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The analysis of vibration signals has been a very important technique for fault diagnosis and health management of rotating
machinery. Classic fault diagnosis methods are mainly based on traditional signal features such as mean value, standard derivation,
and kurtosis. Signals still contain abundant information which we did not fully take advantage of. In this paper, a new approach is
proposed for rotating machinery fault diagnosis with feature extraction algorithm based on empirical mode decomposition (EMD)
and convolutional neural network (CNN) techniques. The fundamental purpose of our newly proposed approach is to extract
distinguishing features. Frequency spectrum of the signal obtained through fast Fourier transform process is trained in a designed
CNN structure to extract compressed features with spatial information. To solve the nonstationary characteristic, we also apply
EMD technique to the original vibration signals. EMD energy entropy is calculated using the first few intrinsic mode functions
(IMFs) which contain more energy. With features extracted from both methods combined, classification models are trained for
diagnosis. We carried out experiments with vibration data of 52 different categories under different machine conditions to test the

validity of the approach, and the results indicate it is more accurate and reliable than previous approaches.

1. Introduction

Rolling-element bearings (REBs) are the most fundamental
and important components of rotating machines in indus-
trial manufacture and agricultural production. Therefore,
the analysis of REB vibration signals is always considered
an important approach in fault diagnosis and condition
monitoring. A minor defection of rolling bearings may lead
to breakdown of the entire system and cause severe financial
losses.

Vibration signals are usually generated from rolling-
element bearings, which contain rich information that may
assist in the procedure of condition monitoring, fault diag-
nosis, and machine health management. The research of
bearing fault diagnosis has long been receiving extensive
attention over years and is becoming more important in
modern industry for the need of higher reliability and lower
loss possibility.

Essentially, fault diagnosis is a pattern recognition prob-
lem, which includes two major steps that are feature extrac-
tion and classification. Traditional features of vibration sig-
nals are generated from three main kinds of methods as listed
below. Time domain analysis and frequency domain analysis
are mostly commonly used in feature extraction; also the
combination known as time-frequency domain analysis is
another significant method.

Time domain features have long been used in the aspect of
fault diagnosis for rotating machinery [1]. Most time domain
features are statistical features such as mean value, root mean
squares, standard deviation, kurtosis, and skewness. They
are generally easy to calculate and acquire and therefore are
trained in different classifier models for fault diagnosis. Hu et
al. [2] and Sreejith et al. [3] combined time domain features
with artificial intelligence, namely, artificial neural network
(ANN), in bearing fault diagnosis. Another machine learning
technique such as support vector machine (SVM) is also
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applied in [4]. Chang et al. in [5] summarized other time
domain features used in fault diagnosis.

The analysis of the vibration signals’ frequency spec-
trum is the basis of frequency domain analysis. Fundamen-
tal frequencies of the signals are calculated through fast
Fourier transform. Usually the significant frequencies and
the corresponding amplitudes are chosen manually as fault
diagnosis features. Frequency domain features are applied
with different methods in [6-8]. Time domain features and
frequency domain features reflect different characters of the
vibration signals, so generally fault diagnosis methods con-
sider them both as classification features. In [9], time domain
features and frequency domain features were combined using
information fusion and an ANN model was trained for fault
diagnosis. Cao et al. in [10] trained a SVM model with feature
extraction using PCA method. Other experiments were done
trying to take advantage of both domain analyses in [11, 12].

Time-frequency methods are usually effective in extract-
ing the features of the original rotating machinery signals.
However, most of the vibration signals may have nonsta-
tionary characteristic; other analysis methods are introduced.
Wavelet transform is one of the most useful signal analysis
methods. Efficient results of applying wavelet transform are
shown in [18, 19].

Though traditional analysis methods are mostly effective,
however some fundamental mathematic models usually need
to be established before applying to the original signals. For
instance, the fundamental frequencies need to be selected
manually and the bandwidth of filters to preprocess signals
is chosen with expert experiences. In real rolling-element
bearing systems, signals are more complex and parameters
may be hard to extract or determine.

