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Abstract 

Scientific developments have enabled glasses to fulfil an array of applications, from windows 

to bioactive glasses in regenerative medicine. To further exploit the capability of this versatile 

material, it is imperative that their structure is understood. In this thesis, the structure of 

three glass systems containing halides as anions were investigated. The first of these was the 

intermediate glass former ZnCl2 which was modelled computationally using classical 

molecular dynamics (MD).  The addition of the adiabatic core-shell model was able to account 

for anion polarisability. This enabled the first fully tetrahedral model of ZnCl2 glass to be 

attained. While 86% of the ZnCl4 tetrahedral units were corner-sharing, 14% were found to 

be edge-sharing. The calculated total neutron and x-ray structure factors closely replicated 

those obtained experimentally in other works. The intermediate glass former ZnCl2 was later 

compared to the strong glass former SiO2. The main contribution in the first sharp diffraction 

peaks came from the cation-anion contribution, rather than the cation-cation contribution 

as previously reported.   

Next to be investigated was a CaO-SiO2-CaCl2 glass series. This was to help elucidate the 

structure of more complex CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive glass 

compositions. A glass series was synthesised by collaborators, and compositional analysis in 

this work revealed that chlorine losses via chlorine volatilisation occurred as HCl. The glass 

series was studied experimentally using neutron diffraction (ND) and x-ray absorption 

spectroscopy (XAS) at the Ca and Cl K-edge. By probing the calcium environment using ND 

and XAS, generally good agreement between the Ca-O and Ca-Cl coordination numbers was 

achieved. The total correlation functions from neutron diffraction did not exhibit a noticeable 

contribution around 2.1Å which would have been expected for Si-Cl bonding. Computational 

modelling was performed using MD with the addition of the adiabatic core-shell model. No 

Si-Cl bonding was observed, and the calculated total neutron structure factors closely 

resembled those obtained experimentally. The glass models were found to become phase 

separated with increasing CaCl2 content to form a biphasic system of calcium silicate and 

calcium chloride phases. Interestingly, there was a tendency towards phase separation even 

in glass models containing small amounts of CaCl2.  

The remaining glass system, CaO-SiO2-CaF2, was studied to help elucidate the structure of 

more complex CaO-SiO2-P2O5-CaF2 fluorine-containing bioactive glasses. Following the 

synthesis of the CaO-SiO2-CaF2 glass series, compositional analysis revealed that fluorine 

losses due to fluorine volatilisation occurred as HF. The calcium environment of the glasses 

was probed using ND and XAS at the Ca K-edge. Distinguishing the overlapping Ca-F and Ca-O 

paths around 2.3Å and 2.4Å respectively was challenging. The glass series was modelled 

computationally using MD with the addition of the adiabatic core-shell model. The calculated 
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total neutron structure factors closely replicated those from experiment. The glass models 

also revealed that while fluorine ions overwhelmingly bond with calcium ions, small amounts 

of Si-F bonding are observed which conceivably cannot be resolved experimentally.  
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1. Introduction 

Glass is a strong and often transparent material that we see in our everyday lives and 

probably take for granted. A glass is defined as a non-crystalline solid that undergoes a glass 

transition, and far from being new, early glassmaking was discovered around 2300 BC [1]. 

Three readily available ingredients including sand (silicon dioxide), soda ash or natron 

(sodium oxide), and lime (calcium oxide) were melted on a fire before being rapidly cooled 

to form glass [1]. More recently, scientific developments have exploited the versatility of 

glass, enabling a plethora of applications. Expectedly, window glass is the dominant 

application with approximately 55 million tonnes of flat glass being produced in 2010 alone 

(worth an estimated €23 billion) [2]. Additional common applications include container glass, 

fiber optics, and lighting glass, but glass is also used for more exotic applications that are 

more obscure. To name but a few, glasses can be used as sealants in solid oxide fuel cells in 

the energy sector [3], used to drastically increase the strength of concrete in the building 

sector [4], and even used as bioactive glasses in regenerative medicine [5]. However, in order 

to fully exploit the capabilities of glass, it is fundamental to understand their structure.  

This short chapter briefly introduces the content and assembly of this thesis in which the 

structure of several glass systems was investigated. Some of the key concepts used to 

describe glass structure are detailed in chapter 2. In this work, the structure of ZnCl2, 

CaO-SiO2-CaF2, and CaO-SiO2-CaCl2 glasses were investigated. These glasses will be fully 

introduced later in the thesis, at the beginning of chapters in which results are presented. 

The three glass systems all contain halides (i.e. chlorine and fluorine) as anions. In addition, 

two of the systems are oxide glasses, making this study different from the more frequent 

studies on oxide glasses that contain only oxide anions. 

The first results presented in this thesis are for one of the simplest glass systems involving 

halides, ZnCl2. Although a number of experimental studies have probed the glass structure 

of ZnCl2 [6]–[11], there have been fewer computational studies [10]–[13]. In fact, the 

previous glass models have not been successful in achieving the fully tetrahedral model that 

is expected. A common technique used to produce glass models for analysis is classical 

molecular dynamics (MD). Since ZnCl2 is an intermediate glass former, it is important to 

consider the anion polarisability of chlorine. By incorporating the adiabatic core-shell model 

into MD simulations, anion polarisability can be accounted for. A detailed description of the 

key principles and methods behind MD, including the adiabatic core-shell model, can be 

found in chapter 2. The results of modelling ZnCl2 glass using this approach are presented in 

chapter 4. 
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The following two chapters, chapters 5 and 6, present results on the CaO-SiO2-CaCl2 glass 

system. Recently, complex CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive glasses have 

been considered for dental applications such as toothpastes [14], [15], although no structural 

characterisation has been performed. It is therefore intuitive to first investigate the structure 

of less complex CaO-SiO2-CaCl2 glasses which have seldom been investigated [14], [15]. 

Neutron diffraction (ND) and X-ray absorption spectroscopy (XAS) are examples of central 

facility techniques used to characterise glass structure. These techniques are first described 

in chapter 3 which details the experimental techniques used in this work. The results of using 

ND and XAS at the Ca K-edge and the Cl K-edge to probe the CaO-SiO2-CaCl2 glass samples 

prepared by collaborators are presented in chapter 5. To compliment experimental findings, 

the glass samples were also modelled computationally using MD with the addition of the 

adiabatic core-shell model, as described in chapter 6. 

The following two chapters, chapters 7 and 8, present results on the CaO-SiO2-CaF2 glass 

system. Although studies on fluorine-containing bioactive glasses for dental applications 

have been more numerous than those on chlorine-containing bioactive glasses, their 

structure continues to be debated e.g. [16], [17]. In particular, the structural role of fluorine 

is unclear. Less complex CaO-SiO2-CaF2 glasses have predominantly been studied for mould 

flux applications during the continuous casting of steel. Despite numerous studies, their 

structure also remains uncertain. Therefore, to help elucidate the structure of complex 

CaO-SiO2-P2O5-CaF2 fluorine-containing bioactive glasses, it is first intuitive to investigate the 

CaO-SiO2-CaF2 glass structure. As presented in chapter 7, a CaO-SiO2-CaF2 glass series was 

synthesised and characterised in this work. Details on the synthesis and the laboratory-based 

characterisation methods are given in chapter 3. Chapter 7 also presents the results of using 

ND and XAS at the Ca K-edge to probe the CaO-SiO2-CaF2 glass structures. As detailed in 

chapter 8, it was of interest to model the glass series computationally to compliment 

experimental findings. For consistency, the CaO-SiO2-CaF2 and CaO-SiO2-CaCl2 glass series 

were modelled using the same computational method with a consistent set of interatomic 

potential parameters.  

Finally, chapter 9 summarises and discusses the key results attained in this work. In addition, 

comparisons are made between the experimental and computational results for each of the 

CaO-SiO2-CaF2 and CaO-SiO2-CaCl2 glass series. Furthermore, comparisons are also made 

between the CaO-SiO2-CaF2 and CaO-SiO2-CaCl2 glass series. Some comments regarding 

future work are also provided. As noted in the Publications and Presentations section, some 

of the work in this thesis has now been published. 
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2. Background of Glass Structure 
and Computational Methodology 

2.1 Glass Structure 

Both glass and crystalline structures can be formed by cooling a melt. If a melt is cooled 

slowly, a sudden significant decline in volume at the melting temperature of the material 

leads to the formation of a crystalline structure (figure 1) which has long-range order. If 

instead a melt is cooled rapidly, there is no abrupt change in volume and the melt becomes 

a supercooled liquid below its melting temperature. The structure of the supercooled liquid 

changes continuously as the temperature declines until the increasing viscosity prevents the 

atoms from rearranging further. At this point, the supercooled liquid becomes a solid glass 

with no long-range order. The region between which the viscosity of the supercooled liquid 

increases until the atoms can no longer rearrange themselves is referred to as the glass 

transformation region [1]. Glasses are therefore non-crystalline amorphous solids that 

undergo a glass transition. Most glasses are based on silicates, and the ubiquitous glass 

former SiO2 for example comprises of silicon ions that are covalently bonded with oxygen 

ions to form tetrahedral SiO4 structural units.  

 
Figure 1: Volume-Temperature plot of glass and crystal formation. The term ‘SC Liquid’ denotes a 

supercooled liquid. The terms T1, Tg, and Tm refer to room temperature, glass transition 
temperature, and melting temperature respectively.  

Zachariasen’s [2] early random network model (RNM) on glass structure primarily focussed 

on AmOn oxide glasses (e.g. SiO2 glass), where ‘A’ refers to a cation. The RNM proposed that 

a glass structure is a modification of its corresponding crystalline structure. As corner-sharing 

polyhedral structural units are often observed in crystalline oxide structures, the RNM 

suggested that this corner-sharing must also be fundamental in the oxide glass structure. The 

structural difference between a glass and its corresponding crystal was attributed to A-O-A 
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bond angle variation in the glass which was not observed in the crystalline structure (figure 

2). The RNM also assumed that modifier ions simply went into gaps in the glass network. The 

RNM was later developed to explicitly include modifier ions such as alkaline earth ions, and 

referred to as the modified random network (MRN) model [3]. The MRN model proposed 

that the modifier ions form channels in the glass network. This caused more obvious 

disruption to the glass network (figure 3).  

  

 

 

 

 

 

 

 

Figure 3: The SiO2 glass network being disrupted by the substitution of calcium ions such as in a 
calcium silicate glass. The yellow tetrahedra represent silicon ions, and the red and green spheres 

correspond to oxygen and calcium ions respectively. 

2.2 Glass Structure Characterisation 

Since glasses have no long-range order, it is necessary to use statistical averages to describe 

their structure. The glass structural characterisation techniques applied in this work are 

detailed below, and can be achieved computationally. Most can also be achieved 

experimentally.   

Figure 2: Crystalline α-SiO2 to the left and SiO2 glass to the right. The yellow tetrahedra represent 
silicon ions and the red spheres correspond to oxygen ions. 
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2.2.1  Real-Space Correlation Functions 

Real-space correlation functions illustrate the probability of finding an atom at a particular 

distance r from a reference atom. They are used to identify the average separation distances 

between two atoms in a correlation and can be described in different ways mathematically. 

To begin the derivation of these real-space correlation functions, a system of atomic number 

density ρ0 is considered. The atomic number density ρ0 can be calculated according to 

equation 1, where the terms N and V correspond to the number of atoms in the system and 

the system volume respectively. 

ρ0 =
N

V
          Equation 1 

If a spherical shell of radius r and thickness Δr (where r ≫ Δr) is then considered around a 

reference atom (figure 4), the volume of that spherical shell, v, can be calculated using 

equation 2. With the knowledge of the atomic number density and the spherical shell 

volume, the average number of atoms, n, contained within that spherical shell can be 

determined using equation 3. Equation 3 can be rearranged to yield equation 4. 

 

Figure 4: Illustration of a shell of radius r and thickness ∆r around a reference atom. 

v = 4πr2Δr         Equation 2 

n = 4πr2Δrρ0         Equation 3 

n

Δr
= 4πr2ρ0         Equation 4  

Whilst the average atomic number density of the system remains constant, the radial density 

ρ(r) would vary as a function of r. By considering equation 4 in terms of a radial density 

function, an expression for the radial distribution function, j(r), can be obtained (equation 

5). 

j(r) = 4πr2ρ(r)       Equation 5 
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Dividing the radial distribution function in equation 5 by the radial distance r yields the total 

correlation function, gtot(r), which is shown in equation 6. 

gtot(r) =
j(r)

r
= 4πrρ(r)       Equation 6 

The average total correlation function, gtot
0(r), can be calculated using equation 7. 

gtot
0(r) = 4πrρ0        Equation 7 

By subtracting equation 7 from equation 6, the differential correlation function, d(r), can be 

defined (equation 8). These different types of real-space correlation functions are illustrated 

in figure 5. 

d(r) = gtot(r) − gtot
0(r) = 4πr[ρ(r) − ρ0]     Equation 8 

 
Figure 5: Examples of the different types of real-space correlation functions modified from [4]. 

For multicomponent systems, it is common to calculate the pair correlation functions, gij(r), 

between two atom types (i and j). This can be achieved using equation 9, where ρij(r) is the 

number density of type i atoms at a distance r from the type j atoms. These pair correlation 

functions can be weighted according to the concentration of atom type i (denoted as ci), and 

summed to form a total correlation function as shown in equation 10.  

gij(r) = 4πrρij(r)        Equation 9 

gtot(r) = ∑ ∑ cigij(r)ji         Equation 10 
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2.2.2  Cumulative Coordination Numbers 

The integration of a pair correlation function yields a cumulative coordination number plot 

as shown in figure 6. By applying an appropriate cut-off distance to the cumulative 

coordination number plot, the coordination number, Nij(r), can be obtained. A coordination 

number is defined as the average number of type j atoms surrounding a type i atom within 

the applied cut-off distance and is described mathematically using equation 11. In the case 

of figure 6, an appropriate cut-off distance in the Si-O pair correlation function would be 2Å. 

As shown by the cumulative coordination number plot, this corresponds to a coordination 

number of 4. Hence, on average, there are four oxygens ions surrounding each silicon ion as 

expected for a tetrahedral structural unit. 

 

Figure 6: A pair correlation function (left) and a cumulative coordination number plot (right) for 
the Si-O correlation in CaSiO3 glass.  

Nij(r) = ∫ gij(r)rdr
rcut

0
       Equation 11 

2.2.3  Structure Factors 

Structure factors can be obtained from scattering experiments in order to obtain information 

about pair correlation functions. While the theory behind X-ray and neutron scattering is 

detailed in chapter 3, some initial details on structure factors are provided here. For glass 

systems, the total structure factor, S(Q), can be defined by equation 12 [5], where Q is the 

magnitude of the scattering vector. The term ωij refers to a weighting factor involving atom 

types i and j of concentration cj, and the term δij is a Kronecker delta function. The weighting 

factors in equations 13 and 14 relate to neutron and X-ray scattering respectively, where the 

term b is the neutron scattering length and the term Z is the atomic number. A total structure 

factor can be Fourier transformed to obtain a total correlation function as shown in equation 

15.  

S(Q) = 1 + ∫ ∑
ωij

cj
ij

∞

0
(gij(r) − 4πrρj)

sin (Qr)

Q
dr    Equation 12 
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ωij =
(2−δij)cicjbibj

[b̅]
2         Equation 13 

ωij =
(2−δij)cicjZiZj

[Z̅]2         Equation 14 

gtot(r) = 4πrρ0 +
2

π
∫ 𝑄(S(Q) − 1) sin(Qr) dQ

∞

0
    Equation 15 

The contribution of each correlation in the total structure factor can be calculated using 

equation 16, where Sij
FZ(Q) is the partial Faber-Ziman structure factor. The corresponding 

pair correlation functions can also be calculated in accordance with equation 17.  

Sij
FZ(Q) = 1 + ∫

1

cj

∞

0
(gij(r) − 4πrρj)

sin (Qr)

Q
dr     Equation 16 

gij(r) = 4πrρ0 +
2

π
∫ [Sij

FZ(Q) − 1] Qsin(Qr) dQ
∞

0
    Equation 17 

2.2.4  Bond Angle Distributions 

Bond angle distribution functions illustrate the probability of obtaining a particular bond 

angle between three bonded atoms. The O-Si-O bond angle in a tetrahedral SiO4 structural 

unit for example is typically 110° as shown in figure 7. This corresponds to the ideal 

tetrahedral bond angle [6]. 

 
Figure 7: A SiO4 tetrahedral structural unit where the yellow and red spheres correspond to silicon 

and oxygen ions respectively. The O-Si-O bond angle is shown. 

2.2.5  Silicon Network Connectivity 

The silicon network connectivity, Qn, refers to the number of bridging oxygens n per silicon 

tetrahedra [1], where a bridging oxygen connects two network polyhedra together. As shown 

in figure 8, a silicon tetrahedra surrounded by four bridging oxygens would be fully 

connected in the silicate network and denoted as Q4. Conversely, a non-bridging oxygen does 

not connect two network polyhedra together. A silicon tetrahedra surrounded by four non-

bridging oxygens would be segregated in the silicate network and denoted as Q0. By 

calculating the different Qn concentrations, average Qn values can be obtained. These 
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average Qn values elucidate the average connectivity of the silicate network. For example, 

CaSiO3 glass is a metasilicate and on average, its glass network is made up of Q2 species [7].  

 
Figure 8: Schematic of the different Qn species in a silicate network from [8].  

2.3 Molecular Dynamics Simulations 

Two types of molecular dynamics simulation used to attain computational models of glass 

(whose structure can be elucidated using the techniques in section 2.2) are classical and first 

principles molecular dynamics. Classical molecular dynamics relies on the laws of classical 

physics and involves considering atoms to be rigid spheres which interact according to given 

interatomic potential parameters [9]. As a result, electrons are not considered and point 

charges are assigned to the spheres instead. This reduces the computational cost of running 

a simulation, and enables large system sizes (often of thousands of atoms) to be modelled 

over relatively long timescales.  

In contrast, first principles simulations use quantum mechanics to consider the electron 

wavefunctions of atoms [10]. This improves the accuracy of the simulation, but comes at a 

significant computational cost. As a result, the model sizes are limited to a few hundred 

atoms and simulations can only be performed over relatively short timescales.  

A different type of computational simulation is reverse Monte Carlo modelling (RMC) [9] 

which relies on experimental diffraction data. During a RMC simulation, a randomly chosen 

atom from the configuration is displaced by a random amount. If this atom displacement 

improves the agreement with experimental diffraction findings, then this new atom position 

gets accepted. If instead the agreement with experimental findings deteriorates, then the 

atom move may be rejected and the old atomic configuration retained. There remains 

however some probability that this atom displacement will still be accepted. This process of 

displacing a random atom is repeated large numbers of times to ultimately reproduce the 

experimental results.   

In this thesis, all computational simulations were run using classical molecular dynamics. This 

is because large system sizes can be modelled without bias towards experimental results. 
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The rest of this chapter focusses on the considerations involved in running classical molecular 

dynamics simulations, and the general method of how these simulations were performed in 

this work. The particular details of each simulation are presented in the results chapters. 

2.3.1  Types of Atomic Interactions 

The atomic interactions in a system of atoms are governed by the potential energy, V which 

can be  written as a series expansion of two-body, three-body, etc. terms [10]. Since the two-

body interactions dominate, they can be used to approximate the potential energy, although 

three-body and higher terms are still sometimes incorporated [10]. The two-body 

interactions can be separated into long-range and short-range interactions. The long-range 

interactions are defined using Coulomb’s law (equation 18), where qi and qj are the charges 

on ions i and j respectively, r is the separation between the ions, and ϵ0 is the permittivity of 

free space. This Coulomb interaction can be an attractive or repulsive term depending on the 

charges of the ions involved in the interaction. If both charges are positive, or both are 

negative, then the interaction will be repulsive. If one of the charges is positive and the other 

is negative, then the interaction will be attractive.   

Vij(r) =
qiqj

4πϵ0r
         Equation 18 

The short-range interactions are more complex and take account of the Pauli exclusion 

principle and the van der Waals interaction. The Pauli exclusion principle states that no two 

electrons can occupy the same state. Hence, when electron clouds begin to overlap, there is 

an increase in energy which manifests as a repulsive term to discourage the overlapping of 

electron clouds. The van der Waals interaction is caused by induced dipole/induced dipole 

interactions. This van der Waals interaction is generally an attractive interaction, although it 

may become repulsive if the ions get too close to each other. This is because the nuclei of 

the ions will repel, superseding any attractive contribution.  

Three common short-range interatomic potential forms include the Born-Mayer, Lennard-

Jones, and Buckingham interatomic potentials. The Born-Mayer interatomic potential 

accounts for the Pauli exclusion principle but fails to consider any van der Waals interaction. 

The Born-Mayer interatomic potential is shown in equation 19 where the terms A and ρ are 

variable parameters. 

Vij(r) = Aijexp (
−r

ρij
)        Equation 19 

The Lennard-Jones interatomic potential is specified in equation 20 and accounts for both 

the Pauli exclusion principle and the van der Waals interaction using the variable parameters 

A and C respectively.  
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Vij(r) =
Aij

r12 −
Cij

r6         Equation 20 

The Buckingham form is a combination of the Born-Mayer form and the Lennard-Jones form 

and is given in equation 21. The variable parameters A and ρ relate to the Pauli exclusion 

principle while the parameter C relates to the van der Waals interaction. Since this 

Buckingham equation contains three variable parameters, it can better represent the shape 

of the potential well compared to the Lennard-Jones interatomic potential. The two-body 

interatomic potentials used throughout this thesis were therefore of Buckingham form. By 

considering the distance dependence in the Coulomb and Buckingham interatomic 

potentials, a potential energy curve can be plotted (figure 9).  

Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6        Equation 21 

 
Figure 9: Plot of the short-range (Buckingham), long-range (Coulomb), and combined interatomic 

potential V as a function of distance r.  

Three-body interatomic potentials involve the direct bonding of ions. Three body potentials 

not only take into account the distance between ions, but also their relative orientations 

[11]. Three-body interactions involving ions j, i, and k (where i is the central atom) of 

screened harmonic form [12] were used in this work and are defined using equation 22. The 

term k is a force constant, while θjik is the bond angle involving ions j, i and k, and θ0 is the 

equilibrium bond angle. The terms rij and rik correspond to the separation distances 

between ions i and j, and between ions i and k respectively. The remaining term ρ is the 

potential cut-off distance. 

V(θjik) =
k

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)]      Equation 22 

2.3.2  Ion Polarisability 

Since the ions in classical molecular dynamics simulations are solid spheres which do not get 

deformed, it can be challenging to reproduce the effects of ion polarisability. One approach 
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to overcome this is to use the polarisable ion model (PIM), where the dipole strength and 

orientation fluctuate throughout the simulation [13]. Another approach is to use the core-

shell model [14] which is illustrated in figure 10. The core-shell model involves splitting an 

ion into a core and a shell unit, where the two are connected by a harmonic spring. The 

harmonic spring can be described using Hooke’s Law in equation 23, where the force F is 

proportional to the displacement r of the ion shell from the ion core according to the spring 

constant Kcs. The shell unit can either be massless (dynamic shell-model), or have a small 

proportion of the ion’s mass (adiabatic core-shell model). As the ion charge is distributed 

between the core and shell units (where the core is assigned a positive charge and the shell 

is assigned a negative charge), the shell movement can replicate ion polarisation.    

 

 

 

 

F = −Kcsr         Equation 23 

Although the application of the core-shell model is known to increase the computational cost 

of running a simulation, the adiabatic core-shell model was applied in this work. In order to 

help balance the accuracy of the model against the computational cost, the core-shell model 

was only applied to anions in a simulation. This was because anions are more susceptible to 

ion polarisation due to their larger ionic radii as shown for the ions in this study in table 1.  

Table 1: The ions involved in this work, and their corresponding ion polarisabilities [15], ionic radii 
[16], [17], and atomic masses [18].  

Ion Polarisability (Å3)  Ionic radius (Å) Atomic mass (u) 

Si4+ 0.333 0.34 28.086 
Zn2+ 0.340 0.74 65.38 
Ca2+ 0.482 1.20 40.08 
F1- 1.295 1.25 18.998 
O2- 1.988 1.32 15.9994 
Cl1- 4.65 1.72 35.453 

 

As the application of the core-shell model is known to sometimes cause instabilities, it may 

at times be appropriate to the apply frictional damping to the harmonic spring connecting 

the core and corresponding shell units [19], [20]. This can be implemented by adding a 

damping term to the force equation (equation 23) for the core-shell harmonic spring as 

δ+ δ+ 

Figure 10: Illustration of an unpolarised ion (left) and a polarised ion (right). The green and blue 
circles correspond to ion cores and shells respectively and are connected by a harmonic spring. 
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shown in equation 24, where the terms c and t are the damping coefficient and time 

respectively.  

F = −c
dr

dt
− Kcsr        Equation 24 

2.3.3  Testing Atomic Interactions 

The General Utility Lattice Program [21] (GULP) can be used to test the performance of 

interatomic potential parameters. This involves energy minimising known crystalline 

structures using the given interatomic potential parameters to form output structures. These 

energy-minimised output structures are then compared to the input crystalline structures, 

and the differences between them used to assess the performance of the given interatomic 

potential parameters. Interatomic potential parameters should preferably only cause 

minimal change to an input crystalline structure. 

The GULP program was used in this work, but only an introductory overview of energy 

minimisation is provided below. More detailed descriptions can be found in [10], [21]. Energy 

minimisation is an iterative process which involves locating local minima in the potential 

energy landscape. This can be achieved using a Newton Raphson approach where a point on 

the potential energy landscape (written as a Taylor series expansion) iteratively approaches 

a local minimum. When a point (k) is close to a local minimum in the potential energy 

landscape, the system will behave harmonically and so the Taylor series expansion can be 

truncated at the second order as shown in equation 25.  

V(x) =  V(xk) + (x − xk)V′(xk) +
1

2
(x − xk)2V′′(xk)    Equation 25 

The derivative of equation 25 is given in equation 26. 

V′(x) =  V′(xk) + (x − xk)V′′(xk)      Equation 26 

At a minimum point ‘*’, equation 25 can be expressed using equation 27.  

V(x) =  V(x∗) +
1

2
(x − x∗)2V′′(x∗)      Equation 27 

The derivative of equation 27 is given by equation 28. 

V′(x) = (x − x∗)V′′(x∗)       Equation 28 

By using equations 26 and 28, together with the knowledge that for a purely quadratic 

equation V′′(x) = V′′(xk), equation 29 can be obtained. 

V′(xk) + (x − xk)V′′(xk) = (x − x∗)V′′(xk)     Equation 29 
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Rearranging equation 29 yields a Newton Raphson form (equation 30). For a 

multidimensional system, this Newton Raphson form is given by equation 31, where 

𝐕′′ −𝟏(𝐱𝐤) is the inverse of the Hessian matrix and 𝐕′(𝐱𝐤) is the gradient vector. 

x∗ = xk − V′′ −1(xk) V′(xk)       Equation 30 

𝐱∗ = 𝐱𝐤 − 𝐕′′ −𝟏(𝐱𝐤) 𝐕′(𝐱𝐤)        Equation 31 

The mathematical approach used in GULP is similar to that described above, but is 

complicated by considerations being made for the potential energy surface not being 

harmonic, and the point k being far from a minimum.  

2.3.4  Finite System Sizes 

When simulating a limited number of atoms within a defined simulation cell, it is important 

to consider that the forces acting on atoms closer to the face of the simulation cell may be 

different to those that are surrounded by other atoms [22]. To help ensure that all atoms 

behave as though they are in a bulk, periodic boundary conditions can be applied. Periodic 

boundary conditions were applied to all simulations in this work and involve creating an 

infinite number of replicas of the simulation cell. The atoms within each of the replicas have 

the identical trajectories to those in the central cell. In the case that an atom leaves the 

central simulation cell, another atom is brought into that central cell from one of the 

surrounding replicas, and will enter from the opposite face to which the atom left (figure 11). 

This ensures the number density of the simulation cell remains constant.  

 

Figure 11: An illustration of periodic boundary conditions which has been adapted from [22].  

The difficulty with applying periodic boundary conditions is that there are now an infinite 

number of interactions that need to be considered. Not only do the atoms in the central cell 

interact with other atoms in that central simulation cell, but each atom in the central cell 

also interacts with the other atoms in the replicas of the central simulation cell. It is therefore 

necessary to approximate these interactions to minimise the computational cost of running 

a simulation. This was achieved using potential truncation, neighbour lists, and the Ewald 

summation method in this work. 
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Potential truncation is used to approximate the short-range interactions by using minimum 

image convention [22]. A region of the same dimensions as the simulation cell is considered 

around each of the atoms in the central simulation cell as shown in figure 12. Only 

considering the interactions within each of these regions would significantly reduce the 

computational cost of running a simulation. The computational expense can be reduced 

further by only considering the interactions within a spherical shell of radius rc within each 

region, where the rc is less than half the length of the simulation cell. Not only can the 

maximum interaction radius  rc be imposed, but a minimum interaction radius can also be 

imposed. This would help prevent atoms from getting unphysically close to each other, 

improving simulation stability. 

 

Figure 12: An illustration of potential truncation which has been adapted from [22]. 

Verlet proposed that the number of atomic interactions considered could be reduced by 

implementing a neighbour list [23]. This approach involves considering a cut-off radius rv1 

and a larger cut-off radius rv2 around each atom in the simulation cell. The atoms within rv2 

of each atom are used to make a neighbour list. Since the atoms neighbouring a reference 

atom do not vary significantly over 10 or 20 time-steps [10], the neighbour list is only updated 

at regular intervals. During these intervals, the atomic interactions between each atom and 

its neighbouring atoms within rv1 are calculated at each time-step. Hence, it is important 

that the neighbour array gets updated often enough to prevent atoms outside rv2 from 

moving to within rv1, without being updated too often which would make the process 

inefficient.  

The Ewald summation method can be used to approximate the long-range interactions. The 

Ewald summation method begins by considering the Coulomb interactions within the central 

simulation cell, and between the central simulation cell and the surrounding replicas of the 

simulation cell according to equation 32. In equation 32, n refers to the central simulation 

cell, and the notation ∑ corresponds ′
|n|=0 to the i = j interaction being omitted for the 

central simulation cell.  

V =
1

2
∑ ∑ ∑

qiqj

4πε0|rij+n|

N
j=1

N
i=1

′
|n|=0       Equation 32 
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The summation in equation 32 is conditionally convergent and the Coulomb interaction can 

vary significantly for small separation distances [9]. To overcome this, the summation in 

equation 32 can be split into two components which each converge more rapidly using the 

identity in equation 33 (which is illustrated in figure 13), where the term f(r) is a function. 

Equation 33 is capable of accounting for a rapidly changing 
1−f(r)

r
 contribution for small 

values of r, and a slowly changing 
f(r)

r
 contribution for larger values of r [9].  

1

r
=

f(r)

r
+

1−f(r)

r
         Equation 33 

 

 

 

 

 

Figure 13: An illustration of the addition of Gaussian distributions in real space, and cancelling 
distributions in reciprocal space from [9].  

Each point charge in the summation gets surrounded by a Gaussian charge distribution −f(r) 

of equal and opposite magnitude. These Gaussian charge distributions effectively shield each 

point charge. As a result, each point charge becomes short ranged and can be readily 

summed in real-space. In order to counterbalance this applied shielding, Gaussian charge 

distributions f(r) of equal and opposite charge to those initially considered are also included. 

As the Fourier transforms of these new Gaussian distributions converge more rapidly, it is 

preferable to evaluate their summation in reciprocal space. In computational simulations, 

the rate at which the series converges is determined by the width of the Gaussian 

distributions in accordance with the convergence parameter α [12].   

2.3.5  Newton’s Equations of Motion and Finite Difference 

Methods 

A classical molecular dynamics simulation involves studying a system of atoms over a given 

period of time. The atoms within the system interact according to defined interatomic 

potential parameters, and abide by Newton’s equations of motion. These are shown for a 

simple one-dimensional case along the x-axis in equations 34-36. In order to facilitate a 

classical molecular dynamics simulation, the initial atomic configuration first needs to be 

established. The atomic configuration is confined within a simulation cell of volume 

1

𝑟
 

f(r)

𝑟
 

1 − f(r)

𝑟
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corresponding to the desired density; and can be either arranged randomly, or according to 

a crystalline structure. A velocity v is then assigned to each of the atoms, ensuring the total 

momentum of the system is zero. The forces F on each of the atoms in the system can then 

be determined by differentiating the potential energy function V using equation 36. As the 

simulation progresses, the atom positions x begin to change. Subsequently, when an atom 

position changes, the forces exerted on it, and on any other atoms that interact with it also 

change. This creates a many-body problem which cannot be solved analytically [10]. Instead, 

the problem can be solved numerically using a finite difference method.   

x(t + Δt) = x(t) + v(t)Δt +
1

2

d2x(t)

dt2 (Δt)2     Equation 34 

v(t + Δt) = v(t) +
d2x(t)

dt2 Δt       Equation 35 

F(t) = m
d2x(t)

dt2 = −
dV(x(t))

dx
      Equation 36 

A finite difference method involves approximating the solutions to partial differential 

equations on a grid by using the differences between values at neighbouring grid points [24]. 

These finite difference formulae may be obtained using a Taylor series expansion, and enable 

the atom trajectories in a classical molecular dynamics simulation to be calculated. One 

example of a finite difference method is the Verlet algorithm which is detailed in [9]. As 

shown in equation 37 and illustrated in figure 14, the Verlet algorithm works by using the 

current atom positions and accelerations at time t, as well as the previous atom positions at 

time t −  Δt to compute the new atom positions at time t +  Δt. The process is then repeated 

at time t +  2Δt and so on.   

x(t + ∆t) = 2x(t) − x(t − ∆t) +
F(t)

m
∆t2     Equation 37 

 

Figure 14: As reproduced from [22], an illustration of how the Verlet algorithm works. The 
rectangles shaded in blue correspond to the variables stored during a simulation. The arrows 

correspond to the variables that are used to compute the updated variables. 

The disadvantage of the Verlet algorithm is that it does not explicitly involve the calculation 

of the atom velocities. This can be overcome using the Verlet leap-frog algorithm (equations 

38 and 39) which was used in this work. In the Verlet leap-frog algorithm, the atom velocities 

at half integer time-steps are explicitly calculated to establish the new atom positions at 

integer time-steps. This means that the atom velocities and positions do not get calculated 

for the same time, causing the atom velocities to ‘leap-frog’ over the atom positions, before 

the atom positions later ‘leap-frog’ over the atom velocities as illustrated in figure 15. 
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However, by averaging the atom velocities in accordance with equation 40, the velocities at 

integer time-steps can be calculated.  

v (t +
∆t

2
) = v (t −

∆t

2
) +

F(t)

m
∆t      Equation 38 

x(t + ∆t) = x(t) +  v (t +
∆t

2
) ∆t       Equation 39 

     

 

Figure 15: As reproduced from [22], an illustration of how the Verlet leap-frog  algorithm works. 
The rectangles shaded in blue correspond to the variables stored during a simulation. The arrows 

correspond to the variables that are used to compute the updated variables. 

v(t) =
1

2
[v (t +

∆t

2
) + v (t −

∆t

2
)]      Equation 40 

2.3.6  Thermodynamics 

Atom trajectories need to be simulated under well-defined thermodynamic conditions. In an 

ensemble, there are a collection of microstates which individually may have different 

properties, but together have constant bulk properties. Molecular dynamics simulations can 

be performed in a number of different ensembles, the three most common of which are NVE, 

NPT, and NVT [22]. All three of these ensembles maintain the number of atoms within the 

system (N). In addition, the NVE ensemble (a microcanonical ensemble) maintains the system 

volume and energy. The NPT ensemble (an isothermic-isobaric ensemble) maintains the 

system pressure and temperature, and the NVT ensemble (a canonical ensemble) maintains 

the system volume and temperature. The NVE ensemble is not often used in simulations 

because the uncertainties in the system energy caused by using a finite difference method 

can result in the system energy not being conserved. Although the NPT ensemble can 

represent atomic interactions more closely, the NVT ensemble is preferred for modelling 

glasses. This is because it enables the system density to be controlled, and the behaviour of 

the system to be studied under different temperature conditions [10]. 

In the NVT ensemble, the kinetic energy of the atoms fluctuates causing instantaneous 

system temperature T(t) variations. These can be calculated using equation 41, where the 

terms kB and Nf are the Boltzmann constant and the number of degrees of freedom 

respectively.  

T(t) = ∑
mivi

2(t)

kBNf

N
i=1         Equation 41 
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The simplest way to control the instantaneous system temperature is to scale the velocity of 

the atoms at each time-step according to equation 42, where λ is the scaling factor. This 

process of velocity scaling is called equilibration.  

λ = √
T(t)+ΔT

T(t)
         Equation 42 

Another way to control the instantaneous system temperature is to couple the system of 

atoms to an external heat bath called a thermostat which is fixed at the desired temperature 

[10]. This coupling permits energy to be added or removed from the system of atoms in order 

to uphold the desired system temperature. One example is the Berendsen thermostat which 

was used in this work. Using a Berendsen thermostat involves scaling the atom velocities 

over a timescale, rather than for each time-step Δt as was the case for velocity scaling. The 

Berendsen thermostat is defined by equation 43, where τ is the timescale of heat transfer 

and Tbath is the temperature of the thermostat. 

λ2 = 1 +
Δt

τ
(

Tbath

T(t)
− 1)       Equation 43 

2.4 Molecular Dynamics Simulations of 

Glasses Using DLPOLY 

In this work, classical molecular dynamics simulations were run to obtain glass models. The 

simulations were run using the program DLPOLY [25] which took into account the 

considerations discussed in section 2.3. However, before running a simulation using DLPOLY, 

a number of input files are required. These include a CONFIG, a CONTROL, and a FIELD file. 

The CONFIG file contains information on the initial atomic configuration, while the CONTROL 

file details the control variables, and the FIELD file details the interatomic potential 

parameters [12]. Although the specific simulation details for each of the systems modelled 

in this work (ZnCl2, CaO-SiO2-CaCl2, and CaO-SiO2-CaF2) are detailed in their respective 

chapters, a general overview of the process is provided here.   

The first stage of all simulations in this work begins by heating an initial configuration of 

atoms at high temperature to form a random, homogeneous melt. In subsequent stages, the 

system temperature is reduced to become similar to the melting temperatures that would 

be used experimentally. The system is then rapidly quenched from above its melting 

temperature to 300K at a rate of 1013K/s. A stage at 300K then ensures the formation of a 

solid glass model. A further stage at 300K forms a sampling stage and is used for analysis. 

Following the completion of each simulation stage, a number of output files are generated. 

These are detailed in [12] and include REVCON, HISTORY, and OUTPUT files. The REVCON file 
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contains the final atomic configuration. Hence, as illustrated to the left of figure 16, the 

REVCON file may be renamed as a CONFIG file and used as an input file in the following 

simulation stage. The HISTORY file contains the atomic configurations recorded at set 

intervals throughout the simulation stage. The OUTPUT file summarises the input 

information, and details statistical data recorded at regular intervals throughout the 

simulation stage. In order to characterise the structure of the glass models obtained (from a 

sampling stage) using the techniques described in section 2.2, the REVCON, HISTORY, and 

OUTPUT files can be used (as shown to the right of figure 16). For example, average 

interatomic distances can be calculated from the atomic configurations in the HISTORY file, 

and used to form pair correlation functions (section 2.2.1).  

 
Figure 16: To the left, the process of running a molecular dynamics simulation using the program 

DLPOLY adapted from [12]. To the right, the output files used for structural characterisation.  
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3. Experimental Methodology 

This chapter describes the experimental techniques used in this work to synthesise and 

characterise glasses and their structures. The systems studied experimentally involve two 

CaO-SiO2-CaCl2 glass series that were prepared by collaborators [1], [2], and a 

CaO-SiO2-CaF2 glass series that was prepared in this work. As different approaches were 

used to prepare the glasses, only a general overview of glass synthesis via melt-quenching 

is provided here. The specific details can be found in [1], [2], as well as in the relevant 

experimental results chapters. The next part of this chapter concerns a number of 

laboratory-based techniques used to characterise glass. The techniques used include 

powder X-ray diffraction (PXRD), X-ray fluorescence spectroscopy (XRF), helium 

pycnometry, differential scanning calorimetry (DSC), Raman spectroscopy, and scanning 

electron microscopy (SEM), although not all of the techniques were used to study each 

glass series. Finally, following a brief discussion of diffraction theory, the central facility 

techniques used to characterise both the CaO-SiO2-CaCl2 and CaO-SiO2-CaF2 glass structures 

are described. These include neutron diffraction (ND) and X-ray absorption spectroscopy 

(XAS). 

