Optimizing CNN-based Segmentation with Deeply
Customized Convolutional and Deconvolutional
Architectures on FPGA

SHUANGLONG LIU, HONGXIANG FAN, XINYU NIU, HO-CHEUNG NG, YANG CHU,
and WAYNE LUK, Imperial College London, UK

Convolutional Neural Networks (CNNs) based algorithms have been successful in solving image recognition
problems, showing very large accuracy improvement. In recent years, deconvolution layers are widely used
as key components in the state-of-the-art CNNs for end-to-end training and models to support tasks such
as image segmentation and super resolution. However, the deconvolution algorithms are computationally
intensive which limits their applicability to real time applications. Particularly, there has been little research
on the efficient implementations of deconvolution algorithms on FPGA platforms which have been widely
used to accelerate CNN algorithms by practitioners and researchers due to their high performance and power
efficiency. In this work, we propose and develop deconvolution architecture for efficient FPGA implementation.
FPGA-based accelerators are proposed for both deconvolution and CNN algorithms. Besides, memory sharing
between the computation modules is proposed for the FPGA-based CNN accelerator as well as for other
optimization techniques. A non-linear optimization model based on the performance model is introduced to
efficiently explore the design space in order to achieve optimal processing speed of the system and improve
power efficiency. Furthermore, a hardware mapping framework is developed to automatically generate the
low-latency hardware design for any given CNN model on the target device. Finally, we implement our
designs on Xilinx Zynq ZC706 board and the deconvolution accelerator achieves a performance of 90.1 GOPS
under 200MHz working frequency and a performance density of 0.10 GOPS/DSP using 32-bit quantization,
which significantly outperforms previous designs on FPGAs. A real-time application of scene segmentation
on Cityscapes Dataset is used to evaluate our CNN accelerator on Zynq ZC706 board, and the system achieves
a performance of 107 GOPS and 0.12 GOPS/DSP using 16-bit quantization, and supports up to 17 frames per
second for 512x512 image inputs with a power consumption of only 9.6W.

CCS Concepts: « Computer systems organization — Neural networks; « Hardware — Hardware ac-
celerators;

Additional Key Words and Phrases: FPGA, Convolutional Neural Networks (CNNs), Deconvolution, Hardware
Acceleration, Segmentation

ACM Reference Format:

Shuanglong Liu, Hongxiang Fan, Xinyu Niu, Ho-Cheung Ng, Yang Chu, and Wayne Luk. 2018. Optimizing
CNN-based Segmentation with Deeply Customized Convolutional and Deconvolutional Architectures on FPGA.
ACM Trans. Reconfig. Technol. Syst. 1, 1, Article 1 (January 2018), 23 pages. https://doi.org/0000001.0000001

Authors’ address: Shuanglong Liu, s.liul3@imperial.ac.uk; Hongxiang Fan, h.fan17@imperial.ac.uk; Xinyu Niu, xinyu.niu@
corerain.com; Ho-Cheung Ng, h.ngl6@imperial.ac.uk; Yang Chu, y.chul6é@imperial.ac.uk; Wayne Luk, w.luk@imperial.ac.
uk, Imperial College London, Department of Computing, London, SW7 2AZ, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1936-7406/2018/1-ART1 $$15.00

https://doi.org/0000001.0000001

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 S. Liu et al.

1 INTRODUCTION

Convolutional Neural Network (CNN) based algorithms have shown great performance improve-
ment in lots of machine learning tasks including speech recognition [5], object detection [30] and
image segmentation [20], achieving greatly improved accuracy or/and execution time [14, 20].
However, the CNN algorithms are very computationally intensive which becomes a major issue
in their application to real time tasks on embedded devices. To address this problem, FPGAs have
been widely adopted to accelerate these CNN algorithms [5, 27, 30], due to their highly-parallel
bit-oriented architecture. In particular, FPGA-based accelerators achieve higher performance in
terms of execution time compared to CPUs and consume much less power than GPUs while being
more flexible and configurable than ASICs [27, 29]. Therefore FPGA platforms can provide real-time
solutions for various image recognition tasks.

Deconvolution, also known as up-sampling or transposed convolution', has been widely used in
the state-of-the-art convolutional neural networks (CNNs) and deconvolutional neural networks
(DCNN) [25] for computer vision applications such as scene segmentation [1], image denoising [28]
and super-resolution imaging. Deconvolution performs a fundamentally new type of mathematical
operator which aims to extrapolate new information from the input feature map. This contrasts
with convolution that aims to interpolate the most relevant information from the input. Deconvo-
lutional layers are mainly used in deep learning networks for two reasons: 1) convolutional sparse
coding [25, 26]; 2) upsampling for image generation [14, 19], to support applications such as super
resolution [22] and image-to-image translation [10]. Some popular examples of the state-of-the-art
deconvlolution based networks include the deep generative models [21], U-Net [20] and Fully
Convolutional Network (FCN) [14], just to name a few. There is a growing demand for FPGA-based
deconvolution accelerators for real-time applications for two reasons: 1) Deconvolution is the only
type of layer in DCNNs such as DCGAN [19] which doesn’t have convolution and other layers,
thus the main computational complexity comes from deconvolution operations in these networks
(Figure 1a); 2) For CNNs consisting of both layers, deconvolution becomes the bottleneck in speed
when convolution has been accelerated on FPGA? (Figure 1b).

100% 100%
u Conv Deconv

>
(((,

80% 80%

60% 60%

40% 40%

Percentage of Time

20% 20%

Percentage of Operations

0% 0%

e« M

(@ (

Fig. 1. (a) The percentage of operations of convolution (Conv) and deconvolution (Deconv) layers. (b) The
percentage of execution time when evaluated with the state-of-the-art performance normalized on Xilinx
ZC706 board, where the estimated performance of Conv and Deconv are 187 GOPS (giga operations per
second) and 10 GOPS respectively as presented in [18] and [29].

!While transposed convolution is commonly called “deconvolution” in the field of deep learning, it is actually not the
inverse of convolution. For simplicity, the term “deconvolution” is used as transposed convolution in the rest of the paper.
2A detailed analysis is provided in Section 8.4.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:3

Nevertheless, current FPGA-based CNN accelerators mainly focused on enhancing the perfor-
mance of the convolutional layers in CNNs, and little research has put forward deconvolution
accelerators on FPGAs. Several issues need to be addressed to design an FPGA-based deconvolution
accelerator. First, there are different implementations of deconvolution algorithms, and a direct
translation of CPU-optimized deconvolution algorithms to an FPGA will generally lead to inefficient
designs. Therefore, a comparison and adaptation of current CPU-based deconvolution algorithms
to FPGA platforms are needed. Second, a parametrized deconvolution design on FPGA is necessary
to support different layers and networks and it is important to generate the deconvolution design
optimized for performance and power on FPGA automatically when deploying different CNN
networks. We tackle both problems in this work.

This work proposes an FPGA-based deconvolution accelerator for the state-of-the-art neural
networks. We first propose efficient and highly customized architectures for the parametrized
deconvolution algorithm and CNN algorithms. Then various optimization techniques such as
memory sharing are performed to fully utilize the FPGA resources and improve the performance
of the overall CNN accelerator. A non-linear optimization model together with the corresponding
non-linear programming solver is proposed to generate the optimal deconvolution and CNN designs
on FPGA automatically for any given CNN network.