Being a time-frequency analysis technique, empirical
mode decomposition (EMD) shows its powerful ability for
signal analysis. The analysis process of EMD is not based on
predetermined parameters but takes the local time scales of
the signals into consideration [20]. In an EMD procedure,
the vibration signal of a rotating machine is decomposed
into a set of intrinsic mode functions (IMFs). Each IMF
may be considered as a basic function of the signal. When
the vibration signals are nonlinear and nonstationary, EMD
technique may have better performance than traditional
techniques. Also, EMD is a self-adaptive processing method,
which means less manual work.

Most feature extraction methods mentioned focused on
utilizing signal characteristics instead of modeling the signal
itself. However, vibration signals still contain rich informa-
tion. Recently machine learning techniques, especially neural
networks, have been widely used in feature engineering. Deep
learning technique is a machine learning method proposed
in 2006 [21]. The special structure of deep neural network
(DNN) makes it possible to extract features for original
signals representation [22]. The performance of DNN has
been state of the art in many applications, such as computer
vision and natural language process [23, 24]. Researchers have
applied DNN in fault diagnosis as well [25-28]. Verma et al.
[27] purposed a condition monitoring method using sparse
autoencoder. In [25], Tagawa et al. built a model based on
denoising autoencoder for car fault diagnosis.
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Convolutional neural network (CNN) is an important
machine learning technique. CNN is a deep neural network
structure that mainly focuses on image processing. Like other
neural network structures, CNN is formed by a number of
neurons, which are organized as the reflection of different
overlapping part in the whole field. CNN has been used
for image classification and segmentation, and it already has
achieved effective results [29, 30].

In this paper, EMD and CNN are both applied as
feature extraction method, and a complete structure for
fault diagnosis of rolling-element bearing is designed and
trained. The following parts of the paper are organized
as below. In Section 2, a literature review is given about
CNN and EMD applications. Details of CNN and EMD
methods and a complete structure of our approach are also
described and discussed. In Section 3, the validity of our
newly proposed approach for REB fault diagnosis is testified
by different experiments which we carried out. In addition,
the experiment results are compared with other analysis
methods. In the end, the conclusion of this paper is drawn
in Section 4.

2. Methodology

First of this section, details of CNN and EMD methods are
introduced, after which a complete structure of our approach
is described and discussed.

2.1. Convolutional Neural Network. Deep learning methods
have outstanding performances in image classification, com-
puter vision, and nature language process. CNN structure is
a type of deep neural network. Neurons forming the CNN
structure have weights and biases which are changeable and
learnable through training.

A number of CNN structures are developed in recent
years such as LeNet, GoogleNet, and AlexNet. Figure 1 is
a typical structure of LeNet model. Applications in image
recognition, video analysis, and nature language process also
show the effectiveness of CNN model [31-35].

A CNN structure is made up of three types of layers,
which are convolutional layer, subsampling layer, and fully
connected layer with a loss function such as SVM or soft-
max classifier [36]. Typical CNN structure can therefore be
divided into two parts. Convolutional layers and subsampling
layers work as the feature extractor, while the last layer works
as a classifier.

A convolutional layer is the most important and fun-
damental component of a CNN structure. Each neuron in
a convolutional layer receives some inputs of a restricted
region in the whole signal. The convolutional layer’s weights
and biases are considered as a group of convolution kernels
(or filter). A kernel only takes a relatively small region of
the signal into consideration and projects the whole signal
to a brand new feature map, which means dot product is
calculated between the signal and each kernel repeatedly.
Since the replicated kernel shares the same parameter setup,
the number of the network parameters is relatively small.

A m x m x r signal vector is input to a convolutional
layer as the extractor part of CNN. m is the height and
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FIGURE 1: Typical convolutional neural network structure of LeNet.
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FIGURE 2: Structure of convolutional neural network.

width of the input signal, and in general cases the height
and width are the same. r is the number of channels of the
input. A convolutional layer has k filters (kernels) in the size
of n x n, where n is usually less than half the size of the
input vector’s height m. Each of the filters takes a relatively
small local region of the input signal into consideration and
projects the whole signal to a brand new feature map, which
means dot product is calculated between the signal and each
kernel repeatedly. k feature maps are generated with the size
of m — n + 1. Each feature map is then generally subsampled
in contiguous p x p areas. Types of subsampling techniques
include average pooling and maximum pooling depending
on the calculation of a restricted area. Also in the pooling
process, the pooling areas may be overlapped.

