulation of the security objectives.

The architecture draft forms the basis for the micro-architectural design and
implementation, which undergoes pre-silicon functional validation and security
testing using various industry-standard tools such as Incisive [273], Solidify [274],
Questa [275], OneSpin [276], and JasperGold [277]. Most of these tools were orig-
inally developed towards functional verification, and hence, security-relevant fea-
tures are often not the focus.

Especially in view of the widespread availability of tool-based approaches for
the security analysis of software code [180, 181, 196, 236, 238, 239, 278] the current
state-of-the-art in RTL security verification is still lacking many features [269, 279,
280]. Although historically speaking hardware bugs are scarce [281, 282] compared
to the large number of software bugs, the ever growing complexity of hardware
implementations is starting to have a severe impact on the security of real-world
products [62, 64–66, 141, 283–292].

We can already see that real-world hardware designs raise a number of diffi-
cult challenges to the available validation techniques: many modern architectures
leverage complex and subtle interactions between different components and heav-
ily optimize for run-time performance to outsmart rivaling designs. Since existing
tools require costly analysis techniques to make accurate assessments, they do not
scale with the increasing size and complexity of real-world chips.

10.2 assessing the state-of-the-art 119

Currently, these approaches rely on human expertise to select and guide high-
priority analysis towards sensitive areas in the implementation. This largely man-
ual task is both tedious and error-prone since modern processors often exhibit
surprising side effects at run time.

10.2 assessing the state-of-the-art

In joint work [7] with colleagues as well as industry collaborators from Intel we
recently started a systematic effort of assessing existing bug detection techniques
to analyze the effectiveness of the deployed quality assurance measures. To qualita-
tively evaluate how well industry-standard tools and state-of-the-art methods can
detect these bugs, we conducted a series of case studies targeted towards security
auditing of RTL code.

Since the majority of hardware designs and implementations used in practice are
not available for open inspection, we leveraged the publicly available RISC-V ar-
chitecture [293] in these tests. We analyzed common pitfalls for popular detection
techniques using deliberately planted hardware bugs for RISC-V-based processor
implementations. We then qualitatively evaluated how well these inserted vulner-
abilities could be detected in practice using industry-standard tools and dynamic
and static analysis by expert teams.

Many vulnerabilities in RTL code are introduced due to simple errors in reg-
ularly used code constructs, similar to software bugs, such as erroneous assign-
ments associated with variable, registers, and parameter names being swapped or
misspelled, timing errors resulting from concurrency or clock-domain crossings,
flawed case statements such as incorrect or incomplete selection criteria, or wrong
behavior within a case, faulty branching like false boolean conditions in if-else
statements or incorrect behavior described within either branch, or simply poorly
specified or unspecified behavior.

Crucially, even minor errors can result in severe vulnerabilities that are also hard
to detect during testing or verification. While some parts of modern hardware are
in fact configurable and can be patched, e.g., through micro-code updates, most
components are hard-wired in the form of integrated circuits on the chip. As a
result, hardware vulnerabilities can generally not be patched, and hence, bugs in
RTL code represent a difficult and costly problem in practice.

10.3 exploiting hardware bugs from software

For our in-depth studies and definition of HardFails, we investigate specific micro-
architectural details at the RTL level. As all vendors keep their proprietary industry
designs and implementations inaccessible, we use the popular open-source RISC-V
architecture as a baseline [293].

RISC-V supports a wide range of possible configurations with many standard
features that are also available in modern processor designs, such as privilege level
separation, virtual memory, and multi-threading, as well as more advanced fea-
tures such as configurable branch prediction and non-blocking data caches [294],
and out-of-order execution [295], making the platform a suitable target for our
study.

120 the growing problem of software-exploitable hardware bugs .

CORE CORE

CORE CORE

Last-Level Cache

Power Management

HWPE

GPIO

Memory Interconnect

DEBUG RAM UART

Figure 10.1: So far, practically all hardware components of modern system-on-chips have
been demonstrated to contain software-exploitable vulnerabilities. In joint
work [7] with colleagues as well as industry collaborators we attempted to
qualitatively evaluate existing auditing tools for hardware designs based on
more than 30 bugs injected in different parts of the open-source RTL imple-
mentation of an open-source RISC-V-based hardware test-bed.

10.3.1 Threat Model and Assumptions

RISC-V RTL is freely available and open to inspection and modification. We note
that while this is not necessarily the case for industry-leading chip designs, an
adversary might be able to reverse engineer parts of the chip. Although a highly
cumbersome and difficult task in practice, this possibility cannot be excluded in
principle. Hence, we allow an adversary to inspect the RTL code in our model.

In particular, we make the following assumptions to evaluate both existing veri-
fication approaches and possible attacks:

hardware vulnerability The attacker has knowledge of a vulnerability in
the hardware implementation of the SoC (i.e., at the RTL level) and can trigger the
bug from software.

user access The attacker has complete control over a user-space process, i.e.,
can issue unprivileged instructions and system calls. For RISC-V, this means the
attacker can execute any instruction in the basic instruction set.

secure software Software vulnerabilities and resulting attacks such as code-
reuse [10, 22, 115, 117, 118] and data-only attacks [2, 13, 68, 208] against the soft-
ware stack are orthogonal to the problem of cross-layer bugs, which leverage hard-
ware vulnerabilities from the software layer.

10.3 exploiting hardware bugs from software 121

Under our model, all platform software could be protected by defenses such
as control-flow integrity [296] and data-flow integrity [297], or be formally veri-
fied. The goal of an adversary under this model is to leverage the vulnerability
on the chip to provoke unintended functionality, e.g., access to protected memory
locations, code execution with elevated privileges, breaking the isolation of other
processes running on the platform, or permanently denying services at the hard-
ware level. RTL bugs in certain modules of the chip might only be exploitable with
physical access to the victim device, for instance, bugs in the implementation of
debugging interfaces.

However, software-exploitable vulnerabilities can also be exploited completely
remotely by software means, and hence, have a higher impact in practice. For this
reason, we focus on software-exploitable RTL vulnerabilities. We also note that an
adversary with unprivileged access is a realistic model for real-world SoCs: many
platforms provide services to other devices over the local network, or even over
the internet. Consequently, the attacker can obtain some limited software access to
the platform already, e.g., through a webserver or an RPC interface.

The goal of the various verification approaches in this setting is to catch all of
the bugs that would be exploitable by such an adversary before the chip design
enters the production phase.

10.3.2 Attack Details

We show how selected hardware bugs from Hack@DAC 2018 hardware security
competition [7] can be used to craft a real-world exploit. Such exploits allow un-
privileged attackers to undermine the entire system by escalating privileges in an
entirely remote setting. The attack is depicted in Figure 10.2 in which we assume
the memory bus decoder unit (unit of the memory interconnect) to have a bug,
which causes errors to be ignored under certain conditions (i.e., bug #7 [7]).

This RTL vulnerability manifests in the hardware behaving in the following way.
When an error signal is generated on the memory bus while the underlining logic
is still handling an outstanding transaction, the next signal to be handled will in-
stead be considered operational by the module unconditionally. This represents a
severe vulnerability, as it allows erroneous memory accesses to slip through hard-
ware checks at run time. Despite this fact, we only managed to detect this vulnera-
bility after significant efforts using the available tools based on prior knowledge of
the exact location of the vulnerability. Additionally, the tool-based (but interactive)
verification procedure represented a significant costly time investment.

Since vulnerabilities are usually not known a priori in practice, this would even
be more difficult. Therefore, it is easily conceivable and realistic to assume that
such a vulnerability could slip through verification and evade detection in larger
real-world SoCs.

Armed with the knowledge about this vulnerability in a real-world processor,
an adversary could now force memory access errors to slip through the checks
as we describe in the following. In the first step 1 , the attacker generates a user
program (Task A) that registers a dummy signal handler for the segmentation
fault (SIGSEGV) access violation. This first program then executes a loop with 2

a faulting memory access to an invalid memory address (e.g., LWx5, 0x0).

122 the growing problem of software-exploitable hardware bugs .

Core

Memory

1

4

Interconnect D
R

A
M

Null

K
E
R

N
E
L

4

Userspace

Core

15

Task A

Task B

OS Kernel

PCBAIVT PCBB MM

3

2

6

PCBB

...

Task A Task B

Figure 10.2: Our attack exploits a bug in the implementation of the memory bus of the
PULPissimo SoC: by 2 spamming the bus with invalid transactions, and 3
handling interrupts due to memory access violations to avoid termination of
the malicious program, an adversary can make 4 malicious write requests be
set to operational.

This will generate an error in the memory subsystem of the processor and issue
an invalid memory access interrupt (i.e., 0x0000008C) to the processor. The proces-
sor raises this interrupt to the running software (in this case the OS), using the
pre-configured interrupt handler routines in software. The interrupt handler in the
OS will then forward this as a signal to the faulting task 3 , which keeps looping
and continuously generating invalid accesses. Meanwhile, the attacker launches a
separate Task B, which will then issue single memory access 4 to a privileged
memory location (e.g., LWx6, 0x f 77c3000).

In that situation, multiple outstanding memory transactions will be generated
on the memory bus; all but one of which the address decoder will signal an error.
An invalid memory access will always proceed the single access of the second task.
Due to the bug in the memory bus address decoder, 5 the malicious memory
access will become operational instead of triggering an error.

As a result, the attacker can issue read and write instructions to arbitrary priv-
ileged (and unprivileged) memory by forcing the malicious, illegal access with
preceding faulty access. Using this technique the attacker can eventually leverage
this read-write primitive, e.g., 6 to escalate privileges by writing the process con-
trol block (PCBB) for his task to elevate the corresponding process to root.

10.3 exploiting hardware bugs from software 123

Since the underlying bug leaves an adversary with the possibility of gaining
access to a root process the exploitation strategy described above, the attacker is
able to gain control over the entire platform and potentially compromise other
processes running on the system or even the OS.

11
R E L AT E D W O R K

In this chapter, we review Rowhammer-based attack and defenses proposed by the
literature, as well as side-channel attacks against the OS, and finally compare and
classify attacks that exploit micro-architectural vulnerabilities in processor hard-
ware designs and implementations presented recently.

11.1 rowhammer

In this section, we provide an overview of existing rowhammer attack techniques,
their evolution, and proposed defenses. Thereafter, we discuss the shortcomings
of existing work on mitigating rowhammer attacks and compare them to our
software-based defense.

11.1.1 Attacks

Kim et al. [63] were the first to conduct experiments and analyze the effect of bit
flipping due to repeated memory reads. They found that this vulnerability can be
exploited on Intel and AMD-based systems. Their results show that over 85% of
the analyzed DRAM modules are vulnerable. The authors highlight the impact on
memory isolation, but they do not provide any practical attack. Seaborn and Dul-
lien [72] published the first practical rowhammer-based privilege-escalation attacks
using the x86 clflush instruction. In their first attack, they use rowhammer to es-
cape the Native Client (NaCl) [298] sandbox. NaCl aims to safely execute native
applications by 3rd-party developers in the browser. Using rowhammer malicious
developers can escape the sandbox, and achieve remote code execution on the tar-
get system. With their second attack Seaborn and Dullien utilize rowhammer to
compromise the kernel from an unprivileged user-mode application. Combined
with the first attack, the attacker can remotely compromise the kernel without ex-
ploiting any software vulnerabilities. To compromise the kernel, the attacker first
fills the physical memory with page-table entries by allocating a large amount of
memory. Next, the attacker uses rowhammer to flip a bit in memory. Since the
physical memory is filled with page-table entries, there is a high probability that
an individual page-table entry is modified by the bit flip in a way that enables
the attacker to access other page-table entries, modify arbitrary (kernel) memory,
and eventually completely compromise the system. Qiao and Seaborn [73] imple-
mented a rowhammer attack with the x86 movnti instruction. Since the memcpy

function of libc – which is linked to nearly all C programs – utilizes the movnti

instruction, the attacker can exploit the rowhammer bug with code-reuse attack
techniques [10]. Hence, the attacker is not required to inject her own code but can
reuse existing code to conduct the attack. Aweke et al. [253] showed how to ex-
ecute the rowhammer attack without using any special instruction (e.g., clflush
and movnti). The authors use a specific memory-access pattern that forces the

125

126 related work

CPU to evict certain cache sets in a fast and reliable way. They also concluded that
a higher refresh rate for the memory would not stop rowhammer attacks. Gruss
et al. [75] demonstrated that rowhammer can be launched from JavaScript. Specifi-
cally, they were able to launch an attack against the page tables in a recent Firefox
version. Similar to Seaborn and Dullien’s exploit this attack is mitigated by CATT.
Later, Bosman et al. [135] extended this work by exploiting the memory deduplica-
tion feature of Windows 10 to create counterfeit JavaScript objects, and corrupting
these objects through rowhammer to gain arbitrary read/write access within the
browser. In their follow-up work, Razavi et al. [134] applied the same attack tech-
nique to compromise cryptographic (private) keys of co-located virtual machines.
Concurrently, Xiao et al. [76] presented another cross virtual machine attack where
they use rowhammer to manipulate page-table entries of Xen. Further, they pre-
sented a methodology to automatically reverse engineer the relationship between
physical addresses and rows and banks. Independently, Pessl et al. [243] also pre-
sented a methodology to reverse engineer this relationship. Based on their findings,
they demonstrated cross-CPU rowhammer attacks, and practical attacks on DDR4.
Van der Veen et al. [74] recently demonstrated how to adapt the rowhammer ex-
ploit to escalate privileges in Android on smartphones. Since the authors use the
same exploitation strategy of Seaborn and Dullien, CATT can successfully prevent
this privilege escalation attack. While the authors conclude that it is challenging
to mitigate rowhammer in software, we present a viable implementation that can
mitigate practical user-land privilege escalation rowhammer attacks.

Note that all these attacks require memory belonging to a higher-privileged
domain (e.g., kernel) to be physically co-located to memory that is under the at-
tacker’s control. Since our defense prevents direct co-location, we mitigate these
rowhammer attacks.