3.1 Glass Synthesis 

The glasses studied in this work were prepared via a melt-quench route. Molar 

concentrations of the reagents were weighed out and mixed together before being placed 

into a platinum-rhodium crucible. The crucible and its contents were then placed into a 

furnace and melted at a sufficient temperature for a sufficient period of time to ensure a 

homogeneous melt. Subsequently, the crucible was removed from the furnace and the 

melt rapidly quenched to obtain a glass. 

3.2 Powder X-ray Diffraction 

Powder X-ray diffraction (PXRD) can be used to verify the amorphous nature of a glass 

sample. In this technique, X-ray production involves heating the metal filament in the X-ray 

tube. This causes the emission of electrons via thermionic emission which can be 

accelerated towards a metal target by applying a voltage. When the electrons bombard the 

metal target, inner shell electrons may be ejected which causes vacancies to occur. These 

vacancies are immediately filled by electrons from an outer shell. During these transitions, 

X-rays of energy equivalent to the energy difference between the two electron shells are 
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emitted. After passing through a monochromator and a collimator, the X-rays are incident 

on the sample which is rotated. When X-rays are elastically scattered by crystalline solids 

they can interfere constructively according to Bragg’s law given in equation 1.  

2dsinθ = nλ         Equation 1 

In equation 1, d is the spacing between the atomic layers, 2θ is the scattering angle, n is an 

integer, and λ is the wavelength of the incident X-rays. Bragg’s law can be used to predict 

the scattering from a crystal. The presence of crystalline regions in a sample would lead to 

diffraction lines in the diffraction spectra known as Bragg peaks. The positions of these 

Bragg peaks can be used to identify the crystalline compounds present in a sample using a 

database of diffraction patterns. Conversely, when scattered X-rays interfere destructively, 

there is no contribution to the diffraction spectra. The presence of amorphous regions 

causes very broad scattering peaks because glasses have no long-range order [3]. 

Therefore, if the diffraction spectrum has a broad scattering peak with an absence of any 

Bragg peaks then the sample is amorphous.  

In this work, glass samples were ground into a fine powder using an agate pestle and 

mortar and pressed into zero-background sample holders. The sample holders were then 

placed in a Rigaku MiniFlex 600 X-ray diffractometer to obtain PXRD spectra. A current of 

15mA and a voltage of 40kV were used. The samples were rotated from a scattering angle 

(2θ) of 5° to 60° with a step size of 0.02° and a step time of 0.1°/min.  

3.3 X-ray Fluorescence Spectroscopy 

X-ray fluorescence spectroscopy (XRF) may be used to ascertain the composition of a glass 

sample. The X-rays used in X-ray fluorescence spectroscopy (XRF) are obtained using an X-

ray tube as discussed in section 3.2. The X-rays incident on a sample cause core-electrons 

to be ejected as photoelectrons, leading to the formation of vacancies. Outer shell 

electrons then transition into the inner shell to occupy these vacancies, and in doing so 

emit fluorescent X-rays. These fluorescent X-rays are of lower energy compared to the 

incident X-rays. They are also characteristic of the fluorescing elements [4]. Therefore, 

while PXRD identifies crystalline compounds present in a sample, XRF identifies the 

elemental constituents of a sample. In addition, the intensity of fluorescent X-rays detected 

can be used to determine the concentration of each element in the sample [4]. However, 

the fluorescent X-rays from light elements (with an atomic number less than 12) are often 

absorbed in air and fail to reach the detector [5]. This makes quantifying the elemental 

contribution of light elements in a sample challenging. To help ensure the flat, 

homogeneous sample distributions necessary for quantitative compositional analysis [5], 
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fusion beads containing samples were prepared in this work as detailed in section 5.3. The 

fusion beads were measured using a PANalytical Epsilon 3 XRF spectrometer.  

3.4 Helium Pycnometry 

The density of a glass sample can be measured based on the Archimedes principle using a 

pycnometer. Within a pycnometer, there are two chambers of known volume including a 

reference chamber (of volume VR), and a cell chamber (of volume VC). Following the 

calibration of the pycnometer using steel balls of known volume, an amount of sample is 

weighed and placed into the cell chamber. The pycnometer is then purged with helium gas 

for a minimum of 10 minutes in order to remove air and moisture from the chambers [6]. 

Helium gas is then admitted into the empty reference chamber and is of pressure P1. The 

helium gas is then allowed to flow into the cell chamber (which contains the glass sample), 

and occupy both chambers with a pressure of P2. By using the volumes VR and VC, together 

with the pressures P1 and P2, the sample volume, VS, can be calculated in accordance with 

equation 2. As the mass of sample, mS, within the cell chamber is known, the density of the 

sample, ρS, can then be calculated using equation 3.  

VS = Vc − VR [(
P1

P2
) − 1]       Equation 2 

ρS =
mS

VS
         Equation 3 

The density measurements in this work were performed using a Quantachrome MVP-6DC 

pycnometer. The glass samples were in the form of glass chips and approximately 1g of 

each sample was used. Ten density measurements on each sample yielded average density 

values.  

3.5 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) can be used to identify the glass transition 

temperature of a glass sample. During a DSC measurement, a sample and an inert 

reference are heated under the same conditions. The temperatures of both are measured 

using thermocouples. One thermocouple is in contact with the sample, and the other is in 

contact with the inert reference. Any difference in heat flow between the sample and the 

inert reference will generate a signal. This signal can be plotted as a function of 

temperature to form a thermogram [5]. The heat flow to the sample will differ from that of 

the inert reference if the sample undergoes a change of phase (e.g. crystallisation). This is 

because physical changes often involve changes in enthalpy [5]. The glass transition is a 
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second order phase transition which manifests as a change in specific heat. The signature 

of a glass transition appears as a step change in the baseline of the thermogram [5]. The 

glass transition temperature can be identified as the point where the plot begins to deviate 

from the linearity of the baseline [7].  

In this work, DSC measurements were performed using a Netzsch-Gerätebau GmbH-STA 

409 PC Luxx Simultaneous thermal analyser. Approximately 30mg of sample was added into 

an alumina crucible which was inserted into the sample well of the instrument. An empty 

alumina crucible of the same size was placed into the reference well. The two crucibles 

were enclosed within a furnace and heated in air from room temperature to 900°C at a rate 

of 10°C/min to produce thermograms.  

3.6 Raman Spectroscopy 

Raman spectroscopy can be used to verify the homogeneous nature of a glass sample. The 

technique involves irradiating a sample with a source of monochromatic light which is 

usually in the visible part of the spectrum. This can be done using a laser. The irradiation 

can cause three types of scattering to occur. Rayleigh scattering describes elastic scattering, 

while Stokes and anti-Stokes scattering both describe inelastic scattering due to molecular 

vibrations [8]. In Stokes scattering, the energy of the scattered radiation is lower than that 

of the incident radiation due to the transfer of energy to a molecular vibration. Conversely, 

in anti-Stokes scattering the energy is higher due to the acceptance of energy from a 

molecular vibration. Collectively, Stokes and anti-Stokes scattering is known as Raman 

scattering and can be measured using a Raman spectrometer. By plotting the intensity of 

the Raman scattering as a function of the Raman wavenumber, a Raman spectrum can be 

attained. The Raman wavenumber, ω, is defined in equation 4, where νs and ν0 correspond 

to the frequency of the scattered and incident radiation respectively, and c is the speed of 

light [9]. 

ω =
νs

c
−

ν0

c
         Equation 4 

This means that the Raman wavenumber is proportional to the energy or frequency of the 

molecular vibration. In this work, Raman spectra were attained using a Horiba Lab-RAM HR 

Raman spectrometer. A laser was operated at a wavelength of 532nm, and the 

spectrometer was calibrated using a silicon wafer with a wavenumber of 520cm-1. Spectra 

were measured over a range of wavenumbers from 100cm-1 to 4000cm-1. The acquisition 

time was 6s and 10 accumulations were recorded for each sample. A total of six spectra 

were acquired from three glass chips of each sample. By comparing the shapes of all 

spectra from one sample to the metasilicate (50CaO-50SiO2) spectra reported in the 

literature [10], the homogeneous nature of the glass samples could be verified. This is 
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because the vibrational bands in the Raman spectra of a metasilicate are predominantly 

due to Q2 tetrahedral units in the silicate network.  

3.7 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) can be used to image the surface of a glass sample. 

One component of the scanning electron microscope is the electron source which emits a 

beam of electrons via thermionic emission (section 3.2). The electrons get focussed by a 

series of electron lenses, and the electron beam at the sample surface typically has a spot 

size of less than 10nm [11]. Scanning coils raster the electron beam on the sample [12]. The 

signals from the detection of secondary or backscattered electrons can be used to 

construct images of the sample surface. Secondary electrons are electrons that have been 

dislodged from the sample by the incident electrons. Backscattered electrons are incident 

electrons that have been elastically scattered by the sample and are less numerous. In this 

work, a Hitachi S3400N scanning electron microscope was used to attain SEM images from 

the detection of secondary electrons.   

3.8 Introduction to Diffraction 

Neutron and X-ray diffraction are often complimentary techniques used to characterise the 

structure of glass. Neutrons are scattered by nuclei via the short-ranged nuclear force. As 

the size of a nucleus is small in comparison to the wavelength of the incident neutrons, the 

probability of a neutron being scattered is also small and is independent of the magnitude 

of the scattering vector, Q. This enables neutrons to penetrate the bulk of a sample. The 

strength of the nuclear interaction is characterised by the neutron scattering length, b, 

which varies haphazardly across the periodic table [13]. This can enable the contributions 

of elements that are close together in the periodic table to be distinguished. In addition, 

the contribution of light elements can be detected amongst the presence of heavy 

elements.  

Instead, X-rays interact with electrons via the long-range electromagnetic interaction. The 

wavelength of the incident X-rays is comparable to that of the separation distances 

between electrons. As a consequence, the atomic scattering amplitude described using the 

form factor, f(Q), diminishes with increasing values of Q. This limits the maximum value of 

Q attainable experimentally [14]. As the strength of the X-ray scattering is proportional to 

the atomic number Z, X-rays are strongly scattered by heavy elements and are scattered 

very little by light elements. X-ray scattering is therefore sensitive to heavy elements, 

although it is challenging to distinguish elements that are close together in the periodic 

table.  
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3.8.1  Theory of Diffraction 

The following introduction to diffraction theory is based on [15] and [16]. An incident 

neutron or X-ray of wavevector |𝐤𝐢| =
2π

λi
 that gets scattered by an angle of 2θ from a 

sample will have a final wavevector of |𝐤𝐟| =
2π

λf
. The momentum transfer, 𝐐, during this 

scattering event is illustrated in figure 1 and defined in equation 5. In neutron and X-ray 

diffraction experiments, it is of interest to investigate elastic scattering events. During an 

elastic scattering event, |𝐤𝐟| = |𝐤𝐢| and so the magnitude of the scattering vector, Q, can 

be described using equation 6.  

 
Figure 1: Illustration of elastic scattering from [17].  

ℏ𝐐 = ℏ𝐤𝐢 − ℏ𝐤𝐟        Equation 5 

Q =
4π sinθ

λ
         Equation 6 

When a beam of neutrons or X-rays comes into contact with a monatomic sample, the 

scattering amplitude of the diffracted beam, A(𝐐), can be described using equation 7. In 

the equation, the term 𝐫𝐚 corresponds to the position of the monatomic atoms which are 

indexed by the symbol a. The term fa represents the X-ray scattering factor or the neutron 

scattering length depending on the type of incident radiation used in the experiment.  

A(𝐐) = ∑ faexp (i𝐐 ∙ 𝐫𝐚)a        Equation 7 

As the scattering amplitude is unattainable experimentally, the differential cross-

section, (
dσ

dΩ
)

tot
, is measured instead. This is illustrated in figure 2 and defined in equation 

8, where Rtot is the rate at which neutrons or X-rays of wavelength λ are scattered into the 

solid angle dΩ in the direction (2θ, ϕ), regardless of whether they are scattered elastically. 

Any inelastic scattering contributions need to be corrected for in the data analysis. The 

term N is the number of atoms in the sample, and Φ is the flux of neutrons or X-rays of 

wavelength λ that are incident on the sample. The differential cross-section can be written 

in terms of the scattering intensity, I(𝐐), [14] as shown in equation 8. 
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Figure 2: The geometry of a neutron diffraction experiment from [18].  

(
dσ

dΩ
)

tot
=

Rtot

NΦdΩ
= I(𝐐)       Equation 8 

The scattering intensity can be calculated by multiplying the scattering amplitude, A(𝐐), by 

its complex conjugate as shown in equation 9, where a and b are atoms in the monatomic 

system. Equation 9 can then be rewritten to form equation 10. 

I(𝐐) = A(𝐐)A(𝐐)∗ = ∑ faexp (i𝐐 ∙ 𝐫𝐚)a ∑ fbexp (−i𝐐 ∙ 𝐫𝐛)b    Equation 9 

I(𝐐) = ∑ ∑ fafbexp [i𝐐 ∙ (𝐫𝐚 − 𝐫𝐛)]ba       Equation 10 

Glasses are isotropic meaning their properties are the same in all directions. Consequently, 

the scattering intensity can be averaged over all orientations of the scattering vector as 

defined by the angles φ and ϑ [15]. This enables the exp [i𝐐 ∙ (𝐫𝐚 − 𝐫𝐛)] term in equation 

10 to be rewritten using the derivation in [19] which is outlined below. In the derivation, 

the relation |𝐫𝐚 − 𝐫𝐛| = rab is used, and the integration is simplified by changing the 

variable of the integration using cos(ϑ) = x. 

〈exp(i𝐐 ∙ |𝐫𝐚 − 𝐫𝐛|)〉 =
1

4π
∫ dφ

2π

0 ∫ sin(ϑ) dϑ exp(iQrab cos(ϑ))
π

0
  Equation 11 

〈exp(i𝐐 ∙ |𝐫𝐚 − 𝐫𝐛|)〉 =
1

2
∫ exp(iQrabx) dx

+1

−1
     Equation 12 

〈exp(i𝐐 ∙ |𝐫𝐚 − 𝐫𝐛|)〉 =
sin (Qrab)

Qrab
      Equation 13 

Hence, by substituting equation 13 into equation 10, equation 14 is obtained. 

I(Q) = ∑ ∑ fafb  
sin (Qrab)

Qrab
ba        Equation 14 

If there are N atoms in the monatomic sample where fa = fb = f then the Debye scattering 

equation given in equation 15 is obtained.   
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I(Q) = Nf 2 (1 + ∑ ∑
sin (Qrab)

Qrab
b≠aa )      Equation 15 

The Debye scattering equation can be rewritten to include the radial density function ρ(r) 

as shown in equation 16, which is equivalent to equation 17.  

I(Q) = Nf 2 (1 + ∫
4πr2ρ(r) sin(Qr)dr

Qr

∞

0
)      Equation 16 

I(Q) = Nf 2 (1 + ∫ 4πr(ρ(r) − ρ0)
sin(Qr)

Q
 dr + ∫ 4πrρ0 sin(Qr)

Q
dr

∞

0

∞

0
)  Equation 17 

The first term to the right of equation 17 corresponds to self-scattering. The second 

integral to the right of the equation corresponds to the average scattering from a uniform 

distribution of atoms such as those in a gas. As this is a background that contains no 

structural information, it is subtracted to give equation 18. The first integral to the right of 

equation 18 is known as distinct scattering, and corresponds to the deviations from the 

continuous distribution that provides insight into the interatomic correlations of a sample. 

I(Q) = Nf 2 (1 + ∫ 4πr
∞

0
(ρ(r) − ρ0)

sin(Qr)

Q
dr)     Equation 18 

Using the relation gtot(r) = 4πrρ(r) yields equation 19. 

I(Q) = Nf 2 (1 + ∫ (gtot(r) − 4πrρ0)
sin(Qr)

Q
dr

∞

0
)    Equation 19 

The structure factor, S(Q), is defined in equation 20. 

S(Q) =
I(Q)

Nf2 = 1 + ∫ (gtot(r) − 4πrρ0)
sin(Qr)

Q
dr

∞

0
    Equation 20 

The Fourier transform of the structure factor leads to the total correlation function, gtot(r), 

as shown in equation 21.  

gtot(r) = 4πrρ0 +
2

π
∫ Q(S(Q) − 1) sin(Qr) dQ

∞

0
    Equation 21 

For a multicomponent system, the total structure factor can be considered as a weighted 

sum of the partial Faber-Ziman structure factors, Sij
FZ(Q), as shown in equation 22. 

Analogously, the total correlation function can be considered as a weighted sum of the pair 

correlation functions, gij(r), as shown in equation 23. The Faber-Ziman partial structure 

factors and the pair correlation functions are defined in equations 24 and 25 respectively. 

The weighting factor, ωij, has been defined in terms of the neutron scattering length, b, 

and the atomic number, Z, in equations 26 and 27 to correspond with neutron and X-ray 

diffraction experiments respectively. In equations 26 and 27, the term δij is a Kronecker 

delta function, and the term ci is the concentration of atom type i.  
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S(Q) = ∑ ωijij  Sij
FZ(Q)        Equation 22 

gtot(r) = ∑
ωij

cj
gij(r)ij         Equation 23 

Sij
FZ(Q) = 1 + ∫

1

cj

∞

0
(gij(r) − 4πrρj)

sin (Qr)

Q
dr     Equation 24 

gij(r) = 4πrρj +
2cj

π
∫ Q (Sij

FZ(Q) − 1) sin(Qr) dQ
∞

0
    Equation 25 

ωij =
(2−δij)cicjbibj

[b̅]
2         Equation 26 

ωij =
(2−δij)cicjZiZj

[Z̅]2        Equation 27 

The diffraction theory aforementioned assumes that diffraction data is obtained over an 

infinite Q-range. In practise however, it only extends to Qmax, (where Qmax is the 

maximum momentum transfer available in an experiment). When Fourier transforming 

diffraction data with a sharp cut-off at Qmax, termination ripples emerge in the total 

correlation function. These can be mistaken for real structural features. To minimise these 

termination ripples, it is appropriate to multiply the structure factor by a modification 

function, M(Q), although this can lead to some loss of resolution. Examples of modification 

functions include the Lorch, the Hanning, and the Step modification functions. These are 

described mathematically in equations 28-30 (where ∆r = π Qmax⁄ ) and are illustrated in 

figure 3.  

Lorch: M(Q) =
sin(Q∆r)

Q∆r
       Q ≤ Qmax   Equation 28 

Hanning: M(Q) = 0.5 + 0.5cos(Q∆r)     Q ≤ Qmax  Equation 29 

Step: M(Q) = 1        Q ≤ Qmax  Equation 30 

 

Figure 3: To the left, examples of the Lorch (red), the Hanning (blue), and the Step 
(green) modification functions, M(Q) from [32]. To the right, the gtot(r) of a single peak 

following the application of these modification functions from [33]. 
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3.8.2  Neutron Diffraction Experiment 

The neutron diffraction experiments in this work were carried out using the GEneral 

Materials (GEM) diffractometer at the ISIS neutron spallation source. This is located at the 

Rutherford Appleton Laboratory (RAL) in Oxfordshire and is used to study the structure of 

disordered materials. As shown in figure 4, the GEM diffractometer (figure 4) has a series of 

detector banks located at different angles. This is to increase the count rate and extend the 

measurable Q-range [14]. A detailed description of the GEM diffractometer can be found in 

[20]. During the ND experiments in this work, coarse glass chips were used to fill thin 

cylindrical vanadium containers. Measurements were then performed, and in addition to 

sample measurements, data was also collected for an empty vanadium container, a 

vanadium niobium rod, and for the empty GEM diffractometer.  

 
Figure 4: The detector banks in the GEM diffractometer from [20].  

3.8.3  Neutron Diffraction Data Analysis 

The additional neutron diffraction measurements mentioned in section 3.8.2 

complimented the sample measurements and enabled a number of corrections to be 

applied to the sample data after the experiment as detailed in [14]. One of these 

corrections is for the detector dead-time. While a detector is counting a neutron, it is 

unable to count any other neutrons. This can cause more intense signals to be suppressed. 

Another correction is the background subtraction. Any general background and the 

background contribution from the sample container need to be removed. The incident 

neutrons absorbed by a nucleus also need to be corrected for, as does the attenuation of 

the incident and scattered flux of neutrons due to further scattering events. The detection 
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of neutrons that have undergone multiple scattering events would cause additional 

background and so also need to be removed. These corrections depend on the packing 

fractions of sample in the sample cans. They are also very complex because they are 

interrelated. For example, a neutron scattered from the sample container may undergo 

multiple scattering. In this work the above corrections were made using the program 

Gudrun [21]. Further data processing involved calculating and subtracting the self-

scattering contribution using Open GENIE [22], as well as appropriately merging the 

detector bank contributions from the GEM diffractometer to attain the total structure 

factor. The total structure factor, S(Q), can be Fourier transformed to obtain the total 

correlation function, gtot(r), as shown in equation 21. 

Contributions from different pair correlation functions are often overlapping in the total 

correlation function. It is therefore necessary to fit the experimental diffraction data in 

order to obtain structural information. This was achieved using the program NXFit [23]. 

NXFit utilises three input parameters to model the contribution of each peak in the pair 

correlation function in Q-space, p(Q), according to equation 31. In the equation, N is the 

coordination number, R is the nearest neighbour distance, and σ is a disorder parameter 

used to calculate the Debye-Waller Factor (2σ2). The contributions of different peaks in the 

pair correlation functions in Q-space are summed and Fourier transformed before being 

compared to the experimental total correlation function, gtot(r). A Nelder-Mead algorithm 

is employed to vary the fit parameters to minimise the least squares fit index, given in 

equation 32 [23]. In the equation, Rmin and Rmax define the range over which the data is 

modelled. The terms gtot
E (r) and gtot

S (r) represent the experimental and simulated total 

correlation functions respectively. In order to avoid obtaining fits with unrealistic 

parameter values, the parameters must be constrained within a given range. The 

uncertainty in a given parameter is dependent on how much a change in the parameter 

causes a change in the fit index.  

p(Q) =
Nωij(Q)

cj

sin (QR)

QR
exp [

−Q2σ2

2
]      Equation 31 

Fit index = ∑ [gtot
E (r) − gtot

S (r)]
2r=Rmax

r=Rmin
     Equation 32 

3.9 X-ray Absorption Spectroscopy 

3.9.1  Introduction 

X-ray absorption spectroscopy (XAS) enables the local environment around particular 

atomic species to be investigated. The technique involves irradiating a sample with X-rays 

from a synchrotron source. The intensity of the X-rays absorbed can be measured as a 
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function of energy, and plotted to form a XAS spectrum. The absorption of X-rays follows 

the Beer-Lambert law given in equation 33 which can be rearranged in terms of the 

absorbance, A, as shown in equation 34. The term I0 is the intensity of the incident X-ray 

beam, I is the intensity of the beam transmitted through the sample, μ is the linear X-ray 

absorption coefficient, E is the X-ray energy, and x is the sample thickness. 

I = I0exp (−μ(E)x)        Equation 33 

A = μ(E)x = ln (
I0

I
)        Equation 34 

The absorption coefficient, μ(E), determines the probability of X-rays being absorbed and 

generally declines with increasing incident X-ray energy until the energy of the incident X-

rays, E, is approximately equivalent to the binding energy, E0, of inner shell electrons. 

When this happens, there is a sharp increase in the absorption due to the X-ray energy 

being sufficient to excite inner-shell electrons to unbound states (photoelectrons). When 

this transition involves a 1s electron, a K-edge in the XAS spectrum is generated, and when 

the transition involves 2s, 2p1/2, and 2p3/2 electrons, L1, L2, and L3 edges are generated 

respectively and so on (figure 5). Any excess energy (E − E0) from the incident X-rays is 

acquired by the photoelectrons as kinetic energy. The propagation of a photoelectron is 

considered to be a spherical wave which scatters off surrounding atoms, hence it interferes 

with itself. This scattering causes oscillations in μ(E) beyond the absorption edge E0. The 

region around the absorption edge in the XAS spectrum is referred to as the X-ray 

absorption near-edge structure (XANES) region, while the fine structure oscillations are 

referred to as the extended X-ray absorption fine structure (EXAFS) region. These are 

illustrated in figure 6. 

 
Figure 5: Examples of electron transitions caused by the absorption of an X-ray by inner-shell 

electrons from [24]. 
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Figure 6: Example of an XAS spectrum from [25].  

3.9.2  X-ray Absorption Near-Edge Structure 

The X-ray absorption near-edge structure (XANES) region of the XAS spectrum typically 

starts a few eV before the absorption edge and extends to tens of eV beyond the edge. In 

the XANES region, the photoelectrons undergo multiple scattering events which are 

illustrated in figure 7. As the energy of the incident X-rays increases towards that of the 

EXAFS region, the scattering of photoelectrons becomes increasingly dominated by single 

scattering events [26]. The complex multiple scattering events of the XANES region are 

based on complex quantum mechanical equations [27]. Despite this, qualitative analysis of 

XANES spectra can still provide insight into the oxidation state and the local coordination 

environment by making comparisons with the XANES spectra of known standard 

compounds [28].  

 
Figure 7: An illustration of single and multiple scattering. 

3.9.3  Extended X-ray Absorption Fine Structure 

The extended X-ray absorption fine structure (EXAFS) region is illustrated in figure 6 and 

typically starts tens of eV beyond the edge and extends to over 1000eV beyond the edge 

[14]. The photoelectron waves propagating from the absorbing atom get scattered by 

neighbouring atoms. Hence, the amplitudes of these photoelectron waves are influenced 

by the environment of the absorbing atom. The constructive and destructive interference 

of these photoelectron waves causes oscillations in the EXAFS region of the XAS spectrum. 

By studying these oscillations, information about the environment of the absorbing atom 
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can be obtained. This includes nearest neighbour distances, R, coordination numbers, N, 

and values of σ2 which are used to determine the XAS Debye-Waller factors (2σ2).   

3.9.4  X-ray Absorption Spectroscopy Experiment 

The X-ray absorption spectroscopy experiments in this work were carried out using the 

general purpose beamline B18 at the Diamond Light Source synchrotron facility. This is 

located at the Rutherford Appleton Laboratory (RAL) in Oxfordshire. The beamline has a 

wide energy range of 2-35keV, enabling access to elements beyond phosphorus and up to 

the actinides in the periodic table. A detailed description of B18 is provided in [29]. The 

specific details of how the samples were prepared and how the measurements were 

performed are detailed in the relevant results chapters.  

Transmission mode and fluorescence mode are the two most common setups for a XAS 

experiment. Transmission mode involves determining the X-ray absorption 

coefficient, μ(E), directly. This is done by measuring the intensity of the X-ray beam 

incident on the sample, I0, as well as the intensity of the X-ray beam that gets transmitted 

though the sample, I, using ionisation chambers. This enables the X-ray absorption to be 

established using equation 34. To supplement these measurements, the intensity of the X-

ray beam that transmits through a standard sample, Is, can also be detected. This can be 

used to help calibrate the X-ray energy E [14]. An illustration of the transmission mode 

experimental setup is shown in figure 8. The difficulty with measuring samples in 

transmission mode is that the difference between I0 and I needs to be large while keeping 

the thickness of the sample small. Additionally, the samples need to be homogeneous and 

of uniform thickness [27]. 

 
Figure 8: Schematic of the XAS transmission mode experimental setup from [14]. 

Fluorescence mode is often used when samples cannot be measured in transmission mode, 

and involves determining the X-ray absorption coefficient indirectly. This is achieved by 

measuring the intensity of the X-ray beam incident on the sample, as well as the intensity 

of fluorescent X-rays created through X-ray absorption, IF (figure 9). This enables the X-ray 

absorption coefficient to be calculated using equation 35. The samples used in fluorescence 

measurements can be dilute or inhomogeneous. Germanium solid state detectors can be 

used for energy discrimination to help ensure that the fluorescent X-rays detected are all 
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from the element of interest. However, some X-rays that have been scattered elastically or 

inelastically may also be detected [14]. In addition, corrections for self-absorption often 

need to be considered following the experiment as some of the fluorescent X-rays could 

have been absorbed by the sample before reaching the detector [27]. 

μ(E) =
IF

I0
         Equation 35 

 
Figure 9: Schematic of the XAS fluorescence mode experimental setup from [14]. 

3.9.5  X-ray Absorption Spectroscopy Data Analysis 

Using the program Athena [30], the analysis of raw XAS data begins by removing any spikes 

in the data called glitches which are caused by imperfections in the monochromator. This 

can be achieved by interpolating the XAS spectrum from just before to just after the glitch 

using a polynomial spline [14]. For measurements performed in fluorescence mode, it is 

important to consider self-absorption. Algorithms in the Athena program [30] use tables of 

x-ray absorption coefficients to approximate the self-absorption correction. The binding 

energy of the inner shell electrons, E0, is often referred to as the threshold energy. This 

threshold energy can be identified using the inflection point in the first derivative of μ(E). 

The next stage of the analysis involves fitting the pre-edge region using a polynomial spline 

which extrapolates throughout the EXAFS region. This pre-edge background is then 

subtracted. A post-edge region is fitted using a further polynomial spline as shown in figure 

10. This enables the background X-ray absorption coefficient, μ0(E), (corresponding to the 

X-ray absorption that would occur when the atom is isolated) to be approximated. 

Following the subtraction of this post-edge spline, the height of the absorption edge at E0 

can be established as the difference between the pre-edge and the post-edge lines, Δμ0(E) 

[27]. The XAS spectrum can then be normalised using equation 36 to remove the effects of 

sample thickness and concentration [27]. At this stage, the XANES region can be studied 

and compared to those of known standards.  
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Figure 10: Example of raw µ(E) data for CaCO3, together with the fitted pre-edge and post-edge 

splines and the background function.  

1 + χ(E) =
μ(E)−μ0(E)

Δμ0(E)
        Equation 36 

To study the EXAFS region of the XAS spectra, the program Artemis [30] can be used. It is 

convenient to consider the XAS spectra in terms of photoelectron wavenumber, k, rather 

than the X-ray energy, E. This is because the XAS spectrum is the result of interference 

effects between photoelectron waves. The photoelectron wavenumber can be related to 

the kinetic energy of the photoelectron, (E − E0), using equation 37, where me is the 

electron mass. The EXAFS function, χ(k), can be weighted by kn, where n is an integer 

between 1 and 3. This amplifies the oscillations at higher values of k where the signal 

strength is reduced [14]. 

k = √
2me

ℏ2
(E − E0)        Equation 37 

The parameterised form of the EXAFS equation is given in equation 38, where the index i 

refers to coordination shells of nearest neighbour atoms around the absorbing atom. This 

can be used to approximate the oscillations in the EXAFS region. As detailed in [27], S0
2 is 

the amplitude reduction factor. This accounts for a small fraction of absorption events in 

which the energy of the incident X-ray is transferred to more than one electron. The 

magnitude of the EXAFS is determined by the number and the type of scattering atoms. 

The terms relating to this are the coordination number, Ni, and the modulus of the atomic 

scattering amplitude, |fi(k)|. The sin[2kRi] term describes the oscillatory nature of the 

EXAFS due to constructive and destructive interference and depends on the photoelectron 

wavenumber, k, and the nearest neighbour distances between the absorbing and the 

scattering atoms, Ri. The terms δc and δi represent the phase shift of the photoelectron 

wave caused by the absorbing atom and the scattering atom respectively. Thermal and 

structural disorder can cause the atoms in a coordination shell to be at different distances 

to the absorbing atom. This causes phase differences in the scattered photoelectron waves 
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which increasingly dampens the oscillations in the EXAFS signal with increasing values of k. 

This is represented by the  e−2σi
2k2

 term, where 2σi
2 is the XAS Debye-Waller factor. The 

decay of the photoelectron wave increases with increasing values of Ri. This is considered 

in the term e−2Ri/λ(k), where the mean-free path, λ, corresponds to how far the 

photoelectron wave can travel while still contributing to the EXAFS signal.  

χ(k) = ∑ S0
2Ni

|fi(k)|

kRi
2 sin[2kRi + 2δc(k) + δi(k)]i e−2Ri/λ(k)e−2σi

2k2
  Equation 38 

By Fourier transforming the kn weighted χ(k) into r-space, a pseudo-radial distribution 

function can be attained. To minimise termination ripples, the kn weighted χ(k) is often 

multiplied by a modification function, M(k), prior to being Fourier transformed. In this 

work, a Hanning modification function was used. In order to attain structural information 

from the Fourier transform of the kn weighted χ(k) function, a path fitting technique can 

be used. This involves using relevant reference structures where the type and position of 

atoms are well-defined. The FEFF code [31] within Artemis [30] then calculates the 

|fi(k)|e−2Ri/λ(k), the 2𝛿𝑐(𝑘), and the 𝛿𝑖(𝑘) terms in the parameterised EXAFS equation for 

the single scattering paths and for the multiple scattering paths which are longer. The 

single-scattering paths involving nearest neighbour atoms dominate over the multiple-

scattering paths. The paths that suitably represent nearest neighbour atoms are selected 

and used to fit the experimental spectrum using a least-squares fitting algorithm [14]. This 

minimises the difference between the experimental EXAFS spectra and the modelled EXAFS 

spectra. During the analysis of the EXAFS region, values of 𝑅𝑖, 𝑁𝑖, and 𝜎𝑖
2 can be attained 

using equation 38. An example of this path fitting technique is shown in figure 11 for a 

crystalline calcite (CaCO3) structure which has well-defined shells and known parameters.  

 
Figure 11: Example of fitting Ca K-edge 𝒌𝟐 weighted 𝝌(𝒌) experimental crystalline CaCO3 data to a 

reference crystalline CaCO3 structure.  
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4. A Computational Investigation of 
the Structure of ZnCl2 glass 

4.1 Introduction 

Zinc chloride glass, ZnCl2, is a halide system which comprises of Zn4+ and Cl2- ions. These 

interact to form tetrahedral ZnCl4 structural units. In a strong glass former like SiO2, the 

corner-sharing SiO4 tetrahedral units form a rigid three-dimensional network. In a fragile 

glass former like BeCl2 [1], the BeCl4 edge-sharing tetrahedral units join to form chains. The 

ZnCl2 glass network is intermediate between the two (figure 1). It has a combination of 

edge-sharing and corner-sharing tetrahedral structural units as permitted by the 

polarisability of the chlorine anions, and the Zn-Cl-Zn bond angle of approximately 110° [1].  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Scaled Arrhenius plots from Angell [2] for a number of strong and fragile glass-forming 
compositions which illustrates the intermediate glass-forming nature of ZnCl2. 

Although a number of experimental studies have probed the crystalline state (e.g. [3]–[5]), 

the molten state (e.g. [6]–[11]), and the glassy state (e.g. [8]–[12]) of ZnCl2, comparatively 

few computational studies on ZnCl2 glass have been conducted. This is despite ZnCl2 

exhibiting interesting properties, such as a high tendency towards glass formation [13]. The 

cause is likely to be the complexity of accounting for chlorine anion polarisability, together 

with the shortage of suitable interatomic potential parameters available in the literature 

[8], [13].   
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First principles computational simulation considers the electronic configuration of atoms. 

However, the computational expense limits the simulation size and timescale. Alsayoud et 

al. [14] has modelled liquid ZnCl2 using first principles simulation. Although the model only 

contained 108 atoms and was quenched from 2000K to 600K at a rate of 1.8×1014K/s, the 

model overwhelmingly comprised of ZnCl4 tetrahedral units. Only 5% of the Zn ions were 

involved in ZnCl3 or ZnCl5 structural units, which could be attributed to the temperature of 

the system. Although Alsayoud et al. [14] did not produce a ZnCl2 glass model, it can be 

anticipated that the proportion of ZnCl4 tetrahedral units in a glass model would be at least 

95%.  

Classical molecular dynamics (MD) is a different type of computational simulation that does 

not consider the electronic configuration of atoms. This enables larger system sizes to be 

modelled over relatively long timescales. MD simulations are often run using rigid-ion (RI) 

interatomic potential parameters. These treat the atoms as solid spheres and fail to 

account for ion polarisability. Kumta et al. [15] modelled a ZnCl2 glass using RI interatomic 

potential parameters, although the model only contained 324 atoms. In addition, the Zn-Cl 

coordination number of 4.96 was significantly higher than the value of 4.00 expected. This 

was because 40% of the structural units were reported to be ZnCl6 structural units, casting 

doubt over the interatomic potential parameters used.   

In order to compromise between first principles and classical molecular dynamics, classical 

molecular dynamics simulations can be made to consider ion polarisability. One approach is 

the addition of the polarisable ion model (PIM). This reproduces polarisability through 

enabling the dipole strength and orientation to fluctuate throughout the simulation. It was 

used by Sharma and Wilson [1] to generate a model of ZnCl2 melt that was consistent with 

experimental findings [16]–[22]. The addition of the core-shell model is an alternative 

approach. In this, the atom is split into a separate core and shell unit. The core and the 

shell are connected by a harmonic spring of spring constant Kcs. The shell can either be 

massless (dynamic core-shell model), or have an assigned mass (adiabatic core-shell 

model). Since the charge is divided between the core and the shell, the shell can move with 

respect to the ion core. This reproduces dipole induction, and hence the polarisable nature 

of the ion. The core-shell model is typically only applied to the anions in a simulation 

because they are generally more susceptible to polarisation. The adiabatic core-shell model 

was used by Huang et al. [13] to model ZnCl2 melt. The study involved melting a crystalline 

ZnCl2 structure at 2000K for 2ps to attain results consistent with experimental findings 

[23]–[26]. However, it is conceivable that the low melting temperature and the short 

simulation timescale may not have been adequate in allowing a representative melt 

structure to develop, making the results biased towards the input crystal structure.  

A different type of computational simulation is reverse Monte Carlo (RMC) modelling. This 

involves the atoms in an input configuration being successively moved to reproduce 
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experimental diffraction results as closely as possible. Pusztai and McGreevy [27] have 

modelled ZnCl2 glass using RMC. The model comprised of distorted tetrahedral units that 

were of trigonal planar symmetry. In addition, the Zn-Zn coordination number of ~5.3 was 

significantly higher than the value of 4.0 expected for a system comprising entirely of 

tetrahedral units. Zeidler et al. [9], [10] has also modelled ZnCl2 glass using RMC modelling. 

Average Zn and Cl coordination numbers of ~4.0 and ~2.0 respectively were attained and 

indicated consistency with tetrahedral units. However, in one of the studies [9], it was 

reported that 41% of the Cl ions did not have a coordination number of 2.0. In the later 

study [10], 9.8% of the structural units were found to either be ZnCl3 or ZnCl5 structural 

units. This could be due to a lot of the disorder present in the initial random configuration 

of atoms being retained throughout the RMC modelling process.  

In this chapter, ZnCl2 glass was modelled computationally without bias towards an input 

crystalline structure or experimental diffraction results. This was achieved using MD with 

the addition of the adiabatic core-shell model. The structural effects of anion polarisability 

in ZnCl2 glass were explored by performing nearest neighbour distance, coordination 

number, bond angle, and structure factor calculations. As mentioned, the strong glass 

former SiO2 also comprises of tetrahedral structural units and shares the same 

stoichiometry as ZnCl2. Since SiO2 glass has been well studied both experimentally and 

computationally, the structural effects of anion polarisability in the intermediate and 

strong glass formers were compared. 

4.2 Computational Modelling Methodology 

4.2.1  Interatomic Potential Parameters 

Throughout this chapter, the atomic correlations refer to the core atomic correlations 

unless clearly stated otherwise. For example, Cl-Cl refers to the chlorine cores, while Cls-Cls 

refers to the chlorine shells. Core-shell model interatomic potential parameters for 

modelling ZnCl2 have been reported by Binks [28] (table 1). An additional three-body 

interatomic potential parameter of truncated harmonic form was fitted in this work to 

encourage the four-fold coordination of Zn ions, and hence maintain tetrahedral structural 

units. It was important to test these interatomic potential parameters on crystalline 

structures using the General Utility Lattice Program (GULP) [29] to ensure their suitability in 

this modelling study. 
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Table 1: The two-body Buckingham and three-body screened harmonic potential parameters used 
to model ZnCl2 glass. The two-body interatomic potential parameters were obtained from Binks 
[28], whilst the three-body interatomic potential was fitted in this work. The chlorine shell mass 

was 0.450u. 