As we know, the convolution layer is used for extracting
signal features, and the pooling layer may reduce computa-
tion cost. After feature extraction, the extracted features are
usually put into a classifier. In this paper, CNN is only used as
a feature extractor for fault diagnosis, and the classification
part is done after combining other time-frequency domain
features.

Figure 2 presents the structure of the CNN structure used
in this paper. Consider vibration signals X as the input signals
and Y as labels of the signal. In the convolutional layer, a
set of feature maps can be acquired by using different filters.
Subfeature maps are the result of convoluting multiple input
feature maps. The process is calculated as follows:

1 _ -1, 1 gl
xj—f in *wi].+bj ,
ieM;

)

where M; represents the selection of input feature maps,
I is the Ith layer of a network, w is a convolutional filter
connecting the [ - 1th layer to the Ith layer, f is a nonlinearity
active function, and xlj represents the feature map generated
from the [-1th layer. b is the additive bias given to each output
feature map.

Traditional nonlinearity active function f used in neural
network is sigmoid function (f(x) = 1/(1 + ™)), but due
to its problem in gradient vanishing, a new active function
called Relu (Rectified Linear Units) function is generally used
in deep learning methods. The expression of Relu function
is f(x) = max(0, x). Besides solving the gradient vanishing
problem in back propagation steps of the neural network
training, the amount of calculation would be much less
using Relu function. The outputs of some neurons would be
zero using Relu function, which leads to the sparsity of the
network and avoids the problem of overfitting.

A subsampling layer is calculated as follows:

X = f (B down (x71) + b)),

where 3 and b are multiplicative bias and additive bias.

down represents a subsampling function; common sub-
sampling functions are max pooling and average pooling
functions. In a max pooling process, the max of the restrict
region is chosen as the new feature, while, in an average
pooling, a mean value of the same region is calculated as
the new feature. Generally speaking, max pooling reflects
the most significant characteristic while average pooling
smoothens the region and selects the smoothed feature for
further use in the following layers.

2)



CNN method has the advantage of extracting feature
automatically due to the back propagation (BP) steps. The
gradient of the loss function for all the weights in all the layers
is calculated by BP algorithm. The mean-squared error (MSE)
of the output layer is expressed as follows:

E'=Y (- )% 3)
k=1

The objective is to minimize the error by reducing the
contributions of the network parameters. We calculate the
derivative of the MSE to perform gradient descent method
on weight wfj and bias bjl. of the neuron. The sensitivities of
the error are as follows:

_9E_0Eo @
ob 0z ob

_ -1 0]
where z = ZieMJ_ x; kw;+ b

The sensitivities of higher layer are calculated using
chain-rule as

81 _ (Wl+1)T 61+1 o fl (Zl). (5)

The updating of the weights is then calculated as follows:
] OE -1 (T

AW = Mo = X 1(8) , (6)

where # is the learning rate. The calculations of sensitivities
for convolutional layers and subsample layers are different, of
which we will not discuss the details in this paper.

In our purposed approach, the CNN structure consists
of 4 convolutional layers and 2 subsample layers; detailed
parameters are shown in Section 4.

2.2. Empirical Mode Decomposition. The empirical mode
decomposition method was first developed by Huang et al.
in 1998 [37]. Unlike other signal analysis methods which
transform a signal into a certain mode, EMD method focuses
on the natural scale and character of the original signal.

In the EMD process, original vibration signal is always
decomposed into a certain number of different components
which reflect different intrinsic character of the signal.
Entropy energy of IMFs contains information of the signal
and can be extracted as measurement for fault diagnosis.
EMD is superior to traditional signal analysis approach when
the signal to be analyzed has nonlinear or nonstationary char-
acters. In addition, EMD technique is self-adaptive analysis
processing method which means little manual operation is
needed.

After EMD was developed, it has been widely studied in
various domains, such as process control [38], voice recogni-
tion [39], and system identification [40]. The decomposition
result of a simple sample signal is shown in Figure 3.

The fundamental assumption of EMD method is that a
sequence of signal is the combination of several different
components. In EMD methods, these components are known
as intrinsic mode functions. In each of the IMFs, the number
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Empirical mode decomposition

FIGURE 3: Empirical mode decomposition of a sample signal.

of extrema and the number of zero-crossings are the same.
Another premise of EMD is that between two contiguous
zero-crossings, there is only one extremum [41].