A summary of the main contributions of this work are as follows:

e Parametrized and fully customized deconvolution architecture; This is the first work propos-
ing efficient architecture for parametrized deconvolution layer implementation on FPGA by
register-transfer level (RTL) development, to support semantic segmentation;

An optimized CNN algorithm for real-time segmentation based on U-Net and a tailored archi-
tecture of CNN accelerator; The proposed CNN algorithm takes into account the efficiency
of hardware implementation and achieves low latency with desirable accuracy; The CNN
accelerator is optimized by sharing memory between CONV and DECONV modules;

o A non-linear optimization model for design space exploration; We introduce the performance
model for the proposed CNN accelerator to find out the limiting resources and optimal design
parameters by non-linear optimizations, and thus generate the optimal design automatically
when deploying different CNN networks and FPGA devices;

Evaluations of the proposed CNN accelerator on cityscapes dataset for real time image
segmentation; Our system can process 17 frames per second for 512x512 image inputs with a
power consumption only at 9.6W on Xilinx Zynq ZC706 board.

The rest of this paper is organized as follows: Section 2 provides some background knowledge
on CNN and deconvolution algorithms. Section 3 presents the architecture of the parametrized
deconvolution accelerator and our hardware implementation. Section 4 describes the architecture
for the CNN algorithm and the optimization techniques. Section 5 introduces the performance
model of the CNN accelerator and proposes the non-linear optimization model to explore the design
space. Section 6 describes the workflow of the framework for automatic hardware mapping and
code generation. Section 7 describes our proposed CNN algorithm based on the previous U-Net for
real time image segmentation. Section 8 shows our experiment result of the proposed deconvolution
accelerator and CNN accelerator. Section 9 gives a comparison between our implementation and
existing work and Section 10 concludes this work.

2 BACKGROUND
2.1 CNN-based Image Segmentation

In the last decade, deep convolutional networks have outperformed the state-of-the-art in many
visual recognition tasks. The typical use of convolutional networks such as LeNet, AlexNet and

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 S. Liu et al.

128 64 64 2

input
image || > >
tile ! a

output
segmentation
map

=»conv 3x3, ReLU
copy and crop

§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Fig. 2. The U-net architecture for Image Segmentation [20].

GoogleNet is on classification tasks such as object detection [20], where the output of an image is
a single class label. However, in many recognition tasks such as segmentation, super resolution
and image-to-image translation, the desired output should also include localization information,
i.e., a class label is supposed to be assigned to each pixel in the image. The segmentation tasks are
always more computationally intensive than the classification tasks. In CNN-based segmentation
algorithms, the segmentation results are generally achieved by “upsampling” the input image using
deconvolution layers in CNN.

A CNN typically consists of a sequence of computation layers stacked together [30]. These
layers read input feature maps and generate output feature maps. For image segmentation, the
input of the first layer is an input image and the output of the last layer is an image with the class
labels assigned to each pixel. The layers used in CNN-based image segmentation algorithms are
summarized as follows:

1. Convolution layer (Conv) is the core building block of a CNN that does the majority of the
computation (Figure 1a). Convolutional layer convolves the input image or feature maps with
the convolution kernel, producing one output feature map. There are often groups of different
convolution kernel used in one layer and thus multiple filters of output feature map are produced.

2. Pooling layer is often inserted between successive Conv layers as a non-linear down-sampling
to reduce feature map size and the computation for later layers. It applies a sliding window to
the input and takes the maximum or average value as output of this region. They are called max
pooling and average pooling respectively.

3. Deconvolution layer (Deonv) transforms the input in the opposite direction of a Conv layer
but extrapolates new information from the input feature map. It is used as a mean to up-sample the
input feature map towards the original input image resolution [16, 25].

One of the state-of-the-art CNN networks for image segmentation is U-Net proposed in [20]
which won the ISBI Cell Tracking Challenge in 2015. The U-Net architecture is shown in Figure 2. It
consists of 9 repeated two 3x3 Conv layers, each followed by a rectified linear unit (ReLU) and a 2x2
max pooling layer with stride 2 for downsampling. It also consists of upsampling of the feature map
using 4 2x2 deconvolution layers. In the final layer, a 1x1 convolution is used to map the feature
vector to the desired number of classes. In total the network has 23 layers. The deconvolution layers
are crucial in the U-Net architecture for generating the whole image for segmentation.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:5

2.2 Deconvolution Algorithms

Table 1. A summary of the parameters in the deconvolution layers in CNN.

Parameter Layer Description

H Height of the input feature map

w Width of the input feature map
Ho Height of the output feature map
Wo Width of the output feature map
Ne Deconv Number of channels in the input feature map
Nr Number of filters in the output feature map
k Height and width of the kernel

s the stride

p the amount of zero padding

Same as Conv layers, Deconv layers accept an input image of size N¢ * H * W and a group of
coefficient matrix of shape N * N¢ * k * k, then produce a volume of size Nr * Hp * Wp where:

Ho=s«(H-1)+k-2xp (1)

Wo=s*x(W-1)+k—-2xp (2)

Table 1 summarises the parameters used in the deconvolution layer. Algorithm 1 describes the
deconvolution layers in CNN in a high level which consists of the filter loop and channel loop. The

implementation of the deconv operations on the two 2-D matrix shown in line 3 will be covered in
detail in this section.

ALGORITHM 1: Deconvolution layer computation with two nested loops.

Input: input feature map I of shape N¢ * H * W;
Input: A coefficient matrix K of shape N * N¢c * k = k;
Output: output feature map of shape Ng = Hp * Wp;

1: for f =1to Nr do

2: forc=1to N¢c do

3: O[f] + = deconv(I[c],K[f,c])
4: end for
5: end for

The state-of-the-art software (CPU and GPU) architecture of the deconv operation is implemented
as transposed convolution, by adding appropriate amount of zero padding around and/or between
the input feature map [4]. A deconvolution described by kernel size k, stride s, pad p and input size i
is performed as a convolution with k’ = k,s" = 1,p” = k—p—1and adding s—1 zero padding between
each input unit. This method is illustrated in Figure 3 where the white areas represent the added
zeros to the original input map. Apparently, direct mapping of the CPU-optimized deconvolution
algorithm onto FPGA will incur inefficient performance because this method involves adding many
columns and rows of zeros to the input, resulting in a much less efficient computation on FPGA.

Therefore, we propose the use of an FPGA-efficient method by implementing deconv with the
following four steps: (1) multiply a single input pixel by the k * k kernel; (2) sum the results of step
(1) where the outputs overlap; (3) repeat (1) and (2) for all input pixels; (4) remove the elements
from output feature maps in the border of size p. This method is illustrated in Figure 4. Compared to

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 S. Liu et al.

Fig. 3. Input map (left) to output (right) after deconv with k = 4, s = 2, p = 0 by doing a full 2-D convolution.
Raw input size is 4x4 and output size is 10x10. Zero padded input size (which serves as input of conv) is 13x13.

3*3 deconvolution, stride=2, pad=1

2. Sum where output overlaps

5 \
4. Remove border of size p

1. Multiply data by kernel matrix (3*3)
Input: 2*2 Output: 3*3

Fig. 4. Input map (left) to output (right) after deconv with k = 3, s = 2, p = 1 by 4 steps. Raw input size is 2x2
and output size is 3x3.

the transposed convolution implementation, this method has no requirement to add zeros between
input map, thus it is more efficient for computation especially considering FPGA implementation.
It should be noted that when p = 0, step 4 is no longer required and this case is considered in the
next of the paper. When s = k, there is no overlap in the output of the multiplication result for
each pixel, therefore step 2 is not needed and the computation can be as simple as to multiply each
input pixel by the k * k kernel. When s < k, the implementation of this method needs to deal with
both column and row overlaps in the output. This will be described in detail in Section 3.

2.3 Algorithm Comparison

Here, we first provide a detailed analysis and comparison on the computational complexity of the
two types of deconvolution algorithms, followed by a summary and comparison on the efficiency.

The computational complexity of CNN or one layer is represented by the total operations (OP)
including multiplications and additions. For the CPU-optimized deconvolution, each channel com-
putation needs kHo Wo multiplications and k?Ho Wp additions respectively. The total operations
for one channel computation are:

OPcpy = 2 * k*HoWp (3)

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:7

The number of multiplications needed by the proposed algorithm for one channel is K> HW (H
and W are much smaller than Hp and W for deconvolution layers) and the number of additions
needed by the overlapped area is k(k — s)(H — 1) + k(k — s)(W — 1) + (k% — s>)(W — 2)(H - 2).