 Two body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Zn − Zn 
Zn − Cls 
Cls − Cls 

0.0000000 
9704.8900 
3296.5700 

0.0000000 
0.2320000 
0.3289000 

0.000000 
0.000000 
107.2000 

 Three body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Cl − Zn − Cl 1.5 109.47 3.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

Cl − Cls 17.25 0.984 -1.984 
Zn − Zn  2.000  

 

There are four crystalline polymorphs of ZnCl2 [3]. They are referred to as α, β, γ, and δ and 

are illustrated in figure 2. It is known that the α, β, and γ polymorphs occur with some 

water absorption [3], leaving orthorhombic δ-ZnCl2 as the only pure polymorph. The δ-

ZnCl2 crystal structure of space group 33 was therefore used to test the interatomic 

potentials in table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The crystalline structures of a) 𝛂-ZnCl2 b) 𝛃-ZnCl2 c) 𝛄-ZnCl2 d) 𝛅-ZnCl2 reproduced from 
[5], [30]. The blue tetrahedra represent zinc ions and the light green spheres correspond to the 

chlorine ions. In this figure, the chlorine ions have not been split into core-shell units. 

a) b) 

c) d) 
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It can be seen in table 2 that upon energy minimisation, the unit cell volume of δ-ZnCl2 

increased by 6.80%, but its orientation remained intact. The Zn-Cl, Cl-Cl, and Zn-Zn nearest 

neighbour distances increased from 2.27Å, 3.77Å, and 3.76Å to 2.30Å, 3.88Å, and 3.85Å 

respectively. The coordination numbers of 4.00, 12.00, and 4.00 respectively were 

unchanged. Taking into account the shortage of alternative published interatomic 

potentials for ZnCl2 [8], [13], the interatomic potentials derived by Binks [28] were deemed 

adequate as a starting point to model ZnCl2 glass in this study. 

Table 2: The initial 𝛅-ZnCl2 crystalline lattice parameters, and the corresponding percentage 
changes following GULP energy minimisation. 

Parameter Unit 
Initial 
value 

Percent 
Change 

(%) 

Volume Å3 303.59 6.80 

a Å 6.44 -1.34 

b Å 7.69 9.04 

c Å 6.13 -0.72 

α ° 90.00 0.00 

β ° 90.00 0.00 

γ ° 90.00 0.00 

 

4.2.2  Molecular Dynamics Simulations 

An initial δ-ZnCl2 starting configuration containing 1280 atomic constituents was prepared 

using the program DL_FIELD [31]. This configuration included 256 Zn cores, 512 Cl cores, 

and 512 corresponding Cl shells (to account for anion polarisability). Of the atomic mass of 

chlorine (35.003u), a mass of 0.450u was assigned to the shell. The remaining mass was 

assigned to the chlorine core. The simulation cell side lengths of a=28.37Å, b=33.87Å, and 

c=26.97Å corresponded to the experimental density of the glass (0.0359Å-3 [9]). The core-

shell model molecular dynamics simulation was then run using the program DLPOLY [32] 

with the interatomic potential parameters in table 1. A universal cut-off of 7.5Å, a primary 

cut-off of 6.5Å, and a van der Waals cut-off of 5.5Å were applied.  

The simulation began at a temperature of 6000K to ensure a random distribution of ions. 

The simulation temperature was then successively reduced to 3000K, then 1000K. At this 

point, the system was still liquid as it was comfortably above its melting temperature of 

593K [3]. To produce a glass model, it is necessary to quench the system quickly to prevent 

crystallisation. The system was quenched from 1000K to 300K at a rate of 1013K/s. To 

ensure a solid glass model, a further stage at 300K was run and used for analysis. The 

results of this stage were also used to initiate further sampling runs at 600K and 1000K. All 
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stages of the simulation ran for 800,000 time-steps, other than the quench stage which 

required 350,000 time-steps because the time-step was 0.2fs. To make sure the system 

maintained the correct density, an NVT Berendsen thermostat was used throughout the 

simulation. To help conserve stability, all simulation stages were fully equilibrated. The 

glass model of SiO2 later used for structural comparison with ZnCl2 was obtained using the 

computational method denoted as SM1 by Tilocca et al. [33].   

4.3 Results 

4.3.1  Images of Models 

Figure 3 compares the δ-ZnCl2 crystalline structure to the glass model at 300K. While the δ-

ZnCl2 crystalline structure to the left comprises solely of corner-sharing tetrahedra, the 

glass model to the right contains some edge-sharing tetrahedral units which have been 

highlighted in dark green. The chlorine shells (in brown) are closer to zinc than the chlorine 

cores (in bright green) in both the crystalline and glass models. This is due to the charges 

assigned to the cores and shells (table 1).  

 

 

 

 

 

 

 

 

Figure 3: To the left, the original 𝛅-ZnCl2 crystal structure and to the right, the ZnCl2 glass model. 
The blue tetrahedra are zinc tetrahedra, the light green and brown spheres are the chlorine cores 

and shells respectively. 

4.3.2  Pair Correlation Functions and Cumulative 

Coordination Numbers 

As shown in figure 4, the pair correlation functions of ZnCl2 glass involving shells have 

smaller nearest neighbour distances than the corresponding correlations involving cores. 

This could be visualised in the crystalline and glass models of ZnCl2 in figure 3, and occurs 

because the chlorine shells were assigned a negative charge (table 1). Small pre-peaks 



48 
 

consistent with a minority of edge-sharing tetrahedra in the ZnCl2 glass model are also 

visible in the Zn-Zn and Cls-Cls pair correlation functions.  

 

The pair correlation functions of ZnCl2 glass from this work (labelled MD) were then 

compared with experimental neutron diffraction (ND) results [9] in figure 5. The Zn-Cl and 

Cl-Cl pair correlation functions agreed well with the ND findings. There was some 

discrepancy between the Zn-Zn pair correlation functions because while two peaks were 

identified from computational simulation, only one broad peak was observed 

experimentally.  

 

Figure 5: The Zn-Cl, Cl-Cl, and Zn-Zn pair correlation functions, gij(r), obtained computationally in 
this work (MD) and experimentally using ND by Zeidler et al. [9]. The Cl-Cl and Zn-Cl pair 

correlation functions have offsets of 2.0 and 7.0 respectively. 

The nearest neighbour distances and coordination numbers attained in this study are 

summarised in table 3. Values from other studies are also reported to enable comparisons. 

The Zn-Cl nearest neighbour distance of 2.30Å was in good agreement with other studies. 

Figure 4: Core and shell pair correlation functions, gij(r), for the ZnCl2 glass model. The 
amplitudes of the Cl-Cls, Zn-Cls, and Zn-Cl correlations were reduced by factors of 10, 4, and 3 

respectively. This enabled the lower amplitude distributions to be seen more clearly. 
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The corresponding coordination number of 4.00 was expected for a tetrahedral structural 

unit. The Cl-Cl nearest neighbour distance of 3.76Å was in line with other studies, but there 

was obvious disagreement between the corresponding coordination number values. This is 

due to the cumulative coordination number plot (figure 6) being very steep, placing a high 

sensitivity on the cut-off distance applied.  

Table 3: The nearest neighbour distances, Rij, coordination numbers, Nij(r), and coordination 
number cut-off distances from this work and a number of experimental studies. These include 

neutron diffraction (ND) [9], [10], [34] , X-ray diffraction (XRD) [9], and extended X-ray absorption 
fine structure (EXAFS) [11], [4]. A reverse Monte Carlo (RMC) computational study is also included 

[9]. The uncertainty in measurement is given in brackets. 

Ref. Method 
Zn-Cl Cl-Cl Zn-Zn 

Rij (Å) Nij(r) 
Cut-off 

(Å) 
Rij (Å) Nij(r) 

Cut-off 
(Å) 

Rij (Å) Nij(r) 
Cut-off 

(Å) 

This 
work 

MD 2.30(1) 4.00(2) 3.0 3.76(5) 10.07(5) 5.0 3.89(5) 3.62(5) 4.3 

[9] ND 2.27(1) 3.8(3) 2.52 3.68(1) 11.0(4) 4.66 3.74(1) 3.8(2) 4.42 
[9] ND/RMC 2.29(5) 3.99(1) 3.0 3.69(5) 12.2(1) 5.0 3.67(5) 4.16(1) 4.3 
[9] XRD 2.27(2) 4.0(1) 2.47       

[10] ND 2.27(2) 4.04(5)        
[34] ND 2.29(1) 3.8  3.72(1) 9.5     
[11] EXAFS 2.34(1) 5.1(8)        
[4] EXAFS 2.30(4)         

 

 

Figure 6: Cumulative coordination number plots for Zn-Zn, Zn-Cl and Cl-Cl correlations. 

4.3.3  Structure Factors 

The calculated Faber-Ziman (FZ) partial structure factors from the computational model of 

ZnCl2 glass (labelled MD) were in good agreement with experimental ND results [9] (figure 

7). The very marginal phase shift in SClCl
FZ (Q) was caused by the Cl-Cl nearest neighbour 
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distance in the computational model being slightly greater than that determined from the 

ND results (table 3). The noise in SZnZn
FZ (Q) from ND illustrates its weak weighting factor, 

ωZnZn, of 0.05. The total neutron and X-ray structure factors in figure 8 were in good 

agreement with experimental findings  [9], [10].  

 
Figure 7: The Faber-Ziman partial structure factors calculated in this work (MD) compared with 

those obtained from neutron diffraction (ND) [9]. The 𝐒𝐙𝐧𝐙𝐧
𝐅𝐙 (𝐐) and 𝐒𝐂𝐥𝐂𝐥

𝐅𝐙 (𝐐) plots have vertical 

offsets of 3.0 and 6.0 respectively. 

 

Figure 8: The total neutron and X-ray structure factors (SN(Q) and SX(Q) respectively) from this 
work (MD) compared to those obtained experimentally (ND) [9], [10]. 

4.3.4  Bond Angle Distributions 

The Zn-Cl-Zn bond angle distribution in figure 9 shows two distinct peaks centred around 

angles of 83° and 113°. These correspond to edge-sharing and corner-sharing tetrahedra 
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respectively [35]. While 14% of the tetrahedral structural units were edge-sharing, 86% 

were corner-sharing. Sharma and Wilson [1] state that a Zn-Cl-Zn bond angle of ~110° 

permits the formation of edge-sharing or corner-sharing tetrahedra. The Cl-Zn-Cl bond 

angle distribution was centred around an angle of 109°, matching the ideal tetrahedral 

angle [9].  

 
Figure 9: The Zn-Cl-Zn bond angle distribution to the left, and the Cl-Zn-Cl bond angle distribution 

to the right for ZnCl2 glass. Images of tetrahedra are included to help visualise the bond angles 
where the blue and green atoms represent Zn and Cl atoms respectively. 

4.3.5  Comparing ZnCl2 and SiO2 

It was of interest to compare the structural effects of anion polarisability in the 

intermediate glass former ZnCl2 to those in the well-established strong glass-former SiO2. 

Table 4 details the positions of the first three peaks in total correlation functions of ZnCl2 

and SiO2 glass (corresponding to the cation-anion, the anion-anion, and the cation-cation 

nearest neighbour distances and labelled as R1, R2, and R3 respectively). The first three peak 

positions in the total neutron structure factors (labelled Q1, Q2, and Q3 respectively where 

the Q-scale is conceptually reciprocal to the r-scale) are also included. The R1 ratio 

compares the Zn-Cl and Si-O nearest neighbour distances. Since both have tetrahedral 

structural units (ZnCl4 and SiO4), it can be seen that those in ZnCl2 are 1.42 times larger than 

those in SiO2. The R2 ratio compares the edge lengths of the ZnCl4 and the SiO4 tetrahedral 

structural units, hence the R2 ratio matches the R1 ratio. The R3 ratio of 1.25 is smaller than 

the R1 ratio of 1.42. The average Zn-Cl-Zn bond angle of ~110° is smaller than the average 

Si-O-Si bond angle of ~150° [36]. This has the effect of lowering the Zn-Zn nearest 

neighbour distance (R3), and in turn reducing the R3 ratio. Although comparable to the Q2 

and Q3 ratios, the R1 ratio is in poor agreement with the Q1 ratio.  
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Table 4: The terms R1, R2, and R3 denote the cation-anion, anion-anion, and cation-cation nearest 
neighbour distances respectively. The terms Q1, Q2 and Q3 denote the first three peak positions in 

the total neutron structure factors. The uncertainty in the R and Q values was ±0.01Å and 
±0.05Å-1 respectively. 

 R1 (Å) R2 (Å) R3 (Å) Q1 (Å-1) Q2 (Å-1) Q3 (Å-1) 

ZnCl2 2.30 3.76 3.89 0.88 2.11 3.69 
SiO2 1.62 2.64 3.11 1.53 2.91 5.19 
Ratio 1.42 1.42 1.25 1.74 1.38 1.41 

 

The Q1 values compare the first sharp diffraction peak (FSDP) positions in the total neutron 

structure factors of ZnCl2 and SiO2. The FSDP’s from the computational models in this work 

(labelled MD) are compared to experimental ND results [9], [37], [38] in figure 10. An 

important consideration in these comparisons is the weighting factor of each contribution. 

In ZnCl2 glass, the Zn-Cl, Cl-Cl, and Zn-Zn weighting factors are 0.35, 0.59, and 0.05 

respectively. The corresponding weighing factors in SiO2 glass are similar with values of 

0.39, 0.54, and 0.07 for Si-O, O-O, and Si-Si respectively. The SZnZn
FZ (Q) and SSiSi

FZ (Q) Faber-

Ziman (FZ) partial structure factors have low weighting and reveal that the higher-weighted 

cation-anion contributions are most significant in the FSDP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Total neutron structure factors and unweighted Faber-Ziman 
partial structure factors for ZnCl2 and SiO2. The plots to the left were 

obtained from neutron diffraction (ND) experiments [9], [37], [38] and the 
plots to the right were from this molecular dynamics (MD) study.  
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To compare the partial Faber-Ziman structure factors of ZnCl2 and SiO2, it is necessary to 

account for the different Q ratios and scale the partial Faber-Ziman structure factors 

accordingly. This was achieved using the equation Q’=QRij, where Rij is the i-j nearest 

neighbour distance. As shown in figure 11, differences between the FSDP’s of the scaled 

partial Faber-Ziman structure factors are observed. However, beyond the FSDP’s, good 

agreement can be seen.   

 
Figure 11: A Faber-Ziman partial structure factor comparison between ZnCl2 and SiO2 glass. The 

 𝐒𝐙𝐧𝐙𝐧
𝐅𝐙 (𝐐′) and 𝐒𝐒𝐢𝐒𝐢

𝐅𝐙 (𝐐′) plots have a vertical offset of 7.0. The 𝐒𝐂𝐥𝐂𝐥
𝐅𝐙 (𝐐′) and 𝐒𝐎𝐎

𝐅𝐙 (𝐐′) plots have a 
vertical offset of 3.0. 

Packing fraction calculations of ZnCl2 and SiO2 formed the final comparison between the 

intermediate and the strong glass formers. The packing fraction (PF) is a measure of the 

occupancy of a given atom type within a system volume. It is defined using equation 1, 

where ρ0 is the atomic number density, and Ri is the packing radius attributed to the atom. 

In this work, the packing radius of the atom was assumed to be equivalent to half of its 

nearest neighbour distance. The atomic number density could be calculated since the 

number of each atom type, and the size of the simulation cell was known. The packing 

fractions for the atomic constituents of ZnCl2 and SiO2 are shown in table 5. While the 

packing fractions of Zn and Si were similar, the packing fractions of Cl and O were 

significantly different.  

PF =  ρ0 4π

3
Ri

3         Equation 1 
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Table 5: The parameters needed to calculate the packing fractions, and the packing fraction values 
attained for the anions and cations in ZnCl2 and SiO2 glass. The packing radius Ri of an atom was 

assumed to be half of its nearest neighbour distance. 

Atom type i No. atoms Volume (Å3) 2 × Ri (Å) PF 

Zn 256 25915 3.89 0.30 
Cl 512 25915 3.76 0.55 
Si 500 22675 3.11 0.35 
O 1000 22675 2.64 0.42 

 

4.4 Discussion 

Classical molecular dynamics with the addition of the adiabatic core-shell model was used 

to model ZnCl2 glass. The input δ-ZnCl2 crystalline structure comprised entirely of corner-

sharing tetrahedral units, but in the glass model, 14% of these tetrahedral units had 

become edge-sharing (figure 3).  The formation of edge-sharing tetrahedral units has been 

explained by Madden and Wilson [35]. When bond bending induces a dipole in the chlorine 

anions, the Zn-Zn separation distance is reduced. This causes cation-cation repulsion to 

occur. It then becomes possible to make the transition from corner-sharing to edge-sharing 

if the Cls-Cls separation distance reduces in order to screen the cation-cation repulsion as 

illustrated in figure 12. 

 

Figure 12: The formation of edge-sharing zinc tetrahedral structural units, where the blue circles 
represent zinc ions and the green circles represent the chlorine ions. This diagram was reproduced 

from [35]. 

Zeidler et al. [10] noticed that the proportion of edge-sharing tetrahedra increases with 

increasing system temperature. This seemed intuitive because at higher temperatures, 

there would be more energy to permit bond breaking and making, promoting the 

formation of edge-sharing tetrahedra. This prompted simulations to be run when the 

system was around its melting temperature (of 593K [3]) at 600K, and when the system 

was a melt at 1000K. Illustrations of the ZnCl2 models at 600K and 1000K are shown 

alongside the 300K model in figure 13. Blue lines were added to show Cls-Cls separation 

distances of less than 3.1Å. Distances lower than 3.1Å in the Cls-Cls pair correlation function 

(figure 4) had been attributed to edge-sharing tetrahedra. At 300K, the reduced Cls-Cls 
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distances almost exclusively only occurred in edge-sharing tetrahedra, but as the system 

temperature increased, the shorter Cls-Cls separation distances began to occur elsewhere in 

the model and in greater numbers. This confirmed that the formation of edge-sharing 

tetrahedra becomes more favourable with increasing system temperatures.   

Although the number of edge-sharing tetrahedral structural units in this study did rise with 

system temperature, it was to a far lesser extent than in the RMC models reported by 

Zeidler et al. [10]. In this study, the proportion of edge-sharing tetrahedra increased from 

14% at 300K, to 17% at 600K, and then to 19% at 1000K. Zeidler et al. [10] reported 

proportions of 8%, 37%, and 55% at temperatures of 300K, 600K and around 1000K 

respectively. Despite the very close agreement with experimental diffraction data [10], part 

of this significant inconsistency is likely to be caused by structural units other than 

tetrahedra being present in the RMC models. The number of these defects, such as Zn 

cations not having a coordination number of 4.00, was also seen to increase with increasing 

system temperature (figure 14). It is likely that these defects were caused by the retention 

of some disorder present in initial random distribution of atoms. If RMC had instead been 

used to refine an existing ZnCl2 glass model, from MD for example, instead of using a 

random initial configuration, it is likely that the same level of defects would not have been 

observed. Another source of the significant discrepancy between the two studies could be 

the strength of the three-body interatomic potential used in this work. A weaker three-

body interatomic potential parameter could have led to higher proportions of edge-sharing 

tetrahedra at higher temperatures. 

Figure 13: A perspective view of the ZnCl2 glass at 300K (left), ZnCl2 at around its melting 
temperature at 600K (middle) and molten ZnCl2 at 1000K (right).  The blue tetrahedra represent 

Zn atoms, and the light green and brown spheres are Cl cores and shells respectively. Edge-
sharing tetrahedra have been highlighted in dark green. The dark blue lines correspond to Cls-Cls 

separation distances of less than 3.1Å. 
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Upon further examination of the pair correlation functions in figure 4, it can be seen that 

the correlations involving anion shells have smaller nearest neighbour distances compared 

to the corresponding correlations involving anion cores. This is due to the charges assigned 

to the core and shell units (table 1). The positively charged zinc ions are attracted to the 

negatively charged chlorine ions, and repelled by the positively charged chlorine cores. This 

reduces the separation between the zinc cores and the chlorine shells in tetrahedral 

structural units, and reduces the separation distance between two chlorine shells.  

When the pair correlation functions from this work were compared with experimental ND 

results [9] (figure 5), noticeable differences between the Zn-Zn pair correlation functions 

were observed. While two peaks distinguishing edge-sharing and corner-sharing 

contributions were observed in this study, only a single peak was observed experimentally. 

This was because the Zn-Zn partial structure factor only contributes a weighting factor, 

ωZnZn, of 0.05 to the total neutron structure factor, as highlighted by Soper [7] in an earlier 

ZnCl2 study. This generates significant uncertainty in the Zn-Zn pair correlation function, 

making it challenging to determine the Zn-Zn nearest neighbour distance and coordination 

number experimentally (table 4). Furthermore, since RMC modelling reproduces 

experimental diffraction data, the Zn-Zn pair correlation function reported by Zeidler et al.  

[9], [10] also only displayed one broad peak as opposed to two separate peaks. This may 

have led to the formation of defects (figure 14), and highlights the current importance of 

modelling ZnCl2 glass without bias towards experimental diffraction data.  

Since SiO2 glass has been well studied both experimentally and computationally, it was of 

interest to explore how the structural effects of anion polarisability differ between 

intermediate and strong glass formers. One difference noticed in table 4 was the R3 ratio 

which compares the cation-cation nearest neighbour distances. The ratio was lower than 

the ratio for R1 and R2 because the average Zn-Cl-Zn bond angle of ~110° (figure 9) is 

noticeably smaller than the average Si-O-Si bond angle of ~150° [36]. This brings the Zn 
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Figure 14: To the left, a plot comparing the proportion of two-coordinated chlorine; and to the 
right, a plot comparing the proportion of four-fold coordinated zinc ions between this MD study 

and an RMC study [10] at temperatures of 300K, 600K, and 1000K. 
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cations in closer proximity to each other, reducing the R3 value for ZnCl2, and hence 

lowering the R3 ratio. The other difference in table 4 was the higher than anticipated Q1 

ratio of 1.74. A Q1 value corresponds to the position of the FSDP, and it was established in 

figure 10 that the main contributors to the FSDP in ZnCl2 and SiO2 are SZnCl
FZ (Q) and SSiO

FZ (Q) 

respectively. This contradicts Madden and Wilson [12] who reported that the FSDP was 

almost exclusively caused by the SZnZn
FZ (Q) contribution in ZnCl2 glass. This cannot be the 

case due to its weak weighting. Since the Zn-Cl nearest neighbour distance was greater 

than the Si-O nearest neighbour distance (table 4), it was anticipated that the Q1 value for 

ZnCl2 would be smaller than that of SiO2 since the Q-scale is reciprocal to the r-scale. 

However, it still remains unclear why the Q1 ratio is higher than the Q2 and Q3 ratios.  

When the ZnCl2 and SiO2 partial Faber-Ziman structure factors were compared in figure 11, 

the partial Faber-Ziman structure factors were in good agreement beyond the FSDP. This 

was because both ZnCl2 and SiO2 largely comprise of corner-sharing tetrahedral structural 

units. The difference in phase between SZnZn
FZ (Q) and SSiSi

FZ (Q) was caused by the different 

average Zn-Cl-Zn and Si-O-Si bond angles as previously discussed. 

Packing fraction calculations of ZnCl2 and SiO2 formed the final comparison between the 

intermediate and strong glass formers. It was seen in table 5 that the packing fraction of O 

was noticeably less than that of Cl. Since all of the tetrahedral structural units in SiO2 are 

corner-sharing, larger ring sizes can form, reducing the O packing fraction. In contrast, ZnCl2 

glass contains some edge-sharing tetrahedral units which leads to smaller ring sizes, and 

ultimately to a higher Cl packing fraction. Although it is a reasonable approximation to use 

half of the anion-anion nearest neighbour distance as the packing radius in equation 1, it is 

less reasonable to use half of the cation-cation nearest neighbour distance. This is because 

the typical cation ionic radius is significantly less than half of its nearest neighbour distance.  

4.5 Conclusion 

In this chapter, the first fully tetrahedral model of ZnCl2 glass was obtained. This was 

achieved using classical molecular dynamics with the addition of the adiabatic core-shell 

model. While 86% of the ZnCl4 tetrahedral units were found to be corner-sharing, 14% 

were found to be edge-sharing. The calculated total neutron and X-ray structure factors 

were in very good agreement with those obtained experimentally. Clear details in the Zn-Zn 

pair correlation function were attained which are unobtainable experimentally due to the 

weak weighting of the Zn-Zn correlation in comparison to the total structure factor.  

The latter part of this chapter concerned making comparisons between the intermediate 

glass former ZnCl2 and the strong glass former SiO2. Since both comprise of tetrahedral 

structural units, there were similarities in the cation-anion and anion-anion Faber-Ziman 
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partial structure factors. Although the most significant contribution to the FSDPs of ZnCl2 

and SiO2 glass came from the cation-anion contributions, there were differences between 

the positions of the FSDPs that could not be comprehended. Studying other intermediate 

and strong glass forming systems with tetrahedral networks may help elucidate this finding. 
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5. An Experimental Investigation of 
the Structure of CaO-SiO2-CaCl2 

Glasses 

5.1 Introduction 

The ubiquitous bioactive glass, 45S5, is a soda-lime-phosphosilicate glass 

(Na2O-CaO-P2O5-SiO2) used for a number of orthopaedic and dental applications [1]. One of 

these applications is in toothpastes to help reduce dentine hypersensitivity [1]. Fluoride is 

known to inhibit dentine and enamel demineralisation and to encourage remineralisation 

[2]–[4]. Consequently, fluorine-containing bioactive glasses are of interest for dental 

applications (e.g. [5]–[7]). While most bioactive glass compositions form a 

hydroxycarbonate apatite (HCA) layer on their surface following exposure to body fluids, 

fluorine-containing bioactive glasses form a fluorapatite layer. Fluorapatite is known to be 

more chemically stable than HCA, making it more appropriate for the acidic conditions 

present in the mouth. However, the formation of fluorite (CaF2) is possible [5]. This can 

result in the bioactive glass being less resorbable, hindering enamel regeneration. An 

excess of fluorine can also result in dental fluorosis [8], a condition that causes visual 

defects in tooth enamel.  

Due to some of the limitations of fluorine-containing bioactive glasses, attention has 

recently turned to the possibility of using chlorine-containing bioactive glasses as an 

alternative [8], [9]. Not only is chlorine chemically similar to fluorine, but the larger ionic 

radius of chlorine is expected to expand the glass network, making the glass less abrasive 

and able to dissolve more readily in the body [8], [9]. This would enable an apatite layer to 

form more quickly, and hence reduce the time required for bone regeneration [8], [9]. 

These characteristics make chlorine-containing bioactive glasses particularly appealing for 

dental applications such as toothpastes. However, studies on chlorine-containing bioactive 

glasses are currently scarce. 

Chen et al. [8], [9] synthesised a series of CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive 

glass compositions that contained approximately 6mol% P2O5. Although the thermal 

properties of the glasses were studied in addition to apatite formation, there was an 

absence of glass structure characterisation. Understanding the structure of chlorine-

containing bioactive glasses is fundamental for understanding the degradation mechanisms 

of the glass, and for being able to realise their applications.  
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It is therefore intuitive to begin structural investigations on simpler systems. Recently, Chen 

et al. [9], [10] synthesised a less complex ternary chlorine-containing silicate glass series 

(CaO-SiO2-CaCl2) to help elucidate the structural role of chlorine in chlorine-containing 

bioactive glasses. However, the glass structure was only investigated using 29Si MAS-NMR. 

The chemical shift positions were centred around -80ppm. This indicated a dominance of 

Q2 silicate species and an absence of detectable Si-Cl bonding which would have 

depolymerised the silicate network. 

An investigation of the structural role of chlorine in chlorine-containing silicate glasses may 

also be beneficial for understanding the structural role of chlorine in borosilicate glasses. 

Radioactive waste (which commonly contains chlorine) is often immobilised by vitrification 

to form a borosilicate glass [11]. The vitrification process involves melting the radioactive 

waste with glass-forming additives to form a vitreous product that contains the radioactive 

waste [12]. Borosilicate glasses are commonly used because of their good glass-forming 

ability, their chemical durability, and their excellent thermal and radiation stability [12]. 

The difficulty with immobilising nuclear waste containing chlorine is that chlorine has a 

limited solubility in borosilicate glass [11]. Therefore, an understanding of the structural 

role of chlorine in borosilicate glass could lead to modified borosilicate glass compositions 

that have improved levels of chlorine solubility. 

In this chapter, the CaO-SiO2-CaCl2 glass structure was investigated experimentally to help 

elucidate the structural role of chlorine. Using glass samples supplied by collaborators, this 

was achieved using central facility techniques including neutron diffraction (ND) and X-ray 

absorption spectroscopy (XAS). This was the first time CaO-SiO2-CaCl2 glasses have been 

studied using these techniques. In addition, the determination of the glass compositions 

and density values would later enable the glasses to be modelled computationally for 

further structural insight, as detailed in the following chapter.  

5.2 Glass Synthesis 

The nominal CaO-SiO2-CaCl2 chlorine-containing silicate glass series is shown in table 1. The 

series maintains a constant SiO2 to CaO ratio corresponding to a calcium metasilicate, 

whilst the CaCl2 content is allowed to vary. It was therefore anticipated that CaCl2 would 

not behave as a network modifier. This glass series was synthesised both by Xiaojing Chen 

at Queen Mary University of London (denoted as the QCl series) and later by Louis 

Chungong at Aston University (denoted as the ACl series), although different approaches 

were used. The QCl glass series had been synthesised by initially mixing 200g of SiO2, 

CaCO3, and CaCl2∙2H2O reagents according to the molar concentration of each nominal 

composition. The mixed reagents were then placed into a platinum-rhodium crucible and 

melted in a pre-heated furnace at between 1320°C and 1550°C for 1 hour. The melt was 
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quenched into deionised water to form a glass. The present work took place around two 

years after the original synthesis, and by then only the first six QCl samples in table 1 were 

available from the collaborators.  

The ACl glass series had been synthesised by initially mixing 25g of SiO2, CaCO3, and 

CaCl2∙2H2O reagents according to the molar concentration of each nominal composition. 

The mixed reagents were then placed into a platinum-rhodium crucible and heated from 

room temperature to a final temperature of between 1445°C and 1530°C at a rate of 

10°C/min, before being heated for a further hour at the desired temperature. Heating was 

performed under an inert flowing argon atmosphere. The melt was subsequently splash-

quenched between two graphite blocks to form a glass. 

Table 1: The nominal CaO-SiO2-CaCl2 glass series (in mol%).  

CaO SiO2 CaCl2 

48.4 48.4 3.3 

46.7 46.7 6.6 

45.3 45.3 9.3 

44.1 44.1 11.9 

41.9 41.9 16.1 

36.3 36.3 27.4 

33.3 33.3 33.5 

28.5 28.5 43.0 

23.5 23.5 53.1 

 

5.3 Compositional Analysis 

Halogen losses in glasses are generally reported to be between 10% and 95% depending on 

the chemical composition and the synthesis conditions [13]. It is therefore important to 

carefully study the composition of the CaO-SiO2-CaCl2 glasses experimentally. 

Compositional analysis was performed using X-ray fluorescence spectroscopy (XRF) which is 

described in section 3.3. As a flat distribution of sample material is necessary for 

quantitative compositional analysis [14], fusion beads were prepared prior to the 

quantitative XRF measurements. 

The production of a fusion bead began by mixing 0.6g of finely powdered glass sample with 

6.0g of a lithium borate flux using an agate pestle and mortar. The mixture was placed into 

a platinum/rhodium crucible and inserted into an Eagon 2 fusion bead maker with a 

platinum/rhodium dish beneath it. Within the Eagon 2 instrument, the crucible and dish 

would then enter the furnace which was preheated to a temperature of 1050°C to melt the 

flux. The powdered glass sample would get dissolved into the molten flux during this 
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melting stage which lasted for 180s before the mixing stage began. Mixing involved tilting 

the crucible by 45° from one side to the other repeatedly for 480s to obtain a 

homogeneous liquid. A de-wetting agent was added 280s into this stage to dissolve and mix 

with the melt. After mixing, the molten liquid was poured into the dish. The iodine-based 

de-wetting agent assisted in the pouring of the molten mixture and helped prevent the 

fusion bead from sticking to the platinum dish. The time allowed for pouring was 15s. Once 

the crucible and dish came out of the furnace, the cooling phase began. Assisted cooling 

was initially delayed by 60s to help prevent the fusion bead from cracking. Cool air was 

then blown onto the platinum dish for 240s. Once the fusion bead and the platinum dish 

had cooled, the fusion bead could be carefully extracted from the dish.  

In addition to preparing fusion beads containing the glass samples, a number of fusion 

beads containing standard mixtures were also prepared using the same technique. The 

standard mixtures were combinations of crystalline CaSiO3 and CaCl2∙4H2O reagents. The 

SiO2, CaO, and CaCl2 molar concentrations of these standard mixtures are given in table 2. 

By using the calibration feature of the Epsilon 3 software, measurements on the fusion 

beads containing known standard mixtures were used to calibrate the XRF measurements 

on the fusion beads containing the glass samples. To achieve good calibration, the fusion 

beads containing standard mixtures were each measured for 2.5 hours. During a 

measurement on a fusion bead containing a glass sample, the regression lines calculated 

during calibration enabled mathematical models to convert the fluorescent X-ray 

intensities into SiO2, CaO, and CaCl2 molar concentrations. Each measurement on a fusion 

bead containing a glass sample lasted approximately 15 minutes. The calibration and 

sample measurements were performed separately for both the top and the bottom sides of 

the fusion beads. 

Table 2: The SiO2, CaO, and CaCl2 combinations (in mol%) used in fusion beads to calibrate XRF 
measurements. 

Mixture CaO SiO2 CaCl2 

a 50.0 50.0 0.0 

b 48.5 48.5 3.1 

c 46.8 46.8 6.3 

d 45.2 45.2 9.7 

e 43.4 43.4 13.2 

f 41.6 41.6 16.8 

g 39.7 39.7 20.6 

h 37.7 37.7 24.6 

 

Chen et al. [8] synthesised a CaO-SiO2-P2O5-CaCl2 bioactive glass series and reported that 

losses via chlorine volatilisation were probably as CaCl2 or HCl. If chlorine losses occurred as 
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CaCl2, then the SiO2 and CaO content would not vary from the nominal content. If instead 

losses due to chlorine volatilisation occurred as HCl, then the CaO content would be 

expected to exceed the nominal CaO content. For the QCl glass series in this work, the SiO2 

and CaO contributions from XRF did not vary significantly from the nominal contributions. 

The CaCl2 contributions were also in good agreement with the nominal contributions as 

shown in figure 1. It was therefore established that little, if any, chlorine loss had occurred 

and so the nominal glass compositions could be used to describe the QCl glass series. In 

contrast, the CaO contributions in the ACl glass series persistently exceeded the nominal 

CaO contributions. The CaCl2 contributions were also lower than expected (figure 1), 

indicating chlorine losses via HCl.  

 
Figure 1: The CaCl2 content relative to the calibration line measured using XRF on the top (left) and 
on the bottom (right) of each fusion bead containing a glass sample. The calibration line is a linear 
extrapolation based on the XRF measurements of the standard mixtures. The uncertainty is ±10% 

of the measured CaCl2 content. 

Figure 2 shows a number of Raman spectra obtained for the ACl glass series. These include 

the spectra for the end member compositions and two of the middle compositions (ACl3.3, 

ACl16.1, ACl27.4, and ACl53.1). These are compared with the Raman spectra of calcium 

silicate glasses reported by Luth et al. [15] labelled WL37.5 glass (of composition 

43.67SiO2-56.33CaO which is CaO rich), Wo glass (of composition 50SiO2-50CaO  which has 

equal proportions of SiO2 and CaO), and SW84 glass (of composition 54.29SiO2-45.71CaO 

which is SiO2 rich). Rather than maintaining a spectrum similar to the Wo spectrum (as 

expected for equal proportions of SiO2 and CaO), the ACl spectra progressively became 

more similar to the WL37.5 (i.e. CaO rich) spectrum, as seen by the growth of a small peak 

at 920cm-1. Excess CaO provides further evidence for chlorine losses via HCl. It was 

therefore necessary to adjust the nominal ACl compositions (table 1) to account for these 

losses. 
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Figure 2: A comparison of Raman spectra between the ACl3.3, ACl16.1, ACl27.4, and ACl53.1 

spectra from this work and the WL37.5, Wo, and SW84 spectra of CaO-SiO2 glasses reported by 
Luth et al. [15]. The WL37.5 composition is CaO rich, the Wo composition contains equal 

proportions of SiO2 and CaO, and the SW84 composition is SiO2 rich. Beyond ACl3.3, each plot has 
been progressively offset. 

The CaCl2 content in each ACl sample was obtained by averaging the results from the two 

sides of the fusion beads. This enabled the average chlorine losses to be established. The 

proportion of chlorine losses in the ACl series is shown in figure 3, where the furnace 

temperatures used to melt the reagents are also shown for comparison. In general, higher 

furnace temperatures coincide with higher chlorine losses via HCl. By maintaining the 

nominal SiO2 contributions, and treating the excess calcium contribution from chlorine 

volatilisation as CaO (i.e. CaCl2+H2O→2HCl+CaO), the revised ACl compositions in table 3 

could be established. The differences between the nominal and the revised ACl 

compositions are illustrated on the ternary plot in figure 4. If chlorine losses in the ACl 

series had occurred as CaCl2, then the green points would have followed the same tie line 

as the blue points.  

 
Figure 3: The furnace temperatures used during glass synthesis, and the proportion of chlorine 

losses deduced from XRF measurements as a function of nominal CaCl2 content. The uncertainty in 
the chlorine losses is ±10% of the measured CaCl2 content. 
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Table 3: The revised ACl glass series based on calibrated XRF measurements (in mol%). 

Sample CaCl2 CaO SiO2 

ACl1.3 1.3 50.3 48.4 

ACl4.0 4.0 49.3 46.7 

ACl5.6 5.6 49.1 45.3 

ACl8.9 8.9 47.0 44.1 

ACl12.1 12.1 46.0 41.9 

ACl20.6 20.6 43.1 36.3 

ACl25.1 25.1 41.6 33.3 

ACl32.2 32.3 39.2 28.5 

ACl39.8 39.8 36.7 23.5 

 

 
Figure 4: A ternary diagram of the nominal and revised ACl compositions based on XRF 

measurements. The QCl series maintained the nominal compositions and so is the same as the 
nominal ACl series. 

5.4 Glass Characterisation 

5.4.1  Density 

Density measurements using helium pycnometry were performed on the QCl and the ACl 

glass series both by collaborators and also in this work. As shown to the left of figure 5, the 

ACl density values measured by collaborators were generally higher than those measured 

in this work, although the density values for each sample were generally within the 

uncertainty range of two standard deviations. The uncertainties in the ACl density values 

obtained by collaborators were larger than those in this work. This was because the 

collaborators performed three density measurements on each sample to obtain an 

average, while in this work ten density measurements of each sample were averaged to 
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obtain density values. As the ACl density values from this work were better defined, they 

were chosen to represent the density of the ACl glasses.  

The QCl density values from collaborators were also obtained by averaging ten density 

measurements for each sample. Good agreement between the density values from this 

work and those from collaborators can be seen to the right of figure 5 for CaCl2 

concentrations below 10mol%. Beyond 10mol% CaCl2, the agreement declines with 

increasing CaCl2 content. This can be attributed to the glass samples of higher CaCl2 content 

being more susceptible to atmospheric moisture. While the collaborators performed 

density measurements immediately after the samples were synthesised, the density 

measurements in this work were performed approximately two years later. It was 

therefore appropriate to use the original density values measured by the collaborators.  

 
Figure 5: Density values for the ACl and QCl glass series (to the left and right respectively) from 

collaborators and from this work as a function of increasing CaCl2 content. The uncertainty is two 
standard deviations. Error bars that are not observed are smaller than the symbol size. 

5.4.2  Neutron Diffraction 

Neutron diffraction measurements were carried out on the ACl glass series. In preparation, 

approximately 5g of each sample was ground into coarse glass chips before being used to 

fill cylindrical vanadium cans. The cans had an internal diameter of 8.3mm and were made 

of vanadium foil which was 40µm thick. Measurements were then performed using the 

GEM diffractometer at the ISIS neutron spallation source at the Rutherford Appleton 

Laboratory in Oxfordshire. In addition to the sample measurements, data was also 

collected for an empty 8.3mm vanadium can, for an 8mm vanadium niobium rod (94.86% 

V: 5.14% Nb), and for the empty GEM diffractometer. This was to enable a number of 

corrections to be made to the sample data following the experiment using the programs 

Gudrun [16] and Open GENIE [17]. 

After correcting the experimental data, the total neutron structure factors shown in figure 

6 were obtained. It can be seen that the ACl glasses of lower CaCl2 content follow a similar 
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trend up until the ACl12.1 composition. Between the ACl12.1 and the ACl20.6 

compositions, the total neutron structure factors change significantly. Beyond the ACl20.6 

composition, the remaining compositions again follow a trend. As shown to the right of 

figure 8, the signal to noise ratio decreases with increasing CaCl2 content.  

 
Figure 6: The total neutron structure factors for the ACl glass series. The plots to the right have 

been progressively offset by 0.1. Although the data range extends to 50Å-1, the plot to the left and 
right extends to 15Å-1 and 30Å-1 respectively so differing features of the structure factors can be 

identified. 