11.1.2 Defenses

Kim et al. [63] present a number of possible mitigation strategies. Most of their
solutions involve changes to the hardware, i.e., improved chips, refreshing rows
more frequently, or error-correcting code memory. However, these solutions are
not very practical: the production of improved chips requires an improved design,
and a new manufacturing process which would be costly, and hence, is unlikely
to be implemented. The idea behind refreshing the rows more frequently (every
32ms instead of 64ms) is that the attacker needs to hammer rows many times to
destabilize an adjacent memory cell which eventually causes the bit flip. Hence,
refreshing (stabilizing) rows more frequently could prevent attacks because the at-
tacker would not have enough time to destabilize individual memory cells. Never-
theless, Aweke et al. [253] were able to conduct a rowhammer attack within 32ms.
Therefore, a higher refresh rate alone cannot be considered as an effective coun-
termeasure against rowhammer. Error-correcting code (ECC) memory is able to
detect and correct single-bit errors. As observed by Kim et al. [63] rowhammer can
induce multiple bit flips which cannot be detected by ECC memory. Further, ECC
memory has an additional space overhead of around 12% and is more expensive
than usual DRAM, therefore it is rarely used.

11.2 side-channel attacks against the os 127

Kim et al. [63] suggest to use probabilistic adjacent row activation (PARA) to mit-
igate rowhammer attacks. As the name suggests, reading from a row will trigger an
activation of adjacent rows with a low probability. During the attack, the malicious
rows are activated many times. Hence, with high probability the victim row gets
refreshed (stabilized) during the attack. The main advantage of this approach is its
low performance overhead. However, it requires changes to the memory controller.
Thus, PARA is not suited to protect legacy systems.

To the best of our knowledge Aweke et al. [253] proposed the only other software-
based mitigation against rowhammer. Their mitigation, coined ANVIL, uses per-
formance counters to detect high cache-eviction rates which serves as an indicator
of rowhammer attacks [253]. However, this defense strategy has three disadvan-
tages: (1) it requires the CPU to feature performance counters. In contrast, our
defense does not rely on any special hardware features. (2) ANVIL’s worst case
run-time overhead for SPEC CPU2006 is 8%, whereas our worst case overhead is
0.29%. (3) ANVIL is a heuristic-based approach. Hence, it naturally suffers from
false positives (although the FP rate is below 1% on average). In contrast, we pro-
vide a deterministic approach that is guaranteed to stop rowhammer-based kernel-
privilege escalation attacks.

11.2 side-channel attacks against the os

In this section we provide an overview of the related work regarding side-channel
attacks, focusing towards attacks against the operating system. We further discuss
proposed software and hardware mitigations against side-channel attacks.

11.2.1 Paging-based Side-channel Attacks on KASLR

All modern operating systems leverage kernel-space randomization by means of
kernel code randomization (KASLR) [162–164]. However, kernel-space randomiza-
tion has been shown to be vulnerable to a variety of side-channel attacks. These
attacks leverage micro-architectural implementation details of the underlying hard-
ware. More specifically, modern processors share virtual memory resources be-
tween privileged and unprivileged execution modes.

In the following we briefly describe recent paging-based side-channel attacks
that aim to disclose the kASLR randomization secret. All these attacks exploit the
fact that the TLB is shared between user applications and the kernel. As a conse-
quence, the TLB will contain page-table entries of the kernel after switching the
execution from kernel to a user mode application. Henceforth, the attacker uses
special instructions (depending on the concrete side-channel attack implementa-
tion) to access kernel addresses. Since the attacker executes the attack with user
privileges, the access will be aborted. However, the time difference between access
attempt and abort depends on whether the guessed address is cached in the TLB or
not. Further, the attacker can also measure the timing between existing (traversal
of the page-table hierarchy) and not existing mappings (immediate abort). These
timing differences can be exploited by the attacker as a side channel to disclose the
randomization secret as shown recently [80, 82, 83, 133].

128 related work

page fault handler (pfh) Hund, et al. [80] published the first side-channel
attack to defeat KASLR. They trigger a page fault in the kernel from a user process
by accessing an address in kernel space. Although this unprivileged access is cor-
rectly denied by the page fault handler, the TLBs are queried during processing of
the memory request. They show that the timing difference between exceptions for
unmapped and mapped pages can be exploited to disclose the random offset.

intel’s tsx Transactional memory extensions introduced by Intel encapsulate
a series of memory accesses to provide enhanced safety guarantees, such as roll-
backs. While potentially interesting for the implementation of database systems,
erroneous accesses within a transaction are not reported to the operating system.
More specifically, if the MMU detects an access violation, the transaction is aborted
silently. However, an adversary can measure the timing difference between two
aborted transactions to identify privileged addresses, which are cached in TLBs.
This enables the attacker to significantly improve over the original page fault tim-
ing side-channel attack [82, 133]. The reason is that the page fault handler of the
OS is never invoked, significantly reducing the noise in the timing signal.

prefetch instruction Furthermore, even individual instructions may leak
timing information and can be exploited [83]. More specifically, the execution of
the prefetch instruction of recent Intel processors exhibits a timing difference,
which depends directly on the state of the TLBs. As in the case of the side-channel
attack exploiting transactional memory, this unprivileged instruction can be used
to access privileged addresses, but will fail without invoking the page fault han-
dler of the OS. Its execution time differs for cached kernel addresses. This yields
another stealthy side channel that leaks the randomization secret.

11.2.2 Software Mitigations

separating address spaces Unmapping the kernel page tables during user-
land execution is a natural way of separating their respective address spaces, as
suggested in [82, 83]. However, Jang et al. [82] considered the approach imprac-
tical, due to the expected performance degradation. Gruss et al. [83] estimated
the performance impact of reloading the entire page table hierarchy up to 5%, by
reloading the top level of the page table hierarchy (via the CR3 register) during a
context switch. They subsequently implemented this approach independently and
in parallel to our work LAZARUS [84]. Reloading the top level of the page tables
results in a higher performance overhead, because it requires the processor to flush
all of the cached entries. Full address-space separation has also been implemented
by Apple for their iOS platform [92]. Because the ARM platform supports multi-
ple sets of page table hierarchies, the implementation is straightforward on mobile
devices. For the first time we provide an improved and highly practical method of
implementing address space separation on the x86 platform.

increasing kaslr entropy Some of the presented side-channel attacks ben-
efit from the fact that the KASLR implementation in the Linux kernel suffers from
a relatively low entropy [80, 81]. Thus, increasing the amount of entropy represent

11.3 recent hardware exploits 129

a way of mitigating those attacks in practice. While this approach was suggested
by Hund et al. [80] and Evtyushkin et al. [81], it does not eliminate the side channel.
Additionally, the mitigating effect is limited to attacks which exploit low entropy
randomization. In contrast, LAZARUS mitigates all previously presented paging
side-channel attacks.

modifying the page fault handler Hund et al. [80] exploited the timing
difference through invoking the page fault handler. They suggested to enforce its
execution time to an equal timing for all kernel addresses through software. How-
ever, this approach is ineffective against attacks which do not invoke the kernel [82,
83]. Our mitigation reorganizes the cache layout in software to successfully stop
the attacks, that exploit hardware features to leak side channel information, even
for attacks that do not rely on the execution time of any software.

11.2.3 Hardware Mitigations

privilege level isolation in the caches Eliminating the paging side
channel is also possible by modifying the underlying hardware cache implemen-
tation. This was first noted by Hund et al. [80]. However, modern architectures
organize caches to be optimized for performance. Additionally, changes to the
hardware are very costly, and it takes many years to widely deploy these new
systems. Hence, it is unlikely that such a change will be implemented, and even
if it is, existing production systems will remain vulnerable for a long time. Our
software-only mitigation can be deployed instantly by patching the kernel.

disabling detailed timing for unprivileged users All previously pre-
sented paging side-channel attacks rely on detailed timing functionality, which is
provided to unprivileged users by default. For this reason, Hund et al. [80] sug-
gested to disable the rdtsc instruction for user mode processes. While this can be
done from software, it effectively changes the ABI of the machine. Since modern
platforms offer support for a large body of legacy software, implementing such a
change would introduce problems for many real-world user applications. As we
demonstrate in our extensive evaluation, LAZARUS is transparent to user-level
programs and does not disrupt the usual workflow of legacy software.

11.3 recent hardware exploits

As outlined in Section 2.5.3, many recent attacks combine different problems, e.g.,
inherent cache leakage and hardware implementation errors at the chip level. Here,
we explain and classify these previously presented remote hardware exploits (see
Table 11.1). Since we already discussed the related work regarding Rowhammer in
Section 11.1, we focus on CPU-based attacks in this section.

Yarom et al. demonstrate that software-visible side channels can exist even be-
low cache-line granularity in their CacheBleed [283] attack—undermining a core
assumption of prior defenses such as scatter-gather [299].

The recent TLBleed [284] attack demonstrates that current TLB implementations
can be abused to break state-of-the-art cache side-channel protections. As outlined

130 related work

Attack
Priv.

Level

Memory
Corrup-

tion

Inf.
Discl.

Cache
Firm-
ware

Memory
Intercon-
nect

CPU

Cachebleed [283] user 7 3 3 7 7 7

TLBleed [284] user 7 3 3 7 7 7

BranchScope [285] user 7 3 7 7 7 3

Spectre [141] user 7 3 3 7 7 3

Meltdown [66] user 7 3 3 7 7 3

MemJam [62] OS 7 3 7 7 3 7

CLKScrew [65] OS 3 3 7 3 7 3

Foreshadow [67] OS 3 3 3 3 7 3

Table 11.1: Classification of existing attacks: when reviewing recent hardware-oriented
exploits that are possible from software, we observe that many of them exploit
hardware vulnerabilities that affect one of the components we investigated in
our recent case studies (cf., Chapter 10).

in Chapter 2, TLBs are typically highly interconnected with complex processor
modules such as the cache controller and memory management unit, making vul-
nerabilities therein very hard to detect through automated verification or manual
inspection.

BranchScope [285] extracts information through the directional branch predictor
which is a hardware resource used implicitly by physical cores but leaks infor-
mation to software in the form of a timing channel. The authors also propose
alternative design strategies for the Branch-Target Buffers, such as randomizing
the patter-history table.

As explained in Section 2.5.2, modern processors heavily optimize performance,
e.g., through increasing instruction-level parallelism and a common set of tech-
niques fall under the category of Out-of-Order (OoO) execution. For instance, the
architecture may maximize utilization of idle execution units on a physical core by
speculatively scheduling pipelined instructions ahead of time. While erroneous or
unauthorized memory accesses can be forced from malicious software, they are cor-
rectly rolled-back (i.e., they are not committed to the final instruction stream). How-
ever, these unauthorized accesses during speculation may affect cache states, and
hence, can remain visible to software through side-channel attacks on the caches
in a second step. This was shown to be exploitable in the Meltdown attack [66],
which targeted vulnerable out-of-order implementations allowing software to by-
pass the usually enforced memory access restrictions in the OS. As noted by the
authors our side-channel defense for the kernel, LAZARUS [6], successfully stops
the attack [66].

Shortly thereafter, Van Bulck et al. demonstrated that a similar technique, dubbed
Foreshadow [67], can be applied to completely compromise the security goals of
Intel’s Software-Guard Extensions (SGX), a popular hardware security extension.

11.3 recent hardware exploits 131

Unfortunately, by stealing the attestation keys used by the SGX firmware an ad-
versary is able to craft malicious enclave executions, thereby allowing memory
corruption.

Moreover, Kocher et al. [141] showed that speculative execution can be exploited
in user-space in a related attack, as a wide range of instruction sequences can be
constructed and forced to continue execution under the vulnerable out-of-order
implementations on the affected processors.

MemJam [62] exploits false read-after-write dependencies of subsequent mem-
ory accesses within the CPU to maliciously slow down victim accesses. Similar to
Cachebleed, this breaks any constant-time implementations that rely on cache-line
granularity.

CLKScrew [65] abuses low-level power-management functionality that is ex-
posed to software on many ARM-based devices, e.g., to optimize battery life. Tang
et al. demonstrated that this can be exploited by malicious users to induce faults
and glitches dynamically at runtime in the processor. By maliciously tweaking
clock frequency and voltage parameters, they were able to make the execution
of individual instructions fail with a high probability. The authors constructed
an end-to-end attack that works completely from software and breaks the Trust-
Zone isolation boundary, e.g., to access secure-world memory from the normal
world. We categorize CLKScrew as a firmware issue since it directly exposes power-
management functionality to attacker-controlled software. Currently, CLKScrew is
one of the only two known processor-based hardware vulnerabilities that allows
an software adversary to corrupt memory.

Part IV

D I S C U S S I O N A N D C O N C L U S I O N

12
D I S S E RTAT I O N S U M M A RY

Software and hardware vulnerabilities pose significant challenges to the security
of computer systems. While attacks based on memory-corruption vulnerabilities in
widely deployed software have been researched extensively in the past, hardware-
based attack represent a recently emerging attack paradigm. The goal of this disser-
tation is two-fold: we explore the limitations of existing defenses against memory-
corruption exploits and possible mitigations in light of upcoming hardware-based
attacks. For this, we focus on the operating system context, since it typically imple-
ments and enforces security policies for a computer system at run time.

In Part II, we demonstrated data-only attacks that completely bypass state-of-
the-art code-reuse defenses, such as control-flow integrity. To this end, we show
that enforcing CFI securely in complex application settings like modern browsers
poses a series of challenges due to dynamic code generation. In particular, many
applications that require frequent user interaction utilize scripting language envi-
ronments. These scripting environments often leverage just-in-time compilers to
enhance run-time performance and user experience. However, we show that an
adversary can modify the intermediate representation deployed by these compil-
ers to generate malicious native code on-the-fly in a data-only attack. Since our
attack does not tamper with any code pointers, it cannot be prevented by state-of-
the-art code-reuse defenses and works despite CFI being deployed. We then turn
towards existing code-reuse defenses in the kernel context and show that attackers
can completely deactivate any memory protection by modifying the page tables.
Since page tables are data object, this is again possible without modifying code
pointers, and hence, cannot be prevented by CFI. We also design and implement a
randomization-based defense to protect the page tables against such data-only at-
tacks. As modern OS kernels typically consists of a huge and highly complex code
base, that is difficult to audit by manual review, we then introduce the first data-
flow analysis framework for kernel code. Our compiler-based framework is able
to automatically uncover memory-corruption vulnerabilities present in complex
real-world code.