The total operations of the proposed algorithm are:

OPproposed = K2HW + k(k — s)(H — 1) + k(k —)W = 1) + (k2 = SH(W = 2)(H-2) (4)

The deconvolution layers in the U-Net and FCN architectures are described in Table 2. The table
also summarizes the number of operations (OPs) for the deconvolution layers of these two CNN
architectures and the efficiency achieved by the proposed algorithm compared to the CPU version.
For U-Net, the proposed algorithm achieves 4 times computational efficiency for each layer, and it
achieves 83 times at best for FCN. We observe that the benefit is more significant when large kernel
size is used for deconvolution layer. The reduced computational complexity can contribute to less
execution time and higher energy efficiency given the same computational resources in FPGA.

Table 2. Number of operations for the deconvolution layers of U-Net and FCN.

parameters CPU-optimized OPs Proposed OPs
CNN layers Efficiency Speedup
(k,s, H&W,N¢, Np, Ho&Wp) | Multi add total Multi add total
deconv1 (2,2,28,1024,512,56) 6.58G 6.58G 13.15G | 1.644G 1.642G 3.28G 4x
deconv2 (2,2,52,512,256,104) 5.671G 5.671G 11.34G | 1.417G 1.415G 2.832G 4x
U-NET
deconv3 (2,2,100,256,128,200) 5.24G 5.24G 10.5G 131G 1.30G 2.60G 4.01x
deconv4 (2,2,196,128,64,392) 5.04G 5.04G 10.07G | 1.26G 1.24G 251G 4.02x
deconv1 (4,2,1,21,21,4) 0.113M 0.113M 0.226M | 7.05K 12K 19.1K 11.8x
FCN' | deconv2 (4,2,4,21,21,10) 071IM 071IM 141M | 0.113M 843K 0.197M 7.2x
deconv3 (16,8,10,21,21,88) 0.874G 0.874G 1.75G 11.3M 9.69M 20.98M 83.4x

Besides the increased computational complexity, there are some other disadvantages of the CPU
implementation. The following highlights the sources of these inefficiencies and summarizes the
benefits of our approach:

e The zero-padding approach is inherently inefficient due to the additional unproductive arith-
metic operations when using an FPGA, while the proposed approach avoids this inefficiency.

e Performing multiply-accumulate on the inserted zeros causes under-utilization of the com-
puting resources available on FPGA.

e The inserted zeroes create different patterns of computation when sliding the convolution
window (different kernel parameters between conv and deconv layers). As such, the same
sequence of operations cannot be repeated across all the processing layers by using a single
computational module, i.e., we need to instantiate multiple modules for different deconv
layers besides the conv module. Nevertheless, our approach can easily be configured for
extension and reuse with different parameters such as (k, s) = (4, 2) and (16, 8) in FCN, as
will be shown in Section 3.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 S. Liu et al.

3 DECONVOLUTION HARDWARE DESIGN

The top level architecture of the deconvolution accelerator on FPGA is shown in Figure 5. Due
to the limited on-chip memory resource on FPGA, all the processing data and coeficients of the
net are stored in off-chip memories such as DDR. To process each deconvolution layer, the input
map is first read from DDR to the input buffer which is implemented as RAM, in order to reuse the
input data for filter processing as shown in line 1 in Algorithm 1. Correspondingly, the coefficient
is cached in coef buffer which uses FIFOs with size of k k, since the coefficients will only be used
for computation once and won’t be reused for filter processing as shown in Algorithm 1. Then
one column of the coefficient kernel is read from the FIFOs and stored in registers, and sent to
deconv kernel together with one single input data for multiplication. deconv kernel performs the
deconv operation shown in line 3 in Algorithm 1 and is implemented based on the 4-step algorithm
we mentioned above. Finally, before the output from deconv kernel is transferred to output buffers,
accumulation is performed to sum the results of different channels, which is shown in the for loop
in line 2 in Algorithm 1. It should be noted that ping-pong FIFO is used for output buffer, in order
to process the next filter and transfer the current filter result back to DDR concurrently.

» o Deconv >

$| Input Buffer > el < Output Buffer
DDR3 1

P Coef Buffer P K Coef Reg

Fig. 5. The top level architecture of the deconvolution accelerator which implements the algorithm shown in
Algorithm 1.

A parametrized deconvolution kernel design which implements the 4-step method in Section 2.2
is shown in Figure 6. This architecture supports different parameters of deconvolution layer, i.e.
k, s, p, and therefore can be reused for different deconvolution layers and networks. For s < k, there
are k — s columns or rows overlapped between the output for two adjacent input data. Therefore a
register array with size k = (k — s) is used to deal with the overlap. Every cycle, one column of the
coefficients kernel is read from FIFOs and multiplied by one single input data using k multiplies.
The results are buffered in the k = (k — s) register array and shifted every cycle. To deal with the
column overlap, the results of the multiplies are added by the data in the last column of the registers
before they are stored in the partial result buffer or output buffer. To deal with the row overlap, the
outputs of the first k — s adders are also added by the partial results before they are transferred to
the output buffer. When k = s there are no overlap computations.

The above architecture is customized to support different deconv layers that have different (k, s)
configurations, and the kernels are optimized to improve hardware re-use thus achieving better
efficiency and performance. This is explored by allowing in-kernel parallelism to the design. For
example, the kernel of U-Net with (k, s) = (2, 2) is used as two parallel computation data path for
the 1*1 conv layer (the final layer) in U-Net, avoiding the introduction of another computation
module to the FPGA. The FCN kernel is configured as (k, s) = (16, 8) and its datapaths are used as 4
parallel kernels when computing deconv layers with (k, s) = (4, 2). The performance is improved
by 4 times in such situation with no extra cost.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:9

k-s partial results—
@ .
M1 Al
}< . '

Partial
L5t L Result Buffer

reg reg reg | m
Coefficient K Coefficient 00 [1,0 | 20
Buffer Rigisters

reg | reg | reg

o1 | 1,1 | 21 [E
reg | reg | reg | Deconv
0,k-s

Kernelj

Fig. 6. Parametrized deconvolution accelerator design which supports different parameters of deconvolution
layer and can be reused for different networks.

-

4 CNN ACCELERATOR DESIGN AND OPTIMIZATIONS
4.1 CNN Architecture

The architecture of the proposed accelerator on FPGA for CNN-based real-time image segmentation
is shown in Figure 7. The proposed CNN accelerator design on FPGA is composed of several major
components, which are the computation units (Conv and Deconv modules), on-chip memories,
external memory and on-/off-chip interconnect. Conv and Deconv are the basic computation units
for the CNN-based segmentation algorithms. All data for processing are stored in external memory.
Due to the limitation of the on-chip memory size, data are first cached in on-chip buffers before
being fed to the computation units. The AXILite Bus is used to connect the computation units on
FPGA Program logic (PL) to the processor (PS) to configure the parameters of the layers.

The optimization to the CNN accelerator design focuses on fully utilising the existing hardware
resource by the computational modules. The Deconv module is configured to perform different
deconv layers to improve the efficiency as we mentioned earlier. The conv module and deconv
module share the same input buffer as will be discussed later. However, it is necessary to introduce
both conv and deconv modules for the segmentation accelerator. The fundamental difference
in mathematical operations of these two modules leads to different patterns of data access and
computation due to the different kernel sizes, sliding window and padding parameters. As such,
the sequence of data access and operations cannot be repeated across all the processing layers by a
single computation module which needs to perform both conv and deconv operations. Therefore,
our proposed architecture has two modules in place (which is similar to the work in [18] having
both conv and fc modules), and the computation kernels are optimized to improve hardware re-use
and allow higher FPGA clock frequency thus better efficiency and performance.