Following the Fourier transformation of the total neutron structure factors using a Lorch 

window function with a maximum Q value of 50Å-1, the total correlation functions in figure 

7 were obtained. The presence of termination ripples is evident. These are more noticeable 

for compositions of higher CaCl2 content due to the declining peak amplitudes below 3Å. A 

small contribution around 1.9Å was also present for each sample and can be seen more 

easily in the plot to the right of figure 7. Following XRF measurements on the ACl glass 

chips, the small contribution was assumed to be an Al2O3 impurity from the SiO2 reagent 

used to synthesise the glasses.  

 
Figure 7: The total correlation functions for the GCl glass series where the plots to the right have 

been progressively offset by 1Å-2. 
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In order to acquire structural information from the total correlation functions in figure 7 

including nearest neighbour distances, Rij, coordination numbers, Nij, and values of σij 

which are used to determine the Debye-Waller factors (2σij
2), the program NXFit [18] was 

used. This involved fitting peaks to the data in accordance with the input and restraint 

parameters specified. Initially, the uniform input parameters in table 4 were used. In order 

to account for the Al2O3 impurity, it was assumed that Al2O3 made up 1mol% of the SiO2 

contribution. The local environment around aluminium ions is poorly understood [19]. 

However, based on the 27Al MQ-MAS NMR (Multiple Quantum Magic Angle Spinning 

Nuclear Magnetic Resonance) measurements performed by Neuville et al. [19] on calcium 

aluminosilicate glasses of low Al2O3 content, it was reasonable to assume that the 

aluminium ions were six-fold coordinated with oxygen ions. 

Table 4: The uniform input and restraint parameters used to fit the ND data. The fitting range was 
1.50Å to 2.85Å and 10,000 iterations were used. 

 Input parameters Restraint parameters 

 Rij (Å) Nij σij (Å) Rij (Å) Nij σij (Å) 

Si-O 1.62 4.00 0.06 0.01 0.05 0.01 
Al-O 1.88 6.00 0.06 0.03 0.10 0.01 
Ca-O 2.36 4.50 0.15 0.03 2.10 0.02 
O-O 2.66 4.00 0.09 0.03 0.85 0.02 

Ca-Cl 2.78 2.50 0.18 0.03 2.30 0.04 

 

Examples of peak fitting using the starting parameters in table 4 are shown in figure 8. 

These include the fits for the end-member compositions and a middle composition (ACl1.3, 

ACl39.8, and ACl12.1). These have been plotted on the same scale to emphasise the 

declining peak amplitudes below 2.7Å with increasing CaCl2 content. This can make peak 

fitting increasingly problematic due to the deteriorating signal to noise ratio.  
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Figure 8: Examples of fits to experimental neutron diffraction data following the refinement of the 

uniform input parameters in table 4.  

The output parameters attained from fitting the experimental data using the uniform input 

and restraint parameters in table 4 are given in table 5. Details for the Si-O and Al-O 

correlations are not included since they underwent minimal change. The Si-O nearest 

neighbour distance was 1.62-1.63Å (±0.01Å), the coordination number was 3.95-4.03 

(±0.10), and the value of σij was 0.06±0.01Å. The Al-O nearest neighbour distance was 

1.86-1.90Å (±0.05Å), and the coordination number and σij values were 5.95-6.08 (±1.00) 

and 0.06-0.07Å (±0.02Å) respectively. It can be seen in table 5 that the Ca-O, O-O, and Ca-Cl 

nearest neighbour distances underwent minimal change. The Ca-O coordination numbers 

declined markedly with increasing CaCl2 content as expected due to the reduction in 

oxygen content. However, the O-O coordination numbers increased slightly despite a 

reduction being anticipated. In addition, the Ca-Cl coordination numbers did not follow an 

obvious trend despite an increase being expected. This revealed the challenging nature of 

obtaining coordination numbers from overlapping O-O and Ca-Cl peaks.    
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Table 5: The output fit parameters for the ACl series following the use of the uniform input 
parameters and restraints in table 4. The uncertainty in RCa-O, RO-O, and RCa-Cl is ±0.01Å, ±0.01Å, and 

±0.02Å respectively. The uncertainty in NCa-O, NO-O, and NCa-Cl is ±1.00, ±1.00, and ±1.00 
respectively. The uncertainty in σCa-O, σO-O, and σCa-Cl is ±0.01Å, ±0.01Å, and ±0.02Å respectively. 

Sample Fit index Correlation Rij (Å) Nij σij (Å) 

ACl1.3 0.30 Ca-O 2.37 4.88 0.13 
  O-O 2.64 3.16 0.09 
  Ca-Cl 2.80 2.78 0.15 

ACl4.0 0.26 Ca-O 2.36 4.42 0.13 
  O-O 2.65 3.28 0.09 
  Ca-Cl 2.81 3.19 0.20 

ACl5.6 0.51 Ca-O 2.35 4.16 0.13 
  O-O 2.65 3.45 0.10 
  Ca-Cl 2.81 3.01 0.20 

ACl8.9 0.21 Ca-O 2.35 4.15 0.13 
  O-O 2.65 3.15 0.09 
  Ca-Cl 2.80 3.53 0.19 

ACl12.1 0.19 Ca-O 2.36 4.21 0.13 
  O-O 2.64 3.25 0.09 
  Ca-Cl 2.81 2.98 0.15 

ACl20.6 0.23 Ca-O 2.34 3.15 0.13 
  O-O 2.67 3.75 0.11 
  Ca-Cl 2.81 3.09 0.18 

ACl25.1 0.14 Ca-O 2.34 2.57 0.13 
  O-O 2.69 3.54 0.10 
  Ca-Cl 2.81 3.44 0.20 

ACl32.3 0.22 Ca-O 2.34 2.46 0.13 
  O-O 2.68 4.20 0.11 
  Ca-Cl 2.81 2.91 0.16 

ACl39.8 0.35 Ca-O 2.34 2.40 0.16 
  O-O 2.68 3.38 0.09 
  Ca-Cl 2.81 3.34 0.14 

 

In an attempt to overcome the difficulty of establishing the areas of overlapping O-O and 

Ca-Cl peaks, the input parameters and restraints for the O-O, Ca-O, and Ca-Cl coordination 

numbers were varied for each composition. These changing input parameters were based 

on the results of computational modelling as detailed in the following chapter. The 

restraint on the O-O coordination number was 0.2, and the restraints on the Ca-O and Ca-Cl 

coordination numbers were set to 5% and 10% respectively.  

By applying these non-uniform fitting parameters, it can be seen in figure 9 that the Ca-O 

and O-O coordination numbers decrease while the Ca-Cl coordination number increases as 

expected. However, as quantified in table 6, the fit indexes are generally not as good as 

those in table 5 (where uniform input and restraint parameters were used). The output 

parameters for the Si-O and Al-O correlations were not provided in table 6 as variation was 

minimal. The Si-O nearest neighbour distance was maintained at 1.63±0.01Å, and the 
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corresponding coordination number and σij values were 3.95-4.04 (±0.10) and 0.05-0.06Å 

(±0.01Å) respectively. The Al-O nearest neighbour distances, coordination numbers, and σij 

values were 1.85-1.91Å (±0.05Å), 5.90-6.10 (±1.00), and 0.05-0.07Å (±0.02Å) respectively. 

These values did not differ significantly from those obtained in the previous fitting. 

 
Figure 9: Examples of fits to experimental neutron diffraction data following the refinement of 

non-uniform input parameters. 
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Table 6: The output fit parameters for the ACl series following the use of the non-uniform input 
parameters and restraints. The uncertainty in RCa-O, RO-O, and RCa-Cl is ±0.01Å, ±0.01Å, and ±0.02Å 
respectively. The uncertainty in NCa-O, NO-O, and NCa-Cl is ±1.00, ±1.00, and ±1.00 respectively. The 

uncertainty in σCa-O, σO-O, and σCa-Cl is ±0.01Å, ±0.01Å, and ±0.02Å respectively. 

Sample Fit index Correlation Rij (Å) Nij σij  (Å) 

ACl1.3 1.21 Ca-O 2.39 5.70 0.15 
  O-O 2.68 4.49 0.11 
  Ca-Cl 2.81 0.22 0.14 

ACl4.0 0.98 Ca-O 2.38 5.38 0.15 
  O-O 2.67 4.26 0.10 
  Ca-Cl 2.81 0.70 0.14 

ACl5.6 1.08 Ca-O 2.38 5.21 0.15 
  O-O 2.68 4.20 0.11 
  Ca-Cl 2.81 0.94 0.14 

ACl8.9 0.68 Ca-O 2.37 4.94 0.15 
  O-O 2.67 4.13 0.10 
  Ca-Cl 2.81 1.43 0.14 

ACl12.1 0.49 Ca-O 2.37 4.53 0.14 
  O-O 2.66 4.00 0.10 
  Ca-Cl 2.81 1.83 0.14 

ACl20.6 0.31 Ca-O 2.36 3.79 0.15 
  O-O 2.68 3.81 0.10 
  Ca-Cl 2.81 2.30 0.15 

ACl25.1 0.25 Ca-O 2.37 3.42 0.16 
  O-O 2.69 3.70 0.10 
  Ca-Cl 2.81 2.52 0.15 

ACl32.3 0.31 Ca-O 2.36 2.97 0.16 
  O-O 2.69 3.54 0.10 
  Ca-Cl 2.81 2.97 0.15 

ACl39.8 0.39 Ca-O 2.34 2.52 0.16 
  O-O 2.68 3.30 0.09 
  Ca-Cl 2.81 3.41 0.14 

 

5.4.3  X-ray Absorption Spectroscopy 

An X-ray absorption spectroscopy (XAS) experiment was carried out on the ACl glass series 

using beamline B18 at the Diamond Light Source synchrotron facility at the Rutherford 

Appleton Laboratory in Oxfordshire. A solid glass chip for each ACl composition was 

chosen. In addition, a number of crystalline systems including CaCl2∙4H2O, CaCO3, CaSiO3, 

and NaCl were selected to be standard samples. Approximately 3-4mg of each crystalline 

standard was then mixed with 50mg of powdered polyvinylpyrrolidone (PVP) using an 

agate pestle and mortar before being pressed into a 13mm pellet. XAS measurements on 

the glass chips and the pellets containing crystalline standards were carried out in 

fluorescence mode around the calcium K-edge (at 4038eV [20]) and around the chlorine 

K-edge (at 2822eV [20]) under vacuum using a double crystal Si(111) monochromator. An 

ionisation chamber measured the incident X-ray intensity which was calibrated using 
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titanium foil (4966eV [20]), and a 9-element monolithic germanium solid-state detector 

[21] was used to measure the intensity of fluorescent X-rays. The pellets containing 

crystalline standard samples were measured throughout the experiment in order to detect 

any drift in beam energy. Following the experiment, the programs Athena [22] and Artemis 

[22] were used to analyse the data.  

5.4.3.1  X-ray Absorption Near-Edge Structure 

The X-ray absorption near-edge structure (XANES) spectra in this work were obtained by 

using a pre-edge range of -109eV to -10eV, a normalisation range of 50eV to 355eV, and an 

Rbkg value of 1.0. In order to help validate the experimental results, it is common to 

compare the XANES spectra of known crystalline standards to those reported in the 

literature. To the left of figure 10, the crystalline calcite (CaCO3) XANES spectrum from this 

work (where the value of E0 is 4047.98eV) is compared with the spectrum reported by 

Hormes et al. [23] around the Ca K-edge (4038eV [20]). To the right of figure 10, the 

crystalline sodium chlorine (NaCl) XANES spectrum from this work (where the value of E0 is 

2827.22eV) is compared to the spectrum reported by Szilagyi et al. [24] around the Cl 

K-edge (2822eV [20]). For both comparisons, good agreement can be seen.  

 
Figure 10: To the left, the crystalline CaCO3 XANES spectra around Ca K-edge from this work and 
from Hormes et al. [23]. To the right, the crystalline NaCl XANES spectra around Cl K-edge from 

this work and from Szilagyi et al. [24]. 

The XANES spectra for the ACl glass series around the Cl K-edge (where E0 is 2825eV) are 

shown to the left of figure 11. A decrease in intensity and a marginal shift towards lower 

energies can be seen in the main absorption edge peak with increasing CaCl2 content. In 

addition, the shoulder of the absorption edge around 2831eV exhibits a distinct change in 

position between the ACl12.1 and ACl20.6 compositions. By comparing the XANES spectra 

around the Cl K-edge to the crystalline CaCl2∙4H2O standard XANES spectra, a difference in 

edge position of around 1eV can be seen. The XANES spectra for the ACl glass series around 
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the Ca K-edge (where E0 is 4043eV) is shown to the right of figure 11. Around the Ca 

K-edge, the main absorption edge peak exhibits a more obvious shift towards lower 

energies with increasing CaCl2 content, as can be seen in the inset of the figure. By 

comparing the XANES spectra around the Ca K-edge to the crystalline CaCl2∙4H2O standard 

XANES spectra, it became apparent that the calcium environment becomes more like the 

crystalline CaCl2 environment with increasing CaCl2 content.  

 
Figure 11: To the left, the XANES spectra for the ACl glass series around the Cl K-edge. To the right, 
the XANES spectra for the ACl glass series around the Ca K-edge. XANES spectra for the CaCl2∙4H2O 

crystalline standard have been added for comparison.  

5.4.3.2  Extended X-ray Absorption Fine Structure 

The extended X-ray absorption fine structure (EXAFS) spectra for the ACl glass series were 

obtained using a pre-edge range of -100eV to -30eV, a normalisation range of 155eV to 

560eV, and an Rbkg value of 1.0 for all samples. The Ca K-edge k2 weighted EXAFS spectra 

in k-space and the modulus of the Fourier transforms in r-space are shown in figure 12. The 

first peak of the EXAFS spectra in k-space declines in amplitude with increasing CaCl2 

content. In addition, the third peak shifts towards a lower wavenumber, and a smaller peak 

emerges to the right of the third peak (around k~6.5 Å-1). Arguably, the forth peak shifts 

towards a higher wavenumber with increasing CaCl2 content although the signal-to-noise 

ratio is low. The modulus of the Fourier transformed EXAFS spectra in r-space show a 

prominent Ca-O peak and follow the same trend up until the ACl12.1 composition. For 

compositions beyond ACl12.1, a significant Ca-Cl peak emerges at a larger distance than the 

Ca-O peak. The Ca-Cl peak then continues to gain dominance and first supersedes the Ca-O 

peak in the ACl32.3 sample.  
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Figure 12: The Ca K-edge k2 weighted EXAFS spectra (bottom) and the modulus of their Fourier 

transforms (top) for the ACl glass series. 

The CaCl2∙4H2O crystalline reference structure was used to create a modelled EXAFS 

spectrum around the Ca K-edge using the FEFF code [25]. Single-scattering Ca-O and Ca-Cl 

FEFF paths were then chosen to fit the experimental EXAFS spectra for the ACl glass series. 

This was to attain structural information on the Ca-O and Ca-Cl correlations including 

nearest neighbour distances (Rij), coordination numbers (Nij), and values of σij
2 which are 

used to determine the XAFS Debye-Waller factors (2σij
2). The input parameters used for 

fitting in Artemis [22] are given in table 7. A k-range of 3.0Å-1 to 9.0Å-1 and an r-range of 

1.0Å to 4.0Å was considered appropriate for fitting. The fits to the k2 weighted 

experimental EXAFS spectra and to their Fourier transforms are shown in figures 13 and 14 

respectively, where good agreement over the fitting ranges can be seen.  

Table 7: The input parameters for the Ca-O and Ca-Cl FEFF paths used to fit the experimental 
EXAFS spectra of the ACl glass series around the Ca K-edge. 

 Rij (Å) Nij σij
2 (Å2) 

Ca-O 2.36 4.5 0.01 
Ca-Cl 2.79 2.0 0.01 
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Figure 13: The experimental (solid lines) and fitted (dashed lines) Ca K-edge k2 weighted EXAFS 

spectra for the ACl glass series. The plots have been progressively offset by 4.0Å-2. 

 

Figure 14: The modulus of the Fourier transformed experimental (solid lines) and fitted (dashed 
lines) Ca K-edge k2 weighted EXAFS spectra for the ACl glass series. The plots have been 

progressively offset by 1.0Å-3. 
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The parameters attained from fitting the experimental Ca K-edge EXAFS spectra are given 

in table 8. To ensure the values of σij
2 were not unphysically small, the fits were restrained 

to encourage 0.01Å2≤ σij
2 ≤0.03Å2 which is appropriate for a glass. In addition, to obtain 

the coordination numbers, a suitable amplitude reduction factor of 0.7 [26] was used. The 

Ca-O nearest neighbour distance did not exhibit a clear trend, but the Ca-Cl nearest 

neighbour distance reduced with increasing CaCl2 content. The Ca-O coordination numbers 

declined significantly while the Ca-Cl coordination numbers increased significantly with 

increasing CaCl2 content as expected. 

Table 8: The output structural parameters for the Ca-O and Ca-Cl correlations from fitting the k2 
weighted EXAFS spectra for the ACl glass series. 

 RCa-O (Å) NCa-O σCa−O
2 (Å2) RCa-Cl (Å) NCa-Cl σCa−Cl

2 (Å2) 

ACl1.3 2.34±0.01 5.23±0.36 0.013±0.002 2.97±0.05 0.40±0.17 0.010±0.001 
ACl4.0 2.34±0.01 5.04±0.41 0.012±0.002 2.94±0.06 0.43±0.20 0.010±0.002 
ACl5.6 2.34±0.03 4.63±1.02 0.013±0.005 2.89±0.11 0.90±1.93 0.024±0.060 
ACl8.9 2.34±0.02 4.20±0.65 0.012±0.004 2.84±0.09 1.51±0.61 0.030±0.001 

ACl12.1 2.34±0.04 4.50±1.32 0.013±0.006 2.84±0.09 1.36±2.27 0.023±0.042 
ACl20.6 2.35±0.02 3.88±0.23 0.010±0.001 2.80±0.02 1.63±0.19 0.010±0.001 
ACl25.1 2.36±0.11 3.43±2.22 0.011±0.013 2.80±0.07 2.47±2.56 0.015±0.017 
ACl32.2 2.31±0.11 2.21±1.87 0.014±0.016 2.76±0.05 3.90±2.64 0.013±0.012 
ACl39.8 2.35±0.04 2.04±0.34 0.010±0.001 2.78±0.02 3.71±0.73 0.012±0.004 

The Cl K-edge k2 weighted EXAFS spectra in k-space and the modulus of their Fourier 

transforms in r-space are shown in figure 15. The first two peaks of the EXAFS spectra in k-

space display a marginal shift towards lower wavenumbers and decline in amplitude with 

increasing CaCl2 content. The shoulder of the first peak also exhibits a distinct change in 

shape between the ACl12.1 and the ACl20.6 compositions. Although slight, it is arguable 

that the Fourier transformed EXAFS spectra in r-space displays a reduction in the Ca-Cl 

nearest neighbour distance with increasing CaCl2 concentrations. 
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Figure 15: The Cl K-edge k2 weighted EXAFS spectra (bottom) and the modulus of their Fourier 

transforms (top) for the ACl glass series. 

The CaCl2∙4H2O crystalline reference structure was also used to create a modelled EXAFS 

spectrum around the Cl K-edge using the FEFF code [25]. A single-scattering Ca-Cl FEFF path 

was chosen to fit the experimental EXAFS spectra of the ACl glass series. This was to attain 

values of Rij, Nij, and σij
2 for each glass sample. The input parameters used for fitting in 

Artemis [22] are given in table 9. A k-range of 3.0Å-1 to 7.0Å-1 and an r-range of 1.0Å to 3.7Å 

was appropriate for fitting. The fits to the k2 weighted experimental EXAFS spectra and to 

the modulus of their Fourier transforms are shown in figures 16 and 17 respectively. 

Although the data is noticeably noisier than that for the Ca K-edge, fair agreement over the 

fitting ranges can still be seen.  

Table 9: The input parameters for the Ca-Cl FEFF path used to fit the experimental EXAFS spectra 
of the ACl glass series around the Cl K-edge. 

 Rij (Å) Nij σij
2 (Å2) 

Ca-Cl 2.79 4.0 0.01 
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Figure 16: The experimental (solid lines) and fitted (dashed lines) Cl K-edge k2 weighted EXAFS 

spectra for the ACl glass series. The plots have been progressively offset by 4.0Å-2. 

 

Figure 17: The modulus of the Fourier transformed experimental (solid lines) and fitted (dashed 
lines) Cl K-edge k2 weighted EXAFS spectra for the ACl glass series. The plots have been 

progressively offset by 1.0Å-3. 
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The parameters acquired from fitting the experimental Cl K-edge EXAFS spectra are given in 

table 10. Like the Ca K-edge fits, the Cl K-edge fits were also restrained to encourage 

0.01Å2≤ σij
2 ≤0.03Å2 and an amplitude reduction factor of 0.7 was used. Since the relative 

concentrations of calcium and chlorine ions were known, the Ca-Cl coordination numbers 

could be calculated using the Cl-Ca coordination numbers obtained from the fits. As shown 

in table 10, the Ca-Cl nearest neighbour distances did not exhibit a clear trend but the Ca-Cl 

coordination numbers increased with increasing CaCl2 concentrations as expected.  

Table 10: The output structural parameters for the Ca-Cl correlation from fitting the k2 weighted 
EXAFS spectra for the ACl glass series. 

 RCa-Cl (Å) NCl-Ca NCa-Cl σCa−Cl
2 (Å2) 

ACl1.3 2.78±0.04 2.66±0.80 0.13±0.04 0.011±0.008 
ACl4.0 2.77±0.03 2.52±0.62 0.38±0.09 0.011±0.007 
ACl5.6 2.76±0.03 2.34±0.55 0.48±0.11 0.010±0.006 
ACl8.9 2.75±0.03 2.25±0.25 0.72±0.08 0.010±0.002 

ACl12.1 2.76±0.03 2.37±0.28 0.99±0.12 0.010±0.002 
ACl20.6 2.77±0.03 2.28±0.30 1.48±0.19 0.010±0.003 
ACl25.1 2.78±0.04 2.15±0.30 1.62±0.23 0.010±0.003 
ACl32.2 2.76±0.04 2.14±0.27 1.93±0.24 0.010±0.002 
ACl39.8 2.76±0.04 2.40±0.34 2.50±0.35 0.009±0.003 

 

5.5 Discussion 

Losses via chlorine volatilisation have seldom been investigated [8], although halide losses 

in glasses are typically reported to be between 10% and 95% depending on the synthesis 

method used [13]. It was therefore important to study the compositions of the QCl and the 

ACl glass samples. This was achieved using calibrated XRF measurements. Fusion beads 

containing known combinations of crystalline CaSiO3 and CaCl2∙4H2O reagents were used to 

calibrate measurements on fusion beads containing glass samples. The calibration and 

sample measurements were performed on both sides of the fusion beads (apart from the 

fusion beads containing the nominal QCl11.9 and the ACl33.5 samples which shattered 

before they could be measured). This was because the raw XRF spectra revealed that the 

chlorine concentration on the bottom side of each fusion bead was persistently higher than 

the top side of each fusion bead. This finding was interpreted as being due to a chlorine-

rich phase forming above the alkali borate melt when the fusion bead precursors 

(dominantly lithium borate flux) were heated in the Eagon 2 furnace during fusion bead 

production. When the molten precursors contained within the platinum crucible were 

poured into the platinum dish below, the chlorine rich phase would have left the crucible 

first, entering the bottom of the dish.  
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Figure 18: SEM images of the top and bottom side of a fusion bead fragment containing 
the ACl25.1 glass sample, as shown to the left and right respectively. 

Scanning electron microscopy (SEM) was used to image the surfaces of fusion bead 

fragments to examine this further. The SEM images from both sides of the fusion bead 

containing the ACl25.1 glass sample are shown in figure 18 as an example. While the top of 

the fusion bead fragment does not contain small bubbles, the bottom side of the fusion 

bead fragment does. This could be associated with the formation of a chlorine-rich phase. 

Examining both sides of the ACl glass chips did not reveal noticeable differences, despite 

the limited solubility of chlorine in silicate melt [27], [28]. A significant difference between 

the fusion beads and the glass samples was that the fusion beads were based on a lithium 

borate system, while the glass samples were based on a calcium silicate system. In 

addition, the quenching procedures used to prepare the fusion beads and the glass samples 

were different. The melt used to prepare the fusion beads was poured into a relatively 

small dish, while the melt used to prepare glass samples for analysis was either splash-

quenched between graphite plates or poured into water. The melt therefore covered a 

much larger area and so the glass samples were thin in comparison to the fusion beads. 

Another difference was the cooling rate. The melt used to prepare the fusion beads was 

cooled slowly relative to the melt used to prepare the glass samples.  

 

 

 

 

 

    

 

Following the analysis of the calibrated XRF measurements, it was found that the QCl series 

underwent insignificant losses. It was therefore assumed that the QCl glasses maintained 

their nominal compositions. Conversely, the ACl glasses exhibited chlorine losses of 

between 23% and 59%. While the percentage of chlorine loss in the ACl glasses generally 

reduced with increasing CaCl2 content (figure 3), the absolute chlorine losses increased 

(figure 1). This finding was consistent with that of Kiprianov et al. [29] who studied chlorine 

loss in a number of 27Na2O-73SiO2 glasses to which chlorine had been added. The XRF 

measurements on the ACl series did not reveal SiO2 losses, but did show CaO contributions 

that were persistently higher than the nominal contributions. Losses via chlorine 

volatilisation therefore occurred as HCl. Raman spectra comparisons between a number of 

the ACl glasses and the spectra reported by Luth et al. [15] for CaO-SiO2 glasses that were 



84 
 

CaO-rich, equimolar, and SiO2-rich, confirmed this finding (figure 2). Density measurements 

of the QCl and ACl glass samples (figure 5) provided further evidence that the two glass 

series were not equivalent. The ACl densities were higher than the corresponding QCl 

densities which also suggested losses via chlorine volatilisation in the ACl series. This was 

because the mass per unit volume of chlorine is low in comparison to oxygen because of its 

larger size.  

The ACl glass series had undergone significant losses via chlorine volatilisation while the 

QCl series exhibited negligible losses despite the two series having the same nominal 

compositions. It was therefore apparent that the scale of chlorine loss was highly 

dependent on the synthesis conditions used. Although the QCl and the ACl reagents were 

melted at temperature for one hour, the ACl reagents were also heated from room 

temperature to a final temperature of between 1445°C and 1530°C at a rate of 10°C/min 

prior to this, increasing the likelihood of chlorine volatilisation. In addition, the ACl samples 

were melted in an argon atmosphere where argon flowed over the melt. If chlorine 

volatilisation did occur above the melt, it is possible that using an argon flow would have 

removed more chlorine compared to using atmospheric conditions without a flow of gas. 

The batch size is another important consideration. The QCl glasses were synthesised from a 

200g batch, while the ACl glasses were synthesised using a batch size of ~25g. Using a 

smaller batch size would have increased the surface area of the melt relative to the bulk, 

exposing a higher proportion of chlorine to the atmosphere and making the ACl glasses 

more susceptible to chlorine loss. It was therefore necessary to adjust the ACl compositions 

accordingly. 

The structure of the ACl glass series was investigated using neutron diffraction (ND) and X-

ray absorption spectroscopy (XAS). The same characterisation was not performed for the 

QCl glass series. In addition to not having a complete set of samples for the QCl glass series, 

the QCl samples had originally been prepared by quenching the melt in water. For a ND 

experiment, this would be problematic not only due to the large incoherent cross-section 

of hydrogen which would cause a large incoherent background, but also due to the 

prevalence of inelastic scattering events associated with hydrogen [30]. During the limited 

beamtime allocated for the XAS experiment, measurements on the ACl glass series were 

prioritised. This was to enable the XAS and ND results from the same samples to be 

compared.   

The total neutron structure factors for the ACl glass series exhibited a distinct change of 

shape between the ACl12.1 and the ACl20.6 compositions as shown in figure 6. To 

investigate this further, peaks were fitted to the total correlation functions that had been 

obtained by Fourier transforming the total neutron structure factors using the program 

NXFit [18]. This was challenging because the signal to noise ratio deteriorated with 

increasing CaCl2 concentrations, as shown in figures 8 and 9. This made termination ripples 
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increasingly prominent, and the ability to distinguish structural features more challenging. 

The reduction in signal to noise ratio was caused by chlorine ions having a notably higher 

neutron absorption cross section compared to the other ions in the glass series. For 

incident thermal neutrons (i.e. neutrons travelling at 2200ms-1), the absorption cross 

section for chlorine is 33.5 barns [31]. In comparison, the absorption cross sections for 

oxygen, silicon, and calcium ions are 0.0001 barns, 0.41 barns, and 0.177 barns respectively 

[31]. Consequently, chlorine ions are considerably more likely to absorb neutrons, lowering 

the signal to noise ratio with increasing CaCl2 content.  

Another challenge with fitting peaks to the total correlation functions was the overlapping 

O-O and Ca-Cl peaks. Smaller peak contributions such as the ACl1.3 Ca-Cl peak for example 

were particularly difficult to fit. It was therefore necessary to use non-uniform input 

parameters for these peaks. The Ca-O and Ca-Cl coordination number parameters were 

restrained to be within 5% and 10% of their input values respectively while the restraint on 

the O-O coordination number was 0.20. By fitting the Ca-O, O-O, and Ca-Cl peaks of the 

total correlation function using the non-uniform fitting parameters, it was found by that 

the Ca-O and O-O coordination numbers decreased, while the Ca-Cl coordination number 

increased as shown in table 6. These trends were expected due to the decreasing oxygen 

contributions and the increasing chlorine contributions with increasing CaCl2 content. As 

peak fitting was restrained in this way, it was necessary to account for systematic errors in 

addition to statistical errors. This explains why the uncertainty in the Ca-O and Ca-Cl 

coordination numbers is noticeably larger than those for the other correlations. From the 

structural parameters attained (table 6), an explanation for the distinct shape change in the 

total neutron structure factors between the ACl12.1 and the ACl20.6 compositions was not 

clear.  

By considering the Si4+ and Cl- effective ionic radii of 0.4Å and  1.67Å respectively [32], the 

presence of any Si-Cl bonding would be expected to result in a nearest neighbour distance 

contribution around 2.1Å, although Si-Cl nearest neighbour distances in SiCl4 molecules 

have been reported to be 2.01Å [33]. A contribution around this distance in the total 

correlation functions was not obvious, indicating an absence of detectable amounts of Si-Cl 

bonding in the ACl glass series.  

XAS data was collected for the ACl glass series around the Ca K-edge and around the Cl 

K-edge. It would have been challenging to investigate the silicon or oxygen environment 

using XAS due to the low absorption edge energies of 1.839keV and 0.543keV respectively 

[20]. To perform XAS experiments on elements lighter than phosphorus (including silicon 

and oxygen), the samples would need to be contained under vacuum to help minimise the 

attenuation of the incident X-ray beam [34]. The accessible X-ray energy range for 

beamline B18 was 2-35keV [21]. 
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The Cl K-edge X-ray absorption near-edge structure (XANES) spectra for the ACl series 

displayed a marginal shift towards lower energies with increasing CaCl2 content (figure 11). 

When these spectra were compared to the crystalline CaCl2∙4H2O XANES spectra measured 

in this work, there was a noticeable difference in edge position. The edge positions in metal 

chlorides around the Cl K-edge have been reported to differ by around 1eV, even though 

the formal oxidation state of chlorine remains 1- [35]–[37]. Szilagyi et al. [24] attributed this 

finding to differences in the ionicity of the cation-chlorine bond. The Ca K-edge XANES 

spectra also revealed a shift towards lower energies with increasing CaCl2 content. By 

making comparisons with the crystalline CaCl2∙4H2O XANES spectra, it was evident that the 

calcium environment became increasingly similar to the crystalline CaCl2 environment with 

increasing CaCl2 content. 

The modulus of the Fourier transformed Ca K-edge k2 weighted EXAFS spectra in r-space 

shown in figures 12 and 14 displayed a distinct change in shape between the ACl12.1 and 

the ACl20.6 compositions. The Ca-O and Ca-Cl paths became distinguishable beyond the 

ACl12.1 composition. This could be indicative of phase separation, where the Ca-O and 

Ca-Cl paths are prevalent in different regions of the sample. However, this cannot be 

established using XAS. Small angle neutron scattering (SANS) or small angle X-ray scattering 

(SAXS) would be useful to investigate the occurrence and scale of phase separation 

experimentally.  

The Cl K-edge k2 weighted EXAFS spectra (figure 16) were noticeably noisier than the Ca 

K-edge k2 weighted EXAFS spectra (figure 13). This was due to the lower energy of the Cl 

K-edge (2822eV [20]) compared to the Ca K-edge (4038eV [20]). The flux of incident X-rays 

from the Si(111) monochromator would therefore have been lower, and X-ray attenuation 

due to the absorption of X-rays by elements other than chlorine would have increased. It 

was therefore necessary to fit the Cl K-edge k2 weighted EXAFS spectra in Artemis [22] 

using a smaller fitting range (k=3.0-7.0Å-1, r=1.0-3.7Å) compared to the fitting range used 

for the Ca K-edge k2 weighted EXAFS spectra (k=3.0-9.0Å-1, r=1.0-4.0Å).  

By comparing the structural parameters attained from fitting the Ca K-edge and the Cl 

K-edge k2 weighted EXAFS spectra (tables 8 and 10), it can be seen that the Ca-Cl nearest 

neighbour distances and coordination numbers from the Ca K-edge are generally larger 

than those from the Cl K-edge. This can be attributed to the poorer signal at the Cl K-edge 

as previously discussed. The structural parameters obtained from the Ca K-edge k2 

weighted EXAFS spectra are compared to those from neutron diffraction (where non-

uniform fitting parameters were required due to the overlapping Ca-O, O-O, and Ca-Cl 

contributions) in figure 19. The coordination numbers from the two techniques displayed 

the same trends and were in reasonable agreement. The values of σij
2 from neutron 

diffraction were generally higher, particularly for Ca-O, while the values from EXAFS 

analysis displayed more variation. The discrepancy in nearest neighbour distance for low 
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CaCl2 concentrations was due to the difficulty of distinguishing the Ca-O and Ca-Cl 

contributions.  

 
Figure 19: The nearest neighbour distances, Rij, coordination numbers, Nij, and values of 𝛔𝐢𝐣

𝟐 

obtained for the Ca-O (top) and Ca-Cl (bottom) correlations from Ca K-edge k2 weighted EXAFS 
spectra (green squares) and neutron diffraction (blue squares). 

5.6 Conclusion 

In addition to the limited solubility of chlorine in silicate melts, chlorine is also susceptible 

to volatilisation. This makes the retention of chlorine in CaO-SiO2-CaCl2 glass challenging. 

Compositional analysis involved performing calibrated XRF measurements on the two 

CaO-SiO2-CaCl2 glass series that had been synthesised by collaborators using different 

approaches. Losses via chlorine volatilisation were found to occur as HCl, and the scale of 

these losses was highly dependent on the synthesis conditions used. In order to help 

minimise losses via chlorine volatilisation, it is important to ensure that the reagents are 

not melted any longer than necessary at a sufficient temperature for a sufficient time. If 

melting under an argon atmosphere, the use of a flow of argon gas should be avoided. In 

addition, the use of larger batch sizes (~200g) is also preferable. 

Structural characterisation of the CaO-SiO2-CaCl2 glasses was performed using neutron 

diffraction and X-ray absorption spectroscopy. Both techniques were capable of probing 

the calcium and chlorine environments, although probing the chlorine environment was 

challenging due to the attenuation of incident radiation. The total neutron structure factors 
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and the modulus of the Fourier transformed Ca K-edge k2 weighted EXAFS spectra both 

exhibited a distinct change in shape between the ACl12.1 and the ACl20.6 compositions. It 

is possible that this change was caused by phase separation. Small angle neutron scattering 

(SANS) or small angle X-ray scattering (SAXS) measurements would be useful to investigate 

the occurrence and scale of phase separation experimentally. Although the Ca-O and Ca-Cl 

contributions overlapped in the experimental data, reasonable agreement between the 

Ca-O and Ca-Cl nearest neighbour distances and coordination numbers could be achieved 

using the two techniques. The Ca-O coordination number was found to decrease with 

increasing CaCl2 content, while the Ca-Cl coordination number increased as expected. 

Detectable amounts of Si-Cl bonding were not observed using neutron diffraction, although 

a complete absence of Si-Cl bonding could not be assumed. Having established the glass 

compositions and densities, the CaO-SiO2-CaCl2 glasses could be modelled computationally 

for the first time to further elucidate the structural role of chlorine. The occurrence of any 

phase separation could also be investigated computationally. 
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6. A Computational Investigation of 

the Structure of CaO-SiO2-CaCl2 

Glasses 

6.1 Introduction 

As mentioned in the previous chapter, Chen [1], [2] was able to synthesise a series of 

CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive glass compositions which contained 

approximately 6mol% P2O5. Chen [1] reported that these glasses have ‘outstanding’ 

potential for remineralising toothpastes. To assist in characterising the glass system, Chen 

[1], [2] also synthesised  a series of less complex CaO-SiO2-CaCl2 chlorine-containing silicate 

glasses where an equal SiO2:CaO ratio was maintained.  

During the experimental examination of the SiO2-CaO-CaCl2 glass samples [1], [2], a linear 

reduction in the glass transition temperature, the first crystallisation temperature, and the 

density of the samples was observed up until the 16.1mol% CaCl2 composition. Beyond this 

composition a new linear trend formed, leaving a distinct break between the 16.1mol% 

CaCl2 and 27.4mol% CaCl2 compositions. Although a range of experimental techniques 

(including powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy 

(FTIR)) were used to test for apatite formation, only 29Si MAS-NMR spectroscopy was used 

to characterise the glass structure. The chemical shift positions in the 29Si MAS-NMR 

spectra were centred around -80ppm. This indicated a dominantly Q2 silicate network and 

an absence of detectable amounts of Si-Cl bonding. Understanding the CaO-SiO2-CaCl2 glass 

structure more closely is fundamental for being able to elucidate the structure of more 

complex CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive glass.   

Since determining structural features such bond lengths, coordination numbers, and phase 

separation can be challenging experimentally, the use of computational modelling can be 

appealing. Currently, there is scant information on CaO-SiO2-CaCl2 glass in the literature 

and no computational modelling work has been undertaken. This chapter therefore 

investigates the CaO-SiO2-CaCl2 glass structure computationally. This was achieved using 

classical molecular dynamics with the addition of the adiabatic core-shell model. Results 

including glass model images, pair correlation functions, cumulative coordination number 

plots, structure factors, and silicon network connectivity distributions were attained. The 

aim was to characterise the structure of CaO-SiO2-CaCl2 glass, and provide insight into the 

structural role of chlorine in these chlorine-containing silicate glasses.  
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6.2 Computational Modelling Methodology 

In order to model a glass computationally, the glass composition and density needs to be 

established. As mentioned in section 5.2, a nominal CaO-SiO2-CaCl2 glass series was 

synthesised both by collaborators at Queen Mary University of London (denoted as the QCl 

glass series), and later by other collaborators at Aston University (denoted as the ACl glass 

series). Based on the results of compositional analysis detailed in section 5.3, the nominal 

glass compositions were adjusted as necessary. Density values were determined using 

helium pycnometry as covered in section 5.4.1. Additionally, it is important to ensure that 

simulations of the basic glass components are stable prior to performing simulations of 

multicomponent systems. The first component to be considered in this work was the 

archetypal glass SiO2 due to it being a simple oxide glass which has been well-studied 

experimentally. Throughout this chapter, the atomic correlations refer to the core atomic 

correlations unless explicitly stated otherwise. For example, O-O corresponds to oxygen 

cores, while Os-Os corresponds to oxygen shells.  

6.2.1  SiO2 System 

Interatomic potential parameters for modelling SiO2 had been reported by Malavasi et al. 

[3] (table 1). These were tested on an α-SiO2 crystal structure [4] using the General Utility 

Lattice Program (GULP) [5] to assess their suitability for modelling glass in this study. 