In Part III, we turned towards software-exploitable hardware vulnerabilities by
presenting novel Rowhammer attacks against DRAM-based physically-unclonable
functions. Our results show that DRAM may not be a suitable candidate for the
construction of security-sensitive applications. Further, several Rowhammer-based
exploits were recently presented that specifically target OS memory to compromise
computer platforms remotely. For this reason, we design and implement the first
practical software defense against Rowhammer attacks that target kernel memory.
As we are able to show, our scheme successfully mitigates real-world Rowhammer
attacks efficiently. Moreover, a number of attacks with a high impact on operat-
ing system security recently demonstrated that micro-architectural side-channel
attacks represent a realistic threat. Hence, we introduce a general side-channel de-
fense for operating system kernels, to harden OS software against such attacks in

135

136 dissertation summary

practice. Finally, we investigate possible root causes of hardware vulnerabilities by
assessing the effectiveness of state-of-the-art hardware verification tools. In partic-
ular, we found that specific vulnerability classes can slip through existing quality
assurance tests in practice due to fundamental limitations and increasingly severe
scalability issues.

13
F U T U R E W O R K

While memory-corruption-based attacks have been known and subject of intense
research for more than three decades, the underlying problems are not fully solved
yet and many challenges still remain. Among the many run-time exploit paradigms,
code-reuse attacks have been the focus of attention for a long time. Consequently,
a large number of code-reuse defenses have been proposed in the related work and
many mitigations are deployed and readily available to harden production systems
through various software or compiler-based schemes, even including occasional
hardware support. However, as we demonstrate data-only attacks still pose a sig-
nificant threat to the security of application and kernel-level software. So far, gen-
eral defenses are lacking and the available solutions are either application-specific
or incur extreme performance overheads, rendering them impractical. Hence, ad-
ditional research is required to comprehensively defend software against data-
oriented exploits at run time.

Another promising line of research is software verification to eliminate the un-
derlying root causes of memory corruption in the code, e.g., by means of dynamic
testing or static analysis. While dynamic approaches, such as random testing (often
called fuzzing) or sanitization represent important tools that are also increasingly
used in practice they are typically not comprehensive and prohibitively expensive
in terms of resources. On the other hand, static analysis approaches promise for-
mal security guarantees but lack the required scalability and expressiveness to be
widely applicable. Hence, researching novel approaches and practical techniques
to automatically check real-world code for potential memory-corruption vulnera-
bilities at a large scale appears to be a highly relevant area for future directions.

Even if system software is assumed to be completely secure, hardware-oriented
exploits are becoming increasingly relevant as they currently represent an emerg-
ing attack vector. Unfortunately, recent research demonstrated that a growing num-
ber of hardware vulnerabilities can be exploited completely remotely, and hence,
software adversaries no longer require software vulnerabilities to launch successful
attacks. As hardware grows more complex the problems of design and implemen-
tation techniques for hardware are also prone to the problem of scaling quality
assurance measures to real-world projects which has proven uniquely challeng-
ing in the software realm. Moreover, many hardware platforms do not function
correctly without a large amount of firmware which is even exposed to the exact
same attacks as traditional system software.

While methods for systematic security analysis and verification that were devel-
oped in the software domain could in principle be applied to identify vulnerabil-
ities at the hardware level, this field is only slowly gaining traction as practically
all hardware designs available today are strictly and entirely proprietary. Conse-
quently, the approaches used by the industry are significantly lagging behind the
state-of-the-art in software verification and testing, which is largely driven by the
open-source community and the possibility of freely inspecting, testing, and ana-

137

138 future work

lyzing real-world implementations. Finally, both fields historically represent com-
pletely disconnected areas of research and increasing cross-communication, trans-
parency, and mutual exchange of ideas could provide beneficial insights.

Part V

A P P E N D I X

A
A B O U T T H E A U T H O R

David Gens is a research assistant at the Technische Universität Darmstadt and
the Intel Collaborative Research Institute (ICRI-CARS), Germany. His research has
concentrated on operating system security in the context of memory-corruption ex-
ploits and mitigation of emerging threats such as sidechannel attacks and remote-
fault injection attacks from an OS perspective.

short bio

• M.Sc. in Computer Science, Technische Universität Darmstadt, 2016

• B.Sc. in Computer Science, Hochschule RheinMain Wiesbaden, 2013

awards and nominations

• Google Best Paper Award at the MobiSys PhD Forum 2018

• Travel Scholarship from ACM SIGDA to attend DAC 2018

• Student PC Member IEEE Security and Privacy 2018

• Top 10 Finalist at CSAW Applied Research Competition 2017

peer-reviewed publications

FastKitten: Practical Smart Contracts on Bitcoin. Poulami Das, Lisa Eckey, Tom-
maso Frassetto, David Gens, Kristina Hostakova, Patrick Jauernig, Sebastian Faust,
Ahmad-Reza Sadeghi. In Proceedings of the 28th USENIX Security Symposium, Au-
gust 2019.

SANCTUARY: ARMing TrustZone with User-space Enclaves. Ferdinand Brasser,
David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, Emmanuel Stapf. In Proceed-
ings of the 26th Annual Network & Distributed System Security Symposium (NDSS),
February 2019.

It’s Hammer Time: How to Attack (Rowhammer-based) DRAM-PUFs. Shaza
Zeitouni, David Gens, and Ahmad-Reza Sadeghi. In Proceedings of the 55th Design
Automation Conference (DAC’18), June 2018.

OS-level Software & Hardware Attacks and Defenses. David Gens. In Proceedings
of the MobiSys PhD Forum, June 2018.

141

142 about the author

K-Miner: Uncovering Memory Corruption in Linux. David Gens, Simon Schmitt,
Lucas Davi, Ahmad-Reza Sadeghi. In Proceedings of the 25th Annual Network & Dis-
tributed System Security Symposium (NDSS), February 2018.

JITGuard: Hardening Just-in-time Compilers with SGX. Tommaso Frassetto, David
Gens, Christopher Liebchen, Ahmad-Reza Sadeghi. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS), November 2017.

LAZARUS: Practical Side-channel Resilient Kernel-Space Randomization. David
Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier Jin, Ahmad-Reza
Sadeghi. In Proceedings of the 20th International Symposium on Research in Attacks, In-
trusions and Defenses (RAID), September 2017.

CATT: Software-only Mitigation against Rowhammer Attacks targeting Kernel
Memory. Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, Ahmad-
Reza Sadeghi. In Proceedings of the 26th USENIX Security Symposium, August 2017.

PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables. Lucas
Davi, David Gens, Christopher Liebchen, Ahmad-Reza Sadeghi. In Proceedings of
the 24th Annual Network & Distributed System Security Symposium (NDSS), Febru-
ary 2017.

Privately computing set-union and set-intersection cardinality via bloom filters.
Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, Jörg Tillmans.
In Lecture Notes, Foo E., Stebila D. (eds) Australasian Conference on Information Security
and Privacy (ACISP), June 2015.

technical reports

When a Patch is Not Enough — HardFails: Software-Exploitable Hardware Bugs.
Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Karthik Kanu-
parthi, Hareesh Khattri, Jason M. Fung, Jeyavijayan Rajendran, Ahmad-Reza Sadeghi.
Technical Report arXiv:1812.00197, December 2018.

FastKitten: Practical Smart Contracts on Bitcoin. Poulami Das, Lisa Eckey, Tom-
maso Frassetto, David Gens, Kristina Hostakova, Patrick Jauernig, Sebastian Faust,
Ahmad-Reza Sadeghi. Technical Report.

Execution Integrity with In-Place Encryption. Dean Sullivan, Orlando Arias, David
Gens, Lucas Davi, Ahmad-Reza Sadeghi, Yier Jin. Technical Report arXiv:1703.02698,
March 2017.

CAn’t Touch This: Practical and Generic Software-only Defenses Against Row-
hammer Attacks. Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
Ahmad-Reza Sadeghi. Technical Report arXiv:1611.08396, November 2016.

about the author 143

posters

CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks tar-
geting Kernel Memory. Ferdinand Brasser, Lucas Davi, David Gens, Christopher
Liebchen, Ahmad-Reza Sadeghi. In Cyber Security Awareness Worldwide, Applied Re-
search Competition (CSAW), August 2017.

OS-level Software & Hardware-based Attacks and Defenses. David Gens. In De-
sign Automation Conference PhD Forum, June 2018.

B
L I S T O F F I G U R E S

Figure 2.1 Virtual memory represents a page-based memory-protection
scheme that can be enforced in hardware on many plat-
forms. 10

Figure 2.2 Today, many attacks involve multi-step exploits, in which
the attacker successively migrates from a remote to a local
adversary model to gain full control over the platform. Since
the OS implements most of the security-relevant hardening
techniques, attacks against kernel software in this second
step are increasingly common in practice. 11

Figure 2.3 Programs can be represented as finite-state machines (a),
with vulnerable programs containing hidden states (b), which
only become reachable through undefined behavior to form
weird machines [103, 104]. 14

Figure 2.4 The vulnerable program (a) exhibits undefined behavior for
inputs exceeding the length of the buffer. An adversary can
exploit this by providing malicious input (b) to bring the
program into a weird state (c) that will spawn a terminal—a
behavior that was never specified anywhere in the program
code. 15

Figure 2.5 Modern computer platforms feature complex SoC architec-
tures that combine multi-core designs with performance-
critical elements uncore inside the CPU package. Compo-
nents inside the CPU package share a large last-level cache
and are tightly coupled through high-speed interconnect
fabric on the die. Peripherals are connected to the processor
package via the system bus. 18

Figure 2.6 Semiconductor manufacturers aim to enhance single-core
performance by maximizing instruction-level parallelism. For
this, chip designers leverage techniques such as super-scalar
processing, simultaneous multi-threading, and out-of-order
execution, which heavily increase implementation complex-
ity of modern processors. 19

Figure 3.1 Our attack bypasses CFI enforcement by maliciously modi-
fying the intermediate representation (IR), which resides in
data memory and is never executed directly. Instead, it is
used by the compiler to output machine code for an attack
payload which the attacker can then invoke in a subsequent
step. 27

145

146

Figure 3.2 Within the JIT engine the currently optimized instruction
stream is represented in the form of a doubly linked list
of data objects. By inserting crafted or modifying existing
objects an adversary can inject arbitrary instructions into
the generated machine code. Since DOJITA [1] only in-
volves data accesses it cannot be prevented by means of
code-reuse defenses and completely bypasses CFI for the
browser. 28

Figure 4.1 Our page-table exploit enables code injection attacks in ker-
nel mode despite CFI being deployed and active in the ker-
nel. This motivated us to design an efficient randomization-
based defense approach to complement kernel CFI imple-
mentations by protecting the page tables against such at-
tacks. 33

Figure 4.2 Our design of PT-Rand involves several boot-time and run-
time components to set up the randomized mapping for
page tables in the kernel. 35

Figure 4.3 We modify the virtual memory location of page table pages
by providing a randomization wrapper around the standard
page allocator in the kernel. While randomized pages are
removed from the one-to-one mapping, regular page alloca-
tion requests still fall within this region. 38

Figure 4.4 Overhead of page table randomization on SPEC CPU2006 43

Figure 5.1 Data-flow analyses utilize graphs to reason about program
behavior at compile time. 48

Figure 5.2 Overview of the different components of K-Miner. 52

Figure 5.3 Overview of the K-Miner implementation: we conduct com-
plex data-flow analysis of the Linux kernel in stages, re-
using intermediate results. 55

Figure 5.4 Example of a Dangling Pointer vulnerability in a (simpli-
fied) system call definition. 56

Figure 5.5 Overview of results in the web user interface of K-Miner. 63

Figure 5.6 Individual bug report in the web user interface of K-Miner. 63

Figure 7.1 Organization of a DRAM module. 78

Figure 7.2 DRAM chips are structured hierarchically, with banks form-
ing one of the intermediate components that can be repli-
cated for individual chips. This diagram shows the organi-
zation inside a bank, which is only accessed via its row buffer
from the outside. 79

147

Figure 7.3 What makes Rowhammer-based attacks [4, 72–76, 134, 135]
so severe is the fact that only adjacent memory rows (i.e.,
above and below the attacked memory region) are accessed
by the attacker. Due to the physical-to-DRAM mapping,
these physically neighbouring rows can reside in completely
separate parts of the address space. However, through electro-
magnetic coupling effects an adversary can influence these
otherwise inaccessible memory cells which can even result
in flipped bits in the attacked row. 80

Figure 7.4 Workflow of ouf bootloader extensions 83

Figure 8.1 CATT constrains bit flips to the process’ security domain. 87

Figure 9.1 The idea behind our side channel protection: An unpriv-
ileged user process (1) can exploit the timing side chan-
nel for kernel addresses through shared cache access in the
MMU paging caches (2). Our defense mitigates this by en-
forcing (3) a separation between different privilege levels
for randomized addresses (4). 104

Figure 9.2 Timing side-channel measurements we conducted before (blue)
and after (red) we applied LAZARUS. 109

Figure 9.3 SPEC2006 Benchmark Results 111

Figure 9.4 LMBench3 Benchmark Results 112

Figure 9.5 Phoronix Benchmark Suite 112

Figure 10.1 So far, practically all hardware components of modern system-
on-chips have been demonstrated to contain software-exploitable
vulnerabilities. In joint work [7] with colleagues as well as
industry collaborators we attempted to qualitatively evalu-
ate existing auditing tools for hardware designs based on
more than 30 bugs injected in different parts of the open-
source RTL implementation of an open-source RISC-V-based
hardware test-bed. 120

Figure 10.2 Our attack exploits a bug in the implementation of the mem-
ory bus of the PULPissimo SoC: by 2 spamming the bus
with invalid transactions, and 3 handling interrupts due to
memory access violations to avoid termination of the mali-
cious program, an adversary can make 4 malicious write
requests be set to operational. 122

C
L I S T O F TA B L E S

Table 4.1 Phoronix benchmark results. 44

Table 5.1 Overview of the specifications, resource requirements, and
results for the different kernel versions and data-flow passes
we used in our evaluation of K-Miner. 58

Table 5.2 Average and maximum memory usage of K-Miner 62

Table 6.1 Comparison of defense approaches ensuring the integrity
of page tables. In contrast to the related work, PT-Rand [2]
does not require hardware trust anchors such as Virtual-
Machine Monitors (VMMs) or Trusted-Execution Environ-
ments (TEEs). Since our scheme additionally does not re-
quire costly policy checks at run time, but is based on leakage-
resilient randomization instead it also incurs a low overhead
of only 0.22% on average. 70

Table 8.1 Model numbers of the vulnerable systems used for our eval-
uation. 92

Table 8.2 Technical specifications of the vulnerable systems used for
our evaluation. 94

Table 8.3 Results of our security evaluation. We executed the exploit
continuously on each system for more than 48 hours and
found that CATT mitigates real-world Rowhammer exploits
against the kernel. 94

Table 8.4 Result for individual stress tests from the Linux Test Project. 97

Table 11.1 Classification of existing attacks: when reviewing recent
hardware-oriented exploits that are possible from software,
we observe that many of them exploit hardware vulnerabili-
ties that affect one of the components we investigated in our
recent case studies (cf., Chapter 10). 130

149

B I B L I O G R A P H Y

[1] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza
Sadeghi. “JITGuard: Hardening Just-in-time Compilers with SGX.” In: Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. CCS. ACM. 2017. url: https://dl.acm.org/citation.cfm?id=
3134037.