As shown in Figure 2 and mentioned above, the following
conditions should be satisfied for IMFs:

(1) In each complete IMFE, the difference between the
number of extrema and the number of zero-crossings
should be less than or equal to one.

(2) In the process of EMD, two envelopes are defined in
which the upper envelope is defined by local maxima
and the lower envelope by local minima. For each
point of an IME the mean value of both envelopes
should be zero all the time.

The decomposition process of a vibration signal x(t) is
described as below:

(1) For a sequence of vibration signal x(t), local extrema
are first selected. An envelope is created by connecting
the local maxima with cubic spline technique. This
envelope is called upper envelope.

(2) Another envelope is created as in (1). All the local
minima are connected using the same technique, and
the new envelope is called lower envelope. All the
points in the signal must be in the range of two
envelopes.

(3) The mean value of both envelopes’ values is defined
as m,, and we could get h; by subtracting the mean
value 1, from the original signal x(¢) as follows:

x(t)—my =h,. (7)

We validate h, to see if both conditions as an IMF are
satisfied. If both conditions are satisfied, h; is defined
as the first composition of x(t).

(4) If either of the conditions is not satisfied, we treat h;
as the former signal x(t) and then repeat the process
from step (1) to step (3), which means a new mean
value m,; is calculated and then we have

hy —myy = hyy. (8)
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The process is repeated for k times, until we have h,;,
which satisty both premises. We have

By = M = hyo 9

and h,, is chosen as the first IMF composition of the
signal x(t). ¢, is defined as the first IMF as

¢ = hy. (10)

Normally, ¢; ought to have the most significant feature
of the original signal.

(5) Then the IMF is subtracted from signal x(f), and the
residue is acquired as

r=x()—q. (1n)

After that, we consider r, as the original signal and
repeat the process from step (1) to step (4) until we
obtain a new IMF ¢, of x(f).

(6) The whole procedure described above is repeated for
n times until we stop the decomposition process. We
have

rn—6=n

(12)

A set of IMFs from ¢ to ¢, are acquired. If the residue
r,, becomes monotonic, it can reflect the main trend of the
original signal. Also no more IMFs could be obtained. In
summary, the original signal can be presented as

x(t) = ch + 1, (13)
=1

Through the EMD process, a combination of n empirical
modes is got from decomposing the signals, plus a residue
term r,. Intrinsic mode functions each contain unique
frequency bands.

The energy entropy of EMD is calculated and measured
as features for fault diagnosis. After decomposing rolling
bearing signals into IMFs, energies of the n IMFs are
E\,E,,...,E,. The energy for one IMF is calculated as

m
E=Y gl (14)
=1

where m is the number of sample data points. And the total
energy of all IMFs is calculated as

E=)E, (15)

EMD energy entropy of the signal is calculated as

Hen = _ZPi log (pl) > (16)
i=1

5
TABLE 1: Time domain features.
Feature Formula
I N
Mean value X=—=Yx
Nia
N 2
Standard deviation o=1=Y(x-%)
n=1
1N (x,-%)*
Kurtosis K=— !
N ,,2::1 o 4
1N (x,-%)°
Skewness S=— (x; = %)
N n=1 o 3
1N
Root mean square RMS = N > x;?
n=1

where p; = E,/E is the percentage of the energy entropy of
the ith IME.

In our approach, the energies of the first five IMFs
E|,E,, ..., E5 and the energy entropy H,, are chosen as fault
features.

2.3. Fault Diagnosis Structure. In this section, the implemen-
tation of our proposed fault diagnosis approach is introduced.
Figure 4 represents the flowchart of the fault diagnosis
process.

In the feature extraction process, five statistical time
domain features are selected as fault features, including mean
value, standard deviation, skewness, kurtosis, and root mean
square (RMS). The formulas of the five features are listed in
Table 1.

Fourier transform is applied to vibration signals of
rolling-element bearing to obtain the frequency spectrum. A
CNN model is designed to extract the spatial information of
the frequency spectrum. Eighty features are gained based on
CNN methods for classification phase.