Following GULP energy minimisation, the input α-SiO2 crystalline structure [4] of space 

group 154 underwent a volume change of -2.21%. The Si-O and O-O nearest neighbour 

distances of 1.61Å and 2.62Å, and coordination numbers of 4.00 and 6.00 respectively were 

unchanged.  
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Table 1: The two-body and three-body interatomic potential parameters of Buckingham and 
screened harmonic form respectively for modelling SiO2 as reported by Malavasi et al. [3]. The 

inner cut-offs for the Os-Os and Si-Os interatomic potential parameters were 1.7Å and 1.2Å 
respectively during simulations. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Os − Os 

Si − Os 

22764.30 

1283.91 

0.1490 

0.32052 

27.88 

10.66158 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Os − Si − Os 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

O − Os 74.92 0.8482 -2.8482 

Si  4.000  

 

A random SiO2 starting configuration of experimental density (2.2g/cm3 [4]) was then 

prepared. The configuration contained 1296 oxygen ion cores, 1296 corresponding oxygen 

ion shells, and 648 silicon ions within a box of side length 30.86Å. From the atomic mass of 

an oxygen ion (15.9994u), 0.2u was assigned to the ion shell. The interatomic potential 

parameters in table 1 were used. An NVT Berendsen thermostat was chosen, and all 

simulation stages were to be fully equilibrated. A universal cut-off of 12.0Å, a primary cut-

off of 10.0Å, and a van der Waals cut-off of 8.0Å were applied. To ensure a random 

distribution of ions, the simulation began at a temperature of 6000K and was supposed to 

run for 800,000 time-steps where each time-step was 0.1fs. However, the simulation was 

unstable. Through increasing the mass assigned to the shell from 0.2u to 0.4u to reduce the 

vibration of the harmonic spring, by reducing the simulation time-step of 0.1fs by orders of 

magnitude to monitor the trajectory of the shell more closely, by accounting for thermal 

expansion, and by lowering the system temperature, the simulation still failed to stabilise 

and maintain realistic temperatures.  

It has been reported that the application of frictional damping to the harmonic spring 

connecting the core and the shell improves simulation stability [6], [7]. This can be 

implemented by adding a damping term to the force equation for the core-shell harmonic 

spring as shown in equation 1. In the equation, ms is the shell mass, r is the displacement 

of the shell from the core, t is the time, c is the damping coefficient, and Kcs is the spring 

constant between the core and the shell units. Based on expert advice [8] and testing, a 

damping coefficient of c=100kgs-1 seemed to thermally stabilise the SiO2 core-shell model 

simulations up to a temperature of 2000K.  
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ms
d2r

dt2 = −c
dr

dt
− Kcsr        Equation 1 

Although rigid-ion simulations fail to account for ion polarisability, they do have improved 

stability at higher temperatures. The rigid-ion interatomic potential parameters reported 

by Teter [9] (table 2) were therefore tested on the α-SiO2 crystalline structure [4] as well. 

The total volume change following GULP energy minimisation was 1.63%. The Si-O and O-O 

separation distances of 1.61Å and 2.62Å reduced to 1.59Å and 2.60Å respectively, and the 

coordination numbers of 4.00 and 6.00 respectively were unchanged.  

Table 2: The rigid-ion two-body Buckingham interatomic potential parameters for modelling SiO2 
as stated by Teter [9]. The inner cut-offs for the O-O and Si-O interatomic potential parameters 

were 1.7Å and 1.2Å respectively during simulations. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 

Si − O 

1844.7458 

13702.905 

0.343645 

0.193817 

192.58 

54.681 

 

After removing the oxygen shells from the input configuration of atoms and reinstating the 

oxygen mass of 15.9994u, rigid-ion simulations could be run from a molten liquid to a solid 

glass using the interatomic potential parameters in table 2. A universal cut-off of 12.0Å, a 

primary cut-off of 10.0Å, and a van der Waals cut-off of 8.0Å were used as before. The 

simulation temperature began at 6000K before it was reduced to 3000K and then 2000K. 

The system was then quenched from 2000K to 300K at a rate of 1013 K/s and a further stage 

at 300K followed. Each temperature stage comprised of 400,000 time-steps where each 

time-step was 1fs apart from the quench stage which required 170,000 time-steps. The 

system pressure at 300K was ~-30kbar. The REVCON file from the 300K sampling stage 

(which contained the final configuration of the atoms in the simulation cell) was used as 

the starting configuration for core-shell model runs once the oxygen shells had been 

added. The ion cores and corresponding shells were connected by a harmonic spring which 

was frictionally damped using a damping coefficient, c, of 100kgs-1. The core-shell model 

runs used the interatomic potential parameters given in table 1.  

Since Tilocca et al. [6] had only run a core-shell model simulation at 300K, and temperature 

stability up to 2000K had been achieved in this study, it was of interest to run and compare 

two core-shell model simulations. The first was only run at 300K, as had been done in the 

Tilocca et al. [6] study. The second was run from a temperature of 2000K before being 

quenched to 300K at a rate of 1013K/s, where a further run at 300K followed. Sampling runs 

at 300K were then run for each set and used for data analysis. The core-shell model stages 
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used 800,000 time-steps, apart from the quench stage which needed 1,700,000 time-steps. 

The time-step was 0.1fs. 

It was anticipated that applying the core-shell model from 2000K instead of 300K would 

have caused better agreement with experimental findings since the atoms would have 

more time to reproduce the effects of polarisation. However, by applying the core-shell 

model from 2000K, the total structure factor results failed to reproduce the first sharp 

diffraction peaks (FSDP’s) seen experimentally [10], [11] (figure 1). The O-O coordination 

number of 6.19 (±0.03)  was higher than the value of 6.0 attained experimentally using 

neutron diffraction [12] (table 3). Applying the core-shell model from 300K therefore 

produced a model more consistent with experimental findings. This was despite 

substantially lower system pressures being exhibited. The system pressures at 300K 

were -3.5±0.5kbar and -53.0±0.5kbar when the core-shell model had been applied from 

2000K and 300K respectively. Tilocca et al. [6] failed to report any system pressure values in 

their study.  

 
Figure 1: Total neutron (SN(Q)) and X-ray (SX(Q)) structure factor comparison at 300K for SiO2 

where the rigid-ion (RI) and core-shell model (SM) simulation results (from 300K and 2000K) are 
compared with the experimental diffraction results  (labelled ND [10] and XRD [11]). 

 

 



96 
 

Table 3: The nearest neighbour distance, Rij, and coordination number, Nij(r), values for SiO2 glass 
determined experimentally by Johnson et al. [12] using neutron diffraction, and computationally 

in this work by applying the core-shell model (SM) from 300K or 2000K. Cut-off distances of 2.00Å, 
2.85Å, and 3.40Å were used to determine the Si-O, O-O, and Si-Si coordination numbers 

respectively in this work. 

 Si-O O-O Si-Si 

 Rij (Å) Nij(r) Rij (Å) Nij(r) Rij (Å) Nij(r) 

ND [12] 1.610 3.9 2.632 6.0 3.080 4.0 
SM from 300K 1.63±0.01 4.00±0.01 2.65±0.01 6.03±0.03 3.03±0.01 4.00±0.02 

SM from 2000K 1.63±0.01 4.00±0.01 2.63±0.01 6.19±0.03 3.03±0.01 4.02±0.02 
 

Treating the atoms in the higher temperature simulation stages as rigid ions allows stable 

core-shell model simulations to run at lower temperatures. However, rigid-ion interatomic 

potentials are not available for the all of the correlations in the QCl and ACl glass 

compositions. It therefore became of interest to test whether core-shell model interatomic 

potentials (table 1) could be used as a viable estimate for rigid-ion potentials (table 2) in 

the higher temperature stages. To test this, rigid-ion simulations were run as before, but 

rather than using dedicated rigid-ion interatomic potentials, core-shell model interatomic 

potentials were used to estimate rigid-ion interatomic potential parameters instead (table 

4). Shells were therefore not included and the atoms were considered to be solid, rigid 

spheres. In the core-shell model stages that followed at lower temperatures, shells were 

included and core-shell model interatomic potentials were used as per table 1.  

Table 4: The two-body and three-body rigid-ion interatomic potential parameters of Buckingham 
and screened harmonic form respectively based on the core-shell model interatomic potential 
parameters reported by Malavasi et al. [3] in table 1. The inner cut-offs for the O-O and Si-O 

interatomic potential parameters were 1.7Å and 1.2Å respectively during simulations. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 
Si − O 

22764.30 
1283.91 

0.1490 
0.32052 

27.88 
10.66158 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

O − Si − O 100 109.47 1.0 

 Q (core) (e) 

O -2.000 
Si 4.000 

 

It was found that regardless of whether the rigid-ion interatomic potentials from table 2 or 

from table 4 were used, nearest neighbour distances and coordination numbers equivalent 

to those in table 3 were obtained. Furthermore, total structure factors in fair agreement 

with experimental results could still be achieved (figure 2). This was despite the system 
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pressures becoming positive and very large when core-shell model interatomic potentials 

were used as estimates in the rigid-ion stages (24.5±0.5kbar at 300K). The system pressures 

returned to being negative in the core-shell model stages that ensued. The system 

pressures at 300K were -51.5±0.5kbar and -10.9±0.5kbar when the core-shell model had 

been applied from 300K and 2000K respectively.  

 
Figure 2: Total neutron (SN(Q)) and X-ray (SX(Q)) structure factor comparison at 300K for SiO2. The 

results of running rigid-ion (RI) stages using the interatomic potentials from table 2 or table 4 prior 
to applying the core-shell model from 300K (table 1) are compared with results from neutron 

diffraction (ND) [10] and X-ray diffraction (XRD) [11] experiments. 

To summarise, due to temperature instabilities it is necessary to treat the higher 

temperature stages of a SiO2 simulation as being rigid-ion. The rigid-ion stages can be run 

using dedicated rigid-ion interatomic potentials (table 2), or estimates from core-shell 

model interatomic potentials (table 4). However, using estimates from core-shell model 

interatomic potentials significantly lowers the system pressure. It was also noticed that 

results more consistent with experimental findings were achieved by applying the core-

shell model from 300K rather than from 2000K.  

6.2.2  CaO-SiO2 System 

A marginally more complex system to model in the build up to the QCl and ACl glass series 

is CaO-SiO2 glass. Before running simulations, it was necessary to obtain a Ca-Os core-shell 

model interatomic potential parameter to compliment those in table 1. Both Malavasi et al. 

[3] and Rabone and De Leeuw [13] have reported Ca-Os interatomic potential parameters 

(table 5).  These were tested on CaO [14] and CaSiO3 [15] crystalline structures using GULP 



98 
 

[5]. As shown in table 6, the one reported by Malavasi et al. [3] (labelled (1)) could 

reproduce the crystalline structures more closely. The core-shell model interatomic 

potentials used to model CaO-SiO2 glass are presented in table 7.  

Table 5: The two-body Ca-Os Buckingham interatomic potentials obtained from Malavasi et al. [3] 
and Rabone and De Leeuw [13]. Labels 1, 2, and 3 are for reference. 

   Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

   Aij (eV) ρij (Å) Cij (eV Å6) 

(1) 

(2) 

(3) 

[3] 

[13] 

[13] 

Ca − Os 

Ca − Os 

Ca − Os 

2152.3566 

1279.32 

1250.00 

0.309227 

0.317201 

0.343700 

0.09944 

0.00000 

0.00000 

 

Table 6: The GULP energy minimisation results comparing the performance of the Ca-Os 
interatomic potentials in table 5 (labelled as (1), (2), and (3)) using crystalline CaO [14] and CaSiO3 

[15] structures. The terms Rij and Nij denote the nearest neighbour distances and coordination 
numbers respectively. 

 CaO [14] CaSiO3 [15] 

 Input (1) [3] (2) [13]  (3) [13] Input (1) [3] (2) [13]  (3) [13] 

RCa-O (Å)/NCa-O 
2.42/ 
6.00 

2.40/ 
6.00 

2.25/ 
6.00 

2.47/ 
6.00 

2.41/ 
6.00 

2.43/ 
6.00 

2.30/ 
6.00 

2.48/ 
5.66 

RO-O (Å)/NO-O 
3.42/ 
12.00 

3.40/ 
12.00 

3.18/ 
12.00 

3.49/ 
12.00 

2.69/ 
4.00 

2.65/ 
4.00 

2.63/ 
3.77 

2.66/ 
4.00 

RSi-O (Å)/NSi-O 
 

  
 1.64/ 

4.00 
1.62/ 
4.00 

1.62/ 
4.00 

1.63/ 
4.00 

Volume (Å3) 28.27 27.75 22.77 30.10 823.73 816.02 728.45 869.81 

 

 

 

 

 

 

 

 



99 
 

Table 7: The two-body and three-body interatomic potential parameters of Buckingham and 
screened harmonic form respectively for modelling CaO-SiO2 as reported by Malavasi et al. [3]. An 
oxygen shell mass of 0.2u was used. The inner cut-offs for the Os-Os, Si-Os, and Ca-Os interatomic 

potential parameters were 1.7Å, 1.2Å, and 1.5Å respectively. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Os − Os 

Si − Os 

Ca − Os 

22764.30 

1283.91 

2152.3566 

0.1490 

0.32052 

0.309227 

27.88 

10.66158 

0.09944 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Os − Si − Os 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

O − Os 74.92 0.8482 -2.8482 

Si 

Ca 
 

4.000 

2.000 
 

 

As in section 6.2.1, temperature instabilities meant that it was necessary to treat the higher 

temperature stages of a simulation as being rigid-ion. Core-shell model stages could then 

run with the application of frictional damping at lower temperatures. This scenario 

provided the opportunity to carry out similar tests to those detailed in section 6.2.1 on a 

different glass system. First however, it was necessary to test the Ca-O rigid-ion interatomic 

potential stated by Teter [9] (table 8) on CaO [14] and CaSiO3 [15] crystalline structures 

using GULP [5].  The results of GULP energy minimisation are shown in table 9. By 

comparing the GULP results in tables 6 and 9, it can be seen that using core-shell model 

interatomic potential parameters instead of rigid-ion interatomic potential parameters 

enables the CaO [14] and CaSiO3 [15] crystalline structures to be reproduced more closely.  

Table 8: Rigid-ion two-body Buckingham interatomic potential parameters for modelling CaO-SiO2 
as stated by Teter [9]. The inner cut-offs for the O-O, Si-O, and Ca-O interatomic potential 

parameters were 1.7Å, 1.2Å, and 1.5Å respectively. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 

Si − O 

Ca − O 

1844.7458 

13702.905 

7747.1834 

0.343645 

0.193817 

0.252623 

192.58 

54.681 

93.109 
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Table 9: The GULP energy minimisation results testing the performance of the rigid-ion 
interatomic potentials in table 8 using crystalline CaO [14] and CaSiO3 [15] structures. The terms Rij 

and Nij denote the nearest neighbour distances and coordination numbers respectively. 

 CaO [14] CaSiO3 [15] 

 Input Output Input Output 

RCa-O (Å)/NCa-O 
2.42/ 
6.00 

2.39/ 
6.00 

2.41/ 
6.00 

2.42/ 
6.00 

RO-O (Å)/NO-O 
3.42/ 
12.00 

3.38/ 
12.00 

2.69/ 
4.00 

2.59/ 
4.00 

RSi-O (Å)/NSi-O   
1.64/ 
4.00 

1.59/ 
4.00 

Volume (Å3) 28.27 27.19 823.73 785.99 

 

Models of 50CaO-50SiO2 glass were simulated in the same manner as the SiO2 glass models 

in section 6.2.1. An initial random configuration of 384 silicon ions, 384 calcium ions, and 

1152 oxygen ions contained within a cubic box of side length of 29.45Å3 corresponding to 

the experimental density of 2.9g/cm3 [16] was prepared. A universal cut-off of 12.0Å, a 

primary cut-off of 10.0Å, and a van der Waals cut-off of 8.0Å were applied. Dedicated rigid-

ion interatomic potential parameters (table 8) were used in the rigid-ion stages. The initial 

rigid-ion simulation stages ran at temperatures of 6000K, 3000K, and 2000K. The system 

was then quenched at a rate of 1013K/s to 300K, and a stage at 300K ensured a solid glass 

model. A sampling stage at 300K was then run and used for analysis. The single 

temperature rigid-ion stages ran for 400,000 time-steps. The quench stage ran for 170,000 

time-steps and the time-step was 1fs. The final configuration of atoms from the rigid-ion 

stages was used as the starting configuration for the core-shell model stages that followed.  

For the core-shell model atomic configuration, 1152 oxygen shells were added. While most 

of the oxygen atomic mass was assigned to the oxygen cores (15.7994u), 0.2u was 

allocated to the oxygen shells. The core and shell units were connected by a harmonic 

spring of spring constant Kcs which was frictionally damped using a damping coefficient, c, 

of 100kgs-1. The core-shell model interatomic potentials in table 7 were used, and two sets 

of core-shell model simulations were run. One began at 2000K before being quenched from 

2000K to 300K at a rate of 1013K/s. A stage at 300K followed afterwards. The other core-

shell model simulation was only run at 300K. Sampling runs of both simulations were then 

run and used for data analysis. Each single temperature stage ran for 800,000 time-steps. 

The quench stage ran for 1,700,000 time-steps and the time-step was 0.1fs. Throughout 

the entire simulation (both the rigid-ion and core-shell model stages), an NVT Berendsen 

thermostat was used and all simulation stages were fully equilibrated. The system 

pressures exhibited at 300K were ~-12kbar in the rigid-ion stage, and ~26kbar and ~29kbar 

when the core-shell model had been applied from 300K and 2000K respectively.  
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It was also of interest to further test whether core-shell model interatomic potential 

parameters could be used to estimate rigid-ion interatomic potentials. This prompted 

simulations to be run as described above, but rather than using the dedicated rigid-ion 

interatomic potential parameters in table 8 for the rigid-ion stages of the simulation, core-

shell model interatomic potential parameters were used to estimate the rigid-ion 

interatomic potential parameters (table 10) instead. Anion shells were therefore not 

included and the atoms were treated as being rigid spheres. In the core-shell model stages 

that ensued, dedicated core-shell model interatomic potential parameters were used (table 

7), and the anion shells were included. The system pressures exhibited at 300K were 

~28kbar in the rigid-ion stage, and ~20kbar and ~32kbar in the core-shell model stages that 

had been applied from 300K and 2000K respectively.  

Table 10: The two-body and three-body rigid-ion interatomic potential parameters of Buckingham 
and screened harmonic form respectively based on the core-shell model interatomic potential 

parameters reported by Malavasi et al. [3] in table 7. The inner cut-offs for the O-O, Si-O, and Ca-O 
interatomic potential parameters were 1.7Å, 1.2Å, and 1.5Å respectively during simulations. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 
Si − O 
Ca − O 

22764.30 
1283.91 

2152.3566 

0.1490 
0.32052 

0.309227 

27.88 
10.66158 
0.09944 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

O − Si − O 100 109.47 1.0 

 Q (core) (e) 

O -2.000 

Si 
Ca 

4.000 
2.000 

 

Due to the high system pressures being exhibited, it was necessary to compromise 

between having a system of the correct experimental density (2.9g/cm3 [16]), and having 

one of a more physical pressure. The system density was therefore reduced to 2.84g/cm3, 

98% of the experimental density. The simulations described above were rerun, and lower 

system pressures were achieved. For example, when using core-shell model interatomic 

potentials to estimate rigid-ion interatomic potentials in the rigid-ion stages, pressures of 

~19kbar in the rigid-ion stage, and ~12kbar and ~21kbar in the following core-shell model 

stages from 300K and 2000K respectively were achieved. Furthermore, table 11 shows that 

reducing the system density yields a Ca-O nearest neighbour distance that is more 

consistent with experimental results. 
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Table 11: A comparison of Ca-O nearest neighbour distances, Rij, and coordination numbers, Nij(r) 
in 50CaO-50SiO2 glass. The values were obtained computationally in this work (MD) using the 

experimental density (2.9g/cm3 [16]) or a reduced density (2.84g/cm3). A cut-off of 3.1Å was used 
to identify the coordination numbers.  Experimental extended absorption fine structure (EXAFS) 

[17], [18] and neutron diffraction (ND) [19] results are included for comparison.  

Ref. Method RCa-O (Å) NCa-O(r) 

This work MD exp. density 2.31±0.01 Å 6.11±0.03 

This work MD 98% exp. density 2.33±0.01 Å 6.00±0.03 

[17] EXAFS 2.49 5.6 

[18] EXAFS 2.36(1) 6.0(3) 

[19] ND 2.37(6) 6.15(17) 

 

The silicon network connectivity distributions from the 50CaO-50SiO2 glass models of 

reduced density (98% of the experimental density) are compared with experimental NMR 

data [20] in figure 3. Both plots in figure 3 reveal that results most consistent with 

experimental NMR data are achieved by applying the core-shell model from 2000K instead 

of 300K. Interestingly, the model in best agreement with the NMR data was attained using 

core-shell model interatomic potential parameters (to estimate rigid-ion interatomic 

potential parameters) in the rigid-ion stages before the core-shell model was applied from 

2000K.   

Figure 3: Silicon network connectivity distributions in 50CaO-50SiO2 glass at 300K obtained 

experimentally using NMR [20], and computationally in this work using densities equivalent to 

98% of the experimental density. In the plot to the left, the dedicated rigid-ion (RI) interatomic 

potentials in table 8 were used in the RI stages. In the plot to the right, core-shell model (SM) 

interatomic potentials were used to estimate RI interatomic potentials (table 10) in the RI stages. 

To enable further comparisons with experimental data, models of 42CaO-58SiO2 glass were 

prepared. The models contained 336 calcium ions, 464 silicon ions, and 1264 oxygen ions 

(as well as 1264 oxygen ion shells in the core-shell model stages) within a cubic simulation 

cell. The models were either of experimental density (2.78g/cm3 [16]) and had a simulation 
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cell side length of 30.33Å, or were of a reduced density of  2.72g/cm3 (98% of the 

experimental density) and had a simulation cell side length of 30.55Å. Core-shell model 

interatomic potentials were used to estimate rigid-ion interatomic potentials in the rigid-

ion stages (table 10). In the core-shell model stages from either 2000K or 300K that 

followed, dedicated core-shell model interatomic potentials were used (table 7). A 

universal cut-off of 12.0Å, a primary cut-off of 10.0Å, and a van der Waals cut-off of 8.0Å 

were applied.  

The calculated total structure factors obtained using the experimental and reduced system 

densities (where the core-shell model had been applied from 2000K) are compared with 

experimental diffraction results in figure 4. Good agreement between the two sets of 

computational results and the experimental results is seen. Arguably, the model of reduced 

density agrees with the experimental results more closely, most noticeably for Q~2Å-1.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Considering SiO2 corresponds to a fully Q4 environment, while orthosilicate compositions 

with SiO4 are fully Q0, the equation n=-2a+8, where ‘n’ is the silicon network 

connectivity and ‘a’ is the O:Si ratio can be used to predict average silicon 

network  connectivity value. By assuming that just two different Qn groups are present, it is 

possible to determine the Qn distribution. Therefore, by assuming the 42CaO-58SiO2 system 

Figure 4: A comparison of total neutron (SN(Q)) and X-ray (SX(Q)) structure factors for 42CaO-

58SiO2 glass at 300K obtained experimentally [32] and computationally. The computational 

results were attained using the experimental density or a reduced density equivalent to 98% of 

the experimental density. Core-shell model (SM) interatomic potentials were used to estimate RI 

interatomic potentials (table 10). 

 

Simulated and experimental [32] total neutron (top plot) and X-ray (bottom plot) structure factor 
comparison for 42CaO-58SiO2 glass. The simulated models were run with the experimental density (MD with 

exp density), and with 98% of the experimental density (MD with reduced density). 
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comprises of Q2 and Q3 species, the system should contain 45% Q2 species and 55% Q3 

species. By considering the model of experimental density, it can be seen in figure 5 that 

the application of the core-shell model from 2000K rather than 300K yields a silicon 

network connectivity distribution that is more similar to the expected distribution. It was 

also found that the Qn distribution was not affected by reducing the system density to 98% 

of the experimental density.  

 

 
Figure 5: The expected silicon network connectivity distribution in 42CaO-58SiO2 glass compared 

with the distributions in the computational models. The models were of experimental density, and 
core-shell model interatomic potentials were used to estimate rigid-ion interatomic potentials in 

the rigid-ion stages (table 10). The core-shell model (SM) was applied from 300K or 2000K.   

To summarise, as with the SiO2 simulations in section 6.2.1, temperature instabilities meant 

it was necessary to treat the higher temperatures stages of a CaO-SiO2 simulation as being 

rigid-ion. The core-shell model stages could then run at lower temperatures with the 

application of frictional damping. The highly positive system pressures were reduced by 

lowering the system density by 2%. This also caused the agreement with experimental 

results to be improved. In contrast to the SiO2 simulations, it was preferable to apply the 

core-shell model from 2000K. It has therefore become apparent that choosing the 

temperature at which the core-shell model is applied from in more complex systems such 

as the QCl and ACl series requires consideration.   

6.2.3  SiO2-CaO-CaCl2 System - Fitting Interatomic Potential 

Parameters 

Having worked on stabilising SiO2 and CaO-SiO2 simulations and achieved results consistent 

with experimental findings, more complex systems could be modelled. This involved the 

addition of CaCl2 to the CaO-SiO2 system to form the ACl and QCl glass compositions in the 

CaO-SiO2-CaCl2 system. A number of interatomic potentials were needed to compliment 
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those in table 7 (Cls-Cls, Ca-Cls, Cls-Os, and Si-Cls), and most had been reported by Rabone 

and De Leeuw [13] (table 12). 

Table 12: Two-body Buckingham interatomic potential parameters reported by Rabone and De 
Leeuw [13] in an apatite study. In [13], O(p) was used to denote oxygen in PO4

3-, CO3
2-, SiO4

4-, while 
O(H) was used to denote oxygen in OH-.  

 Two body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Cls − Cls 

Cls − Os (H)  

Cls − Os (P) 

Os (H) − Os (H) 

Os (P) − Os (P) 

Ca − Os (H) 

Ca − Os (H) 

Ca − Cls 

Ca − Cls 

49039.26 

71379.71 

68297092.09 

22764.0 

16372.00 

1279.32 

1250.00 

1220.80 

1285.14 

0.243207 

0.227705 

0.153267 

0.149000 

0.213000 

0.317201 

0.343700 

0.35300 

0.348729 

16.05 

0.13 

15.16 

6.97 

3.47 

0.00 

0.00 

0.00 

0.00 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

Cl − Cls 54.41 1.650 -2.650 

O (H) − Os (H) 74.92 0.900 -2.300 

O (P) − Os (P) 507.40 0.587 -1.632 

Ca  2.000  

 

The interatomic potential parameters involving oxygen ions in table 12 fail to maintain 

charge neutrality. It was therefore intuitive to continue using the ones reported by 

Malavasi et al. [3] (table 7). The Cls-Cls and Ca-Cls interatomic potentials in table 12 do 

maintain charge neutrality, but since two Ca-Cls interatomic potentials had been reported, 

the most suitable needed to be identified. A CaCl2 crystal structure [21] underwent GULP 

energy minimisation, and volume changes of 0.26% and -1.18% were attained using the 

first and second Ca-Cls interatomic potentials respectively. While both GULP output 

structures maintained the Ca-Cl coordination number of 6.00, only the one obtained using 

the first Ca-Cls interatomic potential was also able to reproduce the Ca-Cl nearest 

neighbour distance of 2.74Å. It was therefore favorable to use the first Ca-Cls interatomic 

potential listed in table 12.   

 

Two more interatomic potential parameters still needed to be established; Si-Cls and Cls-Os. 

There are no reports of a Si-Cls interatomic potential in the literature, and neither of the 

two Cls-Os interatomic potentials in table 12 uphold charge neutrality on oxygen. It would 

have been challenging to fit both the Si-Cls and Cls-Os interatomic potentials simultaneously 



106 
 

due to the number of parameters being involved. Consequently, the Cls-Os(H) interatomic 

potential (table 12) was chosen over the Cls-Os(P) one because the charges were closer to 

neutrality. For consistency with the other interatomic potential parameters involving 

oxygen, the ion core and shell charges for oxygen reported by Malavasi et al. [3] (which are 

charge neutral) were assigned to the Cls-Os(H) interatomic potential. The Si-Cls interatomic 

potential could then be fitted.  

 

The Aij, ρij, and Cij parameters of the Si-Cls Buckingham interatomic potential were fitted 

one at a time manually using SiCl4 [22], (SiCl3)O(SiCl2)O(SiCl3) [23], Si6O7Cl10 [24], (Cl2SiO)3 

[25], and (Cl2SiO)4 [25] crystalline structures (figure 6) in GULP. The Si-Cl input and output 

separation distances were monitored throughout the fitting procedure to see whether a 

change in interatomic potential yielded better agreement with the input crystalline 

structures. A final interatomic potential of Aij=1063eV, ρij=0.3352Å and Cij=17eVÅ6 was 

attained for the Si-Cls potential. The set of interatomic potentials for modelling the QCl and 

ACl glass series are presented in table 13, and the final GULP energy minimisation results 

which show reasonable performance are shown in table 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The SiCl4 [22], (SiCl3)O(SiCl2)O(SiCl3) [23], Si6O7Cl10 [24], (Cl2SiO)3 [25], and 
(Cl2SiO)4 [25] crystalline structures used to fit the Si-Cls interatomic potential. They are 

labelled labeled from ‘a’ to ‘e’ respectively. The red and blue spheres represent oxygen 
and chlorine ions respectively, and the yellow tetrahedra represent silicon ions. 

d 

a b c 

e 
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Table 13: The two-body and three-body interatomic potential parameters of Buckingham and 
screened harmonic form respectively for modelling the QCl and ACl glass series. The oxygen and 

chlorine shell masses used were 0.2u and 1.5u respectively. The inner cut-offs for the Os-Os, Cls-Cls, 
Cls-Os, and Ca-Cls interatomic potentials were 1.7Å. The Ca-Os, Si-Cls, and Si-Os interatomic 

potentials had inner cut-offs of 1.5Å, 1.3Å, and 1.2Å respectively. 

 Two body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Os − Os 

Si − Os 

Cls − Cls 

Si − Cls 

Cls − Os 

Ca − Cls 

Ca − Os 

22764.30 

1283.91 

49039.26 

1063.00 

71379.71 

1220.80 

2152.3566 

0.1490 

0.32052 

0.243207 

0.3352 

0.227705 

0.35300 

0.309227 

27.88 

10.66158 

16.05 

17.00 

0.13 

0.00 

0.09944 

 Three body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Os − Si − Os 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

O − Os 

Cl − Cls 

74.92 

54.41 

0.8482 

1.650 

-2.8482 

-2.650 

Si 

Ca 

 4.000 

2.000 

 

 

Table 14: The GULP energy minimisation results testing the performance of the interatomic 
potentials in table 13 on the crystal structures used to fit the Si-Cls interatomic potential. The 

terms Rij and Nij denote the nearest neighbour distances and coordination numbers respectively. 
All of the coordination number values were unchanged. 

 
SiCl4  
[22] 

(SiCl3)O(SiCl2)O(SiCl3)  
[23] 

Si6O7Cl10  

[24] 
(Cl2SiO)3  

[25] 
(Cl2SiO)4  

[25] 

 In/out In/out In/out In/out In/out 

RSi-O (Å)  1.60/1.66 1.60/1.63 1.62/1.66 1.58/1.64 
NSi-O  1.33 2.33 2.00 2.00 

RSi-Cl (Å) 2.01/1.98 2.01/2.01 2.01/2.01 2.00/2.00 1.99/2.01 
NSi-Cl 4.00 2.67 1.66 2.00 2.00 

RO-O (Å)  2.58/2.48 2.63/2.54 2.61/2.52 2.58/2.50 
NO-O  1.00 2.86 2.00 2.00 

RCl-O (Å)  2.96/3.02 2.95/3.03 2.97/3.04 2.93/3.03 
NCl-O  1.25 2.20 2.00 2.00 

RCl-Cl (Å) 3.28/3.24 3.29/3.28 3.27/3.27 3.27/3.27 3.24/3.27 
NCl-Cl 3.00 1.75 0.80 1.00 1.00 

RSi-Si (Å) 5.08/5.22 3.10/3.32 3.12/3.21 2.96/3.14 3.12/3.26 
NSi-Si 1.00 1.33 2.33 2.00 2.00 

Volume (Å3) 
575.73/ 
584.26 

1340.36/ 
1768.65 

1030.92/ 
1170.62 

570.25/ 
667.31 

392.81/ 
418.78 
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The neutron diffraction and reverse Monte Carlo (RMC) modelling study of liquid SiCl4 by 

Jóvári et al. [26] prompted a liquid SiCl4 simulation in this work to further test the fitted 

Si-Cls interatomic potential parameter. A random starting configuration containing 3000 

atoms (600 silicon and 2400 chlorine ions) within a simulation box of side length 48.50Å 

and so of atomic number density 0.0263Å-3 [26] was prepared. Core-shell model 

interatomic potential parameters were used to estimate rigid-ion interatomic potentials. 

The rigid-ion stages were run at 6000K, 3000K, 2000K, 1000K, 500K, and then 300K. Each 

stage comprised of 400,000 time-steps and the time-step was 1fs. A core-shell model stage 

was then run with the addition of chlorine shells (of mass 1.5u) at 300K. This was above the 

melting temperature (203K [27]) and ran for 400,000 time-steps where each time-step was 

0.1fs. An NVT Berendsen thermostat was used throughout and all stages were fully 

equilibrated. A universal cut-off of 12.0Å, a primary cut-off of 10.0Å, and a van der Waals 

cut-off of 8.0Å were applied.  

From using RMC modelling, Jóvári et al. [26] reports Si-Cl and Cl-Cl nearest neighbour 

distances of 2.02Å and 3.28Å respectively. Corresponding distances of 2.01Å and 3.27Å 

respectively were attained in this study. Furthermore, with application of a 3.82Å cut-off 

distance, Jóvári et al. [26] reports a Cl-Cl coordination number of 4.97. By using the same 

cut-off distance, a Cl-Cl coordination number of 5.02 was achieved in this work. The two 

sets of computational modelling results were therefore in good agreement.  

Since the QCl and ACl glass series also contained calcium, it was important to test the 

performance of the interatomic potentials in table 13 on crystalline structures containing 

silicon, oxygen, calcium and chlorine ions. Crystalline Ca3Cl2(SiO4) [28] and Ca2(SiO3Cl2) [29] 

structures (figure 7) were chosen, and the reasonable results attained following GULP 

energy minimisation are presented in table 15.  

 

 

 

 

 

 

 

 

 

 

Figure 7: Crystalline structures of Ca3Cl2(SiO4) [28] and Ca2(SiO3Cl2) [29] to the left and right 
respectively. The yellow tetrahedra represent silicon atoms and the red, green, and blue spheres 

represent oxygen, calcium, and chlorine ions respectively. 

 



109 
 

Table 15: GULP energy minimisation results for the  Ca3Cl2(SiO4) [28] and Ca2(SiO3Cl2) [29] crystal 
structures from using the interatomic potential parameters in table 13. The terms Rij and Nij 

denote the nearest neighbour distances and coordination numbers respectively. 

 Ca3Cl2(SiO4) [28] Ca2(SiO3Cl2) [29] 

 In/out In/out 

RSi-O (Å) 1.64/1.63 1.63/1.62 
NSi-O 4.00/4.00 4.00/4.00 

RCa-O (Å) 2.39/2.35 2.49/2.51 
NCa-O 4.00/3.33 4.00/4.00 

RSi-Cl (Å) 4.36/4.57 3.42/3.63 
NSi-Cl 4.00/4.00 1.00/1.00 

RO-O (Å) 2.61/2.63 2.65/2.64 
NO-O 2.00/2.00 4.00/4.00 

RCa-Cl (Å) 2.93/2.93 2.81/2.87 
NCa-Cl 2.33/2.33 3.00/3.00 

RCl-O (Å) 3.44/3.54 3.29/3.10 
NCl-O 4.00/4.00 5.50/5.50 

RCl-Cl (Å) 3.51/3.52 3.55/3.83 
NCl-Cl 2.00/2.00 4.00/4.00 

RSi-Ca (Å) 3.02/3.21 3.21/3.26 
NSi-Ca 4.00/4.00 4.00/4.00 

RSi-Si (Å) 4.16/4.08 3.23/3.24 
NSi-Si 2.00/2.00 2.00/2.00 

RCa-Ca (Å) 3.82/3.80 3.64/3.62 
NCa-Ca 4.00/4.00 1.00/1.00 

Volume (Å3) 699.29/749.09 1069.51/1068.23 

 

6.2.4  CaO-SiO2-CaCl2 System – Glass Modelling 

Satisfied with the performance of the interatomic potentials in table 13, attention could 

turn to modelling the QCl and ACl glasses. As discussed in the previous chapter (section 

5.2), the QCl series was able to maintain the equal CaO:SiO2 ratio in the 

(50-x/2)CaO-(50-x/2)SiO2-xCaCl2 compositions with increasing CaCl2 contributions. The ACl 

series experienced losses via chlorine volatilisation and the compositions were revised. For 

simplicity, specific glasses in each series are referred to by their CaCl2 content. For the QCl 

glasses, the CaCl2 content is denoted as ‘x’, and for the ACl glasses, the CaCl2 content is 

denoted as ‘y’ (tables 16 and 17 respectively).  
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Table 16: The CaCl2 content (x) in the (50-x/2)CaO-(50-x/2)SiO2-xCaCl2 compositions as well as the 
density, number of atoms, and simulation box side lengths used to the model the QCl glass series.  

x CaO SiO2 CaCl2 ρ (g/cm3) Atoms Length (Å) 

0.0 50.0 50.0 0.0 2.75 10000 51.96 
2.2 48.9 48.9 2.2 2.74 10044 52.37 
3.3 48.4 48.4 3.3 2.72 10076 52.68 
4.3 47.8 47.8 4.3 2.70 10076 52.94 
6.6 46.7 46.7 6.6 2.68 10132 53.44 
9.3 45.3 45.3 9.3 2.65 10176 54.03 

11.9 44.1 44.1 11.9 2.64 10248 54.53 
16.1 41.9 41.9 16.1 2.58 10312 55.54 
27.4 36.3 36.3 27.4 2.58 10548 57.17 
33.5 33.3 33.3 33.5 2.55 10680 58.25 
43.1 28.5 28.5 43.1 2.39 10860 60.79 

 

Table 17: The CaCl2 content (y), composition, density, number of atoms, and simulation box side 
lengths used to the model the ACl glass series.  

y CaO SiO2 CaCl2 ρ (g/cm3) Atoms Length (Å) 

1.3 50.3 48.4 1.3 2.78 9988 51.96 
4.0 49.3 46.7 4.0 2.75 10028 52.57 
5.6 49.1 45.3 5.6 2.75 10036 52.81 
8.9 47.0 44.1 8.9 2.76 10120 53.25 

12.1 46.0 41.9 12.1 2.69 10160 54.18 
20.6 43.1 36.3 20.6 2.58 10276 56.17 
25.1 41.6 33.3 25.1 2.52 10336 57.25 
32.3 39.2 28.5 32.3 2.48 10432 58.55 
39.8 36.7 23.5 39.8 2.43 10532 59.96 

 

The QCl and ACl simulations were run in a similar manner to the SiO2 and CaO-SiO2 

simulations (in sections 6.2.1 and 6.2.2 respectively), with rigid-ion stages being run prior to 

the core-shell model stages at lower temperatures. Core-shell model interatomic potential 

parameters (table 13) were used to estimate the rigid-ion interatomic potential 

parameters. The RI stages included a 6000K stage, a 3000K stage, and a 2000K stage, a 

quench stage from 2000K to 300K at a rate of 1013K/s, a 300K stage, and a final sampling 

stage at 300K. The single temperature rigid-ion stages ran for 400,000 time-steps. The 

quench stage ran for 170,000 time-steps and the time-step was 1fs. Oxygen and chlorine 

shells were then added to the final configuration of atoms to form the input configuration 

of atoms for the core-shell model stages.  

From the atomic mass of oxygen (15.9994u) and chlorine (35.453u), shell masses of 0.20u 

and 1.50u respectively were assigned. The core and corresponding shell units were 

connected by a harmonic spring of spring constant Kcs which was frictionally damped using 

a damping coefficient, c, of 100kgs-1 (section 6.2.1). The core-shell model stages began at 

2000K. The system was then quenched to 300K at a rate of 1013K/s. A stage at 300K 



111 
 

followed before a sampling stage at 300K was run and used for analysis. The time-step was 

0.1fs. To help compensate for the smaller time-step, 800,000 time-steps were used in the 

single temperature stages. The quench stage required 1,700,000 time-steps. An NVT 

Berendsen thermostat was used throughout, and all simulation stages were fully 

equilibrated. A universal cut-off of 12.0Å, a primary cut-off of 10.0Å, and a van der Waals 

cut-off of 8.0Å were applied.  