[2] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.
“PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables.”
In: 24th Annual Network and Distributed System Security Symposium. NDSS.
2017. url: https://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2017/09/ndss2017_05B-4_Davi_paper.pdf.

[3] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. “K-
Miner: Uncovering Memory Corruption in Linux.” In: 25th Annual Network
and Distributed System Security Symposium. NDSS. 2018. url: https://wp.
internetsociety.org/ndss/wp- content/uploads/sites/25/2018/02/

ndss2018_05A-1_Gens_paper.pdf.

[4] Shaza Zeitouni, David Gens, and Ahmad-Reza Sadeghi. “It’s hammer time:
how to attack (rowhammer-based) DRAM-PUFs.” In: Proceedings of the 55th
Annual Design Automation Conference. ACM. 2018, p. 65. url: https://dl.
acm.org/citation.cfm?id=3196065.

[5] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. “Can’t touch this: Software-only mitigation against
rowhammer attacks targeting kernel memory.” In: Proceedings of the 26th
USENIX Security Symposium (Security). Vancouver, BC, Canada. USENIX Sec.
2017. url: https : / / www . usenix . org / conference / usenixsecurity17 /

technical-sessions/presentation/brasser.

[6] David Gens, Orlando Arias, Dean Sullivan, Christopher Liebchen, Yier Jin,
and Ahmad-Reza Sadeghi. “LAZARUS: Practical Side-Channel Resilient
Kernel-Space Randomization.” In: International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer. 2017, pp. 238–258. url: https:
//link.springer.com/chapter/10.1007/978-3-319-66332-6_11.

[7] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanu-
parthi, Hareesh Khattri, Jason Fung, Jeyavijayan Rajendran, and Ahmad-
Reza Sadeghi. “When a Patch is Not Enough - HardFails: Software-Exploitable
Hardware Bugs.” In: CoRR (2018). url: https://arxiv.org/abs/1812.
00197.

[8] Donald C Latham. “Department of defense trusted computer system evalu-
ation criteria.” In: Department of Defense (1986).

[9] Aleph One. “Smashing the Stack for Fun and Profit.” In: Phrack Magazine
49 (2000).

151

https://dl.acm.org/citation.cfm?id=3134037
https://dl.acm.org/citation.cfm?id=3134037
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/ndss2017_05B-4_Davi_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/ndss2017_05B-4_Davi_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_05A-1_Gens_paper.pdf
https://dl.acm.org/citation.cfm?id=3196065
https://dl.acm.org/citation.cfm?id=3196065
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/brasser
https://link.springer.com/chapter/10.1007/978-3-319-66332-6_11
https://link.springer.com/chapter/10.1007/978-3-319-66332-6_11
https://arxiv.org/abs/1812.00197
https://arxiv.org/abs/1812.00197

152 bibliography

[10] Hovav Shacham. “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86).” In: ACM SIGSAC Conference on
Computer and Communications Security. CCS. 2007.

[11] Victor Van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. “Memory errors:
the past, the present, and the future.” In: International Workshop on Recent
Advances in Intrusion Detection. Springer. 2012, pp. 86–106.

[12] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. “SoK: Eternal
War in Memory.” In: 34th IEEE Symposium on Security and Privacy. S&P.
2013.

[13] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. “Non-Control-Data Attacks Are Realistic Threats.” In: 14th USENIX
Security Symposium. USENIX Sec. 2005.

[14] Ralf Hund, Thorsten Holz, and Felix C Freiling. “Return-Oriented Rootk-
its: Bypassing Kernel Code Integrity Protection Mechanisms.” In: USENIX
Security Symposium. 2009, pp. 383–398.

[15] Jidong Xiao, Hai Huang, and Haining Wang. “Kernel Data Attack Is a Re-
alistic Security Threat.” In: International Conference on Security and Privacy in
Communication Systems. Springer. 2015, pp. 135–154.

[16] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi Xie, Yuanyuan Zhang,
and Dawu Gu. “From collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel.” In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM. 2015, pp. 414–
425.

[17] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. “Just-In-Time Code Reuse: On
the Effectiveness of Fine-Grained Address Space Layout Randomization.”
In: 34th IEEE Symposium on Security and Privacy. S&P. 2013.

[18] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-
Reza Sadeghi, and Thorsten Holz. “Counterfeit Object-oriented Program-
ming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applica-
tions.” In: 36th IEEE Symposium on Security and Privacy. S&P. 2015.

[19] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger, Wenke
Lee, and Michael Backes. “Unleashing use-before-initialization vulnerabili-
ties in the Linux kernel using targeted stack spraying.” In: NDSS. 2017.

[20] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
“Authentication in distributed systems: Theory and practice.” In: ACM Trans-
actions on Computer Systems (TOCS) 10.4 (1992), pp. 265–310.

[21] Stanley R Ames Jr, Morrie Gasser, and Roger R Schell. “Security kernel
design and implementation: An introduction.” In: IEEE computer 16.7 (1983),
pp. 14–22.

[22] Ralf Hund, Thorsten Holz, and Felix C. Freiling. “Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms.” In: 18th USENIX
Security Symposium. USENIX Sec. 2009.

bibliography 153

[23] MWR Labs. MWR Labs Pwn2Own 2013 Write-up - Kernel Exploit. http://
labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-

write-up---kernel-exploit. 2013.

[24] Sebastien Renaud. Technical Analysis of the Windows Win32K.sys Keyboard Lay-
out Stuxnet Exploit. http://web.archive.org/web/20141015182927/http:
//www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_

Exploit_CVE-2010-2743.php. 2010.

[25] Stefan Esser. “iOS Kernel Exploitation.” In: Blackhat Europe. BH EU. 2011.

[26] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David
Wagner. “A survey of mobile malware in the wild.” In: Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile devices. ACM.
2011, pp. 3–14.

[27] MITRE. CVE-2016-5195.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195.
2016.

[28] Dan Goodin. Android phones rooted by "most serious" Linux escalation bug ever.
https://arstechnica.com/information-technology/2016/10/android-

phones-rooted-by-most-serious-linux-escalation-bug-ever. 2016.

[29] Ian Beer. iOS/MacOS kernel double free due to IOSurfaceRootUserClient not re-
specting MIG ownership rules. https://bugs.chromium.org/p/project-
zero/issues/detail?id=1417. 2017.

[30] Dan Rosenberg. Reflections on Trusting TrustZone. https://www.blackhat.
com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-

TrustZone.pdf. 2014.

[31] Charles Holmes Josh Thomas Nathan Keltner. Reflections on Trusting Trust-
Zone. https://pacsec.jp/psj14/PSJ2014_Josh_PacSec2014-v1.pdf. 2014.

[32] Gal Beniamini. QSEE Privilege Escalation Vulnerabilitiy. http://bits-please.
blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html. 2015.

[33] Sunshine LLC. TRUSTNONE. http://theroot.ninja/disclosures/TRUSTNONE_
1.0-11282015.pdf. 2015.

[34] Di Shen. Exploiting TrustZone on Android. https : / / www . blackhat . com /

docs/us- 15/materials/us- 15- Shen- Attacking- Your- Trusted- Core-

Exploiting-Trustzone-On-Android-wp.pdf. 2015.

[35] Gal Beniamini. QSEE Privilege Escalation Vulnerabilitiy. http://bits-please.
blogspot . com / 2016 / 05 / qsee - privilege - escalation - vulnerability .

html. 2016.

[36] Lev Aronsky. “KNOXout - bypassing Samsung KNOX.” In: (2016).

[37] Nick Stephens. Behind the PWN of a TrustZone. https://www.slideshare.
net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-

with-nose. 2016.

[38] Tencent. Defeating Samsung KNOX with Zero Privilege. https://www.blackhat.
com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-

Zero-Privilege-wp.pdf. 2017.

http://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit
http://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit
http://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit
http://web.archive.org/web/20141015182927/http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://web.archive.org/web/20141015182927/http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://web.archive.org/web/20141015182927/http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://arstechnica.com/information-technology/2016/10/android-phones-rooted-by-most-serious-linux-escalation-bug-ever
https://arstechnica.com/information-technology/2016/10/android-phones-rooted-by-most-serious-linux-escalation-bug-ever
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://bugs.chromium.org/p/project-zero/issues/detail?id=1417
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://pacsec.jp/psj14/PSJ2014_Josh_PacSec2014-v1.pdf
http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html
http://bits-please.blogspot.de/2015/08/full-trustzone-exploit-for-msm8974.html
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
http://theroot.ninja/disclosures/TRUSTNONE_1.0-11282015.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.slideshare.net/GeekPwnKeen/nick-stephenshow-does-someone-unlock-your-phone-with-nose
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Shen-Defeating-Samsung-KNOX-With-Zero-Privilege-wp.pdf

154 bibliography

[39] Project Zero. Lifting the Hyper Visor. https://googleprojectzero.blogspot.
de/2017/02/lifting-hyper-visor-bypassing-samsungs.html. 2017.

[40] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow
integrity.” In: ACM SIGSAC Conference on Computer and Communications Se-
curity. CCS. 2005.

[41] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. “Control-flow
integrity principles, implementations, and applications.” In: ACM Transac-
tions on Information System Security 13 (2009).

[42] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. “Hardware-Assisted
Fine-Grained Control-Flow Integrity: Towards Efficient Protection of Em-
bedded Systems Against Software Exploitation.” In: Design Automation Con-
ference. DAC. 2014.

[43] Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. “Fine-Grained
Control-Flow Integrity for Kernel Software.” In: 1st IEEE European Sympo-
sium on Security and Privacy. Euro S&P. 2016.

[44] Lucas Davi, Alexandra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten
Holz, Ralf Hund, Stefan Nürnberger, and Ahmad-Reza Sadeghi. “MoCFI: A
Framework to Mitigate Control-Flow Attacks on Smartphones.” In: 19th An-
nual Network and Distributed System Security Symposium. NDSS. 2012.

[45] J. Criswell, N. Dautenhahn, and V. Adve. “KCoFI: Complete Control-Flow
Integrity for Commodity Operating System Kernels.” In: 35th IEEE Sympo-
sium on Security and Privacy. S&P. 2014.

[46] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R.
Sekar, and Dawn Song. “Code-Pointer Integrity.” In: 11th USENIX Sympo-
sium on Operating Systems Design and Implementation. OSDI. 2014.

[47] J. Hiser, A. Nguyen, M. Co, M. Hall, and J.W. Davidson. “ILR: Where’d My
Gadgets Go.” In: 33rd IEEE Symposium on Security and Privacy. S&P. 2012.

[48] Martin Abadi, Mihai Budiu, Úlfar Erlingsson, George C. Necula, and Michael
Vrable. “XFI: Software Guards for System Address Spaces.” In: 7th USENIX
Symposium on Operating Systems Design and Implementation. OSDI. 2006.

[49] Miguel Castro, Manuel Costa, and Tim Harris. “Securing Software by En-
forcing Data-flow Integrity.” In: 7th USENIX Symposium on Operating Sys-
tems Design and Implementation. OSDI. 2006.

[50] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning.
“Address Space Layout Permutation (ASLP): Towards Fine-Grained Ran-
domization of Commodity Software.” In: 22nd Annual Computer Security
Applications Conference. ACSAC. 2006.

[51] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. “Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-place
Code Randomization.” In: 33rd IEEE Symposium on Security and Privacy. S&P.
2012.

[52] Aditi Gupta, Sam Kerr, MichaelS. Kirkpatrick, and Elisa Bertino. “Marlin:
A Fine Grained Randomization Approach to Defend against ROP Attacks.”
In: Network and System Security. Lecture Notes in Computer Science. 2013.

https://googleprojectzero.blogspot.de/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.de/2017/02/lifting-hyper-visor-bypassing-samsungs.html

bibliography 155

[53] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo
Kim, and Wenke Lee. “ASLR-Guard: Stopping Address Space Leakage for
Code Reuse Attacks.” In: ACM SIGSAC Conference on Computer and Commu-
nications Security. CCS. 2015.

[54] Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan
Nürnberger, and Jannik Pewny. “You Can Run but You Can’t Read: Prevent-
ing Disclosure Exploits in Executable Code.” In: ACM SIGSAC Conference on
Computer and Communications Security. CCS. 2014.

[55] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per
Larsen, Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. “Readac-
tor: Practical Code Randomization Resilient to Memory Disclosure.” In:
36th IEEE Symposium on Security and Privacy. S&P. 2015.

[56] Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per
Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sut-
ter, and Michael Franz. “It’s a TRaP: Table Randomization and Protection
against Function-Reuse Attacks.” In: ACM SIGSAC Conference on Computer
and Communications Security. CCS. 2015.

[57] Jannik Pewny and Thorsten Holz. “Control-flow Restrictor: Compiler-based
CFI for iOS.” In: 29th Annual Computer Security Applications Conference. AC-
SAC. 2013.

[58] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. “Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM.” In: USENIX Security Symposium. 2014,
pp. 941–955.

[59] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. “CFIMon: Detecting Vi-
olation of Control Flow Integrity Using Performance Counters.” In: IEEE/I-
FIP Conference on Dependable Systems and Networks. DSN. 2012.

[60] Orlando Arias, Lucas Davi, Matthias Hanreich, Yier Jin, Patrick Koeberl, De-
bayan Paul, Ahmad-Reza Sadeghi, and Dean Sullivan. “HAFIX: Hardware-
Assisted Flow Integrity Extension.” In: 52nd Design Automation Conference.
DAC. 2015.