Empirical mode decomposition is also applied to vibra-
tion signals. Vibration signals in real rolling-element bearing
system may be divided into more than 10 IMFs; however the
energy of IMF decreases swiftly. In this paper, we only select
the first five IMFs. Their energies E,, E,, .. ., Es, as well as the
energy entropy H,,, are chosen as fault features.

In summary, the vibration signals of rotating machinery
are analyzed and a total of 91 features are extracted based on
two different methods. In the following classification phase,
two effective models, support vector machine (SVM) and
softmax classifier, are trained for fault diagnosis of rolling-
element bearings.

3. Experiment Results and Analysis

To testify the effectiveness of our approach, experiments were
performed on the bearing vibration signal database of Case
Western Reserve University (CWRU). CWRU database con-
tains a large amount of data acquired from the experimental
setup introduced below.

3.1. Experimental Setup. Figure 5 shows the test platform
used in this paper. The experiment apparatus consisted of a
motor with horse power of two, a torque transducer, and a
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FIGURE 4: Representation of proposed fault diagnosis structure.

FIGURE 5: Experiment apparatus for vibration signal acquiring.

dynamometer. Accelerometers are attached to the magnetic
bases of the apparatus and vibration signals are acquired
under different working conditions which include normal
and faulty situations.

3.2. Data Selection and Preprocess. Three bearing compo-
nents, the inner race (IR), the outer race (OR), and the ball

of rolling bearing (BA), are under study in the database of
CWRU. In order to verify this performance of our approach,
a set of experiments were conducted. Fault categories of the
experiment apparatus include IR faults, BA faults, and OR
faults located at three oclock, six oclock, and twelve oclock.
In addition, vibration signals under different motor loads
and fault diameters are collected for analysis. The sampling
frequency of the platform is twelve kHz.

The data set of the bearings used in this paper is arranged
in Table 2.

As shown in Table 2, 52 categories of vibration signals are
chosen from CWRU database. 1000 samples containing 5000
points each are selected for every category, and 800 samples
are randomly selected as training data while 200 samples are
left as test data. Two vibration signals and their frequency
spectrum are shown in Figures 6 and 7.

3.3. Feature Extraction. As we can see from the vibration
signals shown in Figures 6 and 7, original vibration data
are disordered and messy, while no recognizable patterns are
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FIGURE 6: Vibration signal and its frequency spectrum under inner race fault with fault diameter of 0.007 inches and motor load of 0.
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FIGURE 7: Vibration signal and its frequency spectrum under outer race fault at 6 : 00 with fault diameter of 0.014 inches and motor load of 3.

TABLE 2: Bearing fault data arrangement.

Motor load Fault diameter

Fault position

/horse power /inch

0.007, 0.014

IR ’ ’
0.1,2,3 0.021

0.007, 0.014

BA ’ ’
01,23 0.021

OR(at 3:00) 0,1,2,3 0.007, 0.021

0.007, 0.014

OR(at 6:00 ? ’
(at 6:00) 0.1,2,3 0.021

OR(at 12:00) 0,1,2,3 0.007, 0.021

presented. On the other hand, the frequency spectrum may
have more notable features, which illustrates that the analysis
process using CNN is promising on the side. The original
vibration signal contains 5000 points while the frequency
spectrum of a signal is a data set of 2500 points. In our
approach, the spectrum is reshaped into a 50 x 50 vector
as the input of the CNN model designed above for feature
extraction.

In this experiment, mini-batch stochastic gradient
descent algorithm was used as approximation method. The
batch size was fixed on 100, and the CNN learning rate varied
from 0.01 to 0.001. In the training process, we can see the
significant ability of CNN in extracting features from the
original vibration signals of rotating machinery.

As shown in Figure 8, the training error reduced to almost
zero in three epochs, while the test error remained 1.10% after
15 epochs.

20

18 |
16
14 +

12

Error rate (%)
=

—e— Training error
—»— Test error

FIGURE 8: Training and test error of CNN feature extraction model.