As with the SiO2 and CaO-SiO2 simulations, the system pressures exhibited were 

problematic. Pressures of around 30kbar were experienced up to x=16.1 in the QCl series, 

before the pressures declined to 21kbar, 14kbar, and 4kbar in the x=27.4, x=33.5, and 

x=43.1 compositions respectively. The system densities were subsequently reduced by 5% 

up to x=16.1, by 2% for x=27.4, and the remaining two compositions (x=33.5, x=43.1) were 

run using the experimental densities. As the experimental densities of the ACl series were 

slightly higher, it was appropriate to reduce all composition densities by 5%. The sample 

compositions, densities, atom numbers, and simulation box side lengths used for modelling 

the QCl and ACl glasses are detailed in tables 16 and 17 respectively.  

6.3 QCl Glass Series Results 

6.3.1  Images of Models 

The QCl (50-x/2)CaO-(50-x/2)SiO2-xCaCl2 glass model images are shown in figure 8. Phase 

separation appears to begin around x=16.1 (labelled c) and becomes more prevalent with 

increasing CaCl2 contributions. It can be seen that the models become biphasic, with the 

two phases being CaSiO3 and CaCl2. Separating the atoms out into their elemental 

constituents (figure 9) confirms that phase separation occurs by the x=27.4 composition.  
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6.3.2  Pair Correlation Functions 

The Si-O, O-O, Si-Si, and Si-Ca pair correlation functions (figure 10) permit the short-range 

order in the CaSiO3 components of the models to be explored. The Si-O and O-O 

correlations relate to SiO4 tetrahedral structural units. The Si-Si correlation relates to the 

corner-linking of these tetrahedral units. All four pair correlation functions show minimal 

Figure 8: The x=9.3, 11.9, 16.1, 27.4, 33.5, and 43.1 QCl models labelled from ‘a’ to ‘f’ respectively. 
The green, blue, and red spheres represent calcium, chlorine, and oxygen ions respectively. The 

yellow tetrahedra correspond to silicon ions. Anion shells have not been included. 

Figure 9: The distribution of chlorine (blue), calcium (green), oxygen (red), and silicon (yellow) 
ions in the x=16.1 and x=27.4 QCl compositions respectively. Anion shells have not been included. 

a b c 

d e f 
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change with increasing CaCl2 concentrations, consistent with minimal change to the silicate 

network. The four pair correlation functions are also consistent with a pure CaSiO3 glass 

[30]. 

 

Figure 10: The Si-O, O-O, Si-Si, and Si-Ca pair correlation functions for the x=0.0, 11.9, 27.4, and 
43.1 QCl compositions.  

The nearest neighbour distances for the Si-O, Si-Si, O-O, Si-Ca, and  Ca-O  correlations in the 

QCl series were 1.62±0.01Å, 3.05-3.07Å (±0.01Å), 2.66±0.01Å, 3.44±0.01Å, and 2.36-2.37Å 

(±0.03Å) respectively. The Si-O coordination number of 4.00±0.01 was maintained using a 

cut-off distance of 2.00Å. The Si-Si coordination numbers increased from 2.01 to 2.06 

(±0.02) with increasing CaCl2 content when a cut-off distance of 3.40Å was used. 

Conversely, the O-O, Si-Ca, and Ca-O coordination numbers were seen to decrease from 

4.37 to 4.19 (±0.03), 6.12 to 5.39 (±0.03), and 6.14 to 2.24 (±0.03) when using cut-off 

distances of 2.85Å, 4.35Å, and 3.10Å respectively. Details of the other correlations are 

given in table 18. The large Si-Cl separation distance shows a lack of Si-Cl bonding. Instead, 

the shorter Ca-Cl distances show that chlorine ions bond with calcium ions. When the Ca-Ca 

pair correlation functions are plotted (figure 11), a distinct shape change is observed, most 

notably between the x=16.1 and the x=27.4 plots.  
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Table 18: Nearest neighbour distance, Rij, and coordination number, Nij(r), values for the Ca-Cl, 

Cl-Cl, Cl-O, Ca-Ca, and Si-Cl correlations. Cut-off distances of 3.70Å, 4.90Å, 4.70Å, 5.25Å, and 5.65Å 

were applied respectively to attain the coordination numbers. 

 Ca-Cl Cl-Cl O-Cl Ca-Ca Si-Cl 

x 
Rij (Å) 

 ±0.01 

Nij(r) 

±0.05 

Rij (Å) 

±0.05 

Nij(r) 

±0.10 

Rij (Å) 

±0.10 

Nij(r) 

±0.10 

Rij (Å) 

±0.05 

Nij(r) 

±0.05 

Rij (Å) 

±0.10 

Nij(r) 

±0.10  

0.0       3.90 7.47   

2.2 2.81 0.36 3.55 1.04 3.78 0.45 3.93 7.55 4.59 0.87 

3.3 2.81 0.52 3.54 1.85 3.79 0.63 3.97 7.63 4.60 1.22 

4.3 2.81 0.67 3.57 2.50 3.79 0.78 4.05 7.61 4.61 1.52 

6.6 2.80 0.99 3.59 3.54 3.80 1.08 4.11 7.63 4.63 2.10 

9.3 2.79 1.33 3.61 4.84 3.79 1.31 4.20 7.63 4.65 2.58 

11.9 2.78 1.62 3.63 5.72 3.77 1.51 4.37 7.72 4.62 2.96 

16.1 2.78 2.08 3.65 6.97 3.78 1.68 4.48 7.72 4.63 3.44 

27.4 2.77 3.20 3.61 9.40 3.77 1.83 4.56 8.25 4.61 3.70 

33.5 2.77 3.68 3.62 9.88 3.75 2.01 4.60 8.41 4.63 3.75 

43.0 2.77 4.22 3.73 9.52 3.79 3.01 4.69 8.08 4.67 5.72 

 

 

 

Figure 11: The Ca-Ca pair correlation functions for the QCl series. 

6.3.3  Structure Factors 

The changes in the calculated total neutron and X-ray structure factors with increasing 

CaCl2 content are shown for the QCl series in figure 12. These changes occur because as the 

chlorine and calcium concentration increases, the silicon and oxygen concentrations 

decrease. As shown in figure 13, the changes are predominantly brought about by changes 

in the O-O, Cl-O, and Cl-Cl partial structure factors. The sharp vertical lines illustrated to the 

right of figure 12 at low values of Q indicate phase separation, and occur in and beyond the 

x=16.1 composition.  
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Figure 12: Simulated total X-ray (Sx(Q)) and neutron (SN(Q)) structure factor spectra for the QCl 

compositions in table 16. The plots to the left cover scattering vector (Q) magnitudes from 0Å-1 to 
10Å-1, while the plots to the right cover Q values from 0.17Å-1 to 0.60Å-1. The plots are 

progressively offset from x=0.0 by 0.1 upwards.  

 
Figure 13: Partial Faber-Ziman neutron structure factors (Sij

FZ(Q)) and total neutron structure 
factors (SN(Q)) for the x=2.2 (left) and x=43.0 (right) QCl glass models. 

6.3.4  Silicon Network Connectivity 

The average silicon network connectivity values, Qn, for the QCl series are shown in table 

19. The Qn values were also predicted using the equation n=-2a+8, where the terms ‘n’ and 

‘a’ refer to the connectivity, and to O:Si ratio excluding free oxygens respectively. Free 

oxygens are oxygen ions that are neither bridging nor non-bridging. As shown in table 19, 

the actual and predicted Qn values were in good agreement, and a connectivity of 2.00 

corresponds to a metasilicate glass with an equal CaO:SiO2 ratio. The x=27.4, x=33.5, and 
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x=43.1 models have average silicon network connectivity values that are greater than 2.00 

due to the presence of free oxygens. The reason for this is unclear.    

Table 19: The Qn distributions for each of the QCl glass compositions. The average and predicted 
Qn values are also stated. The uncertainty in the average Qn values was ±2%. 

x Si atoms Q0 (%) Q1 (%) Q2 (%) Q3 (%) Q4 (%) Average Qn Predicted Qn 

0.0 2000 1.55 22.90 50.80 23.45 1.30 2.00 2.00 

2.2 1956 1.64 23.01 50.41 23.47 1.48 2.00 2.00 

3.3 1936 1.19 22.52 52.89 21.59 1.81 2.00 2.00 

4.3 1912 1.52 23.27 50.58 22.75 1.88 2.00 2.00 

6.6 1868 1.50 22.16 53.05 21.47 1.82 2.00 2.00 

9.3 1812 1.60 22.41 51.43 23.29 1.27 2.00 2.00 

11.9 1764 1.53 22.11 52.78 21.66 1.93 2.00 2.00 

16.1 1676 2.09 22.26 50.89 22.55 2.21 2.00 2.00 

27.4 1452 2.89 21.49 48.07 25.21 2.34 2.03 2.02 

33.5 1332 2.63 22.45 45.12 27.40 2.40 2.05 2.04 

43.0 1140 3.77 20.00 47.02 26.58 2.63 2.04 2.04 

 

6.4  ACl Glass Series Results 

6.4.1  Images of Models 

Images of the last six ACl computational models (y=8.9 onwards) are shown in figure 14. 

The models indicate that phase separation first occurs between the y=12.1 and y=20.6 

models (labelled b and c respectively). This result is consistent with phase separation 

occurring around x=16.1 in the QCl series. The distribution of atomic constituents in figure 

15 corroborates with this finding.  
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Figure 15: The distribution of chlorine (blue), calcium (green), oxygen (red), and silicon (yellow) 
ions in the y=12.1 and y=20.6 ACl compositions respectively. Anion shells have not been 

included. 

Figure 14: The y=8.9, 12.1, 20.6, 25.1, 32.3, and 39.8 ACl models labelled from ‘a’ to ‘f’ 
respectively. The green, blue, and red spheres represent calcium, chlorine, and oxygen ions 
respectively. The yellow tetrahedra correspond to silicon ions. Anion shells have not been 

included. 

 

a c b 
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6.4.2  Pair Correlation Functions 

The Si-O and O-O pair correlation functions help describe SiO4 tetrahedral structural units. 

It can be seen in figure 16 that these structural units were maintained, and that the Si-O 

and O-O nearest neighbour distances of 1.62±0.01Å and 2.66±0.01Å respectively were 

unchanged. However, changes in the Si-Si and Si-Ca pair correlation functions with 

increasing CaCl2 contributions (figure 16) were consistent with disruption to the silicate 

network. The Si-Si separation distance increased from 3.06Å to 3.09Å (±0.01Å), and the 

Si-Ca nearest neighbour distances reduced from 3.44Å to 3.40Å (±0.01Å) with increasing 

CaCl2 content. Small reductions in the Ca-O nearest neighbour distances from 2.37Å to 

2.34Å (±0.01Å) were also observed.  

 

Figure 16: The Si-O, O-O, Si-Si, and Si-Ca pair correlation functions for the y=1.3, 12.1, 20.6, and 
39.8 ACl compositions.  

As expected, the Si-O coordination numbers were unchanged with values of 4.00±0.01 

when a 2.00Å cut-off distance was used, consistent with tetrahedral structural units. The 

O-O and Si-Si coordination numbers declined markedly with increasing CaCl2 content from 

4.34 to 3.50 (±0.03) and from 1.94 to 1.07 (±0.02) when using 2.85Å and 3.40Å cut-off 

distances respectively. The Si-Ca coordination number increased from 6.33 to 7.03 (±0.03) 

using a 4.35Å cut-off, and the Ca-O coordination numbers decreased from 6.01 to 2.66 

(±0.03) using a 3.10Å cut-off. Details of the other correlations in the ACl glass models are 

provided in table 20. The large Si-Cl nearest neighbour distances showed a lack of Si-Cl 
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bonding. The shorter Ca-Cl nearest neighbour distances revealed that chlorine ions bond 

with calcium ions. The changing shape of the Ca-Ca pair correlation function (figure 17) 

with increasing CaCl2 contributions helps visualise the significant changes in Ca-Ca nearest 

neighbour distance.   

Table 20: Nearest neighbour distance (Rij) and coordination number (Nij(r)) values for the Ca-Cl, 

Cl-Cl, Cl-O, Ca-Ca, and Si-Cl correlations in the ACl models. Cut-off distances of 3.70Å, 4.90Å, 4.70Å, 

5.25Å, and 5.65Å were applied to obtain the coordination number values respectively. 

 Ca-Cl Cl-Cl Cl-O Ca-Ca Si-Cl 

y 
Rij (Å) 

 ±0.01 

Nij(r) 

±0.05 

Rij (Å) 

±0.05 

Nij(r) 

±0.10 

Rij (Å) 

±0.10 

Nij(r) 

±0.10 

Rij (Å) 

±0.05 

Nij(r) 

±0.05 

Rij (Å) 

±0.10 

Nij(r) 

±0.10  

1.3 2.82 0.22 3.38 0.67 3.76 15.66 3.90 7.73 4.54 0.54 
4.0 2.80 0.64 3.46 1.89 3.77 13.94 3.96 7.84 4.58 1.53 
5.6 2.79 0.86 3.55 3.01 3.75 12.51 4.01 8.04 4.60 1.95 
8.9 2.78 1.30 3.57 5.11 3.75 9.63 4.13 8.12 4.58 2.47 

12.1 2.78 1.66 3.59 5.81 3.77 8.43 4.37 8.17 4.59 3.05 
20.6 2.78 2.43 3.64 7.80 3.77 5.46 4.48 8.36 4.58 3.78 
25.1 2.78 2.79 3.68 7.89 3.79 5.22 4.51 8.41 4.66 4.81 
32.3 2.78 3.30 3.68 8.66 3.79 4.15 4.56 8.61 4.68 5.55 
39.8 2.77 3.79 3.68 8.89 3.80 3.76 4.60 8.76 4.68 7.10 

 

 

Figure 17: The Ca-Ca pair correlation functions for the ACl glass models. 

6.4.3  Structure Factors 

As shown in figure 18, the calculated total neutron and X-ray structure factors for the ACl 

glass series exhibited distinct changes in shape with increasing CaCl2 content. This was 

predominantly caused by changes in the O-O, Cl-O, and Cl-Cl partial structure factors. The 

sharp vertical lines at low values of Q (illustrated to the right of figure 18) were indicative of 

phase separation and were first observed around y=12.1.  



120 
 

 
Figure 18: Simulated total X-ray (Sx(Q)) and neutron (SN(Q)) structure factor spectra for the ACl 

compositions in table 17. The plots to the left cover scattering vector magnitudes (Q) from 0Å-1 to 
10Å-1, while the plots to the right cover Q values from 0.17Å-1 to 0.60Å-1. The plots are 

progressively offset from y=1.3 by 0.1 upwards.  

6.4.4  Silicon Network Connectivity 

The silicon network connectivity (Qn) distributions for the ACl series are quantified in table 

21. A rise in the number of Q0 and Q1 species, and fall in the number of Q2, Q3, and Q4 

species (as illustrated in figure 19) caused the average Qn values in the glass models to 

decline. The average Qn values were also predicted using the equation n=-2a+8, where the 

terms ‘n’ and ‘a’ are the connectivity and O:Si ratio (excluding free oxygens) respectively. 

The average and predicted Qn values were in close agreement. The most noticeable change 

in Qn occurred between the y=12.1 and the y=20.6 compositions.  

Table 21: The Qn distributions for each of the ACl glass compositions. The average and predicted 
Qn values are also stated. The uncertainty in the average Qn values was ±2%.  

y Si atoms Q0 (%) Q1 (%) Q2 (%) Q3 (%) Q4 (%) Average Qn Predicted Qn 

1.3 1936 1.96 25.57 52.17 18.44 1.86 1.93 1.92 

4.0 1868 2.52 26.55 50.96 19.06 0.91 1.89 1.89 

5.6 1812 2.43 31.51 48.12 16.11 1.82 1.83 1.83 

8.9 1764 2.95 27.66 49.60 18.82 0.96 1.87 1.87 

12.1 1676 3.34 31.38 47.20 16.59 1.49 1.82 1.81 

20.6 1452 5.72 38.09 42.70 12.74 0.76 1.65 1.65 

25.1 1332 8.48 39.64 42.12 9.23 0.53 1.54 1.54 

32.3 1140 14.30 44.39 36.32 4.74 0.26 1.32 1.32 

39.8 940 24.79 48.30 22.45 4.47 0.00 1.07 1.07 
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Figure 19: The Qn distribution for the ACl glass series. 

6.5 Discussion 

In this chapter, the QCl and ACl glass compositions were modelled computationally using 

classical molecular dynamics with the addition of the adiabatic core-shell model. The Si-Cl 

nearest neighbour distances of ~4.6Å established an absence of Si-Cl bonding. The shorter 

Ca-Cl nearest neighbour distances of ~2.8Å (tables 18 and 20) elucidated that chlorine ions 

bond with calcium ions. Both the QCl and ACl glass models (figures 8 and 14) were seen to 

become phase separated with increasing CaCl2 content to form biphasic systems. For the 

QCl series, these two phases were CaSiO3 and CaCl2. As discussed in the previous chapter, 

the ACl series contained excess CaO (figure 20). This was because the ACl series had 

exhibited losses due to chlorine volatilisation as HCl. As a consequence, the two phases 

were a calcium silicate phase and a CaCl2 phase. Phase separation was first identified 

between x=16.1 and x=27.4 in the QCl series, and between y=12.1 and y=20.6 in the ACl 

series. Experimentally, Chen [1] observed a change in the linear relationship of density, 

molar volume, and first crystallisation temperature with increasing CaCl2 content between 

x=16.1 and x=27.4 in the QCl series.  
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Figure 20: Ternary plot showing the QCl and ACl glass compositions.   

Not only was phase separation evident in the glass model images, but it was also apparent 

in the pair correlation functions. The Ca-Ca pair correlation functions exhibited a distinct 

change in shape with increasing CaCl2 content (figures 11 and 17). This was because 

calcium was present in both phases of the QCl glass series, and in both phases of the ACl 

glass series. When the glasses contained small amounts of CaCl2, the calcium silicate phase 

dominated. This caused the Ca-Ca nearest neighbour distances (3.90Å) to be comparable to 

those in crystalline CaSiO3 (3.65Å [15]). As the CaCl2 contribution increased (4.60Å), the 

CaCl2 phase gained dominance. Consequently, the Ca-Ca nearest neighbour distances 

increased to become more comparable to those in crystalline CaCl2 (4.20Å [31]). The 

difference in Ca-Ca nearest neighbour distance between the crystal structures and the glass 

models was in part caused by the structural disorder in the glasses. Further differences 

were caused by accounting for the asymmetry in the Ca-Ca pair correlation functions when 

determining the values of nearest neighbour distance. The differences would have been 

reduced by not taking the asymmetry of the Ca-Ca pair correlation function into account. 

In addition to the Ca-Ca nearest neighbour distances increasing with growing CaCl2 

contributions, the Cl-Cl nearest neighbour distances also increased. This was despite the 

increasing proportion of calcium and chlorine ions. This was indicative of a tendency 

towards phase separation, even in the glass models containing small amounts of CaCl2. 

Figures 21 and 22 below show the pair correlation functions involving chlorine ions in the 

QCl and ACl series respectively. The corresponding average pair correlation function values 

expected at a relatively large distance of 10Å have been added as dots for reference. Each 

of the Ca-Cl pair correlation functions passes through the corresponding dot because 

calcium is present in both phases of the glass. However, while the Cl-Cl pair correlation 

functions have an increasing tendency to surpass the expected average pair correlation 

function values, the Si-Cl and O-Cl pair correlation functions seem to increasingly 
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underestimate the expected average pair correlation function values. This is due to chlorine 

ions becoming increasingly concentrated in the CaCl2 phase, while the silicon and oxygen 

ions become increasingly concentrated in the calcium silicate phase. Therefore, the pair 

correlation functions involving chlorine can be used to more closely identify when phase 

separation first occurs. For the QCl and ACl series, deviations from the expected average 

pair correlation function values were first observed in the x=6.6 and y=8.9 models 

respectively. This finding indicates that the higher proportion of CaO in the ACl glasses 

slows the proliferation of phase separation. 

 

Figure 21: The Si-Cl, O-Cl, Cl-Cl, and Ca-Cl pair correlation functions for the QCl series. Dots 
corresponding to the expected average pair correlation function values at a distance of 10Å have 

been added.  
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Figure 22: The Si-Cl, O-Cl, Cl-Cl, and Ca-Cl pair correlation functions for the ACl series. Dots 
corresponding to the expected average pair correlation function values at a distance of 10Å have 

been added. 

The x=33.5 and y=32.3 phase separated models provide a point of close comparison 

between the two glass series. Through comparing their Ca-Ca pair correlation functions in 

figures 11 and 17 respectively, it can be seen that the x=33.5 model is more phase 

separated than the y=32.3 model. The x=33.5 model is also more phase separated than the 

y=39.8 model (which contains more CaCl2). This confirms that the higher CaO content in the 

ACl glass series slows the proliferation of phase separation. This is caused by the excess 

CaO disrupting the silicate network. As shown in figure 23, the silicon network connectivity 

(Qn) distributions differed greatly between the QCl and ACl series. While the average Qn 

values in the QCl series were close to 2.00, the average Qn values in the ACl series 

continually declined with increasing CaCl2 content. Furthermore, the Si-Si coordination 

numbers (which relate to the corner sharing of SiO4 tetrahedra) for the QCl series increased 

modestly from 2.01 to 2.06 (±0.02), while a sharp decrease from 1.94 to 1.07 (±0.02) was 

observed in the ACl series with increasing CaCl2 content.  
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Figure 23: A comparison of the average Qn values in the ACl and QCl glass models. The uncertainty 

in the average Qn values is ±2%.  

After identifying the presence of phase separation in the computational models, it is of 

interest to quantify its scale. The scale of the phase separated regions in the QCl and ACl 

glass models can be approximated from the computed total structure factors according to 
2π

Q
, where Q is the magnitude of the scattering vector. Based on the Q range of 0.2Å-1 to 

0.6Å-1 in the total structure factors (vertical lines shown to the right of figures 12 and 18), 

the scale of phase separation was on the order of 10Å to 30Å. However, simulation cell side 

lengths of up to only 60Å were used in this work. The limited system sizes that can be 

modelled computationally are insufficient to determine the actual scale of phase 

separation. Small angle neutron or small angle X-ray scattering experiments (SANS and 

SAXS respectively) may be appropriate for determining the scale of phase separation. 

6.6 Conclusion 

To help elucidate the structure of complex chlorine-containing bioactive glasses, it is first 

important to comprehend less complex systems. This chapter investigated the structure of 

CaO-SiO2-CaCl2 glasses computationally using classical molecular dynamics with the 

addition of the adiabatic core-shell model for the first time. Chlorine ions were found to 

bond with calcium ions and no Si-Cl bonding was observed. By increasing the CaCl2 content 

in the glass models, the models became phase separated to form biphasic systems. The 

two phases included a calcium silicate phase and a CaCl2 phase. By studying the pair 

correlation functions involving chlorine ions, it was evident that there was a tendency 

towards phase separation, even in models containing small amounts of CaCl2. The excess 

CaO in the ACl glass series disrupted the silicate network and slowed the proliferation of 

phase separation.  
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7. An Experimental Investigation of 
the Structure of CaO-SiO2-CaF2 

Glasses  

7.1 Introduction 

The archetypal bioactive glass 45S5 (26.91CaO-46.13SiO2-24.35Na2O-2.60P2O5 in mol%) 

was developed by Larry Hench in the 1960’s [1]. Since then, numerous bioactive glass 

compositions have been synthesised to fulfil a number of applications. More recently, the 

addition of CaF2 into a bioactive glass composition has been found to be beneficial for 

dental applications. Through inhibiting both bacterial enzymes and demineralisation, and 

encouraging remineralisation, fluorine-containing bioactive glasses help prevent tooth 

decay and dentine hypersensitivity [2]–[6]. The addition of CaF2 has also been found to 

increase the bioactivity of the glass and to decrease its hardness [7]. Decreasing the 

hardness of the glass is crucial for making the glass less abrasive and so more suitable for 

dental applications.  

Currently however, the structure of fluorine-containing bioactive glasses remains 

controversial, and in particular the structural role of fluorine is unclear. In a 19F and 29Si 

magic angle spinning nuclear magnetic resonance (MAS-NMR) study by Brauer et al. [8], 

detectable amounts of Si-F bonding were not observed and it was concluded that fluorine 

ions only bond with calcium ions. However, Pedone et al. [9] reported that Si-F bonding 

cannot be resolved using MAS-NMR experiments. It would be necessary to have a complete 

structural understanding of fluorine-containing bioactive glasses in order to comprehend 

both their degradation and ion-release mechanisms, and to ultimately realise their 

applications [9].  

Fluorine-containing bioactive glasses such as those synthesised by Brauer et al. (e.g.[8], 

[10], [11]) are typically quinary CaO-SiO2-P2O5-Na2O-CaF2 glasses, although the presence of 

Na2O is not essential [12], [13]. In addition, bioactive glasses often only contain small 

amounts of P2O5. Brauer et al. [8], [10] for example used between 0.72 and 1.07 mol% P2O5. 

This is because P2O5 has a limited solubility in the silicate glass network. Continuing to 

increase the P2O5 concentration would ultimately lead to the devitrification of the glass 

[14]. Hence, in order to understand the structure of complex CaO-SiO2-P2O5-Na2O-CaF2 

glasses, it is intuitive to first consider the structure of less complex SiO2-CaO-CaF2 glasses.  
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Ternary CaO-SiO2-CaF2 glasses have predominantly been studied for mould flux applications 

during the continuous casting of steel. Despite numerous studies, the structure of these 

SiO2-CaO-CaF2 glasses remains unclear, and conclusions on whether fluorine coordinates 

with silicon are contradictory [15]. Hayashi et al. [16] summarises these conflicting 

conclusions. The first is that Si-F bonding is dependent on the basicity of the glass. For 

acidic glasses, the addition of CaF2 causes Si-F bonding, while basic glasses do not contain 

any Si-F bonding [17], [18]. The second is that fluorine ions preferentially bond with silicon 

ions when CaF2 contents are less than around 15mol%, and bonds with calcium ions for 

higher contents [18], [19]. The last contradiction is that Si-F bonding is not observed [20], 

[21]. In a later study, Watanabe et al. [22] also concluded that Si-F bonding is not observed 

and suggested the formation of clusters of Ca and F ions.  

In this chapter, the structure of ternary CaO-SiO2-CaF2 glasses is explored experimentally. 

This is to help elucidate the structural role of fluorine in both CaO-SiO2-CaF2 glasses and in 

more complex fluorine-containing bioactive glass compositions. The work begins by 

synthesising a CaO-SiO2-CaF2 glass series and characterising the composition and density of 

the samples. Well-defined CaO-SiO2-CaF2 glass compositions and densities are not currently 

available in the literature and would be essential for modelling CaO-SiO2-CaF2 glasses 

computationally. Further laboratory-based measurements include 29Si and 19F solid-state 

magic-angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR), and 

differential scanning calorimetry (DSC) measurements. The results of central facility 

neutron diffraction (ND) and extended absorption fine structure (EXAFS) experiments are 

then detailed. To the author’s knowledge there are no previous reports of CaO-SiO2-CaF2 

glasses being studied using ND or EXAFS techniques.  

7.2 Glass synthesis 

The nominal CaO-SiO2-CaF2 glass series (denoted as GF) synthesised in this work is 

presented in table 1. It was desirable for the nominal compositions to be analogous to the 

nominal CaO-SiO2-CaCl2 compositions so comparisons could later be made. However, it was 

anticipated that the number of samples would not be as extensive as the chlorine-

containing samples due to the tendency for CaF2 to crystallise with increasing CaF2 content 

[14]. A GF27.4 composition is therefore not included in table 1, but two further 

compositions (GF19.0 and GF21.0) are included instead.  
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Table 1: The nominal GF glass series synthesised in this study (in mol%). 

Sample CaF2 CaO SiO2 

GF3.3 3.3 48.4 48.4 

GF6.6 6.6 46.7 46.7 

GF9.3 9.3 45.3 45.3 

GF11.9 11.9 44.1 44.1 

GF19.0 19.0 40.5 40.5 

GF21.0 21.0 39.5 39.5 

 

The glass series in table 1 is illustrated on a ternary phase diagram in figure 1. According to 

the molar concentration of each nominal composition, 150g of reagents (SiO2, CaF2 and 

CaCO3) were mixed using an agate pestle and mortar for 30 minutes. The mixed reagents 

were then placed into a platinum-rhodium crucible and melted in a pre-heated furnace at 

between 1540°C and 1570°C (table 2) for 1 hour. The furnace temperatures exceeded the 

melting temperatures reported by Watanabe et al. [23] in order to promote melting and 

mixing. After melting, some of the melt was splash-quenched between steel plates and 

used for analysis. The excess was quenched in water and used for yield calculations before 

being discarded. The highly amorphous nature of the samples was verified using powder X-

ray diffraction (PXRD), although insignificant peaks around 2𝜃=27° corresponding to 

crystalline SiO2 were observed, as shown in figure 2. To verify the homogeneity of the glass 

samples, the Raman spectra attained from multiple glass chips of each sample (whose 

nominal compositions contained equal proportions of SiO2 and CaO) were compared with 

the Raman spectra reported by Luth et al. [20] for 50SiO2-50CaO (equal proportions of SiO2 

and CaO), 54.29SiO2-45.71CaO (SiO2 rich), and 43.67SiO2-56.33CaO (CaO rich) glasses.  

Figure 1: Phase diagram for CaO-SiO2-CaF2-SiF4 systems reported by Watanabe et al. [23] with the 

addition of blue points representing the nominal GF series. 
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 Table 2: The reagent combinations for each GF glass sample along with the corresponding melting 
temperatures, furnace temperatures, and the percent yields achieved. The errors in the percent 

yield values were based on 0.5g of unaccounted mass. 

 
SiO2  

±0.01(g) 
CaCO3  

±0.01(g) 
CaF2  

±0.01(g) 
Melting temp  

(°C) 
Furnace temp   

±1(°C) 
Percent yield  

(%) 

GF3.3 54.46 90.71 4.83 1515 1570 98.96±0.46 

GF6.6 52.64 87.69 9.67 1450 1565 99.22±0.45 

GF9.3 51.16 85.21 13.63 1400 1560 98.76±0.45 

GF11.9 49.72 82.82 17.45 1360 1555 99.25±0.45 

GF16.1 47.40 78.96 23.64 1300 1550 98.83±0.43 

GF19.0 45.80 76.29 27.92 1250 1545 99.34±0.43 

GF21.0 44.69 74.44 30.87 1173 1540 98.60±0.44 

 

 
Figure 2: The powder X-ray diffraction spectra for the GF glass series. 

7.3 Compositional Analysis 

The volatile nature of halides can not only make halide retention challenging, but can also 

significantly alter the glass composition [24]. It is therefore important that the actual glass 

compositions are established. A number of compositional analysis techniques for fluorine-

containing oxide glasses have been reported in the literature. They include X-ray 

photoelectron spectroscopy (XPS) (e.g. [21]), scanning electron microscopy with an energy 

dispersive spectrometer (SEM-EDS) (e.g. [25]), pyrohydrolysis (PH) (e.g. [26]), the use of an 

ion-selective electrode (ISE) (e.g. [26], [27]), electron probe microanalysis (EPMA) (e.g. [16], 

[22]), and solid-state MAS-NMR (e.g. [26], [28]–[30]). The latter is the most commonly 

reported technique. 

For this work, 19F MAS-NMR spectra were obtained by Dr David Apperley at the EPSRC UK 

National Solid-State NMR Service at Durham. Sample preparation involved grinding small 
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amounts of each sample (~250mg) into a fine powder using an agate pestle and mortar. In 

order to later quantify the fluorine content of each glass, a number of standard samples 

were also prepared. These were combinations of SiO2 and CaF2 reagents that had been 

thoroughly mixed using an agate pestle and mortar with ethanol. The spectra were 

recorded at a frequency of 376.59MHz using a Bruker Avance III HD spectrometer and a 

3.2mm magic-angle spinning probe. Measurements were carried out using an ambient 

probe temperature of 298K. The sample spin rate was 20kHz and a total of 16 scans were 

collected for each sample using direct excitation where the pulse duration was 2.9µs. The 

spectral width was 300kHz and the acquisition time was 3.4ms. Chemical shift values are 

reported with respect to trichlorofluoromethane (CFCl3). 

By plotting the intensity of the NMR signal for the standard samples as a function of the 

number of fluorine atoms per milligram, a calibration line could be set as shown in figure 3. 

By comparing the GF glass samples to the calibration line, insight into the fluorine losses 

could be established. While most of the GF glasses were within the uncertainty range of the 

calibration line (figure 3), it was evident from the lower intensity values that the samples 

had undergone some losses via fluorine volatilisation. However, determining how these 

fluorine losses occurred was challenging due to 19F MAS-NMR being sensitive to fluorine 

only.  

 

Figure 3: Solid state 19F MAS-NMR results for the GF series and a number of standard SiO2-CaF2 
mixtures. A linear trend line through the standards forms a calibration line. Uncertainty in the 19F 

MAS-NMR results was calculated based on the errors in the mass, the intensity, and the 
reproducibility. 

In a study by Watanabe et al. [22] where EPMA was used to quantify the composition of a 

xCaF2-(100-x)(CaO∙SiO2) glass series, it was found that the CaO content was persistently 

higher than the nominal content. This suggests fluorine loss via HF (as 

CaF2+H2O→2HF+CaO). For some compositions in the series, the SiO2 content was lower 

than expected, perhaps indicating losses via SiF4. However, for other compositions, the SiO2 
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content was higher than expected. In addition, Brauer et al. [27] used an ion selective 

electrode for the compositional analysis of a fluorine-containing bioactive glass series 

where the CaF2 content ranged from 0mol% to 17.76mol%. The measured CaO content was 

higher than the nominal content, and it was concluded that fluorine losses occurred as HF. 

It was therefore assumed in this work that fluorine losses via fluorine volatilisation only 

occur as HF. 

To further examine the losses due to fluorine volatilisation, the results of yield calculations 

(following the synthesis of the glass samples) were considered. It can be seen in table 3 

that the fluorine losses based on the 19F MAS-NMR and yield calculations are generally in 

fair agreement. The exceptions are GF3.3 and GF21.0. This could be because the GF3.3 

composition contained the least amount of CaF2 and so was more susceptible to higher 

proportions of fluorine loss. Immediately following splash-quenching, all of the glasses 

underwent some spontaneous glass breakage which may have led to the loss of some glass 

chips. Since the GF21.0 glass chips were substantially thicker than the others due to the 

melt being more viscous, the sample was more susceptible to the loss of some glass. Based 

on the compositional analysis and in particular the assumed F losses, the revised 

compositions of the GF glass series are presented in table 4. The differences between the 

nominal and the revised compositions can be visualised in the ternary plot in figure 4. 

Table 3: The percentage of fluorine losses as identified from 19F MAS-NMR and from yield 
calculations where all mass loss was attributed to HF losses. Uncertainty in the NMR results was 

calculated based on the errors in the mass, the intensity, and the reproducibility. The errors in the 
%yield calculations were based on 0.5g of losses. 

 NMR (%) Percent yield (%) Assumed F losses (%) 

GF3.3 32 ± 83 63 ± 24 40 

GF6.6 24 ± 42 25 ± 11 25 

GF9.3 23 ± 31 28 ± 7 25 

GF11.9 11 ± 23 13 ± 6 10 

GF16.1 13 ± 18 15 ± 5 10 

GF19.0 7 ± 15 7 ± 4 10 

GF21.0 -2 ± 13 13 ± 3 10 

 

Table 4: The revised compositions for the GF glass series in mol%. 

 SiO2 CaO CaF2 

GF2.0 48.4 49.7 2.0 

GF5.0 46.7 48.3 5.0 

GF7.0 45.4 47.7 7.0 

GF10.7 44.1 45.3 10.7 

GF14.5 42.0 43.6 14.5 

GF17.1 40.5 42.4 17.1 

GF18.9 39.5 41.6 18.9 
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Figure 4: Ternary plot comparing the nominal GF series (blue squares) and the revised GF series 

(green circles). 

7.4 Glass Characterisation 

7.4.1  Density 

Density measurements were performed using helium pycnometry. As shown in figure 5, 

the density values form a linear trend and typically have values higher than those reported 

for the xCaF2-(100-x)(CaO∙SiO2) glass series synthesised by Susa et al. [15]. This could be 

because Susa et al. [15] only used the nominal glass compositions and did not take any 

potential losses into account. Watanabe et al. [22] reported inconsistent density values for 

a xCaF2-(100-x)(CaO∙SiO2) glass series. A CaSiO3 glass density value of 2.895g/cm3 reported 

by Fokin et al. [31] was in good agreement with the density trend in this study.   
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Figure 5: The glass density values attained in this work compared with those reported by Susa et 
al. [15], Watanabe et al. [22] ,and Fokin et al. [31]. Error bars of ±0.004g/cm3 were reported by 

Susa et al., but Watanabe et al. and Fokin et al. did not specify uncertainties. Two standard 
deviations were taken to be the uncertainty in this study. 

7.4.2  Solid-State MAS-NMR 

NMR spectra can contain information regarding the local atomic environment of elements. 

In addition to the 19F solid-state MAS-NMR spectra detailed in section 7.3, 29Si solid-state 

MAS-NMR spectra were also collected by Dr. David Apperley at the EPSRC UK National 

Solid-State NMR service at Durham. The 29Si MAS-NMR spectra were recorded at a 

frequency of 79.50MHz using a Bruker Avance III HD spectrometer and a 3.2mm magic-

angle spinning probe. Measurements were carried out using an ambient probe 

temperature of 298K. The sample spin rate was 6kHz and direct excitation measurements 

were recorded. The pulse duration was 6.00µs, the spectral width was 29.8kHz, and the 

acquisition time was 8.6ms. The number of repeat measurements ranged from 140 to 308. 

Chemical shift values were reported with respect to neat tetramethylsilane (TMS). 

Changes to the 29Si MAS-NMR chemical shift positions were minimal with increasing 

fluorine concentrations. For example, the chemical shift was 80.2±0.5ppm in GF2.0 and 

80.1±0.5ppm in GF18.9. This suggests that the silicon environment does not change with 

increasing CaF2 contributions. In contrast, the position of the 19F MAS-NMR chemical shift 

did become more negative with increasing fluorine contributions as shown in figure 6 and 

table 5.  
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Figure 6: The normalised 19F MAS-NMR spectra for the GF glass series relative to CFCl3.  

Table 5: The 19F MAS-NMR chemical shift positions for the GF glass series relative to CFCl3. The 
uncertainty is ±0.5ppm. 

 Chemical Shift (ppm) 

GF2.0 -92.0 

GF5.0 -93.9 

GF7.0 -95.0 

GF10.7 -95.1 

GF14.5 -97.0 

GF17.1 -97.6 

GF18.9 -98.0 

 

7.4.3  Differential Scanning Calorimetry 

The glass transition temperature, Tg, can provide insight into both the degradation rate [8] 

and the hardness of a glass [32], and can be established using differential scanning 

calorimetry (DSC). The DSC measurements were performed by placing around 35mg of 

powdered glass sample into an alumina crucible which was then heated from room 

temperature to 1173K at a rate of 10K per minute in air. The onset of deviation in the DSC 

curve could be used to identify the glass transition temperature. As shown in figure 7, Tg 

decreased linearly with increasing CaF2 content.  
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Figure 7: The glass transition temperatures for the GF glass series as a function of increasing CaF2 

content. The uncertainty is ±5°C. 

7.4.4  Neutron Diffraction 

For neutron diffraction measurements, approximately 9g of each sample was ground into 

coarse glass chips before being used to fill cylindrical vanadium cans. The cans had an 

internal diameter of 10.3mm and were made of vanadium foil which was 40µm thick. 

Measurements were then performed using the GEM diffractometer at the ISIS neutron 

spallation source at the Rutherford Appleton Laboratory in Oxfordshire. In addition to 

sample measurements, data was also collected for an empty 10.3mm vanadium can, for an 

8mm vanadium niobium rod (94.86% V: 5.14% Nb), and for the empty GEM diffractometer. 

This was to enable corrections to the sample data following the experiment using the 

programs Gudrun [33] and Open GENIE [34]. 

After correcting the experimental data, it can be seen in figure 8 that the total neutron 

structure factors display subtle changes with increasing fluorine contributions. Similarly, 

there are subtle changes in the total correlation functions in figure 9 which were attained 

by Fourier transforming the total neutron structure factors using a Lorch window function 

with a maximum Q value of 50Å-1. Although challenging to see, there is a small non-zero 

contribution in each of the total correlation functions around 1.9Å, which could only be 

explained by an Al-O correlation. Following X-ray fluorescence (XRF) measurements on the 

reagents used to make the glass series, it was established that the SiO2 reagent contained 

some Al2O3 impurity. 
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Figure 8: The total neutron structure factors for the GF glass series. The plots to the right have 

been progressively offset by 0.1. Although the data range extends to 50Å-1, the plot to the left and 
right extends to 15Å-1 and 30Å-1 respectively so differing features of the structure factors can be 

identified. 