4.2 Convolution Architecture

This section will briefly cover the convolution architecture since it’s not the focus of this paper. The
convolution architecture is based on the design in [30]. Since the pooling layer is always connected
after conv layer, we implemented pooling layer inside conv layer by setting a pooling enable signal.
To extend the conv layer to support the U-Net architecture, a crop operation is also added to the conv

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 S. Liu et al.

On-Chip

o l

CONV DECONV
out coef input input coef out

L

Shared Input Buffer
AXI4-Lite Bridge T T

DMAO DMA1

M}— ARM CPU [PL to memory Interconnect]

T I I
| v v

DDR Memory

Off-Chip

Fig. 7. The architecture of the FPGA-based CNN accelerator which integrates 2 computation units: CONV
and DECONV.

layer by setting a crop enable signal. That is to say, by properly setting the pooling enable and crop
enable signals, our convolution accelerator can actually support three combined functions: 1) single
convolution; 2) convolution plus pooling; 3) convolution plus crop and convolution plus pooling.
Double output buffer is also used in the convolution architecture to save the output transfer time.

4.3 Optimizations

In this section, we describe the optimization techniques used for the FPGA-based CNN accelerator
in order to increase the system throughput. Computation and communication time are two main
optimization directions [27].

Shared Memory. Due to the limited on-chip memory resources, the implementation of many
machine learning algorithms on FPGAs have been shifted from computation bound to memory
bound [12, 13]. The FPGA-based CNN accelerator is no exception and even more intense because
of the large amount of processing data for each layer. In previous work in [29, 30] and other recent
literature, the input buffers for different computation layers are separate, which increases the
on-chip memory overhead and makes the memory resources particularly precious. However, the
computation layers in current CNNs are following each other, which means they will never run
concurrently. For this reason, we can share the input buffer as shown in Figure 7 between the
deconv and conv modules. By this optimization, the input buffer size can be halved for the overall
accelerator, which largely relieves the memory bottleneck of FPGA-based CNN accelerator.

Blocking Strategy. Because of limited memory resources on FPGA, input buffer cannot be large
enough to hold the whole input map of one layer. Blocking is essential when implementing the
CNN algorithms on FPGA. Blocking is to divide the input feature map into several parts to reduce
input buffer usage, and it is applied to the original input feature map for each layer. Block input
size mainly depends on the available memory resource and the shared input buffer size. In this
work, we optimize the block input size as it affects the overall communication time.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:11

Parallel Computation. Other standard optimization techniques include parallel computation and
data quantization. In this work, we fully parallelize the kernel matrix computation in conv and
deconv layers since the kernel size is generally small (e.g. k = 3,5 for conv and k = 2, 4 for deconv).
We explore the design space in the aspects of data parallelism (Pv) and filter parallelism (Pf) °:

e Data parallelism (Pv). Pu represents the amount of input data processed in parallel. While
computing matrix multiplication, it is possible to compute multiple kernels in parallel for a
number of input data. This level of parallelisation can be achieved by reading multiple input
in each cycle and replicating computation kernels Pv times. However, Pv is limited by the
block size and memory bandwidth.

o Filter parallelism (Pf). Pf represents the number of filters processed in parallel, which has
an upper bound Nf. It should be noted that unlike the data parallelism (Pv), filter parallelism
requires replicating both computation kernel and output buffers and thus it increases both
memory and logic overheads. Nevertheless, due to the blocking strategy, Pv is limited by the
block height or width, so Pf is necessary to further improve the performance.

Reduced Precision. Many recent research has shown that CNNs are robust to low bitwidth
quantization. Instead of using the default double or single floating point precision in CPU, fixed-
point precision can be used in FPGA-based CNN accelerator to achieve an efficient design optimized
for performance and power. In this work, we use multiple fixed-point data format such as 32 bits, 24
bits and 16 bits to implement our proposed design, in order to allow optimizations for high parallel
degrees mentioned in the above section. We evaluate the performance and power efficiency of the
proposed CNN accelerator for real time image segmentation in Section 8.

4.4 Design Parameters Tuning

The idea is to tune the design parameters mentioned above and have a trade-off between the
memory and computation resources on FPGA to achieve the optimal performance for the proposed
CNN accelerator. Given a specific data width, we first need to determine the input block size based
on the available memory resource for a given FPGA device; Then we can allocate the memory to
input buffers for sharing between the computation layers, and output buffers for each computation
unit; Based on the memory usage and computation resources (e.g. DSPs), we need to adjust the
value of filter parallelism, i.e. P f and data parallelism Pv for each computation module. This process
involves co-optimizing for the resource allocation between conv and deconv modules, in order to
achieve highest DSP utilization over time thus the highest processing speed of the system. The
details on how to solve out the optimal values of the input block size, Pv and P f are discussed in
the next Section.

5 PERFORMANCE MODEL AND DESIGN SPACE EXPLORATION
5.1 Performance Model

This section provides a detailed analysis of the performance of our proposed accelerator using
the above optimizations. In both conv and deconv modules, we design the kernel such that for a
single pipeline, one result is generated each cycle. For each computation layer, the execution time
includes: (1) loading data from off-chip memory into input buffer; (2) finishing computation for
all the computations of involved channels and filters; (3) writing computation results back into
off-chip memory. Here we first define a few terms used in our performance model in Table 3.
Correspondingly, the execution time in terms of clock cycles for computing a single filter includes:

3Channel parallelism is not considered in this work as it affects the overall architecture.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 S. Liu et al.

Table 3. Terms definition in the performance model.

Parameter | Definition

Pv Data-level parallelism

Pf Filter-level parallelism

Freq Clock frequency

BWi Memory bandwidth for loading data into kernel
BWo Memory bandwidth for writing data into kernel
DW Data width

By Height of the blocked input

Bw Width of the blocked input

1. Load time i.e., time to load N¢ channels into cache:
T, = Nc « W« H « DW
Freq * BWi
2. Computation time i.e., time to compute all channels for this filter:
Ne«W xH
==
3. Write time i.e., time to write the filter result into memory:

WO *Ho*DW

= ——m——— 7
’ Freq * BWo @)

Therefore the total execution time to compute the result for a filter inside the layer is:
Nec+«WsxH+«DW NecxWsxH Wpo*Hp*xDW

Thlter = + + 8
flter Freq * BWi Py Freq * BWo ®

T

When we are computing all the filters in the layer (normally, convolution and deconvolution layers
have more than 1 filter), there would be two major savings:

e There is no need to load the data to cache again as all the filters compute on the same data;
e The data write time can be overlapped with computation time via the double output buffer;

Therefore, the overall execution time of one computation layer is:
Nec «W « H« DW +NC*NF*W*H+ Wo * Hp * DW
Freq = BWi PuxPf Freq = BWo

©)

Tlayer =

N
Only the computation time is increased by P—F times, and the other two parts stay the same because

the data are reused and output double buffer hides the write latency (one filter of data transfer after
all the computation is still necessary). The total execution time of the whole network is the sum of
the time of each layer.