Meanwhile, EMD technique is applied to the original
vibration signals as well. Through EMD process, a combi-
nation of n empirical modes is got from decomposing the
signals, plus a residue term r,,. Intrinsic mode functions each
contain unique frequency bands. Figures 9 and 10 show two
different vibration signals and their decomposition. Vibration
signal from the real platform can be decomposed into about
10 IMFs, and we can get from the functions that the energy
decreases rapidly. The sixth IMF usually has an energy level
of less than 1, which is less than 1% of the first IME. So, only
the energies of the top five IMFs are chosen as fault features.
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TaBLE 3: Training accuracy of both classifiers on different features.
Features SVM Softmax
11 time-domain and EMD features 88.72% 89.47%
(36908/41600) (37220/41600)
80 CNN features 100% 100%
91 combined features 100% 100%

3.4. Result Comparison. After extracting 91 new features of
the vibration signal, a classifier model needs to be trained for
fault diagnosis. In this paper, both SVM model and softmax
classifier are trained to testify the effectiveness of the feature
extraction.

We split the 91 features into 2 groups, 80 CNN features
and 11 time domain and EMD features, and trained classifiers
separately and at last all together. As mentioned in former
part, 800 samples of each condition are trained and 200
samples are used as test database, that is, a set of 41600
training data sets and 10400 test data sets. The results are
presented in Tables 3 and 4.

The training accuracy of both methods is rather high as
shown in Tables 3 and 4 which represented that both classi-
fiers trained on 91 combined features achieved an outstanding

test accuracy. 10374 of 10400 samples are classified correctly
using SVM while 10346 samples are correct using softmax
classifier. Two classification methods are both competitive
and effective, and SVM method shows a slight superiority.

The results also demonstrate the powerful feature extrac-
tion ability of CNN. As we can see, features from CNN model
alone can reach a relatively high performance; however, fea-
tures from CNN model have limitation in fault classification.
Efforts have been done trying to alter the parameters or even
structures of the CNN model, but features extracted can
only get a classification accuracy around 99%. Time domain
features and EMD features are easier to obtain compared
with CNN, and they are also useful in many situations. By
combining features from both methods, we can achieve a
superior result compared to using them separately.



Shock and Vibration

Signal

IMF1

0 0.1 0.2 0.3 0.4

IMF3

0 0.1 0.2 0.3 0.4

IMF4
S

0 0.1 0.2 0.3 0.4

© 0.0(1) -
E —-0.01
-0.02
0
o~
S
=
o0
|53
=
2 -
=)}
=~
=
-2t ) ) ) ]
0 0.1 0.2 0.3 0.4

FIGURE 10: Vibration signal and its first 9 IMFs under outer race fault at 6 : 00 with fault diameter of 0.014 inches and motor load of 3.

TABLE 4: Test accuracy of both classifiers on different features.

Features SVM Softmax
. . 83.14% 82.93%
11 time-d d EMD feat
tme-domarn an catures (8647/10400) (8625/10400)
80 CNN features 99.05% 98.90%
(10301/10400) (10286/10400)
. 99.75% 99.48%
91 bined feat
combined features (10374/10400) (10346/10400)

The results of our proposed approach are also compared
with works in some other papers. Table 5 below shows
classification accuracy of some other works.

As shown in Table 5, traditional ANN combined with
EMD method already has a high accuracy in [13]. CNN has
been applied in fault diagnosis in [14-17]. CNN structures in
[15, 16] show great performance in classification. However,
with a small number of categories, CNN would not always
have better results than traditional methods as shown in
[17]. Most works only dealt with a small number of cate-
gories, which is not adequate in practical situations, while
our approach deals with 52 fault categories. Our proposed
approach with 91 features has the best performance in the
table.

3.5. Parameter Selection for CNN. In our purposed approach,
the CNN structure consists of 4 convolutional layers and 2

subsample layers; detailed parameters are shown in Table 6.
In a CNN structure, usually bigger number of filters shows
better ability of representation. As there are 52 fault cate-
gories, filter numbers should be bigger than 52. Convolutional
layers show different kinds of characteristics, and the later
convolutional layer represents more delicate details than
former layers. Therefore, in layer C3, we select 300 filters for
better representation.

The number of features extracted from CNN model is
very important. Experiments are implemented with different
number of features. The results are shown in Figure 1.
As we can see, different numbers of features have different
accuracies. 80 features show the best representation ability
while more features may lead to the problem of overfitting.

The optimization of parameters of CNN is always impor-
tant to obtain an effective CNN model. In general, learning
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TaBLE 5: Classification accuracy of different methods.