[61] Intel Corporation. Control-flow enforcement technology preview. https://software.
intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-

technology-preview.pdf. 2016.

[62] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. “MemJam: A false
dependency attack against constant-time crypto implementations in SGX.”
In: Cryptographers’ Track at the RSA Conference. 10.1007/978-3-319-76953-
0_2. Springer. 2018, pp. 21–44.

[63] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. “Flipping bits in mem-
ory without accessing them: An experimental study of DRAM disturbance
errors.” In: ACM SIGARCH Computer Architecture News. Vol. 42. 3. IEEE
Press. 2014, pp. 361–372.

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
10.1007/978-3-319-76953-0_2
10.1007/978-3-319-76953-0_2

156 bibliography

[64] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer
bug to gain kernel privileges.” In: Black Hat 15 (2015).

[65] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “CLKSCREW:
exposing the perils of security-oblivious energy management.” In: (2017),
pp. 1057–1074.

[66] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. “Meltdown.” In: USENIX Security (2018).

[67] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Foreshadow: Extracting
the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execu-
tion.” In: USENIX Security 18 (2018).

[68] Hong Hu, Shweta Shinde, Adrian Sendroiu, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. “Data-Oriented Programming: On the Expres-
siveness of Non-Control Data Attacks.” In: 37th IEEE Symposium on Security
and Privacy. S&P. 2016.

[69] David Gens, Simon Schmitt, Lucas Davi, and Ahmad Sadeghi. K-Miner
Source Code.
https://github.com/ssl-tud/k-miner. 2017.

[70] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and
Insik Shin. “Razzer: Finding Kernel Race Bugs through Fuzzing.” In: 40th
IEEE Symposium on Security and Privacy. IEEE. 2019.

[71] Mark Lanteigne. How Rowhammer Could Be Used to Exploit Weaknesses in
Computer Hardware. https://www.thirdio.com/rowhammer.pdf. 2016.

[72] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM rowhammer
bug to gain kernel privileges.” In: Black Hat (2015).

[73] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer Attacks.”
In: IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). HOST. 2016.

[74] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel Gruss,
Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh Razavi, and Cris-
tiano Giuffrida. “Drammer: Deterministic Rowhammer Attacks on Com-
modity Mobile Platforms.” In: ACM SIGSAC Conference on Computer and
Communications Security. CCS. 2016.

[75] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowhammer. js:
A remote software-induced fault attack in javascript.” In: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer. 2016, pp. 300–321.

[76] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. “One
Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege
Escalation.” In: USENIX Security Symposium. 2016, pp. 19–35.

[77] Andrei Tatar, Radhesh Krishnan, Elias Athanasopoulos, Cristiano Giuffrida,
Herbert Bos, and Kaveh Razavi. “Throwhammer: Rowhammer Attacks over
the Network and Defenses.” In: 2018 USENIX Annual Technical Conference,
(USENIX ATC18). USENIX Association. 2018.

https://github.com/ssl-tud/k-miner
https://www.thirdio.com/rowhammer.pdf

bibliography 157

[78] Christoph Baumann and Thorsten Bormer. “Verifying the PikeOS microker-
nel: First results in the Verisoft XT Avionics project.” In: Doctoral Symposium
on Systems Software Verification (DS SSV’09) Real Software, Real Problems, Real
Solutions. 2009, p. 20.

[79] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. “seL4: Formal verification of an OS kernel.” In: Pro-
ceedings of the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM. 2009, pp. 207–220.

[80] R. Hund, C. Willems, and T. Holz. “Practical Timing Side Channel Attacks
against Kernel Space ASLR.” In: 34th IEEE Symposium on Security and Pri-
vacy. S&P. 2013.

[81] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. “Jump
Over ASLR: Attacking Branch Predictors to Bypass ASLR.” In: IEEE/ACM
International Symposium on Microarchitecture (MICRO). 2016.

[82] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel Address
Space Layout Randomization with Intel TSX.” In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM.
2016, pp. 380–392.

[83] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan
Mangard. “Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel
ASLR.” In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2016, pp. 368–379.

[84] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine
Maurice, and Stefan Mangard. “Kaslr is dead: long live kaslr.” In: Interna-
tional Symposium on Engineering Secure Software and Systems. Springer. 2017,
pp. 161–176.

[85] IEEE Computer Society - Austin Joint Working Group. 1003.1-2008 - IEEE
Standard for Information Technology - Portable Operating System Interface (POSIX(R)).
http://standards.ieee.org/findstds/standard/1003.1- 2008.html.
2008.

[86] Andrew S Tanenbaum and Albert S Woodhull. Operating systems: design and
implementation. Vol. 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

[87] National Security Agency. Security-Enhanced Linux (SELinux).

[88] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. “A Secure
Environment for Untrusted Helper Applications.” In: 6th USENIX Security
Symposium. USENIX Sec. 1996.

[89] Jonathan Corbet. Yet another new approach to seccomp. https://lwn.net/
Articles/475043/. 2012.

[90] PaX. PaX Address Space Layout Randomization. 2003.

[91] Georg Hotz. towelroot by geohot. https://towelroot.com. 2015.

[92] Tarjei Mandt. Attacking the iOS Kernel: A Look at "evasi0n". http://www.
nislab.no/content/download/38610/481190/file/NISlecture201303.pdf.
2013.

http://standards.ieee.org/findstds/standard/1003.1-2008.html
https://lwn.net/Articles/475043/
https://lwn.net/Articles/475043/
https://towelroot.com
http://www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf
http://www.nislab.no/content/download/38610/481190/file/NISlecture201303.pdf

158 bibliography

[93] MacObserver. Bungie Recalls Myth II: Installer Error. https://www.macobserver.
com/news/98/december/981229/bungierecall.html. 1998.

[94] PCWorld. Scary Steam for Linux bug erases all the personal files on your PC.
https://www.pcworld.com/article/2871653/scary-steam-for-linux-

bug-erases-all-the-personal-files-on-your-pc.html. 2015.

[95] Forbes. Microsoft Warns Windows 10 Update Deletes Personal Data. https://
www.forbes.com/sites/gordonkelly/2018/10/06/microsoft-windows-10-

update-lost-data-upgrade-windows-7-windows-xp-free-upgrade/. 2018.

[96] Benjamin Mayo. Apple officially acknowledges reports of personal music files
being deleted. https : / / 9to5mac . com / 2016 / 05 / 13 / apple - officially -

acknowledges - reports - of - personal - music - files - being - deleted -

itunes-update-coming-next-week-to-hopefully-fix-the-bug/. 2016.

[97] Tom Phillips. Fallout 76 beta extended after bug which deleted 50GB data. https:
//www.eurogamer.net/articles/2018-10-31-fallout-76-beta-extended-

after-bug-which-deleted-50gb-data. 2018.

[98] Steve Christey and Robert A Martin. “Vulnerability type distributions in
CVE.” In: Mitre report, May (2007).

[99] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich,
and M Frans Kaashoek. “Linux kernel vulnerabilities: State-of-the-art de-
fenses and open problems.” In: Proceedings of the Second Asia-Pacific Work-
shop on Systems. ACM. 2011, p. 5.

[100] ANSI Committee X3J11. ANSI C / C89 / ISO C90. http://port70.net/~nsz/
c/c89/c89-draft.html. 1989.

[101] ISO WG14. ISO/IEC C99. http://www.open-std.org/JTC1/SC22/WG14/www/
docs/n1256.pdf. 1999.

[102] ISO WG14. ISO/IEC C11. http://www.open-std.org/JTC1/SC22/WG14/www/
docs/n1570.pdf. 2011.

[103] Sergey Bratus, Michael Locasto, Meredith Patterson, Len Sassaman, and
Anna Shubina. “Exploit programming: From buffer overflows to weird ma-
chines and theory of computation.” In: USENIX :login: (2011).

[104] Thomas F Dullien. “Weird machines, exploitability, and provable unexploitabil-
ity.” In: IEEE Transactions on Emerging Topics in Computing (2017).

[105] Ralf Hund. “Analysis and Retrofitting of Security Properties for Proprietary
Software Systems.” PhD thesis. Ruhr-Universität Bochum, 2013.

[106] Lucas Davi and Ahmad-Reza Sadeghi. Building Secure Defenses Against Code-
Reuse Attacks. Springer, 2015.

[107] Lucas Vincenzo Davi. “Code-reuse attacks and defenses.” PhD thesis. Tech-
nische Universität Darmstadt, 2015.

[108] Felix Schuster. “Securing application software in modern adversarial set-
tings.” PhD thesis. Ruhr-Universität Bochum, 2016.

[109] Robert Gawlik. “On the impact of memory corruption vulnerabilities in
client applications.” PhD thesis. Ruhr-Universität Bochum, 2016.

https://www.macobserver.com/news/98/december/981229/bungierecall.html
https://www.macobserver.com/news/98/december/981229/bungierecall.html
https://www.pcworld.com/article/2871653/scary-steam-for-linux-bug-erases-all-the-personal-files-on-your-pc.html
https://www.pcworld.com/article/2871653/scary-steam-for-linux-bug-erases-all-the-personal-files-on-your-pc.html
https://www.forbes.com/sites/gordonkelly/2018/10/06/microsoft-windows-10-update-lost-data-upgrade-windows-7-windows-xp-free-upgrade/
https://www.forbes.com/sites/gordonkelly/2018/10/06/microsoft-windows-10-update-lost-data-upgrade-windows-7-windows-xp-free-upgrade/
https://www.forbes.com/sites/gordonkelly/2018/10/06/microsoft-windows-10-update-lost-data-upgrade-windows-7-windows-xp-free-upgrade/
https://9to5mac.com/2016/05/13/apple-officially-acknowledges-reports-of-personal-music-files-being-deleted-itunes-update-coming-next-week-to-hopefully-fix-the-bug/
https://9to5mac.com/2016/05/13/apple-officially-acknowledges-reports-of-personal-music-files-being-deleted-itunes-update-coming-next-week-to-hopefully-fix-the-bug/
https://9to5mac.com/2016/05/13/apple-officially-acknowledges-reports-of-personal-music-files-being-deleted-itunes-update-coming-next-week-to-hopefully-fix-the-bug/
https://www.eurogamer.net/articles/2018-10-31-fallout-76-beta-extended-after-bug-which-deleted-50gb-data
https://www.eurogamer.net/articles/2018-10-31-fallout-76-beta-extended-after-bug-which-deleted-50gb-data
https://www.eurogamer.net/articles/2018-10-31-fallout-76-beta-extended-after-bug-which-deleted-50gb-data
http://port70.net/~nsz/c/c89/c89-draft.html
http://port70.net/~nsz/c/c89/c89-draft.html
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf

bibliography 159

[110] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. “SoK:
Automated Software Diversity.” In: 35th IEEE Symposium on Security and
Privacy. S&P. 2014.

[111] Christopher Liebchen. “Advancing Memory-corruption Attacks and De-
fenses.” PhD thesis. Technische Universität Darmstadt, 2018.

[112] OpenBSD. OpenBSD 3.3. OpenBSD. 2003.

[113] Microsoft. Data Execution Prevention (DEP). http://support.microsoft.
com/kb/875352/EN-US/. 2006.

[114] Solar Designer. Getting aroudn non-executable stack (and fix). https://seclists.
org/bugtraq/1997/Aug/63. 1997.

[115] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and
M. Winandy. “Return-oriented programming without returns.” In: ACM
SIGSAC Conference on Computer and Communications Security. CCS. 2010.

[116] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. “Jump-
oriented programming: a new class of code-reuse attack.” In: 6th ACM
Symposium on Information, Computer and Communications Security. ASIACCS.
2011.

[117] Erik Bosman and Herbert Bos. “Framing Signals—A Return to Portable
Shellcode.” In: 35th IEEE Symposium on Security and Privacy. S&P. 2014.

[118] Andrea Bittau, Adam Belay, Ali José Mashtizadeh, David Mazières, and
Dan Boneh. “Hacking Blind.” In: 35th IEEE Symposium on Security and Pri-
vacy. S&P. 2014.

[119] Stephanie Forrest, Anil Somayaji, and David H. Ackley. “Building Diverse
Computer Systems.” In: 6th Workshop on Hot Topics in Operating Systems.
HotOS. 1997.

[120] Fermin J. Serna. “The Info Leak Era on Software Exploitation.” In: Blackhat
USA. BH US. 2012.

[121] Xiaobo Chen and Dan Caselden. CVE-2013-3346/5065 Technical Analysis. http:
//www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-

33465065-technical-analysis.html. 2013.

[122] Nicolas Joly. Advanced Exploitation of Internet Explorer 10 / Windows 8 Over-
flow (Pwn2Own 2013). http://www.vupen.com/blog/20130522.Advanced_
Exploitation_of_IE10_Windows8_Pwn2Own_2013.php. 2013.

[123] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. “Bi-
nary stirring: self-randomizing instruction addresses of legacy x86 binary
code.” In: ACM SIGSAC Conference on Computer and Communications Security.
CCS. 2012.

[124] Isaac Evans, Samuel Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. “Missing the Point(er): On the Effectiveness of Code Pointer In-
tegrity.” In: 36th IEEE Symposium on Security and Privacy. S&P. 2015.

http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-33465065-technical-analysis.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-33465065-technical-analysis.html
http://www.fireeye.com/blog/technical/cyber-exploits/2013/12/cve-2013-33465065-technical-analysis.html
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php
http://www.vupen.com/blog/20130522.Advanced_Exploitation_of_IE10_Windows8_Pwn2Own_2013.php

160 bibliography

[125] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose.
“Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-
Flow Integrity Protection.” In: 23rd USENIX Security Symposium. USENIX
Sec. 2014.

[126] Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas
R. Gross. “Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity.” In: 24th USENIX Security Symposium. USENIX Sec. 2015.

[127] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
“SoftBound: Highly Compatible and Complete Spatial Memory Safety for
C.” In: 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI. 2009.

[128] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
“CETS: compiler enforced temporal safety for C.” In: International Sympo-
sium on Memory Management. ISMM. 2010.

[129] Xiaoyu Ruan. Platform Embedded Security Technology Revealed: Safeguarding
the Future of Computing with Intel Embedded Security and Management Engine.
Apress, 2014.