 

Figure 9: The total correlation functions for the GF glass series where the plots to the right have 
been progressively offset by 1Å-2. The plots shown only extend to 5Å so differing features of the 

total correlation functions can be identified. 

To obtain structural information from the total correlation functions including nearest 

neighbour distances, Rij, coordination numbers, Nij, and values of σij, the program NXFit [35] 

was used. This involved fitting peaks to the data in accordance with the input and restraint 

parameters specified. Initially, the uniform input parameters in table 6 were used. To 

account for the Al2O3 impurity, it was assumed that Al2O3 made up 1mol% of the SiO2 

content. 
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Table 6: The uniform input and restraint parameters used to fit the ND data. The fitting range was 
1.50Å to 2.74Å and 10,000 iterations were used.  

 Input parameters Restraint parameters 

 Rij (Å) Nij σij (Å) Rij (Å) Nij σij (Å) 
Si-O 1.62 4.00 0.06 0.01 0.05 0.01 
Al-O 1.88 6.00 0.07 0.03 0.10 0.01 
Ca-F 2.28 1.00 0.11 0.03 1.00 0.02 
Ca-O 2.38 5.00 0.15 0.03 1.00 0.02 
O-O 2.66 4.05 0.09 0.03 0.20 0.03 

 

Examples of fits to the experimental data based on the parameters in table 6 are shown in 

figure 10. These include the fits for the end member compositions and a middle 

composition (GF2.0, GF10.7, and GF18.9). Although the fits appear reasonable, the 

challenging nature of distinguishing overlapping Ca-F and Ca-O peaks is apparent. For 

example, it is expected that the Ca-F peak would be small for compositions of low fluorine 

content, and increase with increasing fluorine content. However, figure 10 shows that the 

fitting gives Ca-F peaks with similar areas, despite great differences in fluorine content.  
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Figure 10: Examples of fits to experimental neutron diffraction data following the refinement of 

the uniform input parameters in table 6.  

The output parameters attained from fitting the experimental data using the input and 

restraint parameters in table 6 are given in table 7. Details for the Si-O and Al-O 

correlations are not included since they underwent minimal change. The Si-O nearest 

neighbour distance was 1.61-1.63Å (±0.01Å), the coordination number was 3.95±0.1, and 

the value of sigma was 0.06±0.01Å. The Al-O nearest neighbour distance was 1.87-1.90Å 

(±0.05Å), and the coordination number and sigma values were 5.90-6.09 (±1.00) and 

0.06±0.02Å respectively. It can be seen in table 8 that the Ca-O and O-O coordination 

numbers gradually increased with increasing fluorine contributions, while the Ca-F 

coordination numbers did not show any consistent trend.  
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Table 7: The output fit parameters for the GF series following the use of the uniform input and 
restraint parameters in table 6. The uncertainty in RCa-F, RCa-O, and RO-O is ±0.02Å, ±0.01Å, and 

±0.01Å respectively. The uncertainty in NCa-F, NCa-O, and NO-O is ±1.00, ±1.00, and ±0.20 respectively. 
The uncertainty in σCa-F, σCa-O, and σO-O is ±0.02Å, ±0.01Å, and ±0.01Å respectively.  

Sample Fit index Correlation Rij (Å) Nij σij (Å) 

GF2.0 0.37 Ca-F 2.30±0.02 1.24 0.09 
  Ca-O 2.41±0.01 4.33 0.15 
  O-O 2.66±0.01 4.23 0.10 

GF5.0 0.29 Ca-F 2.30±0.02 1.34 0.09 
  Ca-O 2.41±0.01 4.47 0.16 
  O-O 2.67±0.01 4.24 0.10 

GF7.0 0.43 Ca-F 2.28±0.02 1.20 0.09 
  Ca-O 2.41±0.01 4.67 0.15 
  O-O 2.67±0.01 4.24 0.10 

GF10.7 0.30 Ca-F 2.29±0.02 1.24 0.09 
  Ca-O 2.41±0.01 4.95 0.16 
  O-O 2.67±0.01 4.25 0.10 

GF14.5 0.40 Ca-F 2.29±0.02 1.30 0.09 
  Ca-O 2.41±0.01 5.00 0.16 
  O-O 2.67±0.01 4.25 0.09 

GF17.1 0.40 Ca-F 2.29±0.02 1.21 0.09 
  Ca-O 2.41±0.01 5.31 0.16 
  O-O 2.68±0.01 4.25 0.09 

GF18.9 0.39 Ca-F 2.29±0.02 1.22 0.09 
  Ca-O 2.41±0.01 5.50 0.16 
  O-O 2.67±0.01 4.25 0.09 

 

In an attempt to overcome the difficulty of attaining the areas of the overlapping Ca-F and 

Ca-O peaks, the input and restraint parameters for the Ca-F, Ca-O, and O-O coordination 

numbers were varied for each composition. The varying input parameters were based on 

the computational modelling results for the glass series which are presented in the 

following chapter. The restraint parameters for the Ca-F and Ca-O coordination numbers 

were 10% and 5% of the input parameter values respectively. The restraint on the O-O 

coordination number remained 0.20 as before.  

 

It can be seen in figure 11 that the area of the Ca-F peaks now increases with increasing 

fluorine content as anticipated. In addition, the area of the Ca-O peak decreases with 

increasing fluorine contributions due to the reducing oxygen content as expected. 

However, as quantified in table 8, the fit indexes are generally not as good as those in table 

7 (where uniform input and restraint parameters were used). The output parameters for 

the Si-O and Al-O correlations were not provided in table 8 as variation was minimal. The 

Si-O nearest neighbour distances, coordination numbers, and sigma values were 

1.62±0.01Å, 3.95-3.98 (±0.10), and 0.06±0.01Å respectively. The Al-O nearest neighbour 

distances, coordination numbers, and sigma values were 1.88-1.90Å (±0.05Å), 5.91-6.10 
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(±1.00) and 0.06-0.07Å (±0.02Å) respectively. These values did not differ significantly from 

those obtained in the previous fitting. 

 
Figure 11: Examples of fits to experimental neutron diffraction data following the refinement of 

non-uniform input parameters. 
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Table 8: The output fit parameters for the GF series following the use of the non-uniform input 
parameters and restraints. The uncertainty in RCa-F, RCa-O, and RO-O is ±0.02Å, ±0.01Å, and ±0.01Å 
respectively. The uncertainty in NCa-F, NCa-O, and NO-O is ±1.00, ±1.00, and ±0.20 respectively. The 

uncertainty in σCa-F, σCa-O, and σO-O is ±0.02Å, ±0.01Å, and ±0.01Å respectively. 

Sample Fit index Correlation Rij (Å) Nij σij (Å) 

GF2.0 0.60 Ca-F 2.28 0.24 0.09 
  Ca-O 2.39 5.63 0.15 
  O-O 2.67 4.06 0.09 

GF5.0 0.40 Ca-F 2.29 0.62 0.09 
  Ca-O 2.40 5.37 0.15 
  O-O 2.67 4.10 0.10 

GF7.0 0.47 Ca-F 2.29 0.87 0.09 
  Ca-O 2.40 5.22 0.16 
  O-O 2.67 4.17 0.10 

GF10.7 0.30 Ca-F 2.30 1.22 0.09 
  Ca-O 2.41 5.01 0.16 
  O-O 2.67 4.25 0.10 

GF14.5 0.43 Ca-F 2.30 1.46 0.09 
  Ca-O 2.41 4.82 0.16 
  O-O 2.67 4.25 0.09 

GF17.1 0.51 Ca-F 2.31 1.63 0.09 
  Ca-O 2.41 4.84 0.17 
  O-O 2.67 4.25 0.09 

GF18.9 0.57 Ca-F 2.31 1.79 0.10 
  Ca-O 2.41 4.70 0.17 
  O-O 2.67 4.25 0.09 

 

7.4.5  X-ray Absorption Spectroscopy 

An X-ray absorption spectroscopy (XAS) experiment was carried out on the GF glass series 

using beamline B18 at the Diamond Light Source synchrotron facility at the Rutherford 

Appleton Laboratory in Oxfordshire. Sample preparation involved finely grinding small 

amounts of each sample using an agate pestle and mortar. Approximately 4mg of each 

sample was then mixed with 50mg of powdered polyvinylpyrrolidone (PVP) before being 

pressed into a 13mm pellet. Crystalline standard samples including CaF2, CaCO3, and CaSiO3 

were also mixed with PVP to form pellets in the same manner. Spectra for all samples were 

collected around the calcium K-edge at 4038eV [36] in transmission mode using a double 

crystal Si(111) monochromator. Ionisation chambers measured the incident, the 

transmitted, and the reference X-ray intensity. The energy of the incident X-ray beam was 

calibrated using titanium foil (4966eV [36]). A CaCO3 reference pellet was prepared to 

monitor the energy drift of the beam during the experiment. However, the high level of X-

ray absorption meant that the reference spectra were noisy and had an uncertainty of 

0.2eV. Instead, the three crystalline standard samples (CaF2, CaCO3, and CaSiO3) were 

measured throughout the experiment in order to detect any drift in beam energy with an 
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uncertainty of 0.02eV. Following the experiment, the programs Athena [37] and Artemis 

[37] were used to analyse the data.  

7.4.5.1  X-ray Absorption Near-Edge Structure 

It is often useful to compare the X-ray absorption near-edge structure (XANES) spectra of 

crystalline standards to those reported in literature to help validate experimental results. 

By comparing the crystalline calcite (CaCO3) XANES spectra from this work to the spectra 

reported by Hormes et al. [38] in figure 12, very good agreement can be seen. The value of 

E0 was 4047.55eV. A pre-edge range of -100eV to -10eV, a normalisation range of 150eV to 

650eV, and an Rbkg value of 1.0 was used.  

 
Figure 12: The crystalline CaCO3 XANES spectra around Ca K-edge from this work and from Hormes 

et al. [38]. 

The XANES spectra for the GF glass series are shown to the left of figure 13, where the 

value of E0 is 4043.00eV. A pre-edge range of -100eV to -10eV, a normalisation range of 

150eV to 650eV, and an Rbkg value of 1.0 was applied to all samples. In order to examine 

the possibility of small spectral changes as a function of composition, the derivative of the 

XANES spectra was calculated. As shown in the insets to the right of figure 13, there are 

some subtle shifts towards higher energies in the derivative of the XANES spectra as the 

CaF2 content increases. 
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Figure 13: The XANES spectra (left) and the derivative of the XANES spectra (right) for the GF glass 

series around the Ca K-edge.  

7.4.5.2  Extended X-ray Absorption Fine Structure 

The k2 weighted extended X-ray absorption fine structure (EXAFS) spectra in k-space and 

the modulus of their Fourier transforms in r-space are shown in figure 14. A pre-edge range 

of -100eV to -10eV, a normalisation range of 150eV to 650eV, and an Rbkg value of 1.0 was 

applied to all samples. It is clear that the series of GF samples follows a trend, although 

there is some deviation from the trend in the amplitude of the peaks.  
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Figure 14: The Ca K-edge k2 weighted EXAFS spectra (bottom) and the modulus of their Fourier 

transforms (top) for the GF glass series.  

The CaCO3 and CaF2 crystalline reference structures were used to create a modelled EXAFS 

spectrum using the FEFF code [39]. The single-scattering Ca-O and Ca-F FEFF paths were 

then chosen to fit the experimental EXAFS spectra for the GF glasses. This was to attain 

structural information on the Ca-O and Ca-F correlations including nearest neighbour 

distances (Rij), coordination numbers (Nij), and values of σij
2 which are used to determine 

the XAS Debye-Waller factors (2σij
2). The input parameters used for fitting in Artemis [37] 

are given in table 9. A k-range of 3.0Å-1 to 9.0Å-1 and an r-range of 1.0Å to 4.0Å was 

considered appropriate for fitting. The fits to the k2 weighted experimental EXAFS spectra 

and to the modulus of their Fourier transforms are shown in figures 15 and 16 respectively, 

where good agreement over the fitting ranges can be seen. 

Table 9: The input parameters for the Ca-O and Ca-F FEFF paths used to fit the experimental EXAFS 
spectra of the GF glass series. 

 Rij (Å) Nij σij
2 (Å2) 

Ca-O 2.38 5.0 0.01 
Ca-F 2.27 1.0 0.01 
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Figure 15: The experimental (solid lines) and fitted (dashed lines) Ca K-edge k2 weighted EXAFS 

spectra for the GF glass series. The plots have been progressively offset by 4.0Å-2.  

 

Figure 16: The modulus of the Fourier transformed experimental (solid lines) and fitted (dashed 
lines) Ca K-edge k2 weighted EXAFS spectra for the GF glass series. The plots have been 

progressively offset by 1.0Å-3. 
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The parameters attained from fitting the experimental EXAFS spectra are given in table 10. 

To ensure the values of σ2 were not unphysically small, the fits were restrained to 

encourage 0.01Å2≤ σ2 ≤0.03Å2 which is appropriate for a glass. Both the Ca-O and Ca-F 

nearest neighbour distances increased as the CaF2 contribution increased. To obtain the 

coordination numbers, a suitable amplitude reduction factor of 0.7 [40] was used. The Ca-O 

coordination number generally declined, while the Ca-F coordination number generally 

increased with increasing CaF2 content. This was expected because the oxygen content 

declines as the fluorine content increases.  

Table 10: The output structural parameters for the Ca-O and Ca-F correlations from fitting the k2 
weighted EXAFS spectra for the GF glass series. 

 RCa-O (Å) NCa-O σCa−O
2 (Å2) RCa-F (Å) NCa-F σCa−F

2 (Å2) 

GF2.0 2.36±0.03 5.02±0.88 0.009±0.002 2.18±0.06 1.61±0.75 0.010±0.003 
GF5.0 2.36±0.03 5.71±1.67 0.010±0.001 2.20±0.09 2.30±1.93 0.012±0.010 
GF7.0 2.36±0.03 5.40±3.21 0.010±0.002 2.22±0.14 2.71±3.37 0.013±0.016 

GF10.7 2.37±0.04 4.68±4.41 0.009±0.002 2.24±0.15 3.48±4.38 0.013±0.020 
GF14.5 2.44±0.19 4.72±4.79 0.014±0.002 2.28±0.05 4.70±4.27 0.009±0.003 
GF17.1 2.41±0.08 3.13±1.86 0.009±0.003 2.27±0.05 4.06±1.66 0.010±0.003 
GF18.9 2.40±0.06 3.38±3.78 0.010±0.002 2.27±0.08 4.26±3.27 0.012±0.010 

 

7.5 Discussion 

Following the compositional analysis of the CaO-SiO2-CaF2 glass series, fluorine losses via 

HF were established. These fluorine losses could have been reduced by reducing the time 

during which the reagents were melted in the furnace. It was observed that by melting the 

reagents for 30 minutes instead of 60 minutes, the percent yields improved noticeably. 

However, powder XRD spectra revealed significant Bragg peaks, and Raman spectra 

revealed sample inhomogeneity. It was important to ensure amorphous and homogeneous 

samples by melting the reagents at a sufficient temperature for a sufficient time, meaning 

some fluorine loss was inevitable. The nominal GF3.3 composition had the highest melting 

temperature (1515°). Correspondingly, the highest furnace temperature was used (1570°) 

which caused a noticeably higher proportion of fluorine loss compared to the other 

samples. 

The chemical shift positions in the 29Si solid state MAS-NMR spectra for the GF glasses were 

centered around -80 ppm. This corresponds to Q2 species [8] and is expected for a calcium 

metasilicate composition. As the chemical shift positions did not become less negative 

(closer to 0 ppm) by a discernible amount with increasing CaF2 concentrations, the results 

indicated an absence of detectable amounts of Si-F bonding. This was because any Si-F 

bonding would have disrupted Si-O-Si linkages in the silicate network, lowering the network 

connectivity. This is plausible because Si-O bonding is favoured over Si-F bonding since Si4+ 
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ions have a higher affinity for O2- ions compared to F- ions [41]. Brauer et al. [8], [42] also 

reported an absence of detectable Si-F bonding in fluorine-containing bioactive glasses. 

However, Pedone et al. [9] reported that Si-F bonding cannot be detected using MAS-NMR. 

This was because a small Si-F contribution would be masked in the broad NMR spectrum. In 

addition, Zeng and Stebbins [29] commented that the width of the spinning sidebands 

would obscure any Si-F-Ca contributions in NMR spectra if they were present.  

The 19F solid state MAS-NMR chemical shift positions did become more negative with 

increasing CaF2 concentrations. The chemical shift position went from -92.0ppm for GF2.0 

to -98.0ppm for GF18.9. This suggests an increase in the average fluorine coordination to 

calcium [43] towards that of crystalline CaF2 which has a chemical shift position of -109ppm 

[29]. Watanabe et al. [22] studied a (100-x)/2 CaO-(100-x)/2 SiO2-xCaF2 glass series where 

x=5, 10, 15, 20, 25 and reported the same trend. In addition, Watanabe et al. [22] also 

studied a xCaO-xSiO2-15CaF2 glass series and found consistent chemical shift positions. 

Zeng and Stebbins [29] synthesised a  glass with a nominal composition of 

0.8CaF2-22.6SiO2-15.0CaO, although the fluorine loss was reportedly 7.1%. The glass had a 
19F MAS-NMR chemical shift position of -89ppm which was comparable to the chemical 

shift position for GF2.0 in this work.  

The glass transition temperatures of the GF glass series in figure 7 were seen to decrease 

linearly as a function of increasing CaF2 content. Both Brauer et al. [8] and Chen et al. [13] 

reported the same observation for a fluorine-containing bioactive glass series. The sodium-

free fluorine containing bioactive glass series studied by Chen et al. [13] was more similar 

to the GF series although it contained around 6mol% P2O5. The similarity between the glass 

transition temperatures reported by Chen et al. [13] and those from this work is illustrated 

in figure 17. Brauer et al. [8] attributed the trend to fluorine ions bonding with calcium 

ions. Brauer et al. [8] details that in a fluorine-free glass, calcium ions binding to non-

bridging oxygens has the effect of binding silicate ions together due to the electrostatic 

forces. When fluorine ions are incorporated, the fluorine ions bond with calcium ions. The 

electrostatic forces are then reduced, leading to a reduction in the glass transition 

temperature. 
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Figure 17: The glass transition temperatures of the GF glass series from figure 7 compared to those 

of a CaO-SiO2-P2O5-CaF2 bioactive glass series reported by Chen et al. [13]. A linear trend line for 
the GF series is included. 

The total correlation functions attained from neutron diffraction experimentation are 

shown in figure 9. The program NXfit [35] was used to obtain information regarding the 

Si-O, Ca-F, Ca-O and O-O correlations as illustrated in figure 11. By considering the Si4+ and 

F- effective ionic radii of 0.4Å and 1.1Å respectively [44], the presence of Si-F bonding would 

be expected to result in a nearest neighbour distance contribution around 1.5Å. However, 

with a Si-O nearest neighbour distance of 1.6Å, it can be seen in figure 11 that any small 

Si-F bonding contribution would be masked by the prevalent Si-O contribution.  

The XAS experiment carried out around the calcium K-edge (4.038keV [36]) enabled to the 

atomic environment around calcium ions to be investigated. The accessible X-ray energy 

range for beamline B18 was 2-35keV [45]. It would have been challenging to investigate the 

atomic environments of fluorine or silicon using XAS experiments because the X-ray 

absorption edge energies are 0.697keV and 1.839keV respectively [36]. To perform XAS 

experiments on elements lighter than phosphorus (including silicon and fluorine), the 

samples would need to be contained under vacuum to help minimise the attenuation of 

the incident X-ray beam [46].  

Since the calcium environment was studied using both neutron diffraction and X-ray 

absorption spectroscopy, it was of interest to compare the structural information attained. 

Marginal shifts towards higher energies ~4050eV were shown in the derivative of the 

XANES spectra in figure 13. By comparing the crystalline CaSiO3 and CaF2 Ca K-edge XANES 

spectra (figure 18), it can be interpreted that this shift to higher energies was caused by the 

calcium environment becoming less like a calcium silicate (CaSiO3) and more like that of a 

calcium fluoride (CaF2) with increasing CaF2 contributions. As shown in table 10 from EXAFS 

analysis and in table 8 from ND analysis, this is supported by a decrease in the Ca-O 
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coordination number and an increase in the Ca-F coordination number with increasing CaF2 

concentrations.  

 
Figure 18: The XANES spectra of the CaSiO3 and CaF2 crystalline standards at the Ca K-edge.  

The Ca-O and Ca-F output parameters from ND and EXAFS are compared in figure 19. The 

nearest neighbour distances are generally in reasonable agreement, but there are some 

noticeable differences between the coordination numbers and values of σij
2. This was due 

to the Ca-O and Ca-F correlations overlapping in the experimental data. Since the Ca-F 

correlation was smaller, it was more challenging to determine its coordination number. The 

Ca-O correlation was larger, and so it was more difficult to establish the values of σij
2. This 

was particularly evident in the total correlation function plots from neutron diffraction in 

figure 11. As the use of NXFit [35] with non-uniform input parameters involved restraining 

the Ca-F and Ca-O coordination numbers to within 10% and 5% of their input coordination 

number parameter values respectively, it was necessary to account for systematic errors in 

addition to statistical errors. This explains why the uncertainty in the Ca-F and Ca-O 

coordination numbers is noticeably larger than those for the other correlations. 
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To further investigate the CaO-SiO2-CaF2 glass structure, the GF glass series could be 

modelled computationally using the glass compositions in table 4, and the corresponding 

density values in figure 5. Due to the lack of well-defined CaO-SiO2-CaF2 glass compositions 

and densities in the literature, this has not previously been possible. In addition to enabling 

comparisons with experimental results to be made, the glass structures could also be 

studied on an atomic level.  

7.6 Conclusion  

In this chapter, a CaO-SiO2-CaF2 glass series was synthesised via melt-quenching. Percent 

yield calculations and 19F MAS-NMR spectroscopy enabled the fluorine losses via 

volatilisation to be ascertained. It was assumed that the losses occurred as HF. The 

chemical shift positions in the 19F MAS-NMR spectra became more negative with increasing 

CaF2 concentrations. This was indicative of the fluorine environment becoming more 

similar to that of pure CaF2. The glass transition temperature declined linearly with 

increasing CaF2 concentrations. Although detectable amounts of Si-F bonding were not 

observed using 29Si solid state MAS-NMR and neutron diffraction, a total absence of Si-F 

bonding could not be assumed due to experimental limitations. In the solid state 29Si MAS-

NMR spectra, any small Si-F contribution would have been masked by the width of the 

spectrum and its spinning side bands. In addition, any small amount of Si-F bonding in the 

Figure 19: The nearest neighbour distances, Rij, coordination numbers, Nij, and values of 𝝈𝒊𝒋
𝟐 

obtained for the Ca-O (top) and Ca-F (bottom) correlations from neutron diffraction (blue squares) 
and X-ray absorption spectroscopy (green squares). 
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total correlation function from neutron diffraction would have been concealed by the Si-O 

contribution as the Si-F bond length is expected to be around 1.5Å. By studying the calcium 

environment using X-ray absorption spectroscopy and neutron diffraction, reasonably 

consistent values for Ca-O and Ca-F nearest neighbour distances of 2.4Å and 2.3Å 

(respectively) could be obtained. However, it was challenging to establish the coordination 

numbers and values of σij
2 due to the Ca-O and Ca-F correlations overlapping in the 

experimental data. Having established the glass compositions and densities, these 

challenges could be overcome by modelling the glass series computationally as will be 

discussed in the next chapter. This has not previously been possible for CaO-SiO2-CaF2 

glasses due to a lack of well-defined compositions and densities being reported in the 

literature.  
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8. A Computational Investigation of 
the Structure of CaO-SiO2-CaF2 

Glasses 

8.1 Introduction 

As mentioned in the previous chapter, comprehending the structure of CaO-SiO2-CaF2 

fluorine-containing silicate systems is of interest not only for mould flux applications in the 

continuous casting of steel (e.g. [1]–[3]), but also for bioactive glass applications in 

dentistry (e.g. [4]–[6]). Despite this interest, the conclusions drawn from previous 

experimental and computational studies have been contradictory (e.g. [7]), and in 

particular, the structural role of fluorine remains unclear (e.g. [1], [2]).  

The structure of a CaO-SiO2-CaF2 glass series was studied experimentally in the previous 

chapter. Although detectable amounts of Si-F bonding were not observed, it remains 

unclear as to whether any small amount of Si-F bonding could occur. Computational 

modelling can be used to investigate this, as well as for further structural characterisation. 

Currently, there are few computational studies on CaO-SiO2-CaF2 glass in the literature. 

Lusvardi et al. [8] attributed this to a lack of available suitable interatomic potential 

parameters. Hayakawa et al. [9] modelled a 40CaO-40SiO2-20CaF2 glass using Busing-Ida-

Gilbert interatomic potential parameters. Clusters of calcium and fluorine ions were 

observed, but the model only comprised of 312 atoms and no quantitative analysis was 

undertaken. The same authors later modelled 45CaO-45SiO2-10CaF2 and 

40CaO-40SiO2-20CaF2 glass again using Busing-Ida-Gilbert interatomic potential parameters 

[10]. A lack of Si-F bonding was reported. However, the model only comprised of 600 

atoms, and details on how the melt was quenched to form a solid glass model was not 

reported, deeming the study inadequate.  

The CaO-SiO2-CaF2 glass series whose synthesis was reported in the previous chapter was 

therefore modelled computationally in this work. This was achieved using classical 

molecular dynamics with the addition of the adiabatic core-shell model to account for 

anion polarisability. Results including glass model images, pair correlation functions, 

cumulative coordination number plots, silicon network connectivity distributions, and 

partial and total structure factors were used to characterise the structure of the 

CaO-SiO2-CaF2 glass series.  
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8.2 Computational Modelling Methodology 

The CaO-SiO2-CaF2 glass compositions and corresponding densities were established in the 

previous chapter. It was therefore only necessary to acquire suitable interatomic potential 

parameters before the CaO-SiO2-CaF2 glass compositions could be modelled 

computationally. In this chapter, the atomic correlations (e.g. O-O) correspond to core 

atomic correlations unless explicitly stated otherwise. The Os-Os correlation for example 

refers to oxygen shells.    

8.2.1 CaO-SiO2-CaF2 System – Fitting Interatomic Potential 

Parameters 

The General Utility Lattice Program (GULP) [11] can be used to test the suitability of 

interatomic potential parameters (section 2.3.3). As detailed in section 6.2.1 and 6.2.2, 

using the interatomic potential parameters reported by Malavasi et al. [12] (table 1) 

enabled the CaO [13] and CaSiO3 [14] crystalline structures to be closely reproduced 

following GULP energy minimisation. However, in order to model the SiO2-CaO-CaF2 glasses 

computationally, further interatomic potential parameters are required. These include 

Ca-Fs, Fs-Fs, Fs-Os, and Si-Fs. Most of these interatomic potential parameters involving 

fluorine have been reported by Rabone and De Leeuw [15], as shown in table 2. It was 

important to test these, and since two Fs-Os interatomic potentials had been reported, the 

most suitable needed to be identified.  

Table 1: The two-body and three-body interatomic potential parameters of Buckingham and 
screened harmonic form respectively as reported by Malavasi et al. [12].  

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Os − Os 

Si − Os 

Ca − Os 

22764.30 

1283.91 

2152.3566 

0.1490 

0.32052 

0.309227 

27.88 

10.66158 

0.09944 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Os − Si − Os 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

O − Os 74.92 0.8482 -2.8482 

Si 

Ca 
 

4.000 

2.000 
 



160 
 

Table 2: Two-body Buckingham interatomic potential parameters involving fluorine reported by 
Rabone and De Leeuw [15]. In [15], the term O(p) was used to denote oxygen in PO4

3-, CO3
2-, SiO4

4-, 
while the term O(H) was used to denote oxygen in OH-. 

 Two body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Ca − Fs 

Fs − Fs 

Fs − Os (H) 

Fs − Os (P) 

Na − Fs 

1272.80 

99731834 

35000.00 

583833.70 

1254.00 

0.299700 

0.120130 

0.175000 

0.211630 

0.274464 

0.00 

17.02 

15.40 

7.68 

0.00 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

F − Fs 

O(H) − Os (H) 

O(P) − Os (P) 

101.20 

74.92 

507.40 

1.380 

0.900 

0.587 

-2.380 

-2.300 

-1.632 

 

The Ca-Fs and Fs-Fs interatomic potential parameters in table 2 were tested on a CaF2 

crystalline structure [16] (figure 1) using GULP. It can be seen in table 3 that the crystalline 

structure was closely reproduced. The input Ca-F and F-F nearest neighbour distances of 

2.37Å and 2.73Å became 2.36Å and 2.72Å respectively after GULP energy minimisation. 

The coordination numbers of 8.00 and 6.00 respectively were unchanged. The Ca-Fs and 

Fs-Fs interatomic potentials were therefore deemed appropriate for this study.  

 

 

 

 

 

 

 

 

 

 

Figure 1: The CaF2 crystalline structure reproduced from Jette and Fotte [17]. The green and blue 
spheres represent calcium and fluorine atoms respectively. 



161 
 

Table 3: The GULP energy minimisation results testing the performance of the Ca-Fs and Fs-Fs 
interatomic potentials (table 2) using crystalline CaF2 [17].   

Parameter Unit Initial value Percent change (%) 

Volume Å3 163.08 -1.14 

a Å 5.46 -0.38 

b Å 5.46 -0.38 

c Å 5.46 -0.38 

α ° 90.00 0.00 

β ° 90.00 0.00 

γ ° 90.00 0.00 

 

The Fs-Os and Si-Fs interatomic potential parameters still needed to be established. The 

Fs-Os interatomic potential parameters reported by Rabone and De Leeuw [15] failed to 

maintain charge neutrality on oxygen, and there were no reports of a Si-Fs interatomic 

potential parameter of Buckingham form in the literature. As it would have been 

challenging to fit two interatomic potential parameters simultaneously due to the number 

of parameters involved, it was necessary to use one of the Fs-Os interatomic potentials from 

table 2. The Fs-Os(H) interatomic potential was chosen because the charges on the oxygen 

ion were closer to neutrality. For consistency with the other interatomic potential 

parameters involving oxygen, the ion core and shell charges reported by Malavasi et al. [12] 

(which are charge neutral) were assigned to the Fs-Os(H) interatomic potential parameter. 

The GULP program was then used to fit the Si-Fs interatomic potential parameter manually 

using the SiF4 [18], CaSiF6 [19], and Na2SiF6 [20] crystalline structures shown in figure 2. 

 

Figure 2: From left to right; the SiF4 [21], CaSiF6 [22], and Na2SiF6 [20] crystal structures used to fit 
the Si-Fs interatomic potential parameter. The yellow tetrahedra represent silicon ions. The blue, 

green, and purple spheres represent fluorine, calcium, and sodium ions respectively.  
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The starting approximation for the Si-Fs interatomic potential parameter (table 4) in the 

manual fit was attained by averaging the Si-Os and Si-Cls interatomic potential parameters 

Aij, ρij, and Cij. This was because the Si-O separation distance is similar to that of Si-F, and 

the ion charges of chlorine and fluorine are equivalent. To further develop this Si-Fs 

interatomic potential, it was manually altered one parameter at a time. Changes to the 

system volume, coordination numbers, and nearest neighbour distances were continuously 

monitored using GULP until further improvements could no longer be made, and the 

overall changes to the input crystal structures had been minimised. This technique had also 

been used to fit the Si-Cls interatomic potential parameter in section 6.2.3.  

Table 4: The starting values for the two-body Si-Fs Buckingham interatomic potential based on the 
average of the Si-Os and Si-Cls Buckingham interatomic potentials. 

 Two body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Si − Os 

Si − Cls 

Si − Fs 

1283.91 

1063.00 

1173.46 

0.32052 

0.3352 

0.3279 

10.66158 

17.00 

13.83 

 

The final parameters of the Si-Fs Buckingham interatomic potential parameter were 

Aij=771.0eV, ρij=0.298Å, and Cij=0.0eVÅ6. The ability of the core-shell model interatomic 

potential parameters to reproduce the SiF4 [21], CaSiF6 [22], and Na2SiF6 [20] crystal 

structures is shown in table 5. Although some volume change was anticipated following 

GULP energy minimisation since the crystal structures are molecular crystals, some of the 

structural changes exhibited were significant. For example, the interatomic potential 

parameters failed to reproduce the F-F coordination number of 3.00 in SiF4.  As 

corresponding rigid-ion interatomic potential parameters  from Teter [23] were available 

(table 6), it was of interest to compare the two sets of interatomic potential parameters.  
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Table 5: The GULP energy minimisation results comparing the performance of the core-shell model 
(SM) and the rigid-ion (RI) interatomic potential parameters using crystalline SiF4, CaSiF6, and 

Na2SiF6 structures. The terms Rij and Nij denote the nearest neighbour distances and coordination 
numbers respectively.  

 SM RI 

 SiF4 [21] CaSiF6 [22] Na2SiF6 [20] SiF4 [21] CaSiF6 [22] Na2SiF6 [20] 

 In/out In/out In/out In/out In/out In/out 

RSi-F (Å) 1.54/1.62 1.66/1.80 1.68/1.80 1.54/1.62 1.66/1.72 1.68/1.72 
NSi-F 4.00/4.00 6.00/6.00 6.00/6.00 4.00/4.00 6.00/6.00 6.00/6.00 

RF-F (Å) 2.52/2.62 2.35/2.55 2.38/2.55 2.52/2.61 2.35/2.43 2.38/2.43 
NF-F 3.00/9.00 4.00/4.00 4.00/4.00 3.00/9.00 4.00/4.00 4.00/4.00 

RSi-Si (Å) 4.74/4.34 5.35/4.89 5.04/5.44 4.74/4.24 5.35/4.99 5.04/4.76 
NSi-Si 8.00/8.00 6.00/6.00 2.00/2.00 8.00/8.00 6.00/6.00 2.00/2.00 

RCa-F (Å)  2.27/2.30   2.27/2.30  
NCa-F  6.00/6.00   6.00/6.00  

RSi-Ca (Å)  3.83/3.64   3.83/3.79  
NSi-Ca  6.00/6.00   6.00/6.00  

RCa-Ca (Å)  5.48/4.89   5.48/4.99  
NCa-Ca  6.00/6.00   6.00/6.00  

RNa-F (Å)   2.32/2.43   2.32/2.33 
NNa-F   6.00/6.00   6.00/6.00 

RSi-Na (Å)   3.36/3.35   3.36/3.26 
NSi-Na   3.00/3.00   3.00/3.00 

RNa-Na (Å)   3.92/4.16   3.92/3.90 
NNa-Na   6.00/6.00   6.00/6.00 

Volume (Å3) 
164.21/ 

126.14 

336.66/ 

286.03 

342.42/ 

400.07 

164.21/ 

117.1 

336.66/ 

318.21 

342.42/ 

347.47 

 

Table 6: The two-body rigid-ion interatomic potential parameters of Buckingham form as reported 
by Teter [23]. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 1844.7458 0.343645 192.58 

Si − O 13702.905 0.193817 54.681 

Ca − O 7747.1834 0.252623 93.109 

Na − F 58286.140 0.1691 4.1555 

Ca − F 976421.09 0.1473 12.163 

F − F 11510.594 0.2250 29.527 

Si − F 53193.487 0.1468 5.0196 

 

As shown in table 5, the rigid-ion interatomic potential parameters in table 6 also failed to 

reproduce the F-F coordination number of 3.00 in SiF4. The rigid-ion interatomic potential 

parameters did however replicate the input CaSiF6 and Na2SiF6 crystal structures more 

closely, although Zirl and Garofalini [24] have emphasised the importance of accounting for 
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anion polarisability in computational simulations. It was therefore preferable to improve 

the performance of the core-shell model interatomic potentials. To do this without altering 

the Buckingham interatomic potential parameter values, the strength of the F-Fs spring 

constant (Kcs) value was changed as shown in table 7. 

Table 7: The nearest neighbour distances (Rij), coordination numbers (Nij), and simulation cell 
volumes (Vol) in the SiF4, CaSiF6, and NaSi2F6 crystalline structures prior to and following GULP 

energy minimisation. Rigid-ion (RI) interatomic potentials and core-shell model (SM) interatomic 
potentials with differing spring constants were used. The terms SM1, SM2, SM3, SM4, and SM5 

correspond to using spring constants (KCS) of 100eVÅ-2, 200eVÅ-2, 300eVÅ-2, 400eVÅ-2, and 
500eVÅ-2 respectively. 

 SiF4 [21] CaSiF6 [22] NaSi2F6 [20] 

 
RSi-F 
(Å)/ 
NSi-F 

RF-F 
(Å)/ 
NF-F 

Vol 
(Å3) 

RSi-F 
(Å)/ 
NSi-F 

RF-F 
(Å)/ 
NF-F 

RCa-F 
(Å)/ 
NCa-F 

Vol 
(Å3) 

RSi-F 
(Å)/ 
NSi-F 

RF-F 
(Å)/ 
NF-F 

RNa-F 
(Å)/ 
NNa-F 

Vol 
(Å3) 

Input 
1.54/ 
4.00 

2.52/ 
3.00 

164.21 
1.66/ 
6.00 

2.35/ 
4.00 

2.27/ 
6.00 

336.66 
1.68/ 
6.00 

2.38/ 
4.00 

2.32/ 
6.00 

342.42 

RI 
1.62/ 
4.00 

2.61/ 
9.00 

117.13 
1.72/ 
6.00 

2.43/ 
4.00 

2.30/ 
6.00 

318.21 
1.72/ 
6.00 

2.43/ 
6.00 

2.33/ 
6.00 

347.47 

SM1 
 

1.62/ 
4.00 

2.62/ 
9.00 

126.14 
1.80/ 
6.00 

2.55/ 
4.00 

2.30/ 
6.00 

286.03 
1.80/ 
6.00 

2.55/ 
6.00 

2.43/ 
6.00 

400.07 

SM2 
 

1.56/ 
4.00 

2.58/ 
9.00 

115.48 
1.75/ 
6.00 

2.48/ 
4.00 

2.25/ 
6.00 

382.17 
1.76/ 
6.00 

2.49/ 
4.00 

2.42/ 
6.00 

401.01 

SM3 
 

1.55/ 
4.00 

2.56/ 
9.00 

112.60 
1.74/ 
6.00 

2.46/ 
4.00 

2.25/ 
6.00 

381.30 
1.75/ 
6.00 

2.47/ 
4.00 

2.43/ 
4.00 

401.30 

SM4 
 

1.54/ 
4.00 

2.55/ 
9.00 

111.30 
1.74/ 
6.00 

2.45/ 
4.00 

2.25/ 
6.00 

380.16 
1.74/ 
6.00 

2.46/ 
4.00 

2.43/ 
4.00 

401.46 

SM5 
 

1.53/ 
4.00 

2.54/ 
9.00 

110.57 
1.73/ 
6.00 

2.45/ 
4.00 

2.25/ 
6.00 

379.50 
1.73/ 
6.00 

2.45/ 
4.00 

2.43/ 
4.00 

401.58 

 

The GULP energy minimisation results in table 7 show that increasing the F-Fs spring 

constant (KCS) lowers the nearest neighbour distances, bringing them into closer agreement 

with the input crystalline structures. However, increasing the F-Fs spring constant generally 

increases the disagreement between the input and output simulation cell volumes. 

Furthermore, increasing the spring constant ultimately leads to diminishing returns. It was 

therefore necessary to compromise, and increasing the spring constant to KCS=200eVÅ-2 

was found to be appropriate. The interatomic potential parameters for modelling the 

CaO-SiO2-CaF2 glass series are shown below in table 8. 
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Table 8: The two-body and three-body interatomic potential parameters of Buckingham and 
screened harmonic form respectively for modelling CaO-SiO2-CaF2 glass. The oxygen and fluorine 

shell masses used were 0.2u and 0.8u respectively. The inner cut-offs for the Os-Os, Fs-Fs, Fs-Os, and 
Ca-Fs interatomic potentials were 1.7Å. The Ca-Os, Si-Os, and Si-Fs interatomic potentials had inner 

cut-offs of 1.5Å, 1.2Å, and 1.0Å respectively. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

Os − Os 22764.30 0.1490 27.88 

Si − Os 1283.91 0.32052 10.66158 

Ca − Os 2152.3566 0.309227 0.09944 

Na − Fs 1254.00 0.274464 0.00 

Ca − Fs 1272.80 0.299700 0.00 

Fs − Fs 99731834 0.120130 17.02 

Si − Fs 771.0 0.298 0.00 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

Os − Si − Os 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 Kcs (eV Å-2) Q (core) (e) q (shell) (e) 

O − Os 74.92 0.8482 -2.8482 

F − Fs 200.00 1.380 -2.380 

Si 

Ca 
 

4.000 

2.000 
 

It would have been ideal to test the interatomic potential parameters in table 8 on known 

non-crystalline structures (i.e. liquids or glasses) from the CaO-SiO2-CaF2 system, analogous 

to what was done in section 6.2.3. However, to the author’s knowledge, there are no 

neutron or X-ray diffraction studies on SiF4. Additionally, the lack of density values 

previously reported in experimental studies of CaO-SiO2-CaF2 glasses or melts (e.g. [25]) 

have prevented them from being modelled computationally in this work, and hence 

prevented comparisons being made with previous work. 