Method

Classification accuracy

Number of categories

80 features—softmax

80 features—SVM

91 features—softmax

91 features—SVM

EMD-ANN [13]

Wavelet-ANN [13]

CNN with 2 pipelines [14]

CNN with statistical feature [15]
CNN with statistical feature [15]
Hierarchical ADCNN [16]
SVRM [16]

1D-CNN [17]

WP-SVM [17]

FET-SVM [17]

98.90% 52
99.05% 52
99.48% 52
99.75% 52
96.24% 3
88.54% 3
93.61% 8
98.02% 12
98.35% 8
98.13% 3
94.17% 3
97.40% 2
99.20% 2
84.20% 2

TABLE 6: Parameters of the purposed CNN structure.

Layer Cl S1 C2 S2 C3 C4
Length 5 2 5 2 4 2
Strides 2 2 1
Filter numbers 60 / 80 / 300 80
Parameter numbers 1560 / 124800 / 408000 120000
0.024 300
0.022 + 290
0.02 + 280
& 0018} 270 b
£ =
S 0016} T 260 |
§ 14 'Qé
5 0.014F o 250 |
0.012 £ 240
L =
0.01 230 +
0.008 "
0 2 4 6 8 10 12 14 16 18 20 220 ¢
Epochs 210 |
— 55 —— 90 200 L— s s : : - :
60 100 2 4 6 8 10 12 14
70 — 110 Epochs
— 80 — 120

FIGURE 11: Error rate with different numbers of CNN features.

rate, number of kernels, number of weights in each layer, and
batch size are all parameters to be optimized.

In our purposed CNN model, as shown in Table 6, a
total number of 654360 weights and bias parameters need to
be calculated in each step, which results in a relatively long
training time. Training time of the CNN model in this paper
is shown in Figure 12, and the average training time is about
240 seconds.

The selecting of learning rate of the mini-batch SGD
algorithm is also considered. An appropriate learning rate is

FIGURE 12: Training time of CNN model.

important to the final results. Higher learning rate leads to
faster descent, while lower rate may cause the optimization
to be local but not global.

A series of experiments were done trying out different
learning rate, and some of the results are shown in Figure 13.
As shown in the figure, training error collapses to nearly zero
in no more than four epochs, except the one with learning
rate of 0.001. Due to the small learning rate, the CNN model
cannot get a satisfied result. The results in this paper and
other CNN parameter-adjusting algorithms indicate that the
variational learning rate is the best choice here.
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Error rate (%)
W
T

—— 0.01-0.001
—— 0.01
—— 0.001

FIGURE 13: Training error with different learning rate.

Generally, the numbers of weights and filters affect the
feature explanation capacity of CNN. Larger number of
parameters usually suggest a better representation ability
along with a larger computing expense. We conducted exper-
iments with fewer weights and filters, and the performance
indicated that effect on the final result is not significant. The
parameters in our designed CNN are suitable for application
of fault diagnosis.

4. Conclusions

In this paper, a novel approach for rotating machinery fault
diagnosis was proposed, in which CNN and EMD were
applied to extract features from raw vibration signals. A
SVM model and a softmax classification model are trained
using combined features. With rolling-element bearing data
collected from CWRU experimental setup, experiments are
implemented under different situations. Fifty-two thousand
samples under 52 working conditions are arranged for the
experiment in this paper.

Experiment results also demonstrate the powerful feature
extraction ability of CNN. Classification based on features
extracted from CNN model alone can reach a relatively high
accuracy. However, features from CNN model have a limi-
tation in fault classification due to its generalization ability.
To improve the performance of classification, time domain
features and EMD features, which are easier to calculate, work
as complementary features for CNN model. The proposed
approach represents its superior ability of extracting features
from original vibration signals self-adaptively, and it is prac-
tical and effective in fault diagnosis for rotating machinery.

Deep learning algorithm shows an excellent expression
capacity while increasing the expense of computing; on the
contrary, traditional signal analysis methods are generally
more convenient to calculate. It is important to analyze
the ability of feature explanation for both deep learning

1

algorithms and traditional methods. Further exploration
about the effectiveness of other deep learning structures will
be investigated in future work.
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