5.2 Design Space Exploration

Given a specific CNN algorithm i.e. number of layers and N¢, Nr for each layer, the design space
exploration is to find the optimal design parameter configuration i.e. block size (By * By), Pv and
Pf, under the available logic and memory resources in the target FPGA device, in order to minimize
the total execution time for real-time applications.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:13

There are two major limiting resources for FPGA-based CNN accelerator: one of them is the logic
resources such as LUTs and DSPs; the other is the memory resource i.e. the number of BRAMs. We
model the resources usage of our design for a given data-width as follows:

Logic resources. It covers the usage of LUT, FF and DSP, which is simply linear with respect to
Pv « Pf. Based on [30], DSPs are the limiting resource for the computation kernels, so only DSP
usage is considered in this category. Since we fully parallelize the matrix computation in conv and
deconv kernel, LUTs are used to implement fixed-point adders in order to save DSPs, as the adders
consume much fewer LUTs compared to that of multipliers and considering the available LUTs are
far more than the DSPs on FPGA. Let DSPM represents the number of DSP usage of one multiplier,
the total DSPs of the CNN accelerator are:

DSPNet — DSPM s JcCONY . SOV o Doy *Pf

+ DSPM % kdeconv " kdeconv % PU Pf (10)

Memory resource. The memory resources are mainly occupied by the shared input buffer and
output buffer for each computation kernel (conv, deconv and pooling). For input buffer, it needs
to store the whole input block of total channels for data reuse, and the size is Ng’“x * By * By,
where N'“* is the maximum value of all the channels in the CNN algorithm. The output buffer
size are By * By, k * k = By * By and By * By /4 for conv, deconv and pooling layers respectively.
When considering double buffers for output and filter parallelism, each output buffer size needs to
increase by 2 = P f times. Kernel coefficient has no need to be cached in RAMs because they are not
reused during computations, therefore only a small FIFO of size k * k can be implemented to buffer
the streaming of kernel coefficient from DMA. Therefore, the total BRAMs used for our design can
be estimated as:

B Net:Ncm“x*BH*BW*DW_'_
BRAM;;ze
(11)
9 Pf (BH*Bw+k*k*BH*BW+BH*Bw/4)*DW
% %
BRAMize

Based on the above performance model and resource usage estimation, we need to obtain the
design parameters to minimize the latency of the proposed CNN accelerator for the whole net
computation. The whole optimization process is to determine the largest block size we can buffer in
the device and the parallelism i.e., resource allocation between conv and deconv modules. Therefore
this process involves co-optimizing between conv and deconv layers and achieving best efficiency
of resource utilization (DSPs). The goal is to reduce the whole execution time of the evaluated
network. Please note that the optimization goal is the latency instead of the accuracy, so the
trade-off between data-width and accuracy is not explored in this work although the accuracy of
the network for different data-width is discussed in Section 7. That is to say, our design space is
explored by taking the data-width as an input, and we use a set of fixed-point data widths such as
32 bits, 24 bits and 16 bits to evaluate our design.

In summary, the design space exploration is to solve the nonlinear optimization problem as

follows:
minimize sum of time T in (9) for each layer in net
BH,Bw,Pv,Pf
subject to DSPNet < total DSP,

BRAMN® < total BRAM on FPGA.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 S. Liu et al.

The objective function which is the total execution time contains the information of the network
i.e. H,W, Ny of each layer. The resource modelling is under a given data-width. Based on this
optimization model, the Nonlinear programming solver fmincon in Matlab Optimization Toolbox is
utilized to solve this optimization problem. Therefore, our tool automatically generates the optimal
design parameters before we configure the FPGA device for final run, and then implement the
optimal design in the target device, for any given CNN algorithm (such as U-Net, FCN).

6 AUTOMATIC HARDWARE MAPPING FRAMEWORK

An automatic hardware mapping framework is developed to automatically generate the low-latency
hardware design for a given CNN model on the target device. Figure 8 shows the work-flow of the
framework. The inputs are the CNN model parameters for each computational layer (such as N¢,
Nr, maximum input image size), and the resources of the target device (BRAMs,DSPs and DDR
memory bandwidth). Some other constraints are defined by the user such as the required execution
time or the accuracy. The framework works through three steps: 1) first, the Matlab tool fmincon
mentioned above is used to find out the optimal design parameters such as block size, parallelism:
Pf and Pv, and data-width to satisfy a given time constraint; 2) the software C++ code is generated
based on the design parameters and is run to set the block size and configure the parameters of the
layers; 3) synthesizable Verilog hardware code is generated based on the parallelism and memory
configuration information from the first step.

CNN model FPGA Other
Params Params constraints

Nc Ne BRAM, DSP Execution time

H*W v DDR bandwidth & accuracy

&L

y

Design Space Exploration (fmincon)

_ parallelism: Pf, Pv;
Elock S‘l(ﬁ{ data width,
ata widt J & memory allocation

SW Gen HW Gen

A 4

C++ { Verilog ;

Fig. 8. The framework for automatic hardware optimization and mapping, and code generation for any given
CNN and FPGA device.

The first step for design space exploration is using the Matlab tool, and code generation tool is
implemented in Python. Based on the framework, we can easily extend our hardware to support
different CNN architectures and applications such as classification, object detection, and segmenta-
tion. The framework largely improves design quality and designers’ productivity by automatically
generating the optimal hardware design for any CNNs before we configure the FPGA device for
the final run.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:15

7 PROPOSED CNN ALGORITHM FOR REAL-TIME SEGMENTATION

Image segmentation is the process of assigning a label to every pixel in an image such that pixels
with the same label share certain characteristics such as color or intensity. The result of image
segmentation is a set of segments that collectively covers the entire image. Each of the pixels in
a region is similar with respect to some characteristic. One of the state-of-the-art networks for
image segmentation is the U-Net architecture proposed by Olaf Ronneberger et. al. in 2015 [20].
Segmentation of a 512x512 image takes less than a second on a Nvidia Titan GPU. In this work,
we evaluate this network architecture on the Cityscapes Dataset [3] which focuses on semantic
understanding of urban street scenes.

For real-time application, it requires to assign a class label to each pixel in the input image at a
very high speed and therefore the speed or the real-time response of the network is more important
than the accuracy i.e., the segmentation result. For this reason, we propose an optimized U-Net
CNN architecture based on the original one through three general model compression methods:
1) channel prunning [8]; 2) depth (number of layers) reduction [7] and 3) resolution multiplier
[6, 9]. The configurations of each layer of the optimized U-Net architecture are described in Table
4. In total, it has 23 layers: eighteen 3*3 conv layers, four 2*2 deconv layers and one 1*1 conv layer.
Three modifications and improvements are performed to improve the hardware efficiency of this
architecture compared to the original one: 1) the number of filters of each layer is reduced, in order
to save computation time; 2) the crop is removed and only copy needs to be performed; 3) unpadded
convolutions are changed to padded for each conv layer, in order to keep the same output size as
input for simple hardware implementation.

Table 4. Configurations of the proposed U-Net architeture.

Layer 1 2 3 4 5 6 7 8 9 10 11
3*3 conv 3*3 conv 3*3 conv 3*3 conv
kernel | 3*3 conv 3*3 conv 3*3 conv 3*3 conv 3*3 conv | 3*3 conv | 2*2 deconv
2*2 pool 2*2 pool 2*2 pool 2*2 pool
Input | 512*512 | 512*512 256256 256*256 | 128128 128128 64764 6464 32*32 32*32 32*32
Nc¢ 3 8 8 16 16 32 32 64 64 128 128
Np 8 8 16 16 32 32 64 64 128 128 64
Layer 12 13 14 15 16 17 18 19 20 21 22 23

kernel | 3*3 conv | 3*3 conv | 2*2 deconv | 3*3 conv | 3*3 conv | 2*2 deconv | 3*3 conv | 3"3 conv | 2*2 deconv | 3*3 conv | 3*3conv | 1*1conv

Input 6464 64764 64764 128%128 | 128"128 128*128 256*256 | 256*256 256*256 512*512 512*512 512*512
Ne 128 64 64 64 32 32 32 16 16 16 8 8
Nr 64 64 32 32 32 16 16 16 8 8 8 1

The optimized U-Net architecture reduces the computational complexity in terms of operations
from 30 GOP (giga operations) of the original one to 5.92 GOP while achieving the pixel-level
segmentation accuracy of 60.8% compared to around 68% of the original network on Cityscapes
Dataset. Since our proposed algorithm supports pixel-level segmentation, its functionality is not
evaluated in terms of classification accuracy. The accuracy is measured based on the metric of
class-level Semantic Labeling scores on cityscapes dataset. 60% of semantic labeling score indicates
that 60% of all pixels in the analysed image are correctly labelled. For a 1080p-resolution image,
this means 1.2 million pixels are correctly labelled. Under such accuracy, most of the semantics in
the image can be understood. The official criterion on this dataset includes two levels, i.e., class

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 S. Liu et al.