[130] Scott E Thompson and Srivatsan Parthasarathy. “Moore’s law: the future of
Si microelectronics.” In: Materials today 9.6 (2006), pp. 20–25.

[131] Dean M Tullsen, Susan J Eggers, and Henry M Levy. “Simultaneous multi-
threading: Maximizing on-chip parallelism.” In: ACM SIGARCH Computer
Architecture News. Vol. 23. 2. ACM. 1995, pp. 392–403.

[132] Wm A Wulf and Sally A McKee. “Hitting the memory wall: implications
of the obvious.” In: ACM SIGARCH computer architecture news 23.1 (1995),
pp. 20–24.

[133] Rafal Wojtczuk. TSX improves timing attacks against KASLR. https://labs.
bromium . com / 2014 / 10 / 27 / tsx - improves - timing - attacks - against -

kaslr/. 2014.

[134] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,
and Herbert Bos. “Flip Feng Shui: Hammering a Needle in the Software
Stack.” In: 25th USENIX Security Symposium. USENIX Sec. 2016.

[135] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation Vector.”
In: 37th IEEE Symposium on Security and Privacy. S&P. 2016.

[136] ARM. Security technology building a secure system using trustzone technology
(white paper). http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.

pdf. 2009.

[137] Positive Technologies. Vulnerability enabling disclosure of Intel ME encryption
keys. http: // blog. ptsecurity.com /2018 /09/ intel- me - encryption-

vulnerability.html. 2018.

[138] NIST. Buffer Overflow in BootROM Recovery Mode of NVIDIA Tegra mobile
processors. https://nvd.nist.gov/vuln/detail/CVE-2018-6242. 2018.

https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://blog.ptsecurity.com/2018/09/intel-me-encryption-vulnerability.html
http://blog.ptsecurity.com/2018/09/intel-me-encryption-vulnerability.html
https://nvd.nist.gov/vuln/detail/CVE-2018-6242

bibliography 161

[139] How to hack a turned off computer. https://www.blackhat.com/docs/eu-
17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-

Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf. 2017.

[140] Cease and DeSwitch - Fusée Gelée. https://github.com/Cease-and-DeSwitch/
fusee-launcher. 2018.

[141] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. “Spectre Attacks: Exploiting Speculative Execution.” In: CoRR
(2018). url: http://arxiv.org/abs/1801.01203.

[142] Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture.” In: USENIX winter. Vol. 46. 1993.

[143] Guang Gong. Pwn a Nexus Device With a Single Vulnerability. https : / /

cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_

a_single_vulnerability.pdf. 2016.

[144] Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski.
“Exploiting and Protecting Dynamic Code Generation.” In: 22nd Annual Net-
work and Distributed System Security Symposium. NDSS. 2015.

[145] Mozilla. W xor X JIT-code enabled in Firefox. https://jandemooij.nl/blog/
2015/12/29/wx-jit-code-enabled-in-firefox. 2015.

[146] Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Geor-
gios Portokalidis, and Sotiris Ioannidis. “The Devil is in the Constants: By-
passing Defenses in Browser JIT Engines.” In: 22nd Annual Network and Dis-
tributed System Security Symposium. NDSS. 2015.

[147] Dion Blazakis. “Interpreter exploitation: Pointer inference and JIT spray-
ing.” In: Blackhat DC. BH DC. 2010.

[148] Ben Niu and Gang Tan. “RockJIT: Securing Just-In-Time Compilation Using
Modular Control-Flow Integrity.” In: ACM SIGSAC Conference on Computer
and Communications Security. CCS. 2014.

[149] Giorgi Maisuradze, Michael Backes, and Christian Rossow. “What Cannot
Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP De-
fenses.” In: 25th USENIX Security Symposium. USENIX Sec. 2016.

[150] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. “Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM.” In: 23rd USENIX Security Symposium.
USENIX Sec. 2014.

[151] Ben Niu and Gang Tan. “Modular Control-flow Integrity.” In: 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI. 2014.

[152] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christo-
pher Liebchen, Marco Negro, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
“Losing Control: On the Effectiveness of Control-Flow Integrity under Stack
Attacks.” In: ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS. 2015.

https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Goryachy-How-To-Hack-A-Turned-Off-Computer-Or-Running-Unsigned-Code-In-Intel-Management-Engine.pdf
https://github.com/Cease-and-DeSwitch/fusee-launcher
https://github.com/Cease-and-DeSwitch/fusee-launcher
http://arxiv.org/abs/1801.01203
https://cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_a_single_vulnerability.pdf
https://cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_a_single_vulnerability.pdf
https://cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_a_single_vulnerability.pdf
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox

162 bibliography

[153] Microsoft. ChakraCore. https://github.com/Microsoft/ChakraCore. 2015.

[154] Theori. Chakra JIT CFG Bypass. http://theori.io/research/chakra-jit-
cfg-bypass. 2016.

[155] Matt Miller. Mitigating arbitrary native code execution in Microsoft Edge. https:
//blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-

native-code-execution/. 2017.

[156] Microsoft. Control Flow Guard. http : / / msdn . microsoft . com / en - us /

library/Dn919635.aspx. 2015.

[157] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual. http://
www- ssl.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html. 2015.

[158] ARM. ARM Architecture Reference Manual. http://silver.arm.com/download/
ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_

armv8_arm.pdf. 2015.

[159] Vasileios P Kemerlis, Georgios Portokalidis, and Angelos D Keromytis. “kGuard:
Lightweight Kernel Protection against Return-to-User Attacks.” In: USENIX
Security Symposium. Vol. 16. 2012.

[160] PaX Team. RAP: RIP ROP. GRSecurity. 2015.

[161] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis.
“ret2dir: Rethinking Kernel Isolation.” In: USENIX Security. 2014, pp. 957–
972.

[162] Jake Edge. Kernel address space layout randomization. http : / / lwn . net /

Articles/569635. 2013.

[163] Ken Johnson and Matt Miller. Exploit mitigation improvements in Windows 8.
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_

Miller_Exploit_Mitigation_Slides.pdf. 2012.

[164] Apple Inc. OS X Mountain Lion Core Technologies Overview.
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_

Core_Technologies_Overview.pdf. 2012.

[165] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Poly-
chronakis, and Vasileios P Kemerlis. “kRˆ X: Comprehensive Kernel Protec-
tion against Just-In-Time Code Reuse.” In: Proceedings of the Twelfth European
Conference on Computer Systems. ACM. 2017, pp. 420–436.

[166] Tilo Müller, Felix C. Freiling, and Andreas Dewald. “TRESOR Runs Encryp-
tion Securely Outside RAM.” In: 20th USENIX Security Symposium. USENIX
Sec. 2011.

[167] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. “Trans-
parent ROP Exploit Mitigation Using Indirect Branch Tracing.” In: 22nd
USENIX Security Symposium. USENIX Sec. 2013.

[168] Larry McVoy and Carl Staelin. “Lmbench: Portable Tools for Performance
Analysis.” In: USENIX Technical Conference. ATEC. 1996.

[169] Phoronix. Phoronix Test Suite. http://www.phoronix- test- suite.com/.
2016.

https://github.com/Microsoft/ChakraCore
http://theori.io/research/chakra-jit-cfg-bypass
http://theori.io/research/chakra-jit-cfg-bypass
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
http://msdn.microsoft.com/en-us/library/Dn919635.aspx
http://msdn.microsoft.com/en-us/library/Dn919635.aspx
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
http://silver.arm.com/download/ARM_and_AMBA_Architecture/AR150-DA-70000-r0p0-00bet9/DDI0487A_h_armv8_arm.pdf
http://lwn.net/Articles/569635
http://lwn.net/Articles/569635
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://movies.apple.com/media/us/osx/2012/docs/OSX_MountainLion_Core_Technologies_Overview.pdf
http://www.phoronix-test-suite.com/

bibliography 163

[170] LTP developer. The Linux Test Project. https : / / linux - test - project .

github.io/. 2016.

[171] Cristiano Giuffrida, Anton Kuijsten, and Andrew S Tanenbaum. “Enhanced
Operating System Security Through Efficient and Fine-grained Address
Space Randomization.” In: 21st USENIX Security Symposium. USENIX Sec.
2012.

[172] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo
Kim, and Wenke Lee. “Enforcing Kernel Security Invariants with Data Flow
Integrity.” In: 23rd Annual Network and Distributed System Security Sympo-
sium. NDSS. 2016.

[173] Ahmed Azab, Kirk Swidowski, Rohan Bhutkar, Jia Ma, Wenbo Shen, Ruowen
Wang, and Peng Ning. “SKEE: A lightweight Secure Kernel-level Execution
Environment for ARM.” In: 23rd Annual Network and Distributed System Se-
curity Symposium. NDSS. 2016.

[174] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell, and
Vikram Adve. “Nested kernel: An operating system architecture for intra-
kernel privilege separation.” In: ACM SIGPLAN Notices 50.4 (2015), pp. 191–
206.

[175] Mohit Tiwari, Jason K Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T Chong, and Timothy Sherwood.
“Crafting a usable microkernel, processor, and I/O system with strict and
provable information flow security.” In: ACM SIGARCH Computer Architec-
ture News. Vol. 39. 3. ACM. 2011, pp. 189–200.

[176] Gerwin Klein. “Operating System Verification — An Overview.” In: Sādhanā
34 (2009), pp. 27–69.

[177] Dave Jones. “Trinity: A system call fuzzer.” In: Proceedings of the 13th Ottawa
Linux Symposium, pages. 2011.

[178] Mateusz Jurczyk and Gynvael Coldwind. “Identifying and exploiting win-
dows kernel race conditions via memory access patterns.” In: (2013).

[179] David Drysdale. Coverage-guided kernel fuzzing with syzkaller.
https://lwn.net/Articles/677764/. 2016.

[180] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. “The ASTRÉE analyzer.” In: Eu-
ropean Symposium on Programming. Springer. 2005, pp. 21–30.

[181] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. Data flow analysis:
theory and practice. CRC Press, 2009.

[182] John B Kam and Jeffrey D Ullman. “Monotone data flow analysis frame-
works.” In: Acta Informatica 7.3 (1977), pp. 305–317.

[183] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise interprocedural
dataflow analysis via graph reachability.” In: Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages. ACM.
1995, pp. 49–61.

https://linux-test-project.github.io/
https://linux-test-project.github.io/
https://lwn.net/Articles/677764/

164 bibliography

[184] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.
“Documenting and automating collateral evolutions in Linux device drivers.”
In: Acm sigops operating systems review. Vol. 42. 4. ACM. 2008, pp. 247–260.

[185] Dan Carpenter. Smatch - The Source Matcher. http://smatch.sourceforge.
net. 2009.

[186] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. “Type-
Chef: toward type checking# ifdef variability in C.” In: Proceedings of the 2nd
International Workshop on Feature-Oriented Software Development. ACM. 2010,
pp. 25–32.

[187] Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and Mayur
Naik. “APISan: Sanitizing API Usages through Semantic Cross-checking.”
In: 25th USENIX Security Symposium (USENIX Security 16). USENIX Associ-
ation, pp. 363–378.

[188] Iago Abal, Claus Brabrand, and Andrzej Wąsowski. “Effective Bug Finding
in C Programs with Shape and Effect Abstractions.” In: International Confer-
ence on Verification, Model Checking, and Abstract Interpretation. Springer. 2017,
pp. 34–54.

[189] Jonathan Corbet and Greg Kroah-Hartman. Linux Kernel Development Re-
port 2016. http://go.linuxfoundation.org/linux-kernel-development-
report-2016. 2016.

[190] Michael Hind. “Pointer analysis: Haven’t we solved this problem yet?” In:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering. ACM. 2001, pp. 54–61.

[191] Ben Hardekopf and Calvin Lin. “Flow-sensitive pointer analysis for mil-
lions of lines of code.” In: Code Generation and Optimization (CGO), 2011 9th
Annual IEEE/ACM International Symposium on. IEEE. 2011, pp. 289–298.

[192] Teck Bok Tok, Samuel Z Guyer, and Calvin Lin. “Efficient flow-sensitive
interprocedural data-flow analysis in the presence of pointers.” In: Interna-
tional Conference on Compiler Construction. Springer. 2006, pp. 17–31.

[193] Greg Kroah-Hartman. Signed Kernel Modules. http://www.linuxjournal.
com/article/7130. 2004.

[194] Microsof. Kernel-Mode Code Signing Walkthrough. https://msdn.microsoft.
com/en-us/library/windows/hardware/dn653569(v=vs.85).aspx. 2007.

[195] Apple. Kernel Extensions. https://developer.apple.com/library/content/
documentation /Security / Conceptual/ System_ Integrity _ Protection _

Guide/KernelExtensions/KernelExtensions.html. 2014.

[196] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation.” In: IEEE/ACM International
Symposium on Code Generation and Optimization. CGO. 2004.

[197] Yulei Sui and Jingling Xue. “SVF: interprocedural static value-flow analy-
sis in LLVM.” In: Proceedings of the 25th International Conference on Compiler
Construction. ACM. 2016, pp. 265–266.

[198] Behan Webster. LLVMLinux. http://llvm.linuxfoundation.org. 2014.

http://smatch.sourceforge.net
http://smatch.sourceforge.net
http://go.linuxfoundation.org/linux-kernel-development-report-2016
http://go.linuxfoundation.org/linux-kernel-development-report-2016
http://www.linuxjournal.com/article/7130
http://www.linuxjournal.com/article/7130
https://msdn.microsoft.com/en-us/library/windows/hardware/dn653569(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/dn653569(v=vs.85).aspx
https://developer.apple.com/library/content/documentation/Security/Conceptual/System_Integrity_Protection_Guide/KernelExtensions/KernelExtensions.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/System_Integrity_Protection_Guide/KernelExtensions/KernelExtensions.html
https://developer.apple.com/library/content/documentation/Security/Conceptual/System_Integrity_Protection_Guide/KernelExtensions/KernelExtensions.html
http://llvm.linuxfoundation.org

bibliography 165

[199] Woerner Trevor. How the Linux Kernel initcall Mechanism Works. http://www.
compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.

html. 2003.

[200] Ron Cytron, Jeanne Ferrante, Barry Rosen, Mark Wegman, and Kenneth
Zadeck. “An efficient method of computing static single assignment form.”
In: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM. 1989, pp. 25–35.