8.2.2  CaO-SiO2-CaF2 System – Glass Modelling 

During the synthesis of the CaO-SiO2-CaF2 glass series whose nominal compositions 

maintained an equal CaO/SiO2 ratio, some losses due to fluorine volatilisation were 

exhibited (section 7.3). The compositions failed to uphold their equal CaO/SiO2 ratios and 

were subsequently revised. In this chapter, the revised CaO-SiO2-CaF2 glass series in table 9 

is referred to as the GF glass series. When referring to a specific composition in the series, 
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the term GF is followed by the CaF2 content. For example, GF2.0 refers to the 

49.7CaO-48.4SiO2-2.0CaF2 glass.    

Table 9: The GF glass compositions, reduced density values equivalent to 95% of the experimental 
densities, number of atoms, and simulation box side lengths used for computational modelling.  

 CaO SiO2 CaF2 ρ (g/cm3) Atoms Length (Å) 

GF2.0 49.7 48.4 2.0 2.76 10014 52.01 
GF5.0 48.3 46.7 5.0 2.77 10068 52.12 
GF7.0 47.7 45.4 7.0 2.78 10094 52.17 

GF10.7 45.3 44.1 10.7 2.79 10190 52.33 
GF14.5 43.6 42.0 14.5 2.81 10258 52.42 
GF17.1 42.4 40.5 17.1 2.82 10304 52.51 
GF18.9 41.6 39.5 18.9 2.84 10336 52.48 

 

The GF glass series was modelled using the same approach detailed in section 6.2.4 for the 

QCl and ACl glass series. This included running rigid-ion stages to obtain input 

configurations for the core-shell model stages which were then run at lower temperatures. 

The rigid-ion stages used core-shell model interatomic potentials as an estimate for the 

rigid-ion interatomic potentials, as shown in table 10. Anion shells were therefore not 

included. The rigid-ion stages included a 6000K stage, a 3000K stage, a 2000K stage, a 

quench stage from 2000K to 300K at a rate of 1013K/s, a 300K stage, and a final sampling 

stage at 300K. Each single temperature stage was run for 400,000 time-steps where the 

time-step was 1fs. To achieve the quench rate of 1013K/s from 2000K to 300K, 170,000 

time-steps were required.  
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Table 10: The two-body and three-body rigid-ion interatomic potential parameters of Buckingham 
and screened harmonic form respectively based on the core-shell model interatomic potential 
parameters in table 8. The inner cut-offs for the O-O, F-F, F-O, and Ca-F interatomic potentials 
were 1.7Å. The Ca-O, Si-O, and Si-F interatomic potentials had inner cut-offs of 1.5Å, 1.2Å, and 

1.0Å respectively. 

 Two-body Vij(r) = Aijexp (
−r

ρij
) −

Cij

r6  

 Aij (eV) ρij (Å) Cij (eV Å6) 

O − O 22764.30 0.1490 27.88 

Si − O 1283.91 0.32052 10.66158 

Ca − O 2152.3566 0.309227 0.09944 

Na − F 1254.00 0.274464 0.00 

Ca − F 1272.80 0.299700 0.00 

F − F 99731834 0.120130 17.02 

Si − F 771.0 0.298 0.00 

 Three-body V(θjik) =
k3

2
(θjik − θ0)

2
exp [− (

rij

ρ
+

rik

ρ
)] 

 k3 (eV rad-2) θ0 (°) ρ (Å) 

O − Si − O 100 109.47 1.0 

 Core-shell potential V =
1

2
Kcsr2 

 
 

Q (core) (e) 
 

O − O 
 

-2.000 
 

F − F  -1.000  

Si 

Ca 
 

4.000 

2.000 
 

 

In the core-shell model stages that followed, core-shell model interatomic potential 

parameters were used (table 8). The oxygen and fluorine anions in the final configuration 

of atoms from the rigid-ion stages were split into separate core and shell units. These were 

connected by a harmonic spring of spring constant Kcs which was frictionally damped using 

a damping coefficient, c, of 100kgs-1 (section 6.2.1). From the atomic masses of oxygen 

(15.9994u) and fluorine (18.998u), shell masses of 0.20u and 0.80u respectively were 

assigned. The shell mass of the fluorine anion was noticeably lower than that of the 

chlorine anion (1.50 u) in section 6.2.4. This was due to differences in their atomic mass. 

The core-shell model stages began at 2000K. The system was then quenched from 2000K to 

300K at a rate of 1013K/s, and a stage at 300K followed. A further stage at 300K was run and 

used for analysis. The single temperature stages ran for 800,000 time-steps. This was to 

help compensate for the smaller time-step of 0.1fs. The quench stage required 1,700,000 

time-steps. All simulation stages (rigid-ion and core-shell model stages) were fully 

equilibrated and an NVT Berendsen thermostat was used. A universal cut-off of 12.0Å, a 

primary cut-off of 10.0Å, and a van der Waals cut-off of 8.0Å were applied. System 

densities equivalent to 95% of the experimental densities were found to be necessary to 

obtain system pressures lower than 10kbar at 300K. The compositions, reduced density 
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values, number of atoms, and simulation cell side lengths used to model the GF glass series 

are detailed in table 9.  

8.3 Results 

8.3.1  Images of Models 

Images of the GF glass models are shown in figure 3. The ions appear to be randomly 

distributed and the models do not seem to become phase separated with increasing CaF2 

contributions. Upon close inspection of the computational models, some Si-F bonding in 

SiO3F, SiO4F, and SiO3F2 structural units was observed. In addition, SiO4F2 structural units 

were observed in two of the seven models but in very small proportions, hence they are 

not referred to beyond this section and were considered to be defects. The proportion of 

silicon ions involved in SiO3F, SiO4F, and SiO3F2 structural units (figure 3h) generally 

increases with increasing CaF2 content as quantified in table 11.  
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Table 11: The percentage of silicon ions in each GF glass model that is present in SiO3F, SiO4F, or 
SiO3F2 structural units. The uncertainty in each value is estimated to be within ±0.5%. 

 SiO3F (%) SiO4F (%) SiO3F2 (%) 

GF2.0 1.40 0.57 0.00 
GF5.0 1.87 1.12 0.16 
GF7.0 2.92 1.05 0.28 

GF10.7 4.88 1.65 0.62 
GF14.5 4.65 1.73 0.48 
GF17.1 5.56 1.91 1.30 
GF18.9 6.65 1.90 1.52 

 

h 

Figure 3: The GF glass models in order of increasing CaF2 content, with the GF2.0, GF5.0, GF7.0, 
GF10.7, GF14.5, GF17.1, and GF18.9 glass models being labelled from ‘a’ to ‘g’ respectively. The 

image labelled ‘h’ shows the structural units involving Si-F bonding in the GF18.9 model (labelled 
‘g’). Examples of the SiO3F2, SiO4F, and SiO3F structural units have been magnified. The green, light 

blue, and red spheres represent calcium, fluorine, and oxygen ions respectively. The yellow 
tetrahedra correspond to silicon ions. Anion shells have not been included. 
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8.3.2  Pair Correlation Functions 

The pair correlations functions for the GF glass series are shown in figures 4 and 5. The 

Si-O, O-O, and Si-Si pair correlation functions (figure 4) typically relate to the structural 

units that make up the silicate network. It can be seen in table 12 that the Si-O 

coordination numbers reduce from 3.99 to 3.91 (±0.01) with increasing CaF2 content when 

a cut-off distance of 2.00Å is applied. This is due to the increasing Si-F coordination 

numbers (table 13). While the vast majority of the structural units involving silicon ions are 

SiO4, a minority contain one or more fluorine ions. Typical Si-F nearest neighbour distances 

in these structural units are 1.52±0.01Å. It can be seen in figure 5 that the Si-F pair 

correlation functions are asymmetric around this nearest neighbour distance. This is 

because the peak corresponds to the more numerous SiO3F structural units, while the tail 

to the right of this peak corresponds to the SiO4F and SiO3F2 structural units. As the 

proportion of Si-F bonding is minimal, the average O-O nearest neighbour distances in the 

structural units that make up the silicate network (2.66±0.01Å) are unaffected (table 12). 

However, slight shoulders on the left hand side of the O-F pair correlation functions are 

observed (figure 4). These correspond to the variety of O-F separation distances in the 

SiO3F, SiO4F, and SiO3F2 structural units. The Si-Si nearest neighbour distances showed 

minimal variation, while the Si-Si coordination numbers decreased from 1.93 to 1.71 

(±0.02) with increasing CaF2 content when a 3.40Å cut-off distance was applied (table 14). 

This indicates increasing disruption to the silicate network with increasing CaF2 content. 

This can be expected when a Si-F bond takes the place of a Si-O bond to a bridging oxygen. 

The excess CaO in the glass compositions (section 8.2.2) could have also disrupted the 

silicate network. The remaining correlations include Ca-O, Ca-F, F-F, Si-Ca, and Ca-Ca. The 

nearest neighbour distances for these correlations exhibit minimal changes. The decreasing 

Ca-O, and increasing Ca-F, F-F, and Si-Ca coordination numbers respectively reflect the 

declining oxygen and silicon contributions as the calcium and fluorine contributions 

become more significant. 
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Figure 5: The Si-F pair correlation functions for the GF glass series. 

Figure 4: The pair correlation functions for the GF glass series apart from the Si-F pair correlation 
function (below) in order of increasing nearest neighbour distance. 
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Table 12: The nearest neighbour distance, Rij, and coordination number, Nij, values for the 
correlations involving oxygen in the GF glass series apart from the O-F correlation (shown in table 

13). Cut-off distances of 2.00Å, 3.10Å, and 2.85Å were used to identify the Si-O, Ca-O, and O-O 
coordination numbers respectively. 

 
RSi-O  

±0.01 (Å) 
NSi-O(r) 
±0.01 

RCa-O  
±0.01 (Å) 

NCa-O(r) 
±0.03 

RO-O  
±0.01 (Å)  

NO-O(r) 
±0.03 

GF2.0 1.62 3.99 2.37 5.93 2.66 4.26 

GF5.0 1.62 3.97 2.38 5.65 2.66 4.17 

GF7.0 1.62 3.97 2.38 5.47 2.66 4.10 

GF10.7 1.62 3.94 2.38 5.17 2.66 4.02 

GF14.5 1.61 3.94 2.38 4.82 2.66 4.00 

GF17.1 1.61 3.92 2.38 4.67 2.66 3.94 

GF18.9 1.62 3.91 2.39 4.48 2.66 3.88 

 

Table 13: The nearest neighbour distance, Rij, and coordination number, Nij, values for the 
correlations involving fluorine in the GF glass series. Cut-off distances of 2.00Å, 3.70Å, 4.00Å, and 

4.00Å were used to identify the Si-F, Ca-F, F-F, and O-F coordination numbers respectively. 

 
RSi-F  

±0.01 (Å) 
NSi-F(r) 
±0.03 

RCa-F  
±0.01 (Å) 

NCa-F(r) 
±0.05 

RF-F  
±0.10 (Å) 

NF-F(r) 
±0.10 

RO-F  
±0.10 (Å)  

NO-F(r) 
±0.10 

GF2.0 1.52 0.02 2.26 0.22 2.91 0.24 3.15 0.29 

GF5.0 1.53 0.04 2.27 0.56 2.95 0.75 3.16 0.71 

GF7.0 1.52 0.05 2.27 0.79 2.96 1.16 3.18 0.98 

GF10.7 1.52 0.09 2.27 1.14 2.98 1.81 3.18 1.47 

GF14.5 1.52 0.09 2.28 1.59 2.92 2.37 3.25 1.95 

GF17.1 1.52 0.12 2.28 1.81 2.95 2.83 3.27 2.28 

GF18.9 1.53 0.13 2.28 1.99 2.94 3.09 3.28 2.53 

 

Table 14: The nearest neighbour distance, Rij, and coordination number, Nij, values for the 
remaining correlations in the GF glass series. Cut-off distances of 3.40Å, 4.35Å, and 5.25Å were 

used to identify the Si-Si, Si-Ca, and Ca-Ca coordination numbers respectively. 

 
RSi-Si 

±0.01 (Å) 
NSi-Si(r) 
±0.02 

RSi-Ca  
±0.01 (Å) 

NSi-Ca(r) 
±0.03 

RCa-Ca  
±0.02 (Å) 

NCa-Ca(r) 
±0.04 

GF2.0 3.06 1.93 3.45 6.34 3.89 7.72 

GF5.0 3.07 1.89 3.45 6.45 3.87 7.97 

GF7.0 3.07 1.84 3.45 6.59 3.86 8.15 

GF10.7 3.08 1.82 3.45 6.63 3.88 8.34 

GF14.5 3.07 1.80 3.46 6.76 3.87 8.68 

GF17.1 3.09 1.76 3.46 6.89 3.87 8.87 

GF18.9 3.08 1.71 3.46 7.00 3.85 9.07 
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8.3.3 Structure Factors 

As illustrated in figure 6, only small changes to the total neutron and X-ray structure factors 

were observed with increasing CaF2 content in the GF series. The most significant of these 

minor changes occurred in the region of Q~3.5Å-1 in the total X-ray structure factors. As 

shown in the partial structure factors in figure 7, these changes were predominantly caused 

by the increasing contribution of the Ca-F partial structure factor with increasing CaF2 

content.  

 
Figure 6: Simulated total X-ray (SX(Q)) and neutron (SN(Q)) structure factor spectra for the GF glass 

series. 

 
Figure 7: Partial Faber-Ziman X-ray structure factors (Sij

FZ(Q)) and total X-ray structure factors 
(SX(Q)) for GF2.0 and GF18.9 glass models to the left and right respectively. 
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8.3.4  Silicon Network Connectivity 

The silicon network connectivity calculations were not only complicated by unequal 

CaO:SiO2 ratios (table 9), but also by the presence of Si-F bonding. In order to predict the 

connectivity of the GF models, the glass compositions were initially denoted as 

xCaF2-x’CaO-x’’SiO2, where the elemental concentration of each element is as follows: 

F=2x         Equation 1 

O=x’+2x’’        Equation 2 

Si=x’’         Equation 3 

Ca=x’+x         Equation 4 

The term NBO is a common abbreviation for non-bridging oxygens. Since a Si-F bond would 

have the same effect on the network connectivity as a Si-ONBO bond, Si-F bonds that take 

the place of one Si-O bond can be denoted non-bridging fluorine, or NBF. The fraction of 

fluorine atoms which are NBF’s, y, is given by 

y=NBF/2x         Equation 5 

Rearranging gives 

2xy=NBF        Equation 6 

The population of oxygen atoms comprises not only of NBO’s, but also bridging oxygens 

(BO’s) and free oxygens too. Each BO contributes bonds to two silicon atoms. By assuming 

that there were four bonds to each silicon atom, the number of bonds to silicon can be 

equated using 

4x’’=NBF+NBO+2BO       Equation 7 

By assuming an absence of free oxygens, the oxygen population can be written as 

NBO+BO=x’+2x’’       Equation 8 

Substituting equation 8 into equation 7 yields 

4x’’=NBF+BO+x’+2x’’       Equation 9 

The silicon network connectivity (Qn) is defined as the number of Si-OBO bonds per silicon 

atom. As each BO contributes bonds to two silicon atoms  

Qn=2BO/x’’        Equation 10 

Through substituting equation 9 into equation 10, Qn can be approximated according to 

equation 11  
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Qn=4-[(2(x’+2xy))/x’’]       Equation 11 

where x, x’, and x’’ are found in the table of compositions (table 9), and y is an unknown 

parameter corresponding to the fraction of fluorine atoms which are non-bridging fluorine 

atoms. Equation 11 was then compared to the actual connectivity results obtained from 

analysing the models. A value of y=0.09±0.01 generated predicted values that matched the 

results from the models most closely (figure 8). It can be seen in figure 8 that the silicon 

network connectivity values generally decline with increasing CaF2 content, corresponding 

with the reducing O-O coordination numbers in table 12. The plot to the right of figure 8 

illustrated a reduction in the number of Q2 and Q3 species and a rise in the number of Q1 

species with increasing CaF2 content. This was caused by fluorine volatilisation which led to 

the excess of calcium ions in the system, disrupting the silicate network. Some Si-F bonding 

would also cause a reduction in silicon network connectivity. The value of y=0.09±0.01 

represents 9% of the fluorine atoms having a single bond to a silicon atom.  

 
Figure 8: The average Qn results from the models compared to the predicted values to the left, and 
the Qn distribution of the models to the right. The uncertainty of 2% in the results from the models 

was based on reproducibility. The uncertainty in the predicted values was based on the 
uncertainty in y (±0.01).   

8.4 Discussion 

The nominal CaO-SiO2-CaF2 glass compositions of the experimental glass series discussed in 

the previous chapter maintained equal CaO:SiO2 proportions. However, during the glass 

synthesis, it was found that some losses due to fluorine volatilisation had occurred. 

Subsequently, the compositions were revised (figure 9) and denoted as the GF series. The 

GF series was modelled computationally in this chapter to enable direct comparisons with 

the experimental findings, and to provide further structural insight into the CaO-SiO2-CaF2 

glass system. In particular, the structural role of fluorine was examined. 
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Figure 9: Ternary plot showing the nominal and revised CaO-SiO2-CaF2 compositions.  

The images of the glass models in figure 3 did not show any obvious phase separation. To 

explore this further, the expected average pair correlation function values at relatively 

large distances of 10Å were calculated. These were included in the pair correlation function 

plots involving fluorine ions in figure 10. It can be seen that all of the pair correlation 

functions pass through the corresponding expected values at 10Å, confirming an absence 

of phase separation. However, given reports of a tendency for fluorine ions to cluster with 

increasing CaF2 contributions [5], [8], [9], the F-F pair correlation functions and cumulative 

coordination number plots were examined more closely. 

 

Figure 10: The pair correlation functions of the GF glass series that involve fluorine ions. The 
expected average pair correlation function values at 10Å have been added as dots.  
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The F-F nearest neighbour distance values in table 13 only exhibited small amounts of 

variation within the uncertainty range of ±0.10Å. The F-F coordination number increased as 

anticipated with increasing CaF2 content. Interestingly, through calculating the expected 

nearest neighbour distances and coordination numbers at 4.0Å (the cut-off distance used 

to attain the F-F coordination numbers in table 13); there was some indication of fluorine 

ions clustering (figure 11). This was because the F-F separation distances were generally 

lower than expected, and the corresponding coordination numbers higher than expected. 

The same observations were made in figure 11 for the Ca-F nearest neighbour distances 

and coordination numbers at 3.7Å (the cut-off distance used to attain the Ca-F coordination 

numbers in table 13). This suggests some clustering of both fluorine and calcium ions, and 

that the GF glass models were not completely homogeneous. 

 

Figure 11: The pair correlation functions (left) and the cumulative coordination number plots 
(right) for the F-F (top) and Ca-F (bottom) correlations. The expected average pair correlation 

function and coordination number values at 4.0Å (F-F) and 3.7Å (Ca-F) have been added as dots. 

Although the fluorine ions in the GF models were overwhelmingly bonded to calcium ions, 

some Si-F bonding was observed (table 13). The occurrence of Si-F bonding was 

unfavourable because Si4+ ions have a higher affinity for O2- ions than F- ions [1]. According 

to Rabinovich et al. [26], the difference in polarisability between bridging and non-bridging 

oxygens can result in three of the four bridging oxygens being sufficient in shielding one of 

the silicon ions. This creates the scenario where the other bridging oxygen can then move 

into closer proximity with the other silicon ion, making it vulnerable to being replaced by a 

fluorine ion. However, as emphasised in figure 3h, Si-F bonding was not only present in 
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SiO3F structural units, but also in SiO4F and SiO3F2 structural units (albeit in smaller 

quantities) as shown in table 13.  

Christie et al. [27] used first principles molecular dynamics simulation to investigate the 

fluorine environment of the archetypal 45S5 bioglass when 10mol% of the CaO was 

replaced with CaF2. Pedone et al. [5] comments on how the parameter-free nature of first 

principles simulation leads to unbiased computational models. Although the glass models 

only comprised of 120 atoms due to computational limitations; SiO3F, SiO4F, and SiO3F2 

structural units were also observed. Christie et al. [27] also reports a F-Si separation 

distance (equivalent to the Si-F separation distance) of 1.67Å and an F-Si coordination 

number of 0.17 after applying a 2.0Å cut-off distance. In this study, the F-Si separation 

distances were less at ~1.5Å (table 13), but were comparable to the F-Si separation 

distances in crystalline SiF4 [21] (table 7). The F-Si coordination number values ranged from 

0.13 to 0.25 using the same 2.0Å cut-off distance, suggesting similar proportions of Si-F 

bonding in both studies. Pedone et al. [5] calculated NMR spectra using the computational 

model produced by Christie et al. [27] and conluded that the SiO3F, SiO4F, and SiO3F2 

structural units were present in the computational model as defects. Pedone et al. [5] 

suggested that the cause was the high quench rate coupled with the small simulation size. 

However, the same structural units were observed in this study and in similar proportions 

by using a quench rate that was over three times slower than the one used by Christie et al. 

[27]. Additionally, the models in this study were much larger and contained at least 10,000 

atoms.  

Lusvardi et al. [8] also studied the fluorine environment of the archetypal 45S5 bioglass 

when CaO was replaced with CaF2. However, classical molecular dynamics simulations were 

run using rigid-ion interatomic potential parameters. Lusvardi et al. [8] stated that core-

shell model interatomic potential parameters would be needed to reproduce the Si-O-Si 

bond angles seen experimentally more closely, and hence obtain a more realistic Qn 

distribution. Calculating Qn predictions for the GF series in this work was not only 

complicated by unequal CaO:SiO2 ratios, but also by the presence of Si-F bonding. This 

prompted the derivation of equation 11, and a value of y=0.09±0.01 seemed to give the 

best agreement with the computational glass models. The value of y=0.09±0.01 represents 

9% of the fluorine ions having a single bond to a silicon atom. The proportion of fluorine 

ions involved in SiO3F, SiO4F, or SiO3F2 structural units are shown in table 15. By summing 

the percentage of fluorine ions involved in SiO3F structural units and half the percentage of 

fluorine ions involved in SiO3F2 structural units, the percentage of fluorine ions that replace 

a Si-O bond to form a NBF could be estimated. Although the proportions vary, it can be 

seen that an approximation of 9% of the fluorine ions having a single bond to a silicon ion 

was reasonable.  
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Table 15: The percentage of fluorine ions in each GF glass model that is present in SiO3F, SiO4F, or 
SiO3F2 structural units. The uncertainty in each value is estimated to be within ±1%. 

 SiO3F (%) SiO4F (%) SiO3F2 (%) SiO3F+0.5SiO3F2 (%) 

GF2.0 16.88 6.88 0.00 16.88 
GF5.0 8.75 5.25 1.50 9.20 
GF7.0 9.46 3.39 1.79 10.35 

GF10.7 10.05 3.39 2.57 11.33 
GF14.5 6.72 2.50 1.38 7.41 
GF17.1 6.58 2.27 3.07 8.11 
GF18.9 6.94 1.98 3.17 8.52 

 

8.5 Conclusion 

The structure of CaO-SiO2-CaF2 glass was investigated computationally in this chapter. This 

was achieved using classical molecular dynamics with the addition of the adiabatic core-

shell model. Fluorine ions were found to preferentially bond with calcium ions. The F-F and 

Ca-F pair correlation functions and cumulative coordination number plots indicated some 

degree of fluorine and calcium ions clustering, although no phase separation was observed. 

Some Si-F bonding was also observed in SiO3F, SiO4F, and SiO3F2 structural units. The 

calculated total neutron and X-ray structure factors showed minimal change with 

increasing CaF2 content. The most noticable of these minor changes was observed in the 

region of Q~3.5Å-1 in the total X-ray structure factors. This was predominantly caused by 

changes in the Ca-F partial structure factor with increasing CaF2 content. 
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9. Discussion and Conclusions 

In this thesis, the structure of several glass systems involving halides were investigated. The 

first of these was the intermediate glass former ZnCl2 which was modelled computationally 

using classical molecular dynamics (MD) with the addition of the adiabatic core-shell model. 

This allows relatively large system sizes to be modelled whilst also taking anion polarisability 

into account, and has not previously been used to model ZnCl2 glass. The glass model 

produced was the first fully tetrahedral model of ZnCl2 glass. The average Cl-Zn-Cl bond angle 

matched the ideal tetrahedral bond angle of 109° [1]. While most of the tetrahedral units 

were corner-sharing, 14% were found to be edge-sharing. The calculated total neutron and 

X-ray structure factors were in good agreement with those obtained experimentally [1], [2]. 

The calculated Faber-Ziman partial structure factors were also generally in good agreement 

with those from neutron diffraction [1]. However, some discrepancy between the Zn-Zn 

partial structure factors was apparent. This was due to the weak weighting of the Zn-Zn 

partial structure factor (ωZnZn=0.05) in comparison to the other partial structure factors 

(where ωZnCl=0.35, ωClCl=0.59). This low signal to noise ratio caused poor resolution in the 

Zn-Zn pair correlation function obtained experimentally from neutron diffraction. The Zn-Zn 

pair correlation function from this work could therefore provide clear details that are 

unobtainable experimentally.  

It was of interest to compare the structural effects of anion polarisability in the intermediate 

glass former ZnCl2 to those in the well-established strong glass-former SiO2. The ZnCl2 glass 

model was therefore compared to a SiO2 glass model [3]. Once the partial structure factors 

had been scaled according to nearest neighbour distance, strong similarities between the 

ZnCl2 and SiO2 partial structure factors could be seen. This was because both ZnCl2 and SiO2 

have a dominantly corner-sharing tetrahedral network. The main contribution to the first 

sharp diffraction peaks (FSDP’s) came from the cation-anion contribution, rather than the 

cation-cation contribution as previously reported [4]. 

The next system to be investigated was the CaO-SiO2-CaCl2 glass system. Fluorine-containing 

bioactive glasses are known to have a number of limitations [5]. One of these is that the 

formation of fluorite is possible which can hinder enamel regeneration [5]. Consequently, 

attention has recently turned to the possibility of using chlorine-containing bioactive glasses 

as an alternative for dental applications [6], [7]. The number of studies on chlorine-

containing bioactive glasses have been scarce, and no structural characterisation has 

previously been undertaken. In order to understand the structure of complex 

CaO-SiO2-P2O5-CaCl2 chlorine-containing bioactive glasses, it is fundamental to first 

understand the structure of less complex CaO-SiO2-CaCl2 glasses. This prompted the 
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structure of CaO-SiO2-CaCl2 glasses to be investigated both experimentally and 

computationally in this work.  

A CaO-SiO2-CaCl2 glass series was synthesised both by collaborators at Queen Mary 

University of London (denoted the QCl series) and later by collaborators at Aston University 

(denoted as the ACl series). Both sets of glasses had the same nominal compositions but had 

been prepared using different approaches. Coupled with concerns about losses due to 

chlorine volatilisation [8], it was important to carefully study the CaO-SiO2-CaCl2 glass 

compositions experimentally. This was achieved using calibrated X-ray fluorescence (XRF) 

measurements. While the QCl glass samples maintained their nominal compositions, the ACl 

glass samples exhibited chlorine losses of between 23% and 59% depending on the furnace 

temperature used during glass synthesis. Losses via chlorine volatilisation were found to 

occur as HCl. Once the glass densities had been established from helium pycnometry 

measurements, central facility techniques including neutron diffraction (ND) and X-ray 

absorption spectroscopy (XAS) were used to probe the structure of the ACl glass samples 

experimentally. In addition, both the QCl and ACl glass series were modelled computationally 

using classical molecular dynamics with the addition of the adiabatic core-shell model. This 

was the first time CaO-SiO2-CaCl2 glasses had been modelled using this technique. The 

computational modelling required a Si-Cl interatomic potential parameter to be fitted in this 

work, since a suitable Si-Cl interatomic potential parameter had not previously been 

reported. This was achieved using the General Utility Lattice Program (GULP) [9]. The results 

of computational modelling could be compared with experimental results. The example in 

figure 1 shows the close agreement between the total neutron structure factors obtained 

experimentally and computationally. This further validates the interatomic potential 

parameters used to model the glasses computationally.  
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Figure 1: A comparison of the total neutron structure factors for the ACl glass series that have 

been attained experimentally (solid lines) and computationally (dashed lines). The plots have been 
progressively offset by 0.5. 

By Fourier transforming the total neutron structure factors attained experimentally, total 

correlation functions were obtained. The total correlation functions did not exhibit a 

noticeable contribution around 2.1Å as would have been expected for Si-Cl bonding. This 

was consistent with an absence of Si-Cl bonding in the computational glass models. The 

chlorine ions in the glass models bonded with calcium ions, and the models were found to 

become phase separated with increasing CaCl2 content. The glass models of the QCl glass 

series became phase separated between the QCl16.1 and the QCl27.4 compositions. The 

glass models of the ACl glass series became phase separated between the ACl12.1 and the 

ACl20.6 compositions. Upon phase separation, the models became biphasic and the two 

phases included a calcium silicate phase and a calcium chloride phase. Interestingly, by 

comparing the average pair correlation function values concerning chlorine with those 

expected at a relatively large distance of 10Å, it became apparent that there was a tendency 

towards phase separation even in the glass models containing small amounts of CaCl2. In 

addition, by comparing the calculated Ca-Ca pair correlation functions from the ACl and QCl 

glass series, it was found that the higher CaO content of the ACl glass series slowed the 

proliferation of phase separation. 

The modulus of the Fourier transformed Ca K-edge k2 weighted EXAFS spectra and the total 

neutron structure factors from experiment both exhibited a distinct change in shape 

between the ACl12.1 and the ACl20.6 compositions, the same range of compositions 



185 
 

between which phase separation was observed computationally. Interestingly, some of the 

total neutron structure factors in figure 1 that had been calculated from the computational 

models exhibited a sharp vertical line at a low value of Q. These were indicative of phase 

separation but were not observed experimentally. This was because standard neutron 

diffraction techniques cannot probe samples to such small values of Q. Small angle neutron 

scattering (SANS) or small angle X-ray scattering (SAXS) experiments would be necessary to 

determine the occurrence and actual scale of phase separation in the ACl samples. 

Since the calcium environment of the ACl glass series could be probed using ND, XAS, and 

MD, it was of interest to compare the results attained. Gaussian peaks were fitted to the 

total correlation functions from ND and to the Ca K-edge k2 weighted EXAFS spectra to 

acquire the Ca-O and Ca-Cl structural parameters shown in figure 2. In the figure, the 

generally good agreement between the Ca-O and Ca-Cl coordination numbers can be seen. 

The Ca-O and Ca-Cl nearest neighbour distances from ND were generally slightly higher than 

those from MD. The Ca-O nearest neighbour distances from EXAFS were generally lower than 

those from MD. Conversely, the Ca-Cl nearest neighbour distances from EXAFS were 

generally higher than those from MD. This emphasises the challenging nature of fitting 

overlapping correlations in the experimental data. The values of 𝜎𝐶𝑎𝑂
2 and 𝜎𝐶𝑎𝐶𝑙

2 from MD 

were seen to reduce with increasing CaCl2 content. This was consistent with the formation 

of calcium silicate-rich and calcium chloride-rich clusters respectively. As shown in figure 3, 

X-ray diffraction, another common technique used to characterise glass structure, is unlikely 

to have provided additional information on the calcium environment. Figure 3 also shows 

the asymmetry in a number of pair correlation functions due to the static disorder in the 

glasses. Asymmetric functions are inadequately represented by gaussian functions used in 

fitting, highlighting a limitation of obtaining structural parameters experimentally. 
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Figure 2: The nearest neighbour distances (Rij), coordination numbers (Nij), and values of 𝝈𝒊𝒋

𝟐 

obtained for the Ca-O (top) and Ca-Cl (bottom) correlations from Ca K-edge k2 weighted EXAFS 
spectra (green squares), neutron diffraction (blue squares), and molecular dynamics (brown 

squares). 

 

Figure 3: The calculated neutron (left) and X-ray (right) weighted pair correlation functions for 
ACl39.8 that form the total correlation functions. 

The remaining glass system to be investigated was the CaO-SiO2-CaF2 glass series which was 

denoted as the GF series. The addition of CaF2 into a bioactive glass composition has been 

found to have beneficial effects for dental applications [10]–[14]. However, the structural 

role of fluorine remains unclear (e.g. [15], [16]). To help comprehend the structural role of 

fluorine, it is intuitive to first consider less complex CaO-SiO2-CaF2 glasses. These have 

predominantly been studied for mould flux applications during the continuous casting of 
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steel, but conclusions on whether fluorine coordinates with silicon have been contradictory 

[17]. The structural role of fluorine in CaO-SiO2-CaF2 glasses was therefore investigated in this 

work using experimental and computational techniques.  

Once the GF glass series had been synthesised, compositional analysis was performed. This 

was achieved using yield calculations and calibrated 19F MAS-NMR measurements. The losses 

due to fluorine volatilisation were known to occur as HF [18], [19], and fluorine losses in the 

GF glass series ranged between 10% and 40%, depending on the furnace temperature used 

during glass synthesis. Following the density measurements of the GF glass samples using 

helium pycnometry, ND and XAS experiments were performed. In addition, the glasses were 

modelled computationally using classical molecular dynamics (MD) with the addition of the 

adiabatic core-shell model as mentioned previously. This required a Si-F interatomic 

potential parameter to be fitted in this work using the General Utility Lattice Program (GULP) 

[9]. To the author’s knowledge, this was the first time these ternary glasses had been 

modelled computationally using this approach, and the excellent agreement between the 

total neutron structure factors obtained experimentally and computationally can be seen in 

figure 4. This further validates the interatomic potential parameters used during 

computational simulations.  

 
Figure 4: A comparison of the total neutron structure factors for the GF glass series that have been 

attained experimentally (solid lines) and computationally (dashed lines). The plots have been 
progressively offset by 0.5. 

The results of computational modelling can provide structural insight that would be 

challenging to obtain experimentally. For example, the computational models of the GF glass 
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series revealed small amounts of Si-F bonding in the form of SiO3F, SiO4F, and SiO3F2 

structural units. The proportion of these structural units was found to increase with 

increasing CaF2 content. The same structural units had also been reported in a first principles 

modelling study on fluorine-containing bioactive glass [20]. This was despite system sizes of 

only 120 atoms being used due to computational limitations. Although detectable amounts 

of Si-F bonding were not observed using 29Si MAS-NMR and ND measurements, it is 

conceivable that this was due to experimental limitations. Zeng and Stebbins [21] have 

reported that a small proportion of Si-F bonding in 29Si MAS-NMR spectra would be obscured 

by the broad spectrum and its spinning sidebands. In addition, the computational models 

revealed that the Si-F nearest neighbour distance was around 1.5Å. Therefore, any small Si-F 

bonding contribution in the total correlation functions from ND would be masked by the 

prevalent Si-O bonding contribution at 1.6Å. Interestingly, at distances around 4Å, the F-F 

and Ca-F pair correlation functions had values that were lower than expected, while the 

coordination numbers were higher than expected. This was indicative of some clustering of 

fluorine and calcium ions.  

In addition to studying the calcium environment of the GF glasses using MD, the calcium 

environment could also be probed using ND and XAS. By fitting gaussian peaks to the total 

correlation functions from neutron diffraction, and to the Ca K-edge k2 weighted extended 

X-ray absorption fine structure (EXAFS) spectra, structural parameters were obtained. These 

Ca-O and Ca-F structural parameters are compared to those obtained computationally in 

figure 5, where good agreement between the Ca-O nearest neighbour distances and 

coordination numbers can be seen. The Ca-F nearest neighbour distances are generally in 

reasonable agreement, although less good agreement is seen for low CaF2 concentrations. 

The Ca-F coordination numbers from ND and MD are in close agreement, while the 

coordination numbers from EXAFS are noticeably higher (but generally still within the 

uncertainty range). This discrepancy was caused by the overlapping Ca-F and Ca-O paths at 

around 2.3Å and 2.4Å respectively. This made distinguishing the peaks in the experimental 

results challenging, particularly for smaller peak contributions, i.e. Ca-F peaks at low CaF2 

concentrations. As was also observed for the ACl glass series, the values of 𝜎𝑖𝑗
2 from MD 

were consistently higher than those from EXAFS. This is most noticeable for the Ca-O 

correlation. As shown in figure 6, X-ray diffraction, is unlikely to have provided additional 

structural information on the calcium environment.  
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Figure 5: The nearest neighbour distances (Rij), coordination numbers (Nij), and values of 𝝈𝒊𝒋

𝟐 

obtained for the Ca-O (top) and Ca-F (bottom) correlations from Ca K-edge k2 weighted EXAFS 
spectra (green squares), neutron diffraction (blue squares), and molecular dynamics (brown 

squares). 

 

Figure 6: The calculated neutron (left) and X-ray (right) weighted pair correlation functions for 
GF18.9 that form the total correlation functions.  

Two of the glass series studied in this work were based on CaO-SiO2 and differed according 

to whether CaCl2 of CaF2 was added. The differences in glass transition temperature between 

the QCl and GF glass series was a particularly interesting result. The QCl series upheld their 

nominal compositions, and as reported by Chen [7], a reduction in glass transition 

temperature with increasing CaCl2 content was observed (figure 7). This could be attributed 

to the QCl glasses containing CaSiO3-rich regions and CaCl2-rich regions which became phase 

separated. Although the CaSiO3-rich clusters maintained consistent silicon network 
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connectivity values, the uniformity of the glass would have declined with the formation of 

CaCl2-rich regions. The GF glass series did not uphold their nominal compositions and also 

exhibited a reduction in glass transition temperature with increasing CaF2 content, albeit at 

a slower rate compared to the QCl series as shown in figure 7. The computational models of 

the GF glass series suggested that the reduction in glass transition temperature was the 

result of a reduction in silicon network connectivity. By considering the excess CaO from 

fluorine volatilisation and neglecting the impact of any Si-F bonding, the average silicon 

network connectivity in the GF series would be expected to range from Qn=1.95 for GF2.0 to 

Qn=1.89 for GF18.9. It is unclear whether these small differences from Qn=2.00 for a calcium 

metasilicate could be resolved in the experimental 29Si MAS-NMR spectra in which the 

chemical shift positions did not change significantly with increasing CaF2 content. By also 

considering the small amount of Si-F bonding observed in the computational models of the 

GF glass series, the average silicon network connectivity in the GF series declined from 

Qn=1.92 for GF2.0 to Qn=1.71 for GF18.9. This suggests that the reduction in glass transition 

temperature might be influenced by Si-F bonding contributions which cannot be resolved 

using MAS-NMR [16]. 

 
Figure 7: A comparison of the glass transition temperatures for the GF and QCl series as a function 
of increasing CaF2 and CaCl2 contributions respectively. The glass transition temperatures for the 

QCl series were obtained from [7]. 

This thesis has presented a very comprehensive structural characterisation of the related 

CaO-SiO2-CaCl2 and CaO-SiO2-CaF2 glass systems by combining results from molecular 

dynamics simulations, neutron diffraction, and X-ray absorption spectroscopy. As a result, a 

wealth of detailed data on the effect of chlorine and fluorine on the calcium silicate base 

glass has been obtained. In terms of future work, performing a small angle neutron scattering 

(SANS) or a small angle X-ray scattering (SAXS) experiment on the ACl glass series should 

enable the occurrence and scale of phase separation to be determined. In addition, it would 

be of interest to deconvolute the Raman spectra obtained for both glass series in order to 
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compare the silicon network connectivity distributions obtained experimentally with those 

obtained computationally. Finally, it would also be of interest to perform a similar structural 

investigation on more complex CaO-SiO2-P2O5-CaCl2 and CaO-SiO2-P2O5-CaF2 glasses. This 

would involve further glass synthesis, and the development of additional interatomic 

potential parameters for computational modelling. Most bioactive glass compositions 

contain small amounts of P2O5 which would make structural results concerning phosphorus 

susceptible to statistical variation. It might therefore be advantageous to try and incorporate 

a more substantial proportion of P2O5 to assist in elucidating how P2O5 affects the glass 

structure in CaO-SiO2-P2O5-CaCl2 or CaO-SiO2-P2O5-CaF2 bioactive glasses. Future studies on 

such bioactive glasses will benefit from the extensive results presented in this thesis on the 

underlying structure of CaO-SiO2-CaCl2 and CaO-SiO2-CaF2 glasses.  
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