100% 995
° ®mLUT ®mFF = BRAM mDSP ’
80%
60% 57%
40%
229% 24% 24% 24% 028% 2192
20% 14% =
1% oop 1., 4% 3% 6%3, A% 9%
0% by 2% 1% 770 2%19 . 2% I 3%
, UED T
P=1 p=2 pP=4 =56

Fig. 9. Resource utilisation vs. Parallelism (P = Pv * Pf) of the deconvolution accelerator in ZC706 board.

and category [2]. The class-level score is much smaller than category-level score, since the number
of classes is more than the number of categories in this dataset. One of the state-of-the-art CNN
algorithms FCN-8s has a class-level score of 57.4%, which is smaller than our score. Among all the
algorithms recorded in the official website, our design at a class-level score of more than 60% is
beyond or comparable to most previous networks [2].

8 EVALUATION
8.1 Implementation Details

The proposed deconvolution accelerator, together with convolution accelerator are developed using
Verilog HDL. Fixed point arithmetic operators are generated using Xilinx IPs with arbitrary bitwidth
precision. The hardware system shown in Figure 7 is built on Xilinx Zynq ZC706 board which
consists of a Xilinx XC7Z045 FPGA, dual ARM Cortex-A9 Processor and 1 GB DDR3 memory. The
choice of FPGA is based on the consideration of area and power consumption. The whole system is
implemented with Vivado Design Suite. The FPGA XC7Z045 is programmed with our deconvolution
and CNN accelerator respectively. The ARM processor is used to initialize the accelerator, set the
layer parameters and transfer the data for each layer. An overview of the implementation block
diagram is shown in Figure 7. All designs run on a single 200 MHz clock frequency. The DDR3
memory in our design has a datapath width of 64 bits and it operates at the same clock frequency
(200 MHz) as the FPGA engine. All results are post place and route except if it is stated otherwise.

For comparison, the respective software implementations run on CPU and GPU are using the
deep learning software framework Caffe [11] in CentOS 7.2 operating system. The CPU platform is
Intel Core i7-950 CPU@3.07GHz (8 cores). The GPU platform is Nvidia TITAN X (Pascal) (3840
CUDA cores with 12GB GDDRS5 384-bit memory).

8.2 Deconvolution Accelerator Evaluation

We first evaluate the proposed deconvolution accelerator® for 32-bit data quantization. Figure
9 shows the resource utilization for the parametrized deconvolution accelerator with different
parallelism (P = Pv * Pf). From this Figure, we can see when the parallelism is small, BRAMs
dominate the resource usage; when parallelism increases, the DSPs usage increases a lot and
becomes the limiting computation resource. This is expected as the main memory usage is the

4Deconvolution accelerator only integrates the deconv module in FPGA program logic while CNN accelerator implements
both conv and deonv modules on FPGA. Therefore, these two accelerators can have different degree of parallelism and
resource usage.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:17

Table 5. Deconvolution Accelerator on FPGA vs. GPU and CPU implementations.

FPGA GPU CPU
Platform ZC706 Nvidia Titan X (Pascal) Intel Core i7-950
Compiler Vivado (2016.2) Caffe (CUDA 8.0) GCC (8 cores)
Compile Flags - -Ofast -03
Clock 200 MHz 1531 MHz 3.07 GHz
Technology 28 nm 16 nm 45 nm
Precision 32-bit fixed-point 32-bit floating-point 32-bit floating-point
Deconv time in U-Net 125ms 37.11ms 517ms
Power 9.60W 168W 106W
Energy 1.20] 6.24] 54.80]
Deconv time in FCN 0.25ms 0.1144ms 2.37ms
Power 9.60W 147W 106W
Energy 0.0024] 0.0168] 0.2512]

1 CPU’s power consumption is measured at the wall by a power meter when running the application.
2 GPU’s power consumption is recorded using NVIDIA System Management Interface (nvidia-smi).
3 FPGA’s power consumption is obtained from the board using a power meter.

shared input buffer which has no relationship with the parallelism. For the output buffer, only P f
has an effect on the BRAM usage. However, the DSP usage is linear to Pv * Pf, making it the main
bottleneck in terms of computation resources when the degree of parallelism is high.

To evaluate the parametrized architecture, we test two cases of the deconvolution layers: 1)
deconv in original U-Net which has parameters: k = s = 2,p = 0; 2) deconv in FCN which has
parameters: (k,s) = (16, 8),(4,2) and p = 0. Therefore the deconvolution layers in FCN require
the sum of overlapping part of the output results. The performance comparison between our
accelerator and the respective software implementation on CPU and GPU is summarized in Table
5. The CPU-based system was developed utilizing all the available cores in the system (i.e. 8),
as well as using -O3 optimizations. Compared to CPU design, our accelerator achieves 4.14x to
9.48x speedup, and consumes much less power. Nevertheless, GPU implementations beat the FPGA
implementation on runtime. It is not surprised because of the current small number of DSPs (900)
in the target device. However, our accelerator has much less power consumption and better energy
efficiency than GPU.

Table 6. Proposed Deconvolution Accelerator vs. previous design on FPGAs.

Chip Precision #DSP Frequency GOPS GOPS/DSP
[29] in 2017 XC7Z020 12-bit fixed-point 220 (95% used) 100 MHz 2.6 0.012
Ours XC7Z045 32-bit fixed-point 900 (99.5% used) 200 MHz 90.1 0.1

Finally we compare our deconvolution accelerator’s performance with existing deconvolution
accelerator in [29]. The results are shown in Table 6. Our deconvolution accelerator achieves 90.1
GOPS (giga operations per second) and 0.1 GOPS/DSP for 32-bit fixed point precision. Our work
outperforms the design in [29] significantly which used 12-bit fixed point, and our deconvolution
accelerator achieves around 34.7x improvement in terms of GOPS and 8.3x for GOPS/DSP.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:18 S. Liu et al.

8.3 CNN Accelerator Evaluation

In this section, we evaluate the performance of our CNN accelerator for the optimized U-Net
architecture shown in Table 4, under multiple data quantizations. It should be noted that there
is no obvious accuracy loss in the image segmentation result when reducing the precision from
32-bit floating point to fixed-point 16-bit quantization version for the inference process, as long
as the training stage is using 32-bit floating point. That is to say, even using 16-bit fixed point
precision, we still achieve the pixel-wise segmentation accuracy of 60.8% for image segmentation
on Cityscapes Dataset.

We first use the non-linear optimization model to automatically generate the optimal CNN design
for the optimized U-Net under a given data quantization on the target device. Table 7 summaries
the optimal design parameters for a set of fixed-point data width and it also shows BRAM and DSP
utilization. The execution time of the optimized U-Net was measured from running the optimal
design on FPGA board for one 512*512 image segmentation process. The total number of BRAMs
and DSPs in ZC706 are 545 and 900 respectively. For each candidate of data width, DSP is the
limiting resources and it limits the parallelism we can achieve in the target device. The optimal
performance we can obtain is 0.058s for 512*512 input image under 16-bit quantization, which is
around 17 frames per second. Since double buffer is used to transfer data, the majority of run time
is spent on computation in the case of our system.

Table 7. Optimal design parameters and its corresponding resource utilization and measured performance in
Xilinx ZC706 FPGA board.