[201] ArchitectureReviewBoards. OpenMP. http://www.openmp.org/. 2017.

[202] Hacking Team. Hacking Team Futex Exploit.
https://wikileaks.org/hackingteam/emails/emailid/312357. 2014.

[203] Google. Android Security Bulletin - November 2016. https://source.android.
com/security/bulletin/2016-11-01. 2016.

[204] Zijlstra Peter. printk: avoid double lock acquire. https://github.com/torvalds/
linux/commit/09dc3cf. 2011.

[205] Hellwig Christopher. hfsplus: fix double lock typo in ioctl. https://github.
com/torvalds/linux/commit/e50fb58. 2010.

[206] Carpenter Dan. drm/prime: double lock typo. https://github.com/torvalds/
linux/commit/0adb237. 2013.

[207] Tikhomirov Anton. usb: phy: Fix double lock in OTG FSM. https://github.
com/torvalds/linux/commit/16da4b1. 2013.

[208] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and Zhenkai
Liang. “Automatic Generation of Data-oriented Exploits.” In: 24th USENIX
Security Symposium. USENIX Sec. 2015.

[209] Jonathan Salwan. ROPgadget - gadgets finder and auto-roper. http://shell-
storm.org/project/ROPgadget/. 2011.

[210] Coseinc Nguyen Anh Quynh. Capstone: next-gen dissassembly framework. http:
//www.capstone-engine.org/. 2014.

[211] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Philippe Martin, and
Miguel Castro. Data Randomization. Tech. rep. MSR-TR-2008-120. Microsoft
Research, 2008. url: \url{http://research.microsoft.com/apps/pubs/
default.aspx?id=70626}.

[212] Sandeep Bhatkar and R. Sekar. “Data Space Randomization.” In: 5th Con-
ference on Detection of Intrusions and Malware and Vulnerability Assessment.
DIMVA. 2008.

[213] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. “Timely Rerandomization for Mitigating Memory Disclosures.”
In: ACM SIGSAC Conference on Computer and Communications Security. CCS.
2015.

[214] Michael Backes and Stefan Nürnberger. “Oxymoron: Making Fine-Grained
Memory Randomization Practical by Allowing Code Sharing.” In: 23rd USENIX
Security Symposium. USENIX Sec. 2014.

http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html
http://www.compsoc.man.ac.uk/~moz/kernelnewbies/documents/initcall/kernel.html
http://www.openmp.org/
https://wikileaks.org/hackingteam/emails/emailid/312357
https://source.android.com/security/bulletin/2016-11-01
https://source.android.com/security/bulletin/2016-11-01
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/e50fb58
https://github.com/torvalds/linux/commit/e50fb58
https://github.com/torvalds/linux/commit/0adb237
https://github.com/torvalds/linux/commit/0adb237
https://github.com/torvalds/linux/commit/16da4b1
https://github.com/torvalds/linux/commit/16da4b1
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
http://www.capstone-engine.org/
http://www.capstone-engine.org/
\url{http://research.microsoft.com/apps/pubs/default.aspx?id=70626}
\url{http://research.microsoft.com/apps/pubs/default.aspx?id=70626}

166 bibliography

[215] Ping Chen, Yi Fang, Bing Mao, and Li Xie. “JITDefender: A Defense against
JIT Spraying Attacks.” In: 26th International Conference on ICT Systems Secu-
rity and Privacy Protection. IFIP SEC. 2011.

[216] P. Chen, R. Wu, and B. Mao. “JITSafe: a framework against Just-in-time
spraying attacks.” In: IET Information Security 7.4 (2013).

[217] Microsoft. Out-of-process JIT support. https : / / github . com / Microsoft /

ChakraCore/pull/1561. 2016.

[218] Limin Zhu. Chromium adotpion in Microsoft Edge and future of ChakraCore.
https://github.com/Microsoft/ChakraCore/issues/5865. 2018.

[219] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. “Li-
brando: transparent code randomization for just-in-time compilers.” In: ACM
SIGSAC Conference on Computer and Communications Security. CCS. 2013.

[220] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “Heisenbyte:
Thwarting Memory Disclosure Attacks using Destructive Code Reads.” In:
ACM SIGSAC Conference on Computer and Communications Security. CCS.
2015.

[221] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z. Snow,
Fabian Monrose, and Michalis Polychronakis. “No-Execute-After-Read: Pre-
venting Code Disclosure in Commodity Software.” In: 11th ACM Symposium
on Information, Computer and Communications Security. ASIACCS. 2016.

[222] K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Poly-
chronakis. “Return to the Zombie Gadgets: Undermining Destructive Code
Reads via Code Inference Attacks.” In: 37th IEEE Symposium on Security and
Privacy. S&P. 2016.

[223] Jason Ansel, Petr Marchenko, Úlfar Erlingsson, Elijah Taylor, Brad Chen,
Derek L. Schuff, David Sehr, Cliff Biffle, and Bennet Yee. “Language-independent
sandboxing of just-in-time compilation and self-modifying code.” In: 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. PLDI. 2011.

[224] Nicolas A. Economou and Enrique E. Nissim. Getting Physical Extreme abuse
of Intel based Paging Systems. https://www.coresecurity.com/system/
files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-

%20Extended%20Version.pdf. 2016.

[225] MWR Labs. Windows 8 Kernel Memory Protections Bypass. http : / / labs .

mwrinfosecurity.com/blog/2014/08/15/windows- 8- kernel- memory-

protections-bypass. 2014.

[226] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. “SPROBES: Enforc-
ing Kernel Code Integrity on the TrustZone Architecture.” In: Mobile Secu-
rity Technologies. MoST. 2014.

[227] Ahmed M. Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Gu-
ruprasad Ganesh, Jia Ma, and Wenbo Shen. “Hypervision Across Worlds:
Real-time Kernel Protection from the ARM TrustZone Secure World.” In:
ACM SIGSAC Conference on Computer and Communications Security. CCS.
2014.

https://github.com/Microsoft/ChakraCore/pull/1561
https://github.com/Microsoft/ChakraCore/pull/1561
https://github.com/Microsoft/ChakraCore/issues/5865
https://www.coresecurity.com/system/files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/system/files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
https://www.coresecurity.com/system/files/publications/2016/05/CSW2016%20-%20Getting%20Physical%20-%20Extended%20Version.pdf
http://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
http://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass
http://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass

bibliography 167

[228] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. “SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes.”
In: ACM SIGOPS Operating Systems Review 41.6 (2007), pp. 335–350.

[229] Zhi Wang and Xuxian Jiang. “Hypersafe: A lightweight approach to pro-
vide lifetime hypervisor control-flow integrity.” In: Security and Privacy (SP),
2010 IEEE Symposium on. IEEE. 2010, pp. 380–395.

[230] Rafal Wojtczuk. “Subverting the Xen hypervisor.” In: Blackhat USA. BH US.
2008.

[231] Alex Ionescu. Owning the Image Object File Format, the Compiler Toolchain, and
the Operating System: Solving Intractable Performance Problems Through Vertical
Engineering. www.alex-ionescu.com/?p=323. 2016.

[232] The kernel development community. The Kernel Address Sanitizer (KASAN).
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html. 2014.

[233] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida,
Herbert Bos, and Erik van der Kouwe. “TypeSan: Practical Type Confusion
Detection.” In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2016, pp. 517–528.

[234] Jun Xu, Dongliang Mu, Ping Chen, Xinyu Xing, Pei Wang, and Peng Liu.
“CREDAL: Towards Locating a Memory Corruption Vulnerability with Your
Core Dump.” In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM. 2016, pp. 529–540.

[235] The kernel development community. The Undefined Behavior Sanitizer (UB-
SAN). https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html.
2014.

[236] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of pro-
gram analysis. Springer, 1999.

[237] Linus Torvalds. Sparse - a semantic parser for C. https : / / sparse . wiki .

kernel.org/index.php/Main_Page. 2006.

[238] Bhargava Shastry, Fabian Yamaguchi, Konrad Rieck, and Jean-Pierre Seifert.
“Towards Vulnerability Discovery Using Staged Program Analysis.” In: De-
tection of Intrusions and Malware, and Vulnerability Assessment. Springer, 2016,
pp. 78–97.

[239] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. “Soot-a Java bytecode optimization framework.” In:
Proceedings of the 1999 conference of the Centre for Advanced Studies on Collabo-
rative research. IBM Press. 1999, p. 13.

[240] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. “An
experimental study of data retention behavior in modern DRAM devices:
Implications for retention time profiling mechanisms.” In: ACM SIGARCH
Computer Architecture News. Vol. 41. 3. ACM. 2013, pp. 60–71.

[241] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu. “Revisiting mem-
ory errors in large-scale production data centers: Analysis and modeling of
new trends from the field.” In: Dependable Systems and Networks (DSN), 2015
45th Annual IEEE/IFIP International Conference on. IEEE. 2015, pp. 415–426.

www.alex-ionescu.com/?p=323
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/ubsan.html
https://sparse.wiki.kernel.org/index.php/Main_Page
https://sparse.wiki.kernel.org/index.php/Main_Page

168 bibliography

[242] Nick Nikiforakis, Steven Van Acker, Wannes Meert, Lieven Desmet, Frank
Piessens, and Wouter Joosen. “Bitsquatting: Exploiting bit-flips for fun, or
profit?” In: Proceedings of the 22nd international conference on World Wide Web.
ACM. 2013, pp. 989–998.

[243] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Ste-
fan Mangard. “DRAMA: Exploiting DRAM Addressing for Cross-CPU At-
tacks.” In: 25th USENIX Security Symposium. USENIX Sec. 2016.

[244] GB Clarke, D Van Dijk, and SM Devadas. “Controlled physical random
functions.” In: Proceedings. 18th Annual Computer Security Applications (2002),
pp. 149–160.

[245] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk,
and Srinivas Devadas. “A technique to build a secret key in integrated cir-
cuits for identification and authentication applications.” In: VLSI Circuits,
2004. Digest of Technical Papers. 2004 Symposium on. IEEE. 2004, pp. 176–179.

[246] G Edward Suh and Srinivas Devadas. “Physical unclonable functions for
device authentication and secret key generation.” In: Proceedings of the 44th
annual design automation conference. ACM. 2007, pp. 9–14.

[247] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and
Pim Tuyls. “Memory leakage-resilient encryption based on physically un-
clonable functions.” In: Towards Hardware-Intrinsic Security. Springer, 2010,
pp. 135–164.

[248] Stefan Katzenbeisser, Ünal Kocabaş, Vladimir Rožić, Ahmad-Reza Sadeghi,
Ingrid Verbauwhede, and Christian Wachsmann. “PUFs: Myth, fact or busted?
A security evaluation of physically unclonable functions (PUFs) cast in sil-
icon.” In: Cryptographic Hardware and Embedded Systems–CHES 2012 (2012),
pp. 283–301.

[249] Wenjie Xiong, André Schaller, Nikolaos Anagnostopoulos, Muhammad Umair
Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Szefer. “Prac-
tical DRAM PUFs in Commodity Devices.” In: IACR Cryptology ePrint Archive
2016 (2016), p. 253.

[250] Wenjie Xiong, André Schaller, Nikolaos A Anagnostopoulos, Muhammad
Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub Sze-
fer. “Run-time Accessible DRAM PUFs in Commodity Devices.” In: Inter-
national Conference on Cryptographic Hardware and Embedded Systems (CHES).
Springer. 2016, pp. 432–453.

[251] André Schaller, Wenjie Xiong, Nikolaos Athanasios Anagnostopoulos, Muham-
mad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser, and Jakub
Szefer. “Intrinsic Rowhammer PUFs: Leveraging the Rowhammer Effect for
Improved Security.” In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE. 2017, pp. 1–7.

[252] Fatemeh Tehranipoor, Nima Karimian, Wei Yan, and John A Chandy. “DRAM-
Based Intrinsic Physically Unclonable Functions for System-Level Security
and Authentication.” In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 25.3 (2017), pp. 1085–1097.

bibliography 169

[253] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetuparna
Das, Matthew Hicks, Yossi Oren, and Todd Austin. “ANVIL: Software-
based protection against next-generation rowhammer attacks.” In: Proceed-
ings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM. 2016, pp. 743–755.

[254] Yoongu Kim et. al. Rowhammer Memtest. https://github.com/CMU-SAFARI/
rowhammer. 2014.

[255] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI 4.0 - System
Address Interface. http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf.
2010.

[256] Free Software Foundation. GNU GRUB. https://www.gnu.org/software/
grub. 2010.

[257] Jiewen Yao and Vincent J Zimmer. A Tour Beyond BIOS Memory Map. https:
//firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_

BIOS_Memory_Map_inUEFI_BIOS.pdf. 2015.

[258] AMD. Intel 64 and IA-32 Architectures Software Developer’s Manual - Chap-
ter 15 Secure Virtual Machine Nested Paging. http://developer.amd.com/
resources/documentation-articles/developer-guides-manuals. 2012.

[259] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual - Chapter 28
VMX Support for address translation. http : / / www . intel . com / content /

dam/www/public/us/en/documents/manuals/64-ia-32-architectures-

software-developer-manual-325462.pdf.

[260] I AMD. “I/O Virtualization Technology (IOMMU) Specification.” In: AMD
Pub 34434 (2007).

[261] John L. Henning. “SPEC CPU2006 memory footprint.” In: SIGARCH Com-
puter Architecture News 35 (2007).

[262] Ad J Van De Goor and Ivo Schanstra. “Address and data scrambling: Causes
and impact on memory tests.” In: The First IEEE International Workshop on
Electronic Design, Test and Applications, 2002. Proceedings. IEEE. 2002, pp. 128–
136.

[263] MITRE. CVE-2015-1328.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1328.
2015.

[264] MITRE. CVE-2016-0728.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0728.
2016.

[265] CVEDetails. CVE-2016-4557.
http://www.cvedetails.com/cve/cve-2016-4557. 2016.

[266] Matt Molinyawe, Abdul-Aziz Hariri, and Jasiel Spelman. “$hell on Earth:
From Browser to System Compromise.” In: Blackhat USA. BH US. 2016.