Block DSP | BRAM | runtime (s)
DW/bit Pf'conv pyconv Pfdeconv Pvdeconv
Size usage | usage | on board
32 32*32 2 8 1 8 92.44% | 30% 0.141
24 6464 4 8 1 16 78% 85% 0.087
16 6464 4 16 1 16 71.1% | 66.6% 0.058

As a design reference, we generate the optimal design parameters from our model when deploying
to a bigger device Zynq XC7Z100 which has 755 BRAMs and 2020 DSPs in total. The results are
shown in Table 8. As can be seen, when data width is 24-bit or 16-bit, the computational bottleneck
is the memory resource instead of DSPs (which is the case when deploying to Xilinx ZC706). When
DW = 16-bit, the memory limits the block size we can process and thus increases communication
overhead; when DW = 24-bit, the memory limits filter parallelism as shown in the table that the
optimal BRAM usage already exceeds DSP usage. When deploying to this device, with 16-bit
quantization, the system is expected to process up to 25 frames for 512*512 image per second.

Table 8. Optimal design parameters and its corresponding resource utilization in Zynq XC7Z100 FPGA device.

Block DSP | BRAM
DW/bit Pfcunv pyconv Pfdecunv Pvdeconv
Size usage | usage
32 64764 2 16 1 8 69.7% | 90.5%
24 64764 4 16 1 16 63.4% 70%
16 64764 4 32 1 16 60.2% 49%

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:19

The final system is implemented with 16-bit quantization in Xilinx ZC706 board and its detailed
resource utilization is shown in Table 9. We compare the proposed CNN accelerator design with
the respective optimal CPU (8 cores) and GPU implementations evaluated on the optimized U-Net.
The results are summarized in Table 10. The platform and software implementation configurations
are same as Table 5. Our CNN accelerator achieves a speedup of 10x in processing speed and
110x improvement in energy efficiency compared to the CPU design using all available threads.
Compared to the state-of-the-art implementation on the world’s most powerful GPU (Titan), our
accelerator is a bit slower but achieves an improvement of 8x in energy efficiency.

Table 9. The resource utilization of the final design in ZC706 FPGA under parameter configuration: precision
is 16-bit fixed point, block size is 64 * 64, Pf and Pv of conv and deconv are (4,16) and (1,16) respectively.

Resource LUT FF BRAM | DSP

Utilization 85679 | 110643 364 640

Total 218600 | 437200 545 900
Percentage(%) 39 25 67 71

Table 10. CNN accelerator on FPGA vs. GPU and CPU implementations evaluated on the optimized U-Net
architecture.

FPGA ZC706 GPU Titan X CPU i7 (8 cores)

Optimized U-Net

. . 58.4 26.2 574
execution time (ms)
Power(W) 9.60 168 106
Energy (J) 0.56 4.40 60.9

Our system achieves the frame rate of 17 fps. The optimized U-Net network has 5.9 GOP (giga
operations) in total including multiplications and additions. Our CNN accelerator achieves an
average performance of 107 GOPS and resource efficiency of 0.12 GOPS/DSP in ZC706 device.
We compare our CNN accelerator with the previous state-of-the-art in Table 11. Our accelerator
achieves the lowest power consumption, and highest performance and resource efficiency of
deconvolution accelerator in terms of GOPS/DSP. Compared to [18], our convolution computation
engine and overall CNN accelerator provide comparable performance in terms of GOPS/DSP. It
should be noted that: designs in [27] were designed for convolution layers only, those in [29] were
designed only for deconvolution layer and [18] implemented convolution and fully-connected
layers. In this work, we implemented both convolution and deconvolution layers in our proposed
CNN accelerator which has never been done and evaluated on FPGA before, to the best of our
knowledge.

8.4 Discussions

In terms of GOPS of the overall CNN accelerator consisting of both CONV and DECONV modules,
itis (r + 1)/(r + t) times in terms of GOPS of CONV, i.e.,

r+1
GOPSNet = — GOPSconv (12)
r

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 S. Liu et al.
Table 11. Our CNN accelerator vs. previous FPGA accelerators.
[27] [18] [29] Ours
in FPGA15 in FPGA16 in 2017
Virtex7 Zynq Zynq Zynq
Platfi
artorm VX485T ZC7045 ZC7020 ZC7045
Clock (MHz) 100 150 100 200
Precision 32-bit float 16-bit fixed 12-bit fixed 16-bit fixed
#DSP 2800 900 220 900
Power (W) 18.61 9.63 - 9.60
125 (CONV)
Perfi 187 (CONV
eriormance | 1 62 (CONV) () | 26 (DECONV) | 29 (DECONV)
(GOPS) 137 (overall)
107 (overall)
R 0.14 (CONV
esouree 0.207 (CONV) ()
Efficiency | 0.022 (CONV) 0.15 () 0.012 (DECONV) | 0.033 (DECONV)
.15 (overa
(GOPS/DSP) 0.12 (overall)

" The total number of DSP in device is used to calculate GOPS/DSP for each module and overall
when evaluating CNN accelerator, to be consistent with [18] and [29].

where r is the ratio of GOP of CONV and DECONV in a specific CNN algorithm and t is the ratio
of GOPS of CONV and DECONV modules. For example, the optimized U-Net has 5.6 GOP for
CONV and 0.3 GOP for DECONV, thus r = 18.7; our CNN accelerator achieves t = 4.31. Based on
Equation (12), when DECONV consumes a large percent of operations in CNN (i.e., r is small®),
or when DECONYV has less performance (GOPS) than CONV on FPGA (i.e., t is large), the overall
performance of the CNN accelerator is largely reduced. This is exactly the motivation of this work
which focuses on the acceleration of deconvolution on FPGA. The relationship in (12) also provides a
guide to tune the performance of CONV and DECONYV in FPGA for a given CNN network. Previous
work such as [18] didn’t support deconvolution module and thus most computational resources
on FPGA were spent on the CONV module. Therefore, it has higher GOPS/DSP performance of
the CONV module. We integrate both CONV and DECONV modules in our CNN accelerator. As
a consequence, the proposed design supports semantic segmentation, while the previous work
only supports image classification. Nevertheless, our accelerator achieves a processing speed of 17
fps on the same device, although segmentation is a more complex task compared to classification
task. The main benefits of our design come from that 1) algorithm optimization i.e., reducing the
complexity of network; 2) high-performance deconv design with prior state-of-the-art conv design;
3) co-optimizing between the conv and deconv modules.

To the best of our knowledge, this is the first hardware accelerator architecture to support
semantic segmentation deep-learning networks. Compared with CPU and GPU implementation,
we achieve 110x and 8x improvement of energy efficiency respectively. The system can process up
to 17 frames per second for 512*512 image segmentation and therefore it is very suitable for real
time embedded applications.

5 r is around 6 for the U-Net in [20] and r = 0 for DCGAN in [19] as all the layers are DECONV.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:21

9 RELATED WORK

There is numerous work related to FPGA-based CNN accelerators, which mainly focus on the
acceleration of convolution layer. [27] proposed the roofline model to analyse the accelerator’s
computing latency and required memory bandwidth. However this work only optimized con-
volution layer in CNN architecture. Besides, this work is based on Vivado HLS implementation
and is hard to tune the design parameters. [18] optimized CNNs on embedded FPGA platform by
dynamic-precision data quantization to reduce memory footprint and bandwidth requirements.
[30] optimized the CNN algorithms for object detection on FPGA. [17] introduced the Sparse CNN
(SCNN) accelerator architecture that exploited both weight and activation sparsity to improve both
performance and power. Yet all these works are focused on the convolution and fully-connected
layers, and they didn’t evaluate the networks with deconvolution layers to support image segmen-
tation. The state of the art convolution accelerator on FPGA is proposed in [15] by implementing
convolution layers using a fast and efficient method: Winograd minimal filtering algorithm. [15]
outperformed all previous work on convolution acceleration. However, Winograd algorithm is only
efficient for very small kernel size like 3*3 and therefore it cannot be used in very general CNNs.
For this reason, we didn’t compare our work to [15] since our CNN accelerator is parametrized and
can be used for most state of the art CNNs.