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
https://www.gnu.org/software/grub
https://www.gnu.org/software/grub
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Map_in UEFI_BIOS.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Map_in UEFI_BIOS.pdf
https://firmware.intel.com/sites/default/files/resources/A_Tour_Beyond_BIOS_Memory_Map_in UEFI_BIOS.pdf
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1328
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2016-0728
http://www.cvedetails.com/cve/cve-2016-4557

170 bibliography

[267] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Combined
Volumes 3A, 3B, and 3C: System Programming Guide. http : / / www . intel .

com / content / dam / www / public / us / en / documents / manuals / 64 - ia -

32- architectures- software- developer- system- programming- manual-

325384.pdf. 2016.

[268] Oracle. What are some distinguishing characteristics of OpenSPARC T1 and T2.
https://www.oracle.com/technetwork/systems/opensparc/opensparc-

faq-1444660.html. 2018.

[269] Hareesh Khattri, Narasimha Kumar V Mangipudi, and Salvador Mandu-
jano. “Hsdl: A security development lifecycle for hardware technologies.”
In: (2012), pp. 116–121.

[270] Cisco. Cisco: Strengthening Cisco Products. https://www.cisco.com/c/en/
us/about/security- center/security- programs/secure- development-

lifecycle.html. 2017.

[271] Lenovo. Lenovo: Taking Action on Product Security. https://www.lenovo.com/
us/en/product-security/about-lenovo-product-security. 2017.

[272] Jason Oberg. Secure Development Lifecycle for Hardware Becomes an Imperative.
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962.
2018.

[273] Cadence. Incisive Enterprise Simulator. 2014.

[274] Averant. Solidify. http://www.averant.com/storage/documents/Solidify.
pdf. 2018.

[275] Mentor. Questa Verification Solution. https://www.mentor.com/products/
fv/questa-verification-platform. 2018.

[276] OneSpin Solutions. OneSpin 360. https://www.onespin.com/fileadmin/
user_upload/pdf/datasheet_dv_web.pdf. 2013.

[277] Cadence. JasperGold Formal Verification Platform. https : / / www . cadence .

com/content/cadence-www/global/en_US/home/tools/system-design-

and - verification / formal - and - static - verification / jasper - gold -

verification-platform.html. 2014.

[278] David Evans and David Larochelle. “Improving security using extensible
lightweight static analysis.” In: IEEE software 19.1 (2002), pp. 42–51.

[279] Jason Oberg. Secure Development Lifecycle for Hardware Becomes an Imperative.
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962.
2018.

[280] Caroline Trippel, Yatin A Manerkar, Daniel Lustig, Michael Pellauer, and
Margaret Martonosi. “TriCheck: Memory Model Verification at the Trisec-
tion of Software, Hardware, and ISA.” In: Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) 52.4 (2017), pp. 119–133.

[281] Manuel Blum and Hal Wasserman. “Reflections on the Pentium division
bug.” In: IEEE Transactions on Computers 45.4 (1996), pp. 385–393.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
https://www.oracle.com/technetwork/systems/opensparc/opensparc-faq-1444660.html
https://www.oracle.com/technetwork/systems/opensparc/opensparc-faq-1444660.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.cisco.com/c/en/us/about/security-center/security-programs/secure-development-lifecycle.html
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://www.lenovo.com/us/en/product-security/about-lenovo-product-security
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962
http://www.averant.com/storage/documents/Solidify.pdf
http://www.averant.com/storage/documents/Solidify.pdf
 https://www.mentor.com/products/fv/questa-verification-platform
 https://www.mentor.com/products/fv/questa-verification-platform
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://www.onespin.com/fileadmin/user_upload/pdf/datasheet_dv_web.pdf
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform.html
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332962

bibliography 171

[282] Intel Corporation. “81. Invalid Operand with Locked CMPXCHG8B Instruc-
tion.” In: Pentium® Processor Specification Update 41 (1998), 51f.

[283] Yuval Yarom, Daniel Genkin, and Nadia Heninger. “CacheBleed: a timing
attack on OpenSSL constant-time RSA.” In: Journal of Cryptographic Engineer-
ing 7.2 (2017). 10.1007/s13389-017-0152-y, pp. 99–112.

[284] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB At-
tacks.” In: (2018).

[285] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Pono-
marev, et al. “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor.” In: (2018), pp. 693–707.

[286] NIST. Google: Escalation of Privilege Vulnerability in MediaTek WiFi driver. https:
//nvd.nist.gov/vuln/detail/CVE-2016-2453. 2016.

[287] NIST. Samsung: Page table walks conducted by MMU during Virtual to Physical
address translation leaves in trace in LLC. https://nvd.nist.gov/vuln/
detail/CVE-2017-5927. 2017.

[288] NIST. HP: Remote update feature in HP LaserJet printers does not require pass-
word. https://nvd.nist.gov/vuln/detail/CVE-2004-2439. 2004.

[289] NIST. Apple: Multiple heap-based buffer overflows in the AudioCodecs library in
the iPhone allows remote attackers to execute arbitrary code or cause DoS via a
crafted AAC/MP3 file. https://nvd.nist.gov/vuln/detail/CVE-2009-2206.
2009.

[290] NIST. Amazon Kindle Touch does not properly restrict access to the NPAPI plugin
which allows attackers to have an unspecified impact via certain vectors. https:
//nvd.nist.gov/vuln/detail/CVE-2012-4249. 2012.

[291] NIST. Vulnerabilities in Dell BIOS allows local users to bypass intended BIOS
signing requirements and install arbitrary BIOS images. https://nvd.nist.
gov/vuln/detail/CVE-2013-3582. 2013.

[292] NIST. Microsoft: Hypervisor in Xbox 360 kernel allows attackers with physical
access to force execution of the hypervisor syscall with a certain register set, which
bypasses intended code protection. https://nvd.nist.gov/vuln/detail/CVE-
2007-1221. 2007.

[293] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi.
The RISC-V Instruction Set Manual. Volume 1: User-Level ISA, Version 2.0. Tech.
rep. CALIFORNIA UNIV BERKELEY DEPT OF ELECTRICAL ENGINEER-
ING and COMPUTER SCIENCES, 2014.

[294] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, et al. “The rocket chip generator.” In: EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[295] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolić, David A Patterson, and
Krste Asanović. “BOOMv2: an open-source out-of-order RISC-V core.” In:
(2017).

10.1007/s13389-017-0152-y
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2016-2453
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2017-5927
https://nvd.nist.gov/vuln/detail/CVE-2004-2439
https://nvd.nist.gov/vuln/detail/CVE-2009-2206
https://nvd.nist.gov/vuln/detail/CVE-2012-4249
https://nvd.nist.gov/vuln/detail/CVE-2012-4249
https://nvd.nist.gov/vuln/detail/CVE-2013-3582
https://nvd.nist.gov/vuln/detail/CVE-2013-3582
https://nvd.nist.gov/vuln/detail/CVE-2007-1221
https://nvd.nist.gov/vuln/detail/CVE-2007-1221

172 bibliography

[296] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. “Control-flow
integrity.” In: (2005), pp. 340–353.

[297] Miguel Castro, Manuel Costa, and Tim Harris. “Securing software by en-
forcing data-flow integrity.” In: (2006), pp. 147–160.

[298] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N.
Narula, and N. Fullagar. “Native Client: A Sandbox for Portable, Untrusted
x86 Native Code.” In: 30th IEEE Symposium on Security and Privacy. S&P.
2009.

[299] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. “Soft-
ware mitigations to hedge AES against cache-based software side channel
vulnerabilities.” In: IACR Cryptology ePrint Archive 2006 (2006), p. 52.

E R K L Ä R U N G G E M Ä SS § 9 D E R P R O M O T I O N S O R D N U N G

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter
Verwendnung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle
Stellen, die aus Quellen entnommen wurden, sind als solche kenntlich gemacht.
Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde
vorgelegen.

Darmstadt, Dezember 2018

David Gens

This document was produced using free software, such as the typesetting sys-
tem LATEX, the extensible text editor Emacs, and the operating system GNU/Linux.
The typographical style of this thesis was inspired by Robert Bringhurst’s semi-
nal book “The Elements of Typographic Style” and realized through André Miede’s
useful template.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	 Introduction
	1 Overview
	1.1 Goals and Scope
	1.2 Summary of Contributions
	1.3 Organization
	1.4 Publications

	2 Background
	2.1 Basic OS-level Defenses
	2.1.1 Privilege-Level Separation
	2.1.2 Virtual-Memory Protection

	2.2 The Traditional Threat Models
	2.3 Memory-Corruption Attacks
	2.3.1 Causes of Memory Corruption
	2.3.2 A Model for Exploitation
	2.3.3 Typical Attack Workflow

	2.4 State-of-the-art Attacks and Defenses
	2.4.1 Return-to-libc and Return-Oriented Programming
	2.4.2 Code-Reuse Defenses and Advanced Attacks
	2.4.3 Data-only attacks

	2.5 Modern Hardware Platforms
	2.5.1 Overall System Architecture
	2.5.2 Processor Design Principles
	2.5.3 Remote Hardware Exploits

	 Memory Corruption: the Threat of Data-Only Attacks
	3 Bypassing CFI in Modern Browsers.
	3.1 Data-Only Attacks on Dynamic Code Generation
	3.2 Assumptions and Threat Model
	3.3 Generically Bypassing CFI by Exploiting JIT-Compilers
	3.3.1 Attack Overview
	3.3.2 Corrupting the Intermediate Representation
	3.3.3 Attack Framework

	3.4 On the Prevalence of Data-Only Attacks
	3.5 Possible Mitigations

	4 Breaking and Fixing CFI in OS Kernels.
	4.1 OS Kernels as Targets of Data-Only Attacks
	4.2 Assumptions and Threat Model
	4.3 Our Page Table Exploit
	4.3.1 Attack Overview
	4.3.2 Exploiting the Kernel by Corrupting the Page Table

	4.4 PT-Rand: Mitigating Data-Only Attacks against the Page Tables
	4.4.1 Design and Overview
	4.4.2 Challenges

	4.5 Implementation
	4.5.1 Page Table Allocations
	4.5.2 Generating a Randomized Area
	4.5.3 Page Table References
	4.5.4 Handling of the one-to-one mapping
	4.5.5 Translation of Physical Addresses

	4.6 Evaluation
	4.6.1 Methodology
	4.6.2 Leakage Resilience and Randomization Entropy
	4.6.3 Performance
	4.6.4 Compatibility and Stability

	5 Automatically Uncovering Memory Corruption in Kernel Code.
	5.1 Run-time defenses vs. compile-time verification
	5.2 Data-Flow Analysis
	5.3 Problem Description
	5.4 Design of K-Miner
	5.4.1 Goals and assumptions
	5.4.2 Overview
	5.4.3 Uncovering Memory Corruption
	5.4.4 Challenges

	5.5 Implementation
	5.5.1 Global Analysis Context
	5.5.2 Analyzing Kernel Code Per System Call
	5.5.3 Minimizing False Positives
	5.5.4 Efficiently Combining Multiple Analyses

	5.6 Evaluation
	5.6.1 Security
	5.6.2 Performance
	5.6.3 Usability

	5.7 Possible Extensions

	6 Related Work
	6.1 Data-only Attacks and Defenses for Static Code
	6.2 Data-only attacks and defenses for JIT code
	6.3 Kernel and Page Table Protection
	6.4 Static Analysis Frameworks
	6.4.1 Kernel Static Analysis Frameworks
	6.4.2 User Space Static Analysis

	 Remote Hardware Exploits: an Emerging Attack Paradigm
	7 Hammer Time: Remote Attacks on DRAM and initial Defenses.
	7.1 DRAM and the Rowhammer Bug
	7.2 Rowhammer in the Context of Security-sensitive Applications
	7.3 Rowhammer as an Exploit Primitive
	7.4 On the Distribution of Bit Flips
	7.5 Initial Rowhammer Defense

	8 Mitigating Rowhammer Attacks against OS Kernels.
	8.1 On the Necessity of Software Defenses against Rowhammer
	8.2 Assumptions and Threat Model
	8.3 Design of CATT
	8.3.1 Overview
	8.3.2 Security Domains
	8.3.3 Challenges

	8.4 Implementation
	8.4.1 Mapping Page Frames to Domains
	8.4.2 Tracking Security Domains
	8.4.3 Modifying the Physical Page Allocator
	8.4.4 Defining DRAM Partitioning Policies

	8.5 Security Evaluation
	8.5.1 Rowhammer Testing Tool
	8.5.2 Real-world Rowhammer Exploit

	8.6 Performance Evaluation
	8.6.1 Run-time Overhead
	8.6.2 Memory Overhead
	8.6.3 Robustness

	8.7 Discussion
	8.7.1 Applying CATT to Mobile Systems
	8.7.2 Single-sided Rowhammer Attacks
	8.7.3 Benchmarks Selection
	8.7.4 Vicinity-less Rowhammering

	9 Side-channel Resilient Kernel-Space Randomization.
	9.1 Side-channel attacks against KASLR
	9.2 Adversary Model and Assumptions
	9.3 Our Side-Channel Defense for the Kernel
	9.3.1 Overview
	9.3.2 Challenges for Fine-grained Address Space Isolation

	9.4 Prototype Implementation
	9.4.1 Initialization
	9.4.2 Interrupts
	9.4.3 Fine-grained Page Table Switching

	9.5 Evaluation
	9.5.1 Security
	9.5.2 Performance

	9.6 Discussion
	9.6.1 Applying LAZARUS to different KASLR implementations
	9.6.2 Speculative Execution and Side-channel Attacks
	9.6.3 Other side-channel attacks on KASLR

	10 The Growing Problem of Software-Exploitable Hardware Bugs.
	10.1 Hardware Vulnerabilities from a Software Perspective
	10.1.1 The Origin of the Hardware Bug
	10.1.2 Quality Assurance Techniques for Hardware

	10.2 Assessing the state-of-the-art
	10.3 Exploiting Hardware Bugs From Software
	10.3.1 Threat Model and Assumptions
	10.3.2 Attack Details

	11 Related Work
	11.1 Rowhammer
	11.1.1 Attacks
	11.1.2 Defenses

	11.2 Side-channel attacks against the OS
	11.2.1 Paging-based Side-channel Attacks on KASLR
	11.2.2 Software Mitigations
	11.2.3 Hardware Mitigations

	11.3 Recent Hardware Exploits

	 Discussion and Conclusion
	12 Dissertation Summary
	13 Future Work

	 Appendix
	A About the Author
	B List of Figures
	C List of Tables
	 Bibliography
	Declaration