Recent FPGA-based accelerators for deconvolutional networks are presented in [23, 24, 29]. Yaz-
danbakhsh et al. [23, 24] proposed an end-to-end FPGA accelerator for GANs that combined MIMD
and SIMD models while separating data retrieval and data processing units at the finest granularity.
However, their designs in [23, 24] are based on the transposed convolution implementation and
therefore are computationally inefficient compared to the method here as we mentioned earlier.
Zhang et al. [29] proposed an accelerator with Vivado HLS tool and provided statistical analysis
to find out the most cost-efficient bitwidth. However, this work only implemented deconvolution
layer and can only be applied for deconvolutional neural networks (DCNNs). Our implementation
takes advantage of deconvolution algorithm adaptation, shared memory for CNN accelerator and
balance between logic and memory resource usage. Therefore our approach outperforms their
work significantly.

The main difference of our work compared to previous designs is that: 1) we optimize and evaluate
both convolution and deconvolution layers in our CNN accelerator, to support segmentation task;
2) we propose parametrized deconvolution accelerator to support different CNN architectures; 3)
we focus on real-time response of image segmentation, and propose new net architecture to achieve
lower latency; we also propose a non-linear optimization model for design space exploration, and
automatically generate the optimal CNN design for any given network and FPGA device.

10 CONCLUSIONS

In this work, we propose deeply customized and parametrized deconvolution accelerator for CNN-
based segmentation problem. We optimize the hardware architecture of the CNN accelerator for
both convolution and deconvolution layer, by sharing the input buffer, design space exploration to
achieve optimal parallelism parameters and data quantization. The parameter tuning is performed by
solving the proposed non-linear optimization problem. Our current and future effort addresses the
challenge of supporting 30 frames per second for 512*512 image segmentation, by exploring various
enhancements of our designs based on techniques such as multi-pumping [31], and deploying to a
larger device.

REFERENCES

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. 2017. Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE Trans. pattern analysis and machine intelligence. 39, 12 (2017), 2481-2495.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22

(2]

—
~
—

—
Ne)
—

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]
[25]
[26]

[27]

S. Liu et al.

2017. Semantic Understanding of Urban Street Scenes: Benchmark Suite. https://www.cityscapes-dataset.com/
benchmarks/

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. 2016. The cityscapes dataset for semantic urban scene understanding. In CVPR.
3213-3223.

Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution arithmetic for deep learning. arXiv:1603.07285.
https://arxiv.org/abs/1603.07285

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al.
2017. ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA. In FPGA. 75-84.

Song Han, Huizi Mao, and William] Dally. 2015. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. (2015). arXiv:1510.00149. https://arxiv.org/abs/1510.00149

Kaiming He and Jian Sun. 2015. Convolutional neural networks at constrained time cost. In CVPR. 5353-5360.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel pruning for accelerating very deep neural networks. In ICCV,
Vol. 2. 6.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. (2017).
arXiv:1704.04861. https://arxiv.org/abs/1704.04861

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-image translation with conditional
adversarial networks. (2016). arXiv:1611.07004. http://arxiv.org/abs/1611.07004

Yangging Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675-678.

Shuanglong Liu and Christos-Savvas Bouganis. 2017. Communication-Aware MCMC Method for Big Data Applications
on FPGAs. In FCCM. 9-16.

Shuanglong Liu, Grigorios Mingas, and Christos-Savvas Bouganis. 2017. An unbiased mcmc fpga-based accelerator in
the land of custom precision arithmetic. IEEE Trans. Comput. 66, 5 (2017), 745-758.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation.
In CVPR. 3431-3440.

Ligiang Lu, Yun Liang, Qingcheng Xiao, and Shengen Yan. 2017. Evaluating fast algorithms for convolutional neural
networks on fpgas. In FCCM. 101-108.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning deconvolution network for semantic segmenta-
tion. In Proceedings of the IEEE International Conference on Computer Vision. 1520-1528.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan Venkatesan, Brucek Khailany,
Joel Emer, Stephen W Keckler, and William J Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convolutional
Neural Networks. In ISCA. 27-40.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tiangi Tang, Ningyi Xu, Sen Song,
et al. 2016. Going deeper with embedded fpga platform for convolutional neural network. In FPGA. 26-35.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional
generative adversarial networks. (2015). arXiv:1511.06434. https://arxiv.org/abs/1511.06434

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image
segmentation. In In Medical Image Computing and Computer-Assisted Intervention. Springer, 234-241.

Ruslan Salakhutdinov. 2015. Learning deep generative models. Annual Review of Statistics and Its Application 2 (2015),
361-385.

Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural
network. In CVPR. 1874-1883.

Amir Yazdanbakhsh, Michael Brzozowski, Behnam Khaleghi, Soroush Ghodrati, Kambiz Samadi, Hadi Esmaeilzadeh,
and Nam Sung Kim. 2018. FlexiGAN: An End-to-End Solution for FPGA Acceleration of Generative Adversarial
Networks. In FCCM.

Amir Yazdanbakhsh, Kambiz Samadi, Hadi Esmaeilzadeh, and Nam Sung Kim. 2018. GANAX: A Unified SIMD-MIMD
Acceleration for Generative Adversarial Network. In ISCA.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. 2010. Deconvolutional networks. In CVPR.
2528-2535.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus. 2011. Adaptive deconvolutional networks for mid and high
level feature learning. In ICCV. 2018-2025.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing fpga-based accelerator
design for deep convolutional neural networks. In FPGA. 161-170.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://www.cityscapes-dataset.com/benchmarks/
https://www.cityscapes-dataset.com/benchmarks/
http://arxiv.org/abs/1603.07285.
https://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1510.00149.
https://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1704.04861.
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1611.07004.
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1511.06434.
https://arxiv.org/abs/1511.06434

Optimizing CNN-based Segmentation with Customized Architectures on FPGA 1:23

[28] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017. Beyond a gaussian denoiser: Residual
learning of deep cnn for image denoising. IEEE Transactions on Image Processing 26, 7 (2017), 3142-3155.

[29] Xinyu Zhang, Srinjoy Das, Ojash Neopane, and Ken Kreutz-Delgado. 2017. A Design Methodology for Efficient
Implementation of Deconvolutional Neural Networks on an FPGA. (2017). arXiv:1705.02583. http://arxiv.org/abs/1705.
02583

[30] Ruizhe Zhao, Xinyu Niu, Yajie Wu, Wayne Luk, and Qiang Liu. 2017. Optimizing CNN-Based Object Detection
Algorithms on Embedded FPGA Platforms. In ARC. Springer, 255-267.

[31] Ruizhe Zhao, Tim Todman, Wayne Luk, and Xinyu Niu. 2017. DeepPump: Multi-pumping deep neural networks. In
ASAP. 206-206.

Received December 2017; revised April 2018; accepted July 2018

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://arxiv.org/abs/1705.02583.
http://arxiv.org/abs/1705.02583
http://arxiv.org/abs/1705.02583

	Abstract
	1 Introduction
	2 Background
	2.1 CNN-based Image Segmentation
	2.2 Deconvolution Algorithms
	2.3 Algorithm Comparison

	3 Deconvolution Hardware Design
	4 CNN Accelerator Design and Optimizations
	4.1 CNN Architecture
	4.2 Convolution Architecture
	4.3 Optimizations
	4.4 Design Parameters Tuning

	5 Performance Model and Design Space Exploration
	5.1 Performance Model
	5.2 Design Space Exploration

	6 Automatic Hardware Mapping Framework
	7 Proposed CNN Algorithm for Real-time Segmentation
	8 Evaluation
	8.1 Implementation Details
	8.2 Deconvolution Accelerator Evaluation
	8.3 CNN Accelerator Evaluation
	8.4 Discussions

	9 Related Work
	10 Conclusions
	